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A New Outer Bound and the

Noisy-Interference Sum-Rate Capacity for

Gaussian Interference Channels
Xiaohu Shang, Gerhard Kramer, and Biao Chen

Abstract

A new outer bound on the capacity region of Gaussian interference channels is developed. The bound

combines and improves existing genie-aided methods and is shown to give the sum-rate capacity fornoisy

interference as defined in this paper. Specifically, it is shown that if the channel coefficients and power

constraints satisfy a simple condition then single-user detection at each receiver is sum-rate optimal, i.e.,

treating the interference as noise incurs no loss in performance. This is the first concrete (finite signal-

to-noise ratio) capacity result for the Gaussian interference channel with weak to moderate interference.

Furthermore, for certain mixed (weak and strong) interference scenarios, the new outer bounds give a

corner point of the capacity region.

Index terms — capacity, Gaussian noise, interference.

I. INTRODUCTION

The interference channel (IC) models communication systems where transmitters communicate with

their respective receivers while causing interference to all other receivers. For a two-user Gaussian IC,

the channel output can be written in the standard form [1]

Y1 = X1 +
√
aX2 + Z1,

Y2 =
√
bX1 +X2 + Z2,
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where
√
a and

√
b are channel coefficients,Xi andYi are the transmit and receive signals, and where the

user/channel input sequenceXi1,Xi2, · · · ,Xin is subject to the power constraint
∑n

j=1 E(X2
ij) ≤ nPi,

i = 1, 2. The transmitted signalsX1 andX2 are statistically independent. The channel noisesZ1 andZ2

are possibly correlated unit variance Gaussian random variables, and(Z1, Z2) is statistically independent

of (X1,X2). In the following, we denote this Gaussian IC as IC(a, b, P1, P2).

The capacity region of an IC is defined as the closure of the setof rate pairs(R1, R2) for which both

receivers can decode their own messages with arbitrarily small positive error probability. The capacity

region of a Gaussian IC is known only for three cases:

• a = 0, b = 0.

• a ≥ 1, b ≥ 1: see [2]–[4].

• a = 0, b ≥ 1; or a ≥ 1, b = 0: see [5]

For the second case both receivers can decode the messages ofboth transmitters. Thus this IC acts as two

multiple access channels (MACs), and the capacity region for the IC is the intersection of the capacity

region of the two MACs. However, when the interference is weak or moderate, the capacity region is still

unknown. The best inner bound of the capacity region is obtained in [4] by using superposition coding

and joint decoding. A simplified form of the Han-Kobayashi region was given by Chong-Motani-Garg

[6], [7]. Various outer bounds have been developed in [8]–[12]. Sato’s outer bound in [8] is derived by

allowing the receivers to cooperate. Carleial’s outer bound in [9] is derived by decreasing the noise power.

Kramer in [10] presented two outer bounds. The first is obtained by providing each receiver with just

enough information to decode both messages. The second outer bound is obtained by reducing the IC to

a degraded broadcast channel. Both of these two bounds dominate the bounds by Sato and Carleial. The

recent outer bounds by Etkin, Wang, and Tse in [11] are also based on genie-aided methods, and they

show that Han and Kobayashi’s inner bound is within one bit ora factor of two of the capacity region.

This result can also be established by the methods of Telatarand Tse [12]. We remark that neither of the

bounds of [10] and [11] implies each other. But as a rule of thumb, our numerical results show that the

bounds of [10] are better at low SNR while those of [11] are better at high SNR. The bounds of [12] are

not amenable to numerical evaluation since the optimal distributions of the auxiliary random variables

are unknown. None of the above outer bounds is known to be tight for the general Gaussian IC.

In this paper, we present a new outer bound on the capacity region of Gaussian ICs that improves on

the bounds of [10], [11]. The new bounds are based on a genie-aided approach and a recently proposed

extremal inequality [13]. Unlike the genie-aided method used in [10, Theorem 1], neither receiver is
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required to decode the messages from the other transmitter.Based on this outer bound, we obtain new

sum-rate capacity results (Theorem 2 and 3) for ICs satisfying some channel coefficient and power

constraint conditions. We show that the sum-rate capacity can be achieved by treating the interference

as noise when both the channel gain and the power are weak. We say that such channels havenoisy

interference. For this kind of noisy interference, the simple single-user transmission and detection strategy

is sum-rate optimal. In Theorem 3, we show that for ICs witha > 1, 0 < b < 1 and satisfying another

condition, the sum-rate capacity is achieved by letting user 1 fully recover messages from user2 first

before decoding its own message, while user2 only recovers its own messages.

This paper is organized as follows. In Section II, we presenta new genie-aided outer bound and the

resulting sum-rate capacity for certain Gaussian ICs. We prove these results in Section III. Numerical

examples are given in Section IV, and Section V concludes thepaper.

