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Abstract

The classical alternating minimization (or projectiony@ithm has been successful in the context of solving
optimization problems over two variables or equivalentfyfinding a point in the intersection of two sets. The
iterative nature and simplicity of the algorithm has led toapplication to many areas such as signal processing,
information theory, control, and finance.

A general set of sufficient conditions for the convergencd earrectness of the algorithm is quite well-
known when the underlying problem parameters are fixed. Inynpaactical situations, however, the underlying
problem parameters are changing over time, and the use ofla@ptige algorithm is more appropriate. In this
paper, we study such an adaptive version of the alternatingnization algorithm. As a main result of this paper,
we provide a general set of sufficient conditions for the esgence and correctness of the adaptive algorithm.
Perhaps surprisingly, these conditions seem to be the rairomes one would expect in such an adaptive setting.
Our result is a generalization of the work by Csiszar andh@dy [1] on alternating minimization procedures. We
present applications of our results to adaptive decompasitf mixtures, adaptive log-optimal portfolio selectjon
and adaptive filter design.

I. INTRODUCTION
A. Background

The problem of finding a point in the intersection of two satequivalently of solving an optimization
problem over two variables over a product space is centratday applications in areas such as signal
processing, information theory, statistics, control, indnce. The alternating minimization or projection
algorithm has been extensively used in such applicatioestduts iterative nature and simplicity.

The alternating minimization algorithm attempts to solvaiaimization problem of the following form:
givenP, Q and a functionD : P x Q@ — R, minimize D overP x Q. That is, find

o P
Often minimizing over both variables simultaneously is straightforward. However, minimizing with
respect to one variable while keeping the other one fixedtenafasy and sometimes possible analytically.
In such a situation, the alternating minimization algarithllescribed next is well suited: start with an
arbitrary initial pointQ, € Q; for n > 1, iteratively compute

P, € arg min D(P,Q,,—1), and@,, € arg min D(P,, Q). (1)
PeP QeQ

In other words, instead of solving the original minimizatiproblem over two variables, the alternating
minimization algorithm solves a sequence of minimizatiaobbems over only one variable. If the
algorithm converges, the converged values are declareddiion to the original problem. Conditions
for the convergence and correctness of such an algorithah jgshconditions for

lim D(P,,Q,) = mi D(P,Q), 2

n1—>oo ( Q ) (P,Q)EngQ ( Q) ( )
have been of interest since the early 1950s. A general sebrafitions, stated in the paper by Csiszar
and Tusnady [1], is summarized in the next theorem.
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Theorem 1. Let P and Q be any two sets, and léb : P x Q — R U {+occ}. Then the alternating
minimization algorithm converges, i.€l (2) holds, if thesasts P € P such thatD(P, (Q),) < oo, and if

there exists a nonnegative function P x P — R, U {+oo} such that for alln > 1 the following two
properties hold:

() Three point property @, P,,, Q,,_1):
5(P7Pn)+D(PnaQn—1) SD(PaQn—l)a VP e P.

(b) Four point property @, Q, P,, Q,):
D(P,Q,) < D(P,Q)+46(P,P,), YPeP QEeQ.

B. Our Contribution

In this paper, we consider an adaptive version of the abowénmration problem. As before, suppose
we wish to find
min  D(P,
(P,Q)EPXQ ( Q)
by means of an alternating minimization algorithm. Howewer then-th iteration, we are provided with
setsP,, Q,, which arenoisyversions of the set® and Q, respectively. That is, we are given a sequence
of optimization problems

{ (RQ)IS?IDBXQn b(r.Q) }n>o' 3)

Such situations arise naturally in many applications. Kangple, in adaptive signal processing problems,
the changing parameters could be caused by a slowly timgnagasystem, with the index representing
time. An obvious approach is to solve each of the problemB)iindependently (one at each time instance
n). However, since the system varies only slowly with time;chsan approach is likely to result in a lot
of redundant computation. Indeed, it is likely that a santio the problem at time instanee- 1 will be
very close to the one at time instanceA different approach is to use audaptivealgorithm instead. Such
an adaptive algorithm should be computationally efficigimien the tentative solution at time— 1, the
tentative solution at time should be easy to compute. Moreover, if the time-varyingesyiseventually
reaches steady state, the algorithm should converge toptial steady state solution. In other words,
instead of insisting that the adaptive algorithm sol\ésf¢®)everyn, we only impose that it does so as
n — oo.

