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Abstract

The iterative decoding threshold of low-density parityeck (LDPC) codes over the binary erasure
channel (BEC) fulfills an upper bound depending only on théatde and check nodes with minimum
distance 2. This bound is a consequence of the stabilityitondand is here referred to as stability
bound. In this paper, a stability bound over the BEC is dgwedbfor doubly-generalized LDPC codes,
where the variable and the check nodes can be generic lifeek lbodes, assuming maximum a
posteriori erasure correction at each node. It is provetiththis generalized context as well the bound
depends only on the variable and check component codes wiilnom distance 2. A condition is also

developed, namely the derivative matching condition, undgch the bound is achieved with equality.

. INTRODUCTION

LDPC codes [1] have been intensively studied in the last deecue to their capability to
approach the Shannon limit under iterative belief-propagalecoding. An LDPC code of length
N and dimensionk can be graphically represented as a bipartite graph, knewiaaner graph,
with N variable nodes (VNs) andl/ > N — K check nodes (CNSs) [2]. In the Tanner graph, the
degree of either a VN or a CN is defined as the number of edgesected to it. A degree-
VN of an LDPC code can be interpreted as a lengtfepetition code, i.e., as @, 1) linear
block code repeating times its only information bit towards the check node decd@ND).
Instead, a degree-CN of an LDPC code can be interpreted as a lengtingle parity-check
(SPC) code, i.e., as @,n — 1) linear block code.

An extension of the concept of LDPC code is represented bylgeageneralized LDPC (D-
GLDPC) codes [3], where the VNs and the CNs are allowed to Imerie(n, k) linear block
codes instead of repetition and SPC codes, respectivetnlyf the CND is generalized while
all the VNs are repetition codes, then the code is said a gkred LDPC (GLDPC) code, or
a Tanner code [2].

In a D-GLDPC code the codes used as VNs and CNs are acadieghonent codesn this work
each component code is supposed to be a linear block codegr@wninimum distancé,;, > 2.
The VNs and the CNs which are not repetition or SPC codes, edegred to agyeneralized
nodes The corresponding code structure is depicted in Eig. 1.(Ark) generalized VN is

characterized by: connections towards the CND; moreovérof the N D-GLDPC encoded
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Fig. 1. Structure of a D-GLDPC code.

bits are associated with the VN, and interpreted by the VNsa& information bits. Then, the
codeword length of a D-GLDPC code witki, VNs is N = 3" k; (k; being the dimension of
the i-th VN). An (n, k) generalized CN is characterized hyconnections towards the variable
node decoder (VND), and is associated with & independent parity check equations. Then, the
number of parity-check equations for a D-GLDPC code with CNs isM = ZiNfl (n; —k;) (K
andn; being the dimension and length of th¢h check node, respectively). For a description
of a D-GLDPC code iterative decoder over the AWGN channel BR&€ we refer to [3] and
[4], respectively.

For LDPC code ensembles, an important role is played by ar¢he&nown as thetability
condition[5]-[7]. The most important consequence of the stabilitpdibon is the possibility
to upper bound the asymptotic iterative decoding threshiblthe communication channel is a
BEC with erasure probability, the stability condition leads to the following upper bouowl
the asymptotic thresholg" for the LDPC ensemble:

¢ <N0) (1] (1)

The inequality[(1L) is referred to asability boundin this paptﬂ. In (@), \'(0) = X, is the fraction

We use the nomenclature stability bound as, even thoghs(ptinetimes referred to as the stability condition, syrictl

speaking it is a consequence of it. For more details we ref¢r,t Theorem 3.66] and the related discussion.
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of edges connected to the length-2 repetition VNs, whil@) is the derivative (computed at
z = 1) of the LDPC CNs degree distributionz) = > .., p;xi~t, where p; is the fraction
of edges connected to SPC CNs of lengthThe bound[{ll) was first developed from density
evolution. Next we propose a simple graphical interpretatf (1) using extrinsic information
transfer (EXIT) charts [8]. Let us denote By the average priori mutual information in input
to the VND or to the CND. Furthermore, let us denotelby, (14, q) andIg «(14) the average
extrinsic information for the VND and CND respectively (Heefunctions are usually referred to
asEXIT function$. Then, [1) is equivalent to the following condition: for= ¢*, the derivative
of the VND EXIT function Iz (14, q), with respect to/4 and evaluated af, = 1, must be
smaller than the derivative of the inverse CND EXIT functlbng(IA) evaluated at/4, = 1.