II. M AIN RESULTS

A. General outer bound

The following is a new outer bound on the capacity region of Gaussian ICs.

Theorem 1: If the rates(R1, R2) are achievable for IC(a, b, P1, P2) with 0 < a < 1, 0 < b < 1, they

must satisfy the following constraints (1)-(3) forµ > 0, 1+bP1

b+bP1

≤ η1 ≤ 1
b anda ≤ η2 ≤ a+aP2

1+aP2

:

R1 + µR2 ≤ min
ρi∈[0,1]

(σ2

1
,σ2

2
)∈Σ

1

2
log

(

1 +
P ∗
1

σ2
1

)

− 1

2
log
(

aP ∗
2 + 1− ρ21

)

+
1

2
log

(

1 + P1 + aP2 −
(P1 + ρ1σ1)

2

P1 + σ2
1

)

+
µ

2
log

(

1 +
P ∗
2

σ2
2

)

− µ

2
log
(

bP ∗
1 + 1− ρ22

)

+
µ

2
log

(

1 + P2 + bP1 −
(P2 + ρ2σ2)

2

P2 + σ2
2

)

,(1)

R1 + η1R2 ≤ 1

2
log

(

1 +
bη1 − 1

b− bη1

)

− η1
2
log

(

1 +
bη1 − 1

1− η1

)

+
η1
2

log (1 + bP1 + P2) , (2)

R1 + η2R2 ≤ 1

2
log (1 + P1 + aP2)−

1

2
log

(

1 +
a− η2
η2 − 1

)

+
η2
2

log

(

1 +
a− η2
aη2 − a

)

, (3)

where

Σ =







{

(

σ2
1, σ

2
2

)

| σ2
1 > 0, 0 < σ2

2 ≤ 1−ρ2

1

a

}

, if µ ≥ 1,
{

(

σ2
1, σ

2
2

)

| 0 < σ2
1 ≤ 1−ρ2

2

b , σ2
2 > 0

}

, if µ < 1,
(4)

and if µ ≥ 1 we have

P ∗
1 =



















P1, 0 < σ2
1 ≤

((

1
µ − 1

)

P1 +
1−ρ2

2

bµ

)+
,

1−ρ2

2
−bµσ2

1

bµ−b ,
((

1
µ − 1

)

P1 +
1−ρ2

2

bµ

)+
< σ2

1 ≤ 1−ρ2

2

bµ ,

0, σ2
1 > 1−ρ2

2

bµ ,

(5)

P ∗
2 = P2, 0 < σ2

2 ≤ 1− ρ21
a

, (6)
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where(x)+ , max{x, 0}, and if 0 < µ < 1 we have

P ∗
1 = P1, 0 < σ2

1 ≤ 1− ρ22
b

, (7)

P ∗
2 =



















P2, 0 < σ2
2 ≤

(

(µ− 1)P2 +
µ(1−ρ2

1
)

a

)+
,

µ(1−ρ2

1
)−aσ2

2

a−aµ ,
(

(µ− 1)P2 +
µ(1−ρ2

1
)

a

)+
< σ2

2 ≤ µ(1−ρ2

1
)

a ,

0, σ2
2 > µ(1−ρ2

1
)

a .

(8)

Remark 1: The bounds (1)-(3) are obtained by providing different genie-aided signals to the receivers.

There is overlap of the range ofµ, η1, andη2, and none of the bounds uniformly dominates the other

two bounds. Which one of them is active depends on the channelconditions and the rate pair.

Remark 2: Equations (2) and (3) are outer bounds for the capacity region of a Z-IC, and a Z-IC is

equivalent to a degraded IC [5]. For such channels, it can be shown that (2) and (3) are the same as the

outer bounds in [14]. For0 ≤ η1 ≤ 1+bP1

b+bP1

and η2 ≥ a+aP2

1+aP2

, the bounds in (2) and (3) are tight for a

Z-IC (or degraded IC) because there is no power sharing between the transmitters. Consequently,1+bP1

b+bP1

and a+aP2

1+aP2

are the negative slopes of the tangent lines for the capacityregion at the corner points.