Given these requirement, a natural candidate for such aitg is the following adaptation of the
alternating minimization algorithm: choose an arbitramitial Q, € Q,; for n > 1 compute (as in[{1))

P, € arg min D(P,Q,_1), andQ,, € arg min D(P,, Q).
PePy QeEQn
Suppose that the sequences of 46%s},,>0 and{Q,,},,>o converge (in a sense to be made precise later)
to setsP and Q, respectively. We are interested in conditions under whi®,, ),,) converges to
in  D(P,

ditho V09
for largen. As a main result of this paper, we provide a general set dicgeriit conditions under which
this adaptive algorithm converges. These conditions asengiglly the same as those of [1] described in
Theoren(]l. The precise results are stated in Thebtem 5.

This work was motivated by several applications in which tieed for an adaptive alternating mini-

mization algorithm arises. We present three such appdicatirom the areas of estimation, finance, and
signal processing.



C. Organization

The remainder of this paper is organized as follows. In $adil, we describe the setup, notation, and
some preliminary results. Sectidnllll provides a convecgeresult for a fairly general class of adaptive
alternating minimization algorithms. We specialize thesult to adaptive minimization of divergences
in Section 1V, and to adaptive minimization procedures ifbklit spaces (with respect to inner product
induced norm) in Sectiof V. We present an application in therdence minimization setting from
statistics and finance in Sectibn]IV, and an application & iilbert space setting from adaptive signal
processing in Section]V. SectignlVI contains concluding agss.

[I. NOTATIONS AND TECHNICAL PRELIMINARIES

In this section, we setup notations and present techni@inginaries needed in the remainder of the
paper. Let(M, d) be a compact metric space. Given two sdt83 ¢ M, define the Hausdorff distance
between them as

A . .
dy (A, B) = max {ilelggelgd(A’ B), Sgi%flxrelfétd(A’ B)} :

Consider a continuous functiob : M x M — R. For compact setsl, B C M, define the set

G(A,B) £ arg min D(A, B).
(A,B)eAXB

With slight abuse of notation, let

D(A,B)= min D(A,B).
(A,B)eAxB

Due to compactness of the sets B and continuity of D, we haveG(A, B) # (), and henceD(A, B) is
well-defined.

A. Some Lemmas
Here we state a few auxiliary lemmas used in the following.

Lemma 2 (Lemma 1, [1]) Let {a,}n>0, {bn}n>0 DEe Sequences of real numbers, satisfying
an"'bn Sbn—1+c
for all n > 1 and some: € R. If limsup,, .. b, > —oo then

liminfa, <ec.

n—0o0
If, in additiort],
Z(c —a,)t <
n=0
then
lim a, = c.
n— o0

Lemma 3. Let {A4,},>0 be a sequence of subsets.bf. Let .4 be a compact subset d¥1 such that

A, 9% A. Consider any sequencgi, }.>o such thatA4,, € A, for all n > 0, and such that4,, A
ThenA € A.

Proof: Consider the limit pointd of the sequencd A, },>o. SlnceAn e A, ang A, a5 A, the
definition of Hausdorff distance implies that there existeeguence A4,,},,~o such that4,, € A for all n

We use(z)t £ max{0, z}.
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andd(A,, A,) — 0 asn — cc. Sinced(A,, A) — 0, we haved(A,, A) — 0. Recall that the sequence
{A, }»>0 is entirely in A. By compactness afl, the limit points of{ 4,,},,~0 must belong ta4 (sequential
compactness). That is} € A. [ |

Lemma 4 (Theorem 4.15, 4.19 [2])Let (X,d) be a compact metric space, and Igt: X — R be
continuous. Thenf is bounded and uniformly continuous. That is, for evéry 0 there exists > 0
such that

f(z) = f(@')] <.
for all z, 2" € X for whichd(z,z’) < e.