That is [1) is equivalent to requiring

OpvUag)|  _ Upells)

0l 4 Ia=1 " dl4 2)

Ip=1

There exist LDPC degree distributions achieving the bolf)dwith equality, so that their
threshold over the BEC assumes the simple closed fpres [\ (0)p/(1)]~!. For such LDPC
distributions, the first occurrence of a tangency point leetwthe VND EXIT function (14, q)
and the inverse CND EXIT functiom,g}c(IA) appears af 4, = 1, i.e.

]Evv(:[’ q*) = 1_7161(1)
orpviad) | _ gl 3)
Ol a - dla IA:I.

Ta=1

For LDPC code ensembles characterized by VNs and CNs withedegf least 2, the first
equality is always satisfied as both terms are equal to 1. ddgsrs also for D-GLDPC codes
with all variable and check component codes having a minindistanced,,;, > 2 [9], which
is an assumption of this paper. Then, only the second eguslitonsidered in the sequel, and
is referred to as thderivative matching condition

In this paper, the stability upper bourd (1) and the derreathatching condition are extended
to D-GLDPC codes (and to GLDPC codes as a sub-case). Ouiatleris lead to the conclusion
that only the check and variable component codes with mimndistanced,,,;, = 2, including

length-2 repetition codes and SPC codes, contribute totHi®lisy bound. We also show that
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for D-GLDPC codes satisfying the derivative matching ctindi the asymptotic threshold over
the BEC can be expressed by a simple formula.

The paper is organized as follows. Some definitions and thatino used in the paper are
introduced in Sectiofll. In Section 11l the possibility teduce the rank of a linear block
code generator matrix by column elimination is discussesingy these results, in Sectign]IV
and Sectior V' the stability bound is developed for GLDPC soded for D-GLDPC codes,
respectively. Final remarks are given in Secfion VI.

[I. DEFINITIONS AND BASIC NOTATION

We assume as transmission channel a BEC with erasure plibpabiFor a bipartite graph
with random connections, thextrinsic channe(that is the channel over which the messages are
exchanged between the VND and the CND during the iterativ®diag process) is modelled
as a second BEC with erasure probabifitgepending on the decoding iteration [10], where it
is readily proved thaf, = 1 —p. Since we express both the VND and the CND EXIT functions
as functions ofp (and ¢ for the VND), their derivatives are evaluatedzat= 0 (corresponding
to I, = 1). In this case[{2) becomes

Apyv(p. q) S dIgc(p)t

. 4
dp p=0 dp p=0 @

Under the hypothesis of a random bipartite graph, the VND@N® EXIT functions can be

expressed as

Iy
Ioyv(p.a) =Y N I8y (p.q) 5)
=1
and
To '
Ipc(p) =Y pil ), (6)
=1

respectively, wheré&,, andZ, are the number of different VN and CN typeéﬁi?v(p, q) and
Ig?c(p) are the EXIT functions for theé-th VN type and for the-th CN type, respectively, and
A; andp; are the fractions of edges towards the VNs of typ@d the CNs of type, respectively.
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For the sake of clarity, it is useful to isolate the contribatof the repetition component codes
in (8 and the contribution of the SPC component code§lingé)that

(xep) (gen)
Ipv(p.g) = AP (1= gpih) + PP Iy (p,9)

71>2 7
(xep) (gon)

=D AP — g hep(0) + D NI (0, ) 7
7>2 %
(SPC) spC) (gen)

P i i
Igc(p Z P; —p’ "+ sz‘ ]SE?C(p)
7>2 7
(gon)
=pspc(l—p)+ > pi ]g?c(P)- (8)

In (@), j is the length of the generic repetition VIN{"" is the fraction of edges connected to
the repetition VNs of lengthy, and )., () = PR )\Erep 2/~1. We use in[(7) the well known
EXIT function expression over the BEC for (g, 1) repetition VN, i.e.lg(p,q) =1 —qp’~L.
The second summation ifl(7) is over all the generalized VMNsyp@\nalogously, in({8) is the
length of the generic SPC Cly{*" is the fraction of edges towards the SPC CNs of length
4, pspe(z) = 2j>2 pg.SPC) 2/, and we use the well-known EXIT function expression over the
BEC for a(j,j — 1) SPC CN, i.edg(p) = (1 —p)i~L.