Remark 3: The bounds in (2)-(3) turn out to be the same as the bounds in [10, Theorem 2]. We

show this by proving that (3) is equivalent to [10, page 584, (37)-(38)] but with equalities rather than

inequalities. Consider the rates

R1 =
1

2
log

(

1 +
P ′
1

P ′
2 + 1/a

)

(9)

R2 =
1

2
log
(

1 + P ′
2

)

(10)

P ′
1 + P ′

2 =
P1

a
+ P2 (11)

for 0 ≤ P ′
1 ≤ P1. We rewrite (9) and (10) in the form of the weighted sum

R1 + αR2 =
1

2
log

(

1 +
P ′
1

P ′
2 + 1/a

)

+
α

2
log
(

1 + P ′
2

)

. (12)

Observe that (12) represents a line with slopeα where

α = −∂R1

∂R2

= −∂R1

∂P ′
2

/

∂R2

∂P ′
2

= −
∂ log

(

1 + P1/a+P2−P ′

2

P ′

2
+1/a

)

∂P ′
2

/

∂ log (1 + P ′
2)

∂P ′
2

=
a+ aP ′

2

1 + aP ′
2

. (13)
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We thus obtain

P ′
2 =

a− α

aα− a
. (14)

Substituting (14) into (12), we have

R1 + αR2 =
1

2
log (1 + P1 + aP2)−

1

2
log

(

1 +
a− α

α− 1

)

+
α

2
log

(

1 +
a− α

aα− a

)

,

which is the same as (3). The relationa ≤ α ≤ a+aP2

1+aP2

follows from (13) and0 ≤ P ′
2 ≤ P2.

Remark 4: The bounds in [10, Theorem 2] are obtained by getting rid of one of the interference links

to reduce the IC into a Z interference channel (or Z-IC, see [5]). Next, the proof in [10] allowed the

transmitters to share their power, which further reduces the Z-IC into a degraded broadcast channel. Then

the capacity region of this degraded broadcast channel is anouter bound for the capacity region of the

original IC. The bounds in (2) and (3) are also obtained by reducing the IC to a Z-IC. Although we do not

explicitly allow the transmitters to share their power, it is interesting that these bounds are equivalent to the

bounds in [10, Theorem 2] with power sharing. In fact, a careful examination of our new derivation reveals

that power sharing is implicitly assumed. For example, for the termh (Xn
1 + Zn

1 )− η1h
(√

bXn
1 + Zn

2

)

of (43) below, user1 uses powerP ∗
1 = bη1−1

b−bη1

≤ P1 , while for the termη1h (Y
n
2 ) user1 uses all the

powerP1. This is equivalent to letting user1 use the powerP ∗
1 for both terms, and letting user2 use a

power that exceedsP2. To see this, consider (43) below and write

n(R1 + η1R2) ≤ n

2
log (P ∗

1 + 1)− nη1
2

log (bP ∗
1 + 1) +

nη1
2

log (1 + bP1 + P2) + nǫ

=
n

2
log (P ∗

1 + 1)− nη1
2

log (bP ∗
1 + 1) +

nη1
2

log (1 + bP ∗
1 + P2 + b(P1 − P ∗

1 )) + nǫ

=
n

2
log
(

P ′
1 + 1

)

− nη1
2

log
(

bP ′
1 + 1

)

+
nη1
2

log
(

1 + bP ′
1 + P ′

2

)

+ nǫ,

whereP ′
1 , P ∗

1 , andP ′
2 , P2 + b(P1 − P ∗

1 ). Therefore, one can assume that user2 uses extra power

provided by user1.

Remark 5: Theorem 1 improves [11, Theorem 3]. Specifically, for the three sum-rate bounds of [11,

Theorem 3], the first bound can be obtained from (43) withP ∗
1 = P1 in (44). Therefore, the bound in

(2) is tighter than the first sum-rate bound of [11, Theorem 3]. Similarly, the bound in (3) is tighter than

the second sum-rate bound of [11, Theorem 3]. The third sum-rate bound in [11, Theorem 3] is a special

case of (1) withσ2
1 = 1

b , σ
2
2 = 1

a , ρ1 = ρ2 = 0.

Remark 6: Our outer bound is not always tighter than that of [11] for all rate points. The reason is that

in [11, last two equations of (39)], different genie-aided signals are provided to the same receiver. Our
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outer bound can also be improved in a similar and more generalway by providing different genie-aided

signals to the receivers. Specifically the starting point ofthe bound is

n (R1 + µR2) ≤
k
∑

i=1

λiI (X
n
1 ;Y

n
1 , Ui) +

m
∑

j=1

µiI (X
n
2 ;Y

n
2 ,Wj) + nǫ, (15)

where
∑k

i=1 λi = 1,
∑m

j=1 µj = µ, λi > 0, µj > 0.

B. Sum-rate capacity for noisy interference

The outer bound in Theorem 1 is in the form of an optimization problem. Four parametersρ1, ρ2, σ2
1 , σ

2
2

need to be optimized for different choices of the weightsµ, η1, η2. Whenµ = 1, Theorem 1 leads directly

to the following sum-rate capacity result.

Theorem 2: For the IC(a, b, P1, P2) satisfying

√
a(bP1 + 1) +

√
b(aP2 + 1) ≤ 1, (16)

the sum-rate capacity is

C =
1

2
log

(

1 +
P1

1 + aP2

)

+
1

2
log

(

1 +
P2

1 + bP1

)

. (17)

Remark 7: The sum-rate capacity for a Z-IC witha = 0, 0 < b < 1 is a special case of Theorem 2

since (16) is satisfied. The sum capacity is therefore given by (17).

