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Estimation of a Regression Function by Maxima of
Minima of Linear Functions

Adil M. Bagirov, Conny Clausen, and Michael Kohler

Abstract—In this paper, estimation of a regression function from
independent and identically distributed random variables is con-
sidered. Estimates are defined by minimization of the empirical
�� risk over a class of functions, which are defined as maxima
of minima of linear functions. Results concerning the rate of con-
vergence of the estimates are derived. In particular, it is shown
that for smooth regression functions satisfying the assumption of
single index models, the estimate is able to achieve (up to some log-
arithmic factor) the corresponding optimal one-dimensional rate
of convergence. Hence, under these assumptions, the estimate is
able to circumvent the so-called curse of dimensionality. The small
sample behavior of the estimates is illustrated by applying them to
simulated data.

Index Terms—Adaptation, dimension reduction, � error, non-
parametric regression, rate of convergence, single index model.

I. INTRODUCTION

T HIS paper considers the problem of estimating a multi-
variate regression function given a sample of the under-

lying distribution. In applications, usually no a priori infor-
mation about the regression function is known, therefore it is
necessary to apply nonparametric methods for this estimation
problem. There are two classes of established methods for this
estimation problem. In the first class, knowledge about the struc-
ture of the regression function is assumed as in additive models
(cf., e.g., [27] and [28]) or in semiparametric models (cf., e.g.,
[14]). The second class consists of completely nonparametric
models, which do not explicitly assume any structure of the re-
gression function in order to construct an estimate. Examples
for established methods from this class include regression trees
such as CART (cf., [9]), adaptive spline fitting such as MARS
(cf., [12]), and least squares neural network estimates (cf., e.g.,
[16, Ch. 11]). All these methods minimize a kind of least squares
risk of the regression estimate, either heuristically over a fixed
and very complex function space as for neural networks or over
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a stepwise defined data-dependent space of piecewise constant
functions or piecewise polynomials as for CART or MARS.

In this paper, we consider a rather complex function space
consisting of maxima of minima of linear functions, over which
we minimize a least squares risk. Since each maximum of
minima of linear functions is in fact a continuous piecewise
linear function, we fit a linear spline function with free knots
to the data. This seems to be very promising since splines with
free knots have very good approximation properties; see, e.g.,
[25]. But in contrast to MARS, we do not need heuristics to
choose these free knots, but use instead advanced methods of
optimization theory of nonlinear and nonconvex functions to
compute our estimate approximately in an application.

A. Regression Estimation

In regression analysis, an -valued random vector
with is considered and the dependency of

on the value of is of interest. More precisely, the goal is
to find a function such that is a “good ap-
proximation” of . In this paper, we assume that the main aim
of the analysis is minimization of the mean squared prediction
error or risk

In this case, the optimal function is the so-called regression func-
tion

Indeed, let be an arbitrary (measurable) function
and denote the distribution of by . The well-known relation

(cf. e.g., [13, eq. (1.1)]) implies that the regression function is
the optimal predictor in view of minimization of the risk

In addition, any function is a good predictor in the sense
that its risk is close to the optimal value, if and only if the
so-called error

(1)

is small. This motivates to measure the error caused by using a
function instead of the regression function by the error (1).

In applications, usually the distribution of (and
hence also the regression function) is unknown. But often it
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is possible to observe a sample of the underlying distribu-
tion. This leads to the regression estimation problem. Here,

are independent and identically
distributed random vectors. The set of data

is given, and the goal is to construct an estimate

of the regression function such that the error

is small. For a detailed introduction to nonparametric regression,
we refer the reader to the monograph [13].

B. Definition of the Estimate

In the sequel, we will use the principle of least squares to fit
maxima of minima of linear functions to the data. More pre-
cisely, let and be parameters of
the estimate and let be the set of all functions

for some , where

denotes the scalar product between and
. For this class of functions, the estimate

is defined by

(2)

Here we assume that the minimum exists, however we do not
require it to be unique.

In Section II, we will analyze the rate of convergence of a
truncated version of this least squares estimate defined by

where

for some .

C. Main Results

Under a sub-Gaussian condition on the distribution of and
for bounded support of the distribution of , we show that
the error of the estimate achieves for -smooth regres-
sion function with (where roughly speaking all partial
derivates of the regression function of order exist) the corre-
sponding optimal rate of convergence

up to some logarithmic factor. For single index models, where
the regression function satisfies in addition

for some univariate function and some vector , we
show furthermore that our estimate achieves (up to some loga-
rithmic factor) the one-dimensional rate of convergence

Hence, under these assumptions, the estimate is able to circum-
vent the so-called curse of dimensionality.