Let (X, d) be a metric space anfl: X — R. Define the modulus of continuity : R, — R, of f as

w(t) = sup |f(x) - f(a')].
r,x'€X:
d(z,x")<t
Remarkl. Note that if f is uniformly continuous them(¢) — 0 ast — 0. In particular by Lemmal4,
this holds if (X, d) is compact andf is continuous.

[Il. ADAPTIVE ALTERNATING MINIMIZATION ALGORITHMS

Here we present the precise problem setup. We then preseatlagtive algorithm and sufficient
conditions for its convergence and correctness.

A. Setup
Consider a compact metric spa¢#1, d), compact set?, Q C M, and a continuous cost function
D : M x M — R. We want to findD(P, Q). However, we are not given the sés Q directly. Instead,
we are given a sequence of compact ¢, 9,,) }.>o0: Pn, @, C M are revealed at time such that
asn — oo, P, M p and 9, dx Q. Given an arbitrary initial P, Qo) € Py x Qo, the goal is to find a
sequence of pointgP,, Q),,) € P, x Q, so that
lim D(P,,Q,) = D(P, Q).

n— oo

B. Algorithm

The setup described in the last section suggests the folipwdaptive version of the alternating
minimization algorithm for the above setup. Initially, wave (P, Q) € Py x Qo. Define recursively:
for n > 1, pick any

P, € arg min D(P,Q,,_1),
PeP,
Q. € arg min D(P,, Q).
Q€eQn
We call this theAAM (Adaptive Alternating Minimization) algorithm in the falwing. Note that ifP,, = P

and 9, = Q for all n, then the above algorithm is the same as the classical albegnminimization
algorithm.



C. Sufficient Conditions for Convergence

In this section, we present a set of sufficient conditionsenrwthich theAAM algorithm converges to
D(P, Q). As we shall see, we need “three point” and “four point” pntigs (equivalent to those in [1])
also in the adaptive setup. To this end, assume there exiatauous function : M x M — R such
that the following conditions are satisfied.

C1. Three point propert{P, P,, Q,_1): for all n > 1,
5P, P,)+ D(P,,Q,-1) < D(P,Q,_1), VP E€TP,.
C2. Four point property(P, Q, P, Q,): for all n > 1,
D(P,Q,) < D(P,Q)+ (P, P,), VYPeP,Qc¢cQ,.
We are now ready to show convergence and correctness @AM algorithm.
Theorem 5. Let {(P,, Q.)}.>0 be compact subsets g#t such that

P, P, 0,40

and letD : M x M — R be a continuous function. Let conditio@sl and C2 hold. Then, under the
AAM algorithm,
liminf D(P,,Q,) = D(P, Q),

n—o0

and all limit points of subsequences ©fP,, @),.)}.>0 achieving this lim inf belong t& (P, Q). If, in

addition, N
Z w(2e,) < oo,

n=0
wheree, £ dy(P,, P) + dy(Q,, Q), andw is the modulus of continuity db, then
lim D(P,, Q) = D(P, Q).

and all limit points of{(P,, @.)}.>0 belong toG(P, Q).

Remark2. Compared to the conditions of [1], the only additional regmient here is in essence uniform
continuity of the functionD (which is implied by compactness @# and continuity ofD), and summa-
bility of the w(2¢,,). This is the least one would expect in this adaptive setupbtaio a conclusion as
in Theoren(b.