Theorem 2 follows directly from Theorem 1 withµ = 1. It is remarkable that a genie-aided bound

is tight if (16) is satisfied since the genie provides extra signals to the receivers without increasing the

rates. This situation is reminiscent of the recent capacityresults for vector Gaussian broadcast channels

(see [15]). Furthermore, the sum-rate capacity (17) is achieved by treating the interference as noise. We

therefore refer to channels satisfying (16) as ICs withnoisy interference. Note that (16) involves both

channel gainsa, b and both powersP1 andP2. The constraint (16) implies that

√
a+

√
b ≤ 1. (18)

Moreover, as shown in Fig. 1, the powersP1 andP2 must be inside the triangle defined by:

P1 ≥ 0,

P2 ≥ 0,

b
√
aP1 + a

√
bP2 ≤ 1−

√
a−

√
b. (19)
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These constraints can be considered as a counterpart of the IC with very strong interference [2] whose

powers should be inside the rectangle defined in Fig. 2:

a > 1, b > 1,

0 ≤ P1 ≤ a− 1,

0 ≤ P2 ≤ b− 1.

The ICs with noisy interference and ICs with very strong interference are two extreme cases in terms

of the decoding strategy to achieve the sum-rate capacity. In the former case, the sum-rate capacity is

achieved by treating interference as noise, while in the latter case, the interference is decoded before, or

together with, the intended messages.

For symmetric Gaussian ICs witha = b andP1 = P2, the conditions in (18) and (19) become

a = b ≤ 1

4
, (20)

P1 = P2 = P ≤
√
a− 2a

2a2
. (21)

“Noisy interference” is therefore “weaker” than “weak interference” as defined in [5] and [16], namely

a ≤
√
1+2P−1
2P or

P ≤ 1− 2a

a2
. (22)

Recall that [16] showed that for “weak interference” satisfying (22), treating interference as noise achieves

larger sum rate than time-or frequency-division multiplexing (TDM/FDM), and [5] claimed that in “weak

interference” the largest known achievable sum rate is achieved by treating the interference as noise.

C. Capacity region corner point

Theorem 3: For an IC(a, b, P1, P2) with a > 1, 0 < b < 1, the sum-rate capacity is

C =
1

2
log (1 + P1) +

1

2
log

(

1 +
P2

1 + bP1

)

(23)

when the following condition holds

(1− ab)P1 ≤ a− 1. (24)

A similar result follows by swappinga andb, andP1 andP2.

Under the constraint (24), we have the following inequality:

1

2
log

(

1 +
P2

1 + bP1

)

≤ 1

2
log

(

1 +
aP2

1 + P1

)

. (25)
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1 −
√

a −
√

b
√

ab

1 −
√

a −
√

b

a
√

b

P
1

P
2

0

a > 0

b > 0√
a +

√
b ≤ 1

Fig. 1. Power region for the IC with noisy interference.

a−1

b−1

P
1

P
2

0

a ≥ 1
b ≥ 1

Fig. 2. Power region for the IC with very strong interference.
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Therefore, the sum-rate capacity is achieved by a simple scheme: user1 transmits at the maximum rate

and user2 transmits at the rate that both receivers can decode its message with single-user detection.

Observe further that this rate pair permitsR2 =
1
2 log

(

1 + aP2

1+P1

)

whenR1 reaches its maximum. Such a

rate constraint was considered in [5, Theorem 1] which established a corner point of the capacity region.

However it was pointed out in [16] that the proof in [5] was flawed. Theorem 3 shows that the rate pair

of [16] is in fact a corner point of the capacity region whena > 1, 0 < b < 1 and (24) is satisfied, and

this rate pair achieves the sum-rate capacity.

The sum-rate capacity of the degraded IC(ab = 1, 0 < b < 1) is a special case of Theorem 3. Besides

this example, there are two other kinds of ICs to which Theorem 3 applies. The first case isab > 1. In

this case,P1 can be any positive value. The second case isab < 1 andP1 ≤ a−1
1−ab . For both cases, the

signals from user2 can be decoded first at both receivers.

D. State of the Art

We reiterate that both Theorems 2 and 3 are direct results of Theorem 1, and Theorem 1 is derived

by having a genie provide extra information to the receivers. We summarize the sum-rate capacity for

Gaussian ICs from Theorems 2 and 3 and previous results in [2]–[4]. In Fig. 3, four curvesab = 1,

a = 1, b = 1, and
√
a +

√
b ≤ 1 divide channel gain plane into7 regimes. The sum-rate capacity for

each regime under certain power constraints is shown in Tab.I.