The EXIT function of an(n, k) generalized VN over the BEC, when maximum a posteriori

(MAP) erasure correction is performed at the VN, can be esqme as

1
Ip(pg) =1=—% > a:p (1=p)" "¢ (1- )", ©)
which can be readily obtained from [10, eq. 36] with
Q¢ = [(n - t) én—t,k—z - (t + 1) én—t—l,k—z]-

The parametet, ;, (with g =0,...,nandh =0,...,k) is known as thég, h)-th un-normalized
split information function, defined as explained next. Gdesng a representatiof of the
generator matrix for thén, k) VN, and appending to it thék x k) identity matrix I, é,

is equal to the summation of the ranks over all the possiblenstrices obtained selecting
columns out ofG and h columns out ofl,. We remark that the split information functions for
a generalized VN, and therefore its MAP EXIT functidd (9)pded on the chosen generator
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matrix representation [9]. Then, the performance of theal/®-GLDPC code depends on the
code representation used for the variable component cBdeshe same reason, two generalized
VNs associated with the same code, but with different geaematrices (i.e. different mappings
between information words and codewords) must be regard€d)ias VNs of different types.

The EXIT function of a generalizedn,k) CN over the BEC, when MAP decoding is
performed at the CN, can be obtained by letting> 1 in (@). The obtained expression, equivalent
to [10, eq. 40], is

n—1
1 i
Ip(p)=1—-=> ap'(l—p" " (10)
n t=0
with
Ay = (n — t) én—t - (t + 1)én—t—1
Forg = 0,...,n, & is known as they-th un-normalized information function of the, k)

code, a concept first introduced in [11]. It is defined as tharaation of the ranks over all the
possible submatrices obtained by selecyrgplumns out of the generator matiix. As opposed
to the split information functions, 5, the information functiong, are independent of the code
representation. Thus, different check component codecseptations are associated with the
same EXIT function for the generalized CN. The performanica GLDPC or D-GLDPC code
is then independent of the specific representation of iteigdimed check component codes.
Let us suppose that a generic VN ig7a k) linear block codeC, with generator matrixG.
We denote by’ the (n + k, k) linear block code generated Ipx|1,]. The generic codeword of
C is denoted by, while the generic codeword @f by ¢’. We havec’ = [c|u], wherec andu
must satisfyc = u G: the codeC’ then depends on the chosen generator matrix representation
for C. It is readily shown thatl! . > d,., + 1, whered,,;, andd, , are the minimum distances

of C and(’, respectively.

[1l. REDUCING A GENERATOR MATRIX RANK BY COLUMN ELIMINATION

For a given(n, k) linear block code and for a given representati@n of its generator matrix,
we denote byS, a generic submatrix obtained by selectingolumns out ofG, and byS, the

submatrix composed of the — ¢ remaining columns.
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Definition 1: We say thatS, covers a non-null codewokec C when there are no ‘1’ positions

of ¢ corresponding to columns belonging $o.

Example 1:Let us consider 47, 3) simplex code with generator matrix

1001101
G=|0101011]|,
0010111

and let us denote by, the submatrix composed of the last two columngfThen, the only

non-null codeword covered hy, is [0,1,1,1,1,0,0].

The following theorem states that in order to reduce the @k given generator matrix by
column elimination, it is necessary and sufficient that #m@aeved pattern of columns covers at

least one non-null codeword.

Theorem 1:Let us consider arnn, k) linear block codeC. For any generator matrix repre-
sentation, we haveank(S;) < k if and only if S; covers at least one codeword.

Proof: [Sufficiency Suppose thaB, covers a codeword, and consider a representatiéh
of the generator matrix wher@is one of the rows. It follows that removing frofd the n — ¢
columns associated with, reduces the rank because at least one of the rows becomédszaral
row, so thatank(S;) < k. Since any representation of the generator matrix can keéredut from
any other representation by row summations only, and siowesummations cannot modify the
rank of submatrices composed of generator matrix columashaverank(S;) < k also for any
representation other thad.

[Necessity Conversely, let us suppose thaink(S;) < k for a given generator matrix repre-
sentation. Using the same argument as for the sufficiencyphserve that this inequality must
be satisfied also for any other representation of the gesrenadtrix. As removingS, from any
generator matrix leads to(& x ¢) matrix with reduced rank, it must be possible to obtain (from
any generator matrix representation) a generator matrer@vbne or more rows have only ‘0’
in those positions corresponding &. All these rows are non-null codewords ©fcovered by

Si. O

Corollary 1: We haverank(S;) = k for all S; if and only if n — ¢t < dyn-
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Proof: [SufficiencyLet us suppose thatnk(S;) = k for all S;. By applying Theorenl1
it follows that no submatrixS, (composed ofr — ¢ columns) can cover any codeword. Then
n—1t < dpin.