D. Discussion of Related Results

In multivariate nonparametric regression function estimation,
there is a gap between theory and practice. The established
estimates such as CART, MARS, or least squares neural
networks are based on several heuristics for computing the
estimates, which makes it basically impossible to analyze
their rate of convergence theoretically. However, if one defines
them without these heuristics, their rate of convergence can
be analyzed (and this has been done for neural networks,
e.g., in [5] and [6] and for CART in [18]), but in this form,
the estimates cannot be computed in an application. For our
estimate, a similar phenomenon occurs since we need heuristics
to compute it approximately in an application. The difference
between our approach and the above established estimates
is that we use heuristics from advanced optimization theory,
in particular, from the optimization theory of nonlinear and
nonconvex optimization (cf., e.g., [1], [2], and [4]) instead of
complicated heuristics from statistics for stepwise computation
as for CART or MARS, or a simple gradient descent as for least
squares neural networks.

It follows from [26] that the rates of convergence, which we
derive, are optimal (in some minimax sense) up to a logarithmic
factor. The idea of imposing additional restrictions on the struc-
ture of the regression function (such as additivity or the assump-
tion in the single index model) and to derive under these assump-
tion better rates of convergence is due to [27] and [28].

We use a theorem of [22] to derive our rate of convergence
results. This approach is described in detail in [13, Sec. 11.3].
Below we extend this approach to unbounded data (which sat-
isfies a sub-Gaussian condition) by introducing new truncation
arguments. In this way, we are able to derive the results under
similar general assumptions on the distribution of as with al-
ternative methods from empirical process theory; see, e.g., the
monograph [29] or [19] and [20].

Maxima of minima of linear functions have been used in re-
gression estimation previously in [7]. The least squares esti-
mates there are derived by minimizing the empirical risk over
classes of functions consisting of Lipschitz smooth functions
where a bound on the Lipschitz constant is given. It is shown that
the resulting estimate is in fact a maximum of minima of linear
functions, where the number of minima occurring in the max-
imum is equal to the sample size. Additional restrictions (e.g.,
on the linear functions in the minima) ensure that there will be
no overfitting. In contrast, the number of linear functions that
we consider in this paper is much smaller and restrictions on
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these linear functions are therefore not necessary. This seems to
be promising, because we do not fit too many parameters to the
data.

The estimate considered in this paper is a continuous piece-
wise linear function. In [8], a sum of maxima or minima of two
linear functions was fitted to data, which also produces contin-
uous piecewise linear estimates. As it is shown in [24], the fitting
procedure proposed in [8] can be considered as the Newton al-
gorithm for function minimization applied to a sum of squared
error criterion. In contrast, our estimate is able to vary locally
much more than a sum of maxima or minima of two linear func-
tions, and the fitting procedure we use is different and is based
on much more advanced techniques from optimization theory.

In Corollary 2, we show that even for large dimension of
the error of our estimate converges to zero quickly if the
regression function satisfies the structural assumption of single
index models. More general results in this respect have been
proven in [17], where a detailed discussion of related results in
the literature can also be found. A problem with this kind of
results is always the implementation of the estimate. In [17],
a backfitting procedure is proposed, where each of the steps
leads to a relatively simple minimization problem. However,
there is no guarantee that the combination of these steps leads
to an algorithm really solving the considered global minimiza-
tion problem. In contrast, in this paper, we try to solve the global
optimization problem in one step. So the main result here is to
derive this good rate of convergence for an estimate for which
an algorithm exists, which really tries to solve the optimization
problem that occurs by using advanced techniques from opti-
mization theory. This algorithm is described in detail in [3].

The independence of the data assumed in this paper could
possibly be weakened to permit martingale difference or mixing
sequences of data. Since this would complicate the technical
analysis and produce a less transparent treatment, we did not
try to do this. However, the derived approximation results and
bounds on covering numbers can be used, e.g., together with
techniques introduced in [11] to derive results under weaker
conditions.

E. Notations

The sets of natural numbers, natural numbers including zero,
real numbers, and nonnegative real numbers are denoted by ,

, , and , respectively. For vectors , we denote
by the Euclidian norm of and by the scalar product
between and . The least integer greater or equal to a real
number will be denoted by denotes the natural
logarithm of . For a function

denotes the supremum norm.