III. PROOFS OF THEMAIN RESULTS

We introduce some notation. We write vectors and matrices byusing a bold font (e.g.,X andS). When

useful we also write vectors with lengthn using the notationXn. The ith entry of the vectorX (or Xn)

is denoted asXi. Random variables are written as uppercase letters (e.g.,Xi) and their realizations as the

corresponding lowercase letter (e.g.,xi). We usually write probability densities and distributions asp(x)

if the argument ofp(·) is a lowercase version of the random variable correspondingto this density or

distribution. The notationh(X) and Cov(X) refers to the respective differential entropy and covariance

matrix ofX. The notation ofU |V = v andU |V denotes the random variableU conditioned on the event

V = v and the random variableV , respectively.

The proof utilizes the extremal inequalities introduced in[13]. We present them below for completeness.

Lemma 1: [13, Theorem 1] For anyµ ≥ 1 and any positive semi-definiteS, a GaussianX is an

optimal solution of the following optimization problem:

October 28, 2018 DRAFT
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0 1 2
0

1

2

ab = 1

√
a +

√
b = 1

b = 1

a = 1

III

IV

III

V

VI

VII

a

b

Fig. 3. Gaussian IC channel coefficient regimes for Tab. I

TABLE I

SUM-RATE CAPACITY.

(a, b) (P1, P2) sum-rate capacity

I a ≥ 1, b ≥ 1 P1 > 0, P2 > 0 min



















1

2
log(1 + P1) +

1

2
log(1 + P2)

1

2
log(1 + P1 + aP2)

1

2
log(1 + bP1 + P2)



















II ab ≥ 1, a ≤ 1 P1 > 0, P2 > 0 1

2
log
(

1 + P1

1+aP2

)

+ 1

2
log(1 + P2)

III ab ≤ 1, b ≥ 1 P1 > 0, P2 ≤ b−1

1−ab
same as above

IV ab ≥ 1, b ≤ 1 P1 > 0, P2 > 0 1

2
log(1 + P1) +

1

2
log
(

1 + P2

1+bP1

)

V ab ≤ 1, a ≥ 1 P1 ≤ a−1

1−ab
, P2 > 0 same as above

VI
√
a+

√
b ≤ 1

√
a(1 + bP1) +

√
b(1 + aP2) ≤ 1 1

2
log
(

1 + P1

1+aP2

)

+ 1

2
log
(

1 + P2

1+bP1

)

VII
√
a+

√
b > 1, a < 1, b < 1 P1 > 0, P2 > 0 unknown
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max
p(x)

h (X+U1)− µh (X+U2)

subject to Cov(X) � S,

whereU1 andU2 are Gaussian vectors with strictly positive definite covariance matricesK1 andK2,

respectively, and the maximization is over allX independent ofU1 andU2.

Lemma 2: [13, Corollary 4] For any real numberµ and any positive semi-definiteS, a GaussianX

is an optimal solution of the following optimization problem:

max
p(x)

h (X+U1)− µh (X+U1 +U)

subject to Cov(X) � S,

whereU1 andU are two independent Gaussian vectors with strictly positive definite covariance matrices

K1 andK, respectively, and the maximization is over allX independent ofU1 andU2.

For example, consider the following optimization problem

max
p(x)

h (X+U1)− µh (X+U2)

subject to
1

n
tr (S) ≤ P, S = E

(

XXT
)

, (26)

and suppose thatS∗ is the optimal covariance matrix forX. Whenµ ≥ 1, the problem (26) is equivalent

to the problem of Lemma 1 withS replaced byS∗. Similarly, whenµ < 1 the problem (26) is equivalent

to the problem of Lemma 2 withS replaced byS∗ and U2 = U1 + U. Therefore a GaussianX is

optimal for problem (26) in both cases. We further have the following two simple optimization results.

Corollary 1: The optimization problem of Lemma 1 with the matrix constraint replaced by the trace

constraint (or the problem (26) withµ ≥ 1) for the special case Cov(Ui) = σ2
i I, i = 1, 2, has the solution

Cov(X) = P ∗I, where

P ∗ =



















0, 0 < σ2
2 < µσ2

1

σ2

2
−µσ2

1

µ−1 , µσ2
1 ≤ σ2

2 < µσ2
1 + (µ− 1)P

P, σ2
2 ≥ µσ2

1 + (µ− 1)P

(27)

Alternatively, we can write (27) as

P ∗ =



















P, 0 < σ2
1 ≤

(

σ2

2

µ − µ−1
µ P

)+

σ2

2
−µσ2

1

µ−1 ,
(

σ2

2

µ − µ−1
µ P

)+
< σ2

1 ≤ σ2

2

µ

0, σ2
1 > σ2

2

µ

(28)
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Corollary 2: The optimization problem of Lemma 2 with the matrix constraint replaced by the trace

constraint (or the problem of (26) withµ < 1 and σ2
1 ≤ σ2

2) for the special case Cov(U1) = σ2
1I,

Cov(U) =
(

σ2
2 − σ2

1

)