D. Proof of Theoren]5
We start with some preliminaries. Given tha¥1, d) is compact, the product spa¢é1 x M, d,) with

dy((A, B), (A", B")) = d(A, A') + d(B, B')

for all (A, B),(A",B") € M x M, is compact. Letv : R, — R, be the modulus of continuity ob
with respect to the metric spa¢é1 x M, d,). By definition ofw, for anye > 0 and (A, B), (A', B’) €
M x M such thatdy((A, B), (A, B")) < ¢, |D(A,B) — D(A", B')| < w(e). Moreover, continuity ofD
and compactness o¥1 x M imply by Lemmal#4 (and subsequent Remiark 1) that) — 0 ase — 0.
Recall the definition of,, = dy(P,, P)+du(Q,, Q). By the hypothesis of Theorelh 5, we have— 0
asn — oo and
dH(Pna 7Dn—l) + dH(Qna Qn—l) S En—1tEn £ Vs

with v, — 0 asn — oc.



Now we are ready to embark on the proof of Theotém 5. From tipetimesis of Theorein 5, conditions
C1 and C2 are satisfied. Add the inequalities provided by these twalitmms to obtain the following:
foralln>1, PP, Q¢€ 9Q,,

D(Pp,Qn-1) + D(P,Qy) < D(P,Qn-1) + D(P,Q). (4)
Given thatdy (Q,_1, Qn) < 7, there exists),, € Q, suchd(Q,_1,Q,) < 7,. Then, it follows that
|D(Py, Qn) = D(Pr, Qut)| < w(n), (5)

sincedy((P,, @n), (P, Qn-1)) < 7n. From [5) and theAAM algorithm, we have
D(P,Qu) = min D(P,,Q)
S D(Pna @n)? (Since@n € Qn)v
< D(Pm Qn—l) + W('Yn)- (6)
Adding inequalities[(4) and 16),
D(Pn,Qn) + D(P,Qn) < D(P,Qp-1) + D(P,Q) + w(n), (7

forall PeP,, Qe Q,.

From the hypothesis of the theorem, there exists a sequétjic€®:) € P, x Q,, such thal(P*, Q) —
(P*,Q*) € G(P,Q) and dy((Pr,Q5), (P*,Q*)) < ¢, for all n > 0. Replacing(P, @) in (@) by this
(Pr,Qr), we obtain

D(Fa, Qn) + D(F}, Qn) < D(E], Qur) + D(E, Q1) + w(70)- ®)
By choice of the(P*, Q%),

D(F,,Q,) < D(P", Q") + w(en)- (9)
Moreover, by definition ofl, and choice of thé P}, ()}), we haved(P;_,, P) < ~,. Therefore
( Qn 1) < D( n—1- Qn 1) + W('Yn) (10)

Combining inequalitied {(9) and_(1L0) withl(8), we obtain
D(Fy, Qn) + D(P;, @Qn) < D(Py_1, Qu-1) + D(P*, Q) + 2w(n) + w(en).

Definea, £ D(P,,Q,) — 2w(v,) — w(en), by = D(P,Q,) andc £ D(P*,Q*). SinceD is a bounded
function overM x M, we havelimsup,, ., . |b,| < co. Applying Lemma 2,

liminf D(P,, @Q,) < D(P*, Q") + limsup 2w(v,,) + w(ey,). (11)
n—oo

Since~, — 0 ande,, — 0 imply 2w(~,) + w(e,) — 0, (1) yields
liminf D(P,,@,) < D(P, Q).
Finally, any limit point of {(P,, @,)}.>0 belongs toP x Q by Lemmal3, which by continuity oD

implies that
liminf D(P,,@,) = D(P, Q),

and that all limit points of subsequences{of’,, ),,) }.>o achieving this lim inf belong t¢ (P, Q). This
completes the proof the first part of Theorem 5.
Suppose now that we have in addition

N w(2e,) < 12)
2



Since

D(P, > i D(P
( n,Qn)_Pegl&Qn (P,Q)

> i —
- PE%,IQHEQD(Pj Q) W<€n>

= D(P",Q") —w(en),
we have
(D(P*, Q) = D(Po, Qu) + 2w(7m) + w(zn))
2(“(’%) +w(5n))
2(w(2e,) + w(2en-1) + w(en)).

Thus by [12),
Z(c —a,)" < oo,

n=0
and applying again Lemmnid 2 yields
lim D(P,,Q,) = D(P*,Q"). (13)

n—oo

As every limit point of {(P,, Q.)}.>0 belongs toP x Q, (I3) and continuity ofD imply that if (12)
holds then every limit point of (P,, @Q,) }».>0 must also belong tg (P, Q). This concludes the proof of
Theoren(b.