[NecessityConversely, let us suppose that-¢ < d;,. Then, no submatri, (composed of
n—t columns) can cover any codeword. By applying Thedrém 1 welode thatrank(S;) = &
for all ;. O

Example 2:All the codewords of th¢7, 3) simplex code of Exampld 1 have Hamming weight
4. As one of these codewordg|is 1, 1, 0, 0, 0, 1], Theoreni L guarantees that if we remove the first
three and the last column fro@ given in ExampléIl (or from any matrix obtained performing
row summations oiz) we obtain a(3 x 3) matrix with rank smaller than 3. On the other hand,
by Corollary[1 we know that, even if we remove any set of threéess columns, the rank of

G remains unchanged.

In [9] the concept oindependent satvas introduced. Given & x n) ranks binary matrix,
an independent set of sizds defined as any set efcolumns such that removing these columns
from the matrix leads to & x (n — s)) matrix with a rank smaller than. By TheorenlIl we
now state that a necessary and sufficient condition for afsetcolumns to be an independent
set of a(k x n) generator matrix is that the columns cover at least one codeword. Moreover,
by Corollary[1 we recognize that any set ok d,,;,, columns cannot form an independent set

for the generator matrix.

IV. STABILITY BOUND AND DERIVATIVE MATCHING FOR GLDPC CODES

In GLDPC codes all the variable component codes are repetitbdes, which in({7) leads to
zg? )\Erep) = 1. The EXIT function over the BEC for the VND is then given By (p, ¢) =
1 — gAep(). It follows

g v(p,q)

— g\l 11
op q Ay (11)

p=0

From (8), the derivative of z «(p) atp =0 is

(gen) (@)
dIgc(p) / Al o (p)
“dp = —pspc(l) + ; Pi Ty o (12)

p=0

p=0
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In order to develop[(12) it is necessary to explicit the deixe of each generalized CN type
EXIT function. This task can be performed by exploiting Qlany [, as explained next.
Consider ann, k) generalized CN with EXIT functiodz(p) in the form [10). It is readily
shown that
dIg(p) _(n=1)ag—a ‘

dp Ip=0 n

We havea, = 0 if and only if the generalized CN has minimum distantg, > 2. In fact,
the generator matrix of the check component code is full raakk = k) by definition, so
¢, = k. Furthermore, from Corollaryl 1, removing any single colufrom the generator matrix
does not reduce the rank if and onlydf;, > 2, in which case we obtaif,_, = n k, so that
apg =ne, —é,_1 =nk—nk=0. As recalled in Sectiofl I, the hypothesis;, > 2 is always
assumed in this paper. Then, we can assugne 0.

If d..;, > 2 for the CN we obtain

dp p=0 n’

dle(p.q)|  _ @

wherea; = (n —1)é,_1 —2¢é, o = kn(n —1) — 2¢é,_,. By applying again Corollar{]1, we
obtain

o =0 if dpn >3 (13)
>0 if dypiw=2.
If the CN exhibits a minimum distancé,;, > 3, then removing any pair of columns from the
generator matrix does not affect the rank. In this casg , = 2k (}) = kn(n — 1), hence
a; = 0.
According to these results, the only generalized CNs thatritute to the summation in the
second term of_(12) are those characterizedily, = 2. By recalling that all the SPC codes
have minimum distance 2, we conclude tHail (12) only dependth® check component codes

with d.;, = 2. The derivative ap = 0 of the CND EXIT function can be then expressed as

2]

dIE C(p) , ]CZ’/LZ(TLZ — 1) -2 én._g
T 7 — 1 _ i i
dp =0 PSPC( ) Z; 1
(2] 2A(i) )

= ~phpa(l) = Yo" (14)
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where the notatio@m is adopted to indicate the summation over those generalidédypes
with minimum distance 2. Ii(14), we have denotedﬁhfﬁ')_2 the expressio;n;(n;—1)/2—¢é,, 2,
that does not depend on the chosen representation fortthgeneralized CN type.

The next theorem states thaﬁi)_Q is equal to the multiplicitwlg) of the weight-2 codewords

for the CNs of typei.

Theorem 2:For any linear block check component code with minimum dist¢al,,;, = 2,
the parameter\,_, equals the multiplicityd, of the CN codewords with Hamming weight 2,

i.e.

A, o= A,.
Proof: LetS,_» be the generi¢k x (n—2)) matrix obtained by removing 2 columns from
(any representation of) the CN generator matrix. By Corg[lawe have that eitheank (S, _») =
k or rank(S,,_2) = k — 1: considering a CN withi,,;, = 2, removing any single column cannot

reduce the rank so that removing two columns can reduce tileatamost by one.

We have

kn(n —1)

An—2 = ——F — —€p-2

= Z k— Z rank(S,_»)
S Sn
= Z k — rank (S,_2)),

where we know that each term in the summation is either equdldr to 1. By Theorerh]1 any

such term is equal to 1 if and only &,_, covers a (necessarily weight-2) codeword. [

The derivative ap = 0 of the inverse CND EXIT functiod,g}c(p) is given byl /dIz(p)/dp|y—o-
Combining [11), [(14) and Theoreinh 2, for GLDPC codgs, (4) bexo

< |:)\(r0p < ol +§ 2A(2 )] (15)
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We can further simplify[(15) by noting that
(SPC)

pspc(l) Z pi(G—1)

(SPC) 5 A2j
p] nj 9

j
as for a SPC CNy; = j and AY) = () =4 (j — 1)/2. Hence, [(Ib) can be written in the more

compact form

IO -
)\grep) Zn_zAg)

7

‘Q*
VAN

i
-1

- [Agow C] (16)

where

(i)
C=> pCi with ;= 24 ,

n;

and where nOV\Em indicates the summation over all thk;, = 2 check component codes,
both SPC and generalized.

For GLDPC codes satisfying the derivative matching coodit{3) (the first occurrence of
a tangency point betweeh; v (p, ¢) and ]5710(])) appears ap = 0), the threshold assumes the
simple closed formy* = [AY”) C]-1. If only generalized CNs witld,;, > 3 are used, thed (15)
becomes;* < [AY plo (1)) If the derivative matching condition is fulfilled in this sa, we
obtain ¢* = [\ plpe(1)]7!

V. STABILITY BOUND AND DERIVATIVE MATCHING FORD-GLDPC GoDES

The derivative atp = 0 of the CND EXIT function of D-GLDPC codes is the same as
for GLDPC codes, that isig'(p)/dp|,—o = —1/C. The partial derivative of the VND EXIT
function with respect t@ and evaluated gt = 0, is developed next.

It follows from (7) that

(gen) ()
aIEV(p7 Q) rop ]EV(p7 )
—_— = N ————— : 17
dp p=0 - Z ( )

p=0
In order to develop the summation over the generallzed VNdyip the second part df ([17), we

have to explicit the partial derivative respectjt@f each generalized VN type EXIT function,
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evaluated ap = 0. To this end, let us consider dn, k) generalized VN whose EXIT function

is given by [9). After defining

n—1
f)=> a.p'(1—p)" "
t=0
we have
01 (p, q) 1 <~ (df(p) . -
op =0 n ; dp Ip=0 7 %)
k
—1 z z  z —z
I 18)
z2=0

as it is readily shown that thatf (p)/dp|,—0 = —(n — 1)ao . + a1... The expressiori_ (18) can be
further developed by invoking Corollaiy 1. Since any valeabomponent code has minimum
distanced,,;, > 2 by hypothesis, removing any single column from the genenatatrix G of

the variable component code cannot reduce the ran&.dt follows

gz =MNEpk—z — Cn—1k—2

“en(u ) )

=0,

thus leading to

a[E(]U, " ay
A — _ 1 _
dp Z n 0"

Corollary[1 can be invoked again in order to show that

p=0

=0 Vz if dpm >3
ai,z (19)
>0 Vz if dmin =2,
where d,;, is the variable component code minimum distance. In factleurihe hypothesis
dmin > 3, removing any single column or any pair of columns from (aegresentation of{x

cannot reduce its rank. Under this hypothesis

ai . = (n - 1) én—l,k—z -2 én—2,k—z

k-0 ()2 (",) (5 )

= 0.
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Hence, the only generalized variable component codes ibatitrg to (IT) are those with
minimum distancel,,;, = 2. This is coherent with the fact that, among the repetitiomgonent
codes, only those with,,;, = 2 (i.e. the length-2 repetition codes) give a non-null cdnttion

to (17).
Then, [1T) can be developed as

aIE V(pa Q) (rep) k nl v 1)(kkiz