F. Outline of the Paper

The main theoretical result is formulated in Section II and
proven in Section IV. In Section III, the estimate is illustrated
by applying it to simulated data.

II. ANALYSIS OF THE RATE OF CONVERGENCE

OF THE ESTIMATE

Our first theorem gives an upper bound for the expected
error of our estimate.

Theorem 1: Let , with

and set for some constant . Assume that
the distribution of satisfies

(3)

for some constant and that the regression function is
bounded in absolute value. Then, for the estimate defined
as in Section I-C

(4)

for some constant and hence also

where does not depend on or the parameters of the
estimate.

The condition (3) is a modified sub-Gaussian condition and
it is particularly satisfied, if is the normal distribution

and the regression function is bounded. This con-
dition allows us to consider an unbounded support of the condi-
tional distribution of .

Together with an approximation result this theorem implies
the next corollary, which considers the rate of convergence of
the estimate. Here it is necessary to impose smoothness condi-
tions on the regression function.

Definition 1: Let for some and
and let . A function is

called -smooth if for every
, the partial derivative

exists and satisfies

for all .
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Corollary 1: Assume that the distribution of satisfies
that a.s. for some , that the modified sub-
Gaussian condition is fulfilled for some
constant and that is -smooth for some

and . Set for some

and . Then, we have for
the estimate defined as above

The above rate of convergence is slow in case of large dimen-
sion of the predictor variable (so-called curse of dimen-
sionality). Next we present a result that shows that under struc-
tural assumptions on the regression function (more precisely,
for single index models) our estimate is able to circumvent the
so-called curse of dimensionality.

Corollary 2: Assume that the distribution of satisfies
that a.s. for some and that the modified
sub-Gaussian condition is fulfilled for
some constant . Furthermore assume that the regression
function satisfies

for a function and some , and assume that
is -smooth for some and . Then, for

the estimate as above and with the setting
for some

and , we get

Remark 1: It follows from [26] that under the conditions of
Corollary 1 no estimate can achieve (in some Minimax sense) a
rate of convergence that converges faster to zero than

(cf., e.g., [13, Ch. 3]). Hence, Corollary 1 implies that our esti-
mate has an optimal rate of convergence up to the logarithmic
factor.

Remark 2: In any application, the smoothness of the regres-
sion function [measured by ] is not known in advance
and hence the parameters of the estimate have to be chosen in a
data-dependent way. This can be done, e.g., by splitting of the
sample, where the estimate is computed for various values of
the parameters on a learning sample (consisting, e.g., of the first
half of the data points) and the parameters are chosen such that
the empirical risk on a testing sample (consisting, e.g., of

the second half of the data points) is minimized (cf., e.g., [13,
Ch. 7]).

Theoretical results concerning splitting of the sample can be
found in [15] and [13, Ch. 7].

Remark 3: The assumption on the boundedness of the support
of in Corollary 1 can be replaced by the weaker assumption

for some . To prove Corollary 1 under this weaker as-
sumption, one replaces the partition in the proof of Corollary
1 by the partition used in [21, Sec. II], where the diameter of the
cubes depends on the distance to the origin. Arguing then as in
the proof of Theorem 1 in [21], one gets the assertion.

In the same way, the assumption of boundedness of the sup-
port of in Corollary 2 can be replaced by

for some .

Remark 4: By using [13, Th. A.1], together with a result con-
cerning approximation of smooth functions by continuous linear
functions, it is easy to see that Theorem 1 implies the following
consistency result: If , satisfy

,

and

then

for all distributions of , which satisfy (3). Here condition
(3) can be relaxed to by using [13, Th. 10.3] together
with the results derived in the proof of Theorem 1.

III. APPLICATION TO SIMULATED DATA

In our applications, we choose the number of minima
and the number of linear functions in
each minimum in a data-dependent way by splitting of the
sample. We split the sample of size in a learning sample of
size and a testing sample of size . We
use the learning sample to define for a fixed numbers and
an estimate , and compute the empirical risk of
this estimate on the testing sample. Since the testing sample is
independent of the learning sample, this gives us an unbiased
estimate of the risk of . Then, we choose
by minimizing this estimate with respect to . In the
sequel, we use and .