V. DIVERGENCE MINIMIZATION

In this section, we specialize the setup and algorithm fractiSn[Il to the special case of alternating
divergence minimization. A large class of problems can bentdated as a minimization of divergences.
For example, computation of channel capacity and rate rtistofunction [3], [4], selection of log-optimal
portfolios [5], and maximum likelihood estimation from mroplete data [6]. These problems were shown
to be divergence minimization problems in [1]. For furth@pbcations of alternating divergence mini-
mization algorithms, see [7]. We describe applicationsh® groblem of adaptive mixture decomposition
and of adaptive log-optimal portfolio selection.

A. Setup

Given a finite se. and some constaiit< 6 < O, let M = M(3, 6, 0) be the set of all measure3
on ¥ such that
Y P(0)<©, andP(s) >0, V o € X. (14)
A

Endow M with the topology induced by the metrit: M x M — R, defined as
d(P,Q) £ max|P(0) - Q(o)].

It is easy to check that the metric spgcet, d) is compact. The cost functiol of interest is divergence
P(o)

D(P.Q) 2 D(PIQ) 2 3 (o) los 5

for any P,Q € M. Note that[(I¥) ensures that is well defined (i.e., does not take the valu®. It is
well-known (and easy to check) that the functibnis continuous and convex in both arguments. Finally,

define the functiord
3(P,Q) £ D(P|Q) =) (P(o) = Q(0))

oey



for any P, () € M.

In [1], it has been established that for convExand Q the pair of functionsD, ¢ satisfy the “three
point” and “four point” properties as required in TheorémThe next corollary of Theorem 5 extends
this result to the adaptive setup considered here.

Corollary 6. Let {(P,, Q,)}.>0 be compact convex subsets/of = M (X, 0, ©) such that

P. AP, 0, %0
Then, with theAAM algorithm applied to the divergence cost functibnhas defined above,
liminf D(P,,Q,) = D(P, Q),

and all limit points of subsequences £fP,, Q,)}.>0 achieving this lim inf belong t@ (P, Q). If, in

addition,
Z w(2e,) <
n=0

then
lim D(P,,Q,) = D(P, Q),

and all limit points of{(P,, @) }»>0 belong toG(P, Q).

Proof: As stated above, the spadd = M (X, 0,©) with metric d is a compact metric space, and
the function D is continuous. Condition€1 and C2 follow from the “three point” and “four point”
properties for divergences established in [1]. The corplfallows now from applying Theorerl 5. &

B. Application: Decomposition of Mixtures and Log-Optinfalrtfolio Selection

We consider an application of our adaptive divergence migation algorithm to the problem of
decomposing a mixture. A special case of this setting yildgproblem of log-optimal portfolio selection.
We are given a sequence of i.i.d. random variaflgg;>, each taking values in the finite sgt Y]
is distributed according to the mixtu@f cipli, Where the{c;}/_, sum to one, and; > ¢, > 0 for
all i € {1,...,I}, and where{yu;}/_, are dlstrlbutlons ory. We assume that,;(y) > o > 0 for all

yey,ie {1 ,I}. The goal is to compute an estimate{ef}/_; from {Y;}, and knowing{/,bl

Let P, be the emplrlcal distribution ofY;} ;. The maximum |Ike|lh00d estimator dt;}._, is glven
by (see, e.g., [8, Lemma 3.1])

arg min D(FHHZ;éim>,
{&}
Following [8, Example 5.1], we define
Y21, I} x Y,
Q,=9=2{Q:Q(i,y) = culy), for some{é} with & = 1,¢ > ¢,Vi},
£ {P: 3, Pliy) = Puly), Pli,y) > 0Vi,y}. (15)

Note thatP,, and Q are convex and compact. From [8, Lemma 5.1], we have

winD(Pul|Sleitins) = i min D(PIQ).

and the minimizer of the left hand side can be recovered ftoencbrresponding marginal of the optimal
@ on the right hand side.