I, whereσ2
1 ≤ σ2

2 , has the solution Cov(X) = P ∗I where

P ∗ = P. (29)

Proof: Suppose the eigenvalue decomposition ofS is S = QΛQT andΛ = diag(λ1, . . . , λn). Since

GaussianX is optimal, we have

h (X+U1)− µh (X+U2)

=
1

2
log
[

(2πe)n
∣

∣S+ σ2
1I
∣

∣

]

− µ

2
log
[

(2πe)n
∣

∣S+ σ2
2I
∣

∣

]

=
1

2
log
∣

∣Λ+ σ2
1I
∣

∣− µ

2
log
∣

∣Λ+ σ2
2I
∣

∣+
1− µ

2
log(2πe)n

=
1

2

n
∑

i=1

log
(

λi + σ2
1

)

− µ

2

n
∑

i=1

log
(

λi + σ2
2

)

+
1− µ

2
log(2πe)n

, f(Λ)

By using the Lagrangian off(Λ) with the constraint
∑n

i=1 λi = nP , it can be shown that the optimal

λi is λ∗
i = P ∗ with P ∗ defined in (27)-(29).

Finally we need another lemma to prove our main results.

Lemma 3: Suppose that(U, V ) is Gaussian with covariance matrix





σ2
1 ρσ1σ2

ρσ1σ2 σ2
2



, σ1 > 0,

σ2 > 0, |ρ| < 1, andW is Gaussian with variance
(

1− ρ2
)

σ2
1 . If the discrete or continuous random

variableX is independent of(U, V ) andX is independent ofW , then we have

h (X + U |V ) = h (X +W ) (30)

Proof: We have

h (X + U |V ) =

∫

fV (v) h (X + U |V = v ) dv

(a)
=

∫

fV (v) h

(

X +W ′ +
ρσ1
σ2

V

∣

∣

∣

∣

V = v

)

dv

(b)
=

∫

fV (v) h
(

X +W ′) dv

= h
(

X +W ′)

= h (X +W )
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whereW ′ is identically distributed asW but independent of(U, V ). (a) follows because
(

W ′ + ρσ1

σ2

V, V
)

has the same joint distribution as(U, V ), (b) follows becauseρσ1

σ2

V becomes a constant when conditioned

on V = v.

SinceU |V = v is also Gaussian distributed with mean valueρσ1

σ2

v and variance
(

1− ρ2
)

σ2
1 , Lemma

3 shows thatU |V can be replaced by an equivalent Gaussian random variable with the same variance.

A. Proof of Theorem 1

Let N1 andN2 be two zero-mean Gaussian variables with variancesσ2
1 andσ2

2 respectively, and set

E(N1Z1) = ρ1σ1 andE(N2Z2) = ρ2σ2. We further defineNn
1 andNn

2 to be Gaussian vectors withn

independent and identically distributed (i.i.d.) elements distributed asN1 andN2, respectively.

Starting from Fano’s inequality, we have that reliable communication requires

n(R1 + µR2)

≤ I (Xn
1 ;Y

n
1 ) + µI (Xn

2 ;Y
n
2 ) + nǫ

≤ I (Xn
1 ;Y

n
1 ,Xn

1 +Nn
1 ) + µI (Xn

2 ;Y
n
2 ,Xn

2 +Nn
2 ) + nǫ

= I (Xn
1 ;X

n
1 +Nn

1 ) + I (Xn
1 ;Y

n
1 |Xn

1 +Nn
1 ) + µI (Xn

2 ;X
n
2 +Nn

2 ) + µI (Xn
2 ;Y

n
2 |Xn

2 +Nn
2 ) + nǫ

= h (Xn
1 +Nn

1 )− h (Nn
1 ) + h (Y n

1 |Xn
1 +Nn

1 )− h
(√

aXn
2 + Zn

1 |Nn
1

)

+ µh (Xn
2 + Zn

2 )− µh (Nn
2 )

+µh (Y n
2 |Xn

2 +Nn
2 )− µh

(√
bXn

1 + Zn
2 |Nn

2

)

+ nǫ (31)

whereǫ → 0 asn → ∞. For h (Y n
1 |Xn

1 +Nn
1 ), zero-mean GaussianXn

1 andXn
2 are optimal, and we

have

1

n
h (Y n

1 |Xn
1 +Nn

1 ) ≤ 1

n

n
∑

i=1

h (Y1i|X1i +N1)