To compute the estimate for given numbers of linear func-
tions, we have to minimize
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Fig. 1. Simulation with the first univariate regression function.

for given (fixed) , with re-
spect to

Unfortunately, we cannot solve this minimization problem ex-
actly in general. The reason is that the function to be minimized
is nonsmooth and nonconvex. Depending on and , it may
have a large number of variables (more than a hundred even
in the case of univariate data). The function has many local
minima and their number increases drastically as the number of
maxima and minima functions increases. Most of the local min-
imizers do not provide a good approximation to the data and
therefore one is interested to find either a global minimizer or a
minimizer that is close to a global one. Conventional methods
of global optimization are not effective for minimizing of such
functions, since they are very time consuming and cannot solve
this problem in a reasonable time. Furthermore, the function to
be minimized is a very complicated nonsmooth function and the
calculation even of only one subgradient of such a function is
a difficult task. Therefore, subgradient-based methods of non-
smooth optimization are not effective here.

Even though we cannot solve this minimization problem ex-
actly, we are able to compute the estimate approximately. For
this, we use the following properties of the function to be min-
imized: It is a semismooth function (cf., [23]); moreover, it is a
smooth composition of so-called quasi-differentiable functions
(see [10] for the definition of quasi-differentiable functions).
Therefore, we can use the discrete gradient method from [2] to
solve it. Furthermore, it is piecewise partially separable (see [4]
for the definition of such functions). We use the version of the
discrete gradient method described in [4] for minimizing piece-
wise partially separable functions to solve it. The discrete gra-
dient method is a derivative-free method and it is especially ef-
fective for minimization of nonsmooth and nonconvex function

when the subgradient is not available or it is difficult to calculate
the subgradient.

A detailed description of the algorithm used to compute the
estimate is given in [3]. An implementation of the estimate in
Fortran is available from the authors by request.

In [3], the estimate is also compared to various other non-
parametric regression estimates. In the sequel, we will illustrate
it only by applying it to a few simulated data sets. Here, we de-
fine by

where is uniformly distributed on , is standard
normally distributed and independent of , and . In
Figs. 1–4, we choose and , and use four different
univariate regression functions in order to define four different
data sets of size . Each figure shows the true regression
function together with its formula, a corresponding sample of
size and our estimate applied to this sample.

Here the first two examples show how the max–min estimate
looks like rather simple regression estimates, while in the third
and fourth example, the regression function has some local ir-
regularity. Here it can be seen that our newly proposed estimate
is able to adapt locally to such irregularities in the regression
function.

Next we consider the case . In our fifth example, we
choose

and and . Fig. 5 shows the regression function
and our estimate applied to a corresponding data set of sample
size 5000.
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Fig. 2. Simulation with the second univariate regression function.

Fig. 3. Simulation with the third univariate regression function.

In our sixth example, we choose

and again and . Fig. 6 shows the regression
function and our estimate applied to a corresponding data set of
sample size 5000.

In our seventh (and final) example, we choose

and again and . Fig. 7 shows the regression
function and our estimate applied to a corresponding data set of
sample size 5000.

From the last simulation, we see again that our estimate is
able to adapt to the local behavior of the regression function.

IV. PROOFS

In the proofs, we need the notation of covering numbers.

Definition 2: Let and set
. Let be a set of functions .
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Fig. 4. Simulation with the fourth univariate regression function.

An - -cover of on is a finite set of functions
with the property

for all

(5)

The - -covering number of on is the min-
imal size of a - -cover of on . In case that there exists
no finite - -cover of , the - -covering number of on

is defined by .

To get bounds for covering numbers of sets of maxima of
minima of linear functions, we first show the connection be-
tween the - -covering numbers of sets and the

- -covering number of their maximum

for some

and minimum (defined analogously), respectively.

Lemma 1: Let be sets of functions from
to and let be fixed
points in . Then

(6)

and

(7)

Proof: Inequality (6) follows from

Inequality (7) follows directly from (6) with
.

In the next lemma, we bound the - -covering number of a
truncated version of our class of functions.

Lemma 2: Let and set
. Then, for

Proof: In the first step of the proof, we show that we can
involve the truncation operator into the class of functions, i.e.,
we show that is the class of all functions of the form
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Fig. 5. Bivariate regression function together with our max–min estimate in the fifth example.

Fig. 6. Bivariate regression function together with our max–min estimate in the sixth example.