Fix a P, assuming without loss of generality that
STPy) =Y PRy >... >3 Py).
yey yey yey

The {¢;} minimizing D(P||Q)) can be shown to be of the form > ¢, for all i < J* andé; = ¢, for all
i > J*. More precisely, define

n(J) = ﬁzzp(i,y),

i=1 ye)y

and choose/* € {1,...,I+ 1} such that

1
> P(I"y) > oo,

n(J*) &

Y P +1,y) < a,

yey

1
n(J*)

where P(I + 1,y) £ 0. Then the optimal¢;} are given by

1
n(J*) yezy

for ¢« < J* and¢; = ¢ for J* < i < I. For fixedQ, the minimizingP is

. cili(y) -
P(i,y) = =————P.(y). (16)
(9] > Ciki(y) )

We now check that{ (14) is satisfied. A&, and Q are sets of distributions, we can chod8e= 1.
Forall@Q € Q,ie{1,...,1},y € Y, we haveQ(i,y) > poco > 0. However, forP € P,, we have in
general onlyP(i,y) > 0. In order to apply Corollary]6, we need to show that we canhauit loss of
optimality, restrict the set®, to contain only distributiong” that are bounded below by sompg > 0.
In other words, we need to show that the projections®rare bounded below by.

Assume for the moment that the empirical distributiBy is close to the true one in the sense that

‘?n(y) - Zcz‘ﬂi(y) < %

2

for all y € Y. As 3, cipui(y) > po this impliesP,(y) > £ for all y. From [I6), this implies that the
projection P on P of any point inQ satisfiesP(i,y) > Lcoul £ po for all i € {1,...,1},y € Y. Hence
M(X,6,0) satisfies[(T4) withh = copd and© = 1.

It remains to argue that,, is close to) . ¢;i1;(y). Suppose instead of constructing the Bet(see [(15))

with respect toP,,, we construct it with respect to the distributiéh, defined as

— 2 @ g _@ +
Poy) 2 2+ A(Pat) - )
where ) is chosen such thdt,, ﬁl(y) — 1. P, is bounded below by by construction. Moreover, by
the strong law of large numbers, -
P(P, # P, i.0.) = 0.

Hence we haveP, P almost surely, wheréP is constructed as in_(15) with respect to the true
distribution . c; ;.
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Applying now Corollany( 6 yields that under th®AM algorithm
liminf D(P,,Q,) = D(P, Q)
n—oo

almost surely, and that every limit point §fP,, Q,.) }.>0 achieving this lim inf is an element &f(P, Q).

Since by the law of the iterated logarithm, convergencg,ofo P is only ©(y/loglogn//n) asn — oo
almost surely, and since(s) = o(¢) ase — 0 only if D is a constant [9], we can in this scenariot
conclude from Corollary]6 thdim, .., D(P,,Q,) = D(P, Q).

As noted in [8], a special case of the decomposition of metproblem is that of maximizing the
expected value ofog >, ¢;W;, where {W;}!_, is distributed according td,. The standard alternating
divergence minimization algorithm is then the same as Cevaortfolio optimization algorithm [5].
Thus theAAM algorithm applied as before yields also an adaptive versiahis portfolio optimization
algorithm.

V. PROJECTIONS INHILBERT SPACE

In this section, we specialize the setup and algorithm frextiSnIIl to the special case of minimization
in a Hilbert space. A large class of problems can be formdlatealternating projections in Hilbert spaces.
For example problems in filter design, signal recovery, gretgal estimation. For an extensive overview,
see [10]. In the context of Hilbert spaces, the alternatingimmzation algorithm is often called POCS
(Projection Onto Convex Sets).

A. Setup

Let M be a compact subset of a Hilbert space with the usual ntfein B)? = (A — B, A— B). Then
(M, d) is a compact metric space. The cost functiorof interest is

D(A, B) 2 d(A, B)?.