=
1

n

n
∑

i=1

(

h
(

X1i +
√
aX2i + Z1,X1i +N1

)

− h (X1i +N1)
)

=
1

2n

n
∑

i=1

log

[

2πe

(

1 + aP2i + P1i −
(P1i + ρ1σ1)

2

P1i + σ2
1

)]

(32)

whereP1i = E(X2
1i) andP2i = E(X2

2i). Consider the function

f(p1, p2) = 1 + ap2 + p1 −
(p1 + ρ1σ1)

2

p1 + σ2
1

(33)
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for which we compute

∂f

∂p1
=

σ2
1(σ1 − ρ1)

2

(p1 + σ2
1)

2
≥ 0 (34)

∂f

∂p2
= 1 (35)

∂2f

∂p21
= −2σ2

1(σ1 − ρ1)
2

(p1 + σ2
1)

3
≤ 0 (36)

∂2f

∂p22
= 0 (37)

∂2f

∂p1∂p1
= 0. (38)

Sincelog(x) is concave inx we have that the logarithm in (32) is concave in(P1i, P2i). We thus have

1

n
h (Y n

1 |Xn
1 +Nn

1 ) ≤ 1

2
log

[

2πe

(

1 +
a

n

n
∑

i=1

P2i +
1

n

n
∑

i=1

P1i −
(

1
n

∑n
i=1 P1i + ρ1σ1

)2

1
n

∑n
i=1 P1i + σ2

1

)]

≤ 1

2
log

[

2πe

(

1 + aP2 + P1 −
(P1 + ρ1σ1)

2

P1 + σ2
1

)]

(39)

where the first inequality follows from Jensen’s inequality, and the second inequality follows from the

block power constraints1n
∑n

j=1 Pij ≤ Pi, i = 1, 2, and (34).

For the same reason, we have

1

n
h (Y n

2 |Xn
2 +Nn

2 ) ≤
1

2
log

[

2πe

(

1 + bP1 + P2 −
(P2 + ρ2σ2)

2

P2 + σ2
2

)]

. (40)

Let W ′
2 = Z2|N2, thenW ′

2 is Gaussian distributed with variance1− ρ22. Define a new Gaussian variable

W2 with variance1− ρ22. From Lemma 3 and Corollaries 1 and 2 we have

h (Xn
1 +Nn

1 )− µh
(√

bXn
1 + Zn

2 |Nn
2

)

= h (Xn
1 +Nn

1 )− µh
(√

bXn
1 +W n

2

)

= h (Xn
1 +Nn

1 )− µh

(

Xn
1 +

W n
2√
b

)

− nµ

2
log b

≤ n

2
log
[

2πe
(

P ∗
1 + σ2

1

)]

− nµ

2
log
[

2πe
(

bP ∗
1 + 1− ρ22

)]

, (41)

whereP ∗
1 is defined in (5) and (7). For the same reason, we have

µh (Xn
2 + Zn

2 )− h
(√

aXn
2 + Zn

1 |Nn
1

)

≤ nµ

2
log
[

2πe
(

P ∗
2 + σ2

2

)]

− n

2
log
[

2πe
(

aP2 + 1− ρ21
)]

, (42)

whereP ∗
2 is defined in (6) and (8). From (31), (39)-(42) we obtain the rate constraint (1).
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On the other hand, we have

n(R1 + η1R2) ≤ I (Xn
1 ;Y

n
1 ) + η1I (X

n
2 ;Y

n
2 ) + nǫ

≤ I (Xn
1 ;Y

n
1 ,Xn

2 ) + η1I (X
n
2 ;Y

n
2 ) + nǫ

= I (Xn
1 ;Y

n
1 |Xn

2 ) + η1I (X
n
2 ;Y

n
2 ) + nǫ

= h (Y n
1 |Xn

2 )− h (Y n
1 |Xn

1 ,X
n
2 ) + η1h (Y

n
2 )− η1h (Y

n
2 |Xn

2 ) + nǫ

= h (Xn
1 + Zn

1 )− η1h
(√

bXn
1 + Zn

2

)

− h (Zn
1 ) + η1h (Y

n
2 ) + nǫ

≤ n

2
log (P ∗

1 + 1)− nη1
2

log (bP ∗
1 + 1) +

nη1
2

log (1 + bP1 + P2) + nǫ, (43)

where the last step follows by Corollaries 1 and 2. We furtherhave

P ∗
1 =



















P1, η1 ≤ 1+bP1

b+bP1

bη1−1
b−bη1

, 1+bP1

b+bP1

≤ η1 ≤ 1
b

0, η1 ≥ 1
b .