Fig. 7. Bivariate regression function together with our max–min estimate in the seventh example.
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for some . At the beginning, we observe
that by monotonicity of the mapping , the equality

(8)

holds for real numbers . With
and ,

we get also

which implies the assertion of the first step. Set

for some

From Theorem 9.4, Theorem 9.5, and inequality (10.23) in [13],
we get

By applying Lemma 1, we get the desired result.

With this bound of the covering number of , we can now
start with the proof of Theorem 1.

Proof of Theorem 1: In the proof, we use the following error
decomposition:

where is the truncated version of and is the re-
gression function of , i.e.,

We start with bounding . By using ,
we get

With the Cauchy–Schwarz inequality and

(9)

it follows that

With for , we get

and hence is bounded by

which is less than infinity by the assumptions of the theorem.
Furthermore, the third term is bounded by because

(10)
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which follows again as above. With the setting ,
it follows that for some constants that is
bounded by

From the Cauchy–Schwarz inequality, we get that is
bounded by

where we can bound the second factor on the right-hand side
in the above inequality in the same way we have bounded the
second factor from , because by assumption, is
bounded and furthermore is bounded by . Thus, we get
for some constant

Next we consider the first term. With the inequality of Jensen,
it follows that

Hence, we get

and therefore with the calculations from , it follows that
for some constant . Altogether, we

get

for some constant .
Next we consider . Let be arbitrary. Then,

can be bounded by as shown in the equation at
the bottom of the page. Thus, with [13, Th. 11.4] and

we get for

From Lemma 2, we know that with
for

for some sufficient large . (This inequality holds also for
, since the right-hand side above does not depend on

and the covering number is decreasing in .) Using this, we get
for arbitrary

and this expression is minimized for

Altogether, we get

for some sufficient large constant , which does not de-
pend on , , or the parameters of the estimate.

By bounding similarly to , we get

for some large enough constant , and hence, we get over
all

for some sufficient large constant .
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We finish the proof by bounding . Let be the event
that there exists such that and let
be the indicator function of . Then, we can bound by

With the Cauchy–Schwarz inequality, we get for

where the last inequality follows from inequality (9). With
for , we get

which is less than infinity by condition (3) of the theorem. Fur-
thermore, is bounded by , and therefore, the first
factor is bounded by

for some constant . The second factor is bounded
by , because by the assumptions of the theorem

is bounded by some constant ,
and hence, we get

Since for , we get altogether

With the definition of and defined as in (2), it follows
that is bounded by

because holds for . Hence

which completes the proof.

In the sequel, we will bound

Therefore, we will use the following lemma.

Lemma 3: Let and let be a partition of
consisting of rectangles. Assume that is
a piecewise polynomial of degree (in each coordinate)
with respect to and assume that is continuous. Furthermore,
let be fixed points in . Then, there exist
linear functions

such that

for all .
Proof: Since is a piecewise polynomial of degree , it

is of the shape

for some constants ,
where is a partition of and

for some univariate intervals . We denote
the left and right endpoints of by and , resp., i.e.,

or
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This choice is without restriction of any kind because is
continuous. Now we choose for every

This implies that and the given piecewise polynomial
matches on for every . Furthermore, for

and , we define

where is such that

for all satisfying
and

for all satisfying
. The above conditions are satisfied, if

For obviously .
Analogously, we choose

where is such that

for all satisfying
and

for all satisfying
. In this case, the conditions from above are satisfied, if

From this choice of functions ,
results directly that

for and

holds for all , which implies the assertion.

Proof of Corollary 1: Lemma 3 yields

where is the set of functions, which contains all continuous
piecewise polynomials of degree with respect to an arbitrary
partition consisting of rectangles. Next we increase the
right-hand side above by choosing such that it consists of
equivolume cubes. Now we can apply approximation results
from spline theory; see, e.g., [25, Th. 12.8, (13.62)]. From this,
the smoothness of and Theorem 1, we conclude for
some sufficient large constant

where the last inequality results from the choice of .

Proof of Corollary 2: With the assumptions on the regression
function , the second term on the right-hand side of inequality
(4) equals

and with for
some , this expected value is less than or equal to

because for every function and every vector

is contained in . Together with Lemma 3, this yields

where is the set of functions from to , which contains
all piecewise polynomials of degree one with respect to a par-
tition of consisting of intervals. Here is chosen
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such that for . Hence, again with the
approximation result from spline theory, we get as in the proof
of Corollary 1 for some sufficiently large constant

Summarizing the above results, we get by Theorem 1
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