The functionD is continuous, convex and nonnegative. Define the funciig¢as part of condition€1
andC2), as
§(A,B) £ d(A, B)*.
In [1], it has been established that for convBxand Q the pair of functionsD, ¢ satisfies the “three
point” and “four point” properties as required in TheoréimThe next corollary of Theoreml 5 extends
this result to the adaptive setup.

Corollary 7. Let {(P,, Q.)}.>0 be convex compact subsets./of as defined above such that

P.UP, 0, %0
Then, with theAAM algorithm applied to the cost functioR as defined above,
liminf D(P,,Q,) = D(P, Q),

and all limit points of{(FP,, @.)}.>0 achieving this lim inf belong tg/(P, Q). If, in addition,
w(2e,) < oo,
n=0
then
lim D(P,,Q,) = D(P,Q),

n— oo

and all limit points of{(P,, @) }»>o belong toG(P, Q).

Proof: As stated above, the spa¢é1,d) is a compact metric space, and the functibnis
continuous. Condition€1 and C2 follow from the “three point” and “four point” properties ift].
Applying Theorenib yields the corollary. [ |
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B. Application: Set Theoretic Signal Processing and Adegpkilter Design

In this section, we consider a problem in the Hilbert spadéingeas defined in Section_ViA. Let
{S;}1_, be a collection of convex compact subsets of the Hilbert esfdcwith the usual inner product,
and let{c;}._, be positive weights summing to one. In set theoretic signatessing, the objective is to
find a point A* minimizing

I
> cd(A,S), (17)
i=1

whered(A, S;) £ minges, d(A, S). Many problems in signal processing can be formulated is tay.
Applications can be found for example in control, filter dgsiand estimation. For an overview and
extensive list of references, see [10]. As an example, inex filesign problem, th§; could be constraints
on the impulse and frequency responses of a filter [11], [12].

Following [13], this problem can be formulated in our franmewby defining the Hilbert spack = R’*

with inner product
é Zcz A;, B;)

=1
where A;, B; € R* fori € {1,...,I} are the components of and B. Let
S £ conv{U_,S;} C R¥,

and let
M=AE2SI cH

be thel-fold product of the convex hull of the constraint sé&}._,. Since each of the sef; is bounded,
M is bounded and by definition also convex and closed. We ddiimesét? C M as

PA{(P,....P)eH:PcS}

and the se©@ c M as
QéSlx---xS[. (18)

For a fixedP € P, the@ € Q minimizing D(P, Q) has the form

(Si(P),...,S:(P)),

where S;(P) is the Q; € S; minimizing ||[P — Q;||. For a fixedQ = (Q1,...,Q;) € Qthe P € P
minimizing D(P, Q) is given by
(Zi[:lCzQu cee Z;":lciQi)-

Moreover, a solution td (17) can be found from the standastr@ting minimization algorithm for Hilbert
spaces orP and Q.

Up to this point, we have assumed that the constraint §6t5/_; are constant. The results from
Sectior(Tll, enable us to look at situations in which the ¢maist sets{S; ,, }/_, are time-varying. Coming
back to the filter design example mentioned above, we are ntewveisted in an adaptive filter. The need
for such filters arises in many different situations (seg,, §14]).

The time-varying set$S; .}/, give rise to set®,,, defined in analogy td(18). We assume again that

Sin .S, for all i € {1,...,1}, and letQ be defined with respect to the limitingS;}._, as before.
Applying Corollary [T, we obtain that under th®AM algorithm liminf,, .. D(P,,Q,) = D(P,Q),
every limit point of subsequences §¢tF,, Q,)}.>0 achieving this lim inf is inG(P, Q), and if also
Yo gw(2e,) < oo thenlim, ... D(P,,Q,) = D(P,Q), and every limit point of{(P,,Q,)}.>0 is in
G(P, Q).
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VI. CONCLUSIONS

We considered a fairly general adaptive alternating mipation algorithm, and found sufficient condi-
tions for its convergence and correctness. This adaptgaighm has applications in a variety of settings.
We discussed in detail how to apply it to three different peois (from statistics, finance, and signal
processing).
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