(44)

Since the bounds in (43) whenP ∗
1 = P1 andP ∗

1 = 0 are redundant, we have

R1 + η1R2 ≤ 1

2
log

(

1 +
bη1 − 1

b− bη1

)

− η1
2
log

(

1 +
bη1 − 1

1− η1

)

+
η1
2
log (1 + bP1 + P2) , (45)

for 1+bP1

b+bP1

≤ η1 ≤ 1
b , which is (2). We similarly obtain (3).

B. Proof of Theorem 2

By choosing

σ2
1 =

1

2b

{

b(aP2 + 1)2 − a(bP1 + 1)2 + 1 +

√

[b(aP2 + 1)2 − a(bP1 + 1)2 + 1]2 − 4b(aP2 + 1)2
}

(46)

σ2
2 =

1

2a

{

a(bP1 + 1)2 − b(aP2 + 1)2 + 1 +

√

[a(bP1 + 1)2 − b(aP2 + 1)2 + 1]2 − 4a(bP1 + 1)2
}

(47)

ρ1 =
√

1− aσ2
2 (48)

ρ2 =
√

1− bσ2
1 , (49)

the bound (1) withµ = 1 is

R1 +R2 ≤
1

2
log

(

1 +
P1

1 + aP2

)

+
1

2
log

(

1 +
P2

1 + bP1

)

. (50)

By one can achieve equality in (50) by treating the interference as noise at both receivers.

In order that the choice ofσ2
1, σ2

2 , ρ1 andρ2 be feasible, there must exist at least one pair(σ2
1 , σ

2
2)

satisfying the following conditions:

σ2
1 ≥ 0, σ2

2 ≥ 0, ρ1 ≤ 1, ρ2 ≤ 1.
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Using (46)-(49), we thus require

[

b(aP2 + 1)2 − a(bP1 + 1)2 + 1
]2 − 4b(aP2 + 1)2 ≥ 0 (51)

[

a(bP1 + 1)2 − b(aP2 + 1)2 + 1
]2 − 4a(bP1 + 1)2 ≥ 0 (52)

b(aP2 + 1)2 − a(bP1 + 1)2 + 1 ≥ 0 (53)

a(bP1 + 1)2 − b(aP2 + 1)2 + 1 ≥ 0. (54)

From (51) we have one of the following three conditions

√
b (aP2 + 1)−

√
a(bP1 + 1) ≥ 1, (55)

√
b (aP2 + 1)−

√
a(bP1 + 1) ≤ −1, (56)

√
b (aP2 + 1) +

√
a(bP1 + 1) ≤ 1. (57)

(52) gives the same constraints in (55)-(57). Since (53) and(54) exclude the possibilities (55) and (56),

this leaves (57) which is precisely (16) in Theorem 2.

C. Proof of Theorem 3

The proof of (2) requires only0 < b < 1. Therefore (2) is still valid whena > 1. Letting η1 = 1 and

P ∗
1 = P1 in (43) and (44), we have the sum-rate capacity upper bound in(23). But (23) is achievable

if (25) is true. To verify this, we let user2 communicate atR2 = 1
2 log

(

1 + P2

1+bP1

)

. From (25), user

1 can decode the message from user2 before decoding its own messages. Then we obtained (24) and

Theorem 3 is proved.

IV. N UMERICAL EXAMPLES

A comparison of the outer bounds for a Gaussian IC is given in Fig. 4. Some part of the outer

bound from Theorem 1 overlaps with Kramer’s outer bound due to (2) and (3). Since this IC has noisy

interference, the proposed outer bound coincides with the inner bound at the sum rate point.

The lower and upper bounds for the sum-rate capacity of the symmetric IC(a = b, P1 = P2) are shown

in Figs. 5-8 for different power levels. For all of these cases, the upper bounds are tight up to pointA.

The bound in [11, Theorem 3] approaches to the bound in Theorem 1 when the power becomes large,

but there is still a gap. Fig. 7 and 8 also provide a definitive answer to a question from [16, Fig. 2]:

whether the sum-rate capacity of symmetric Gaussian IC is a decreasing function ofa, or there exists a

bump like the lower bound whena varies from0 to 1. In Fig. 7 and 8, our proposed upper bound and
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Sason’s inner bound explicitly show that the sum capacity isnot a monotone function ofa (this result

also follows by the bounds of [11]).

V. CONCLUSIONS AND EXTENSIONS

We derived an outer bound for the capacity region of GaussianICs by a genie-aided method. From

this outer bound, the sum-rate capacities for ICs that satisfy (16) or (24) are obtained.

We discuss in the following some possible extensions of the present work. One extension is already

given in Remark 6 above. Another extension is to generalize the sum-rate capacity for a single noisy

interference IC to that of parallel ICs, that occur in, for instance, orthogonal frequency division multiplex-

ing (OFDM) systems. Finally, we note that the methods used inthe paper can also be applied to obtained

bounds for multiple input multiple output Gaussian ICs. We are currently developing such bounds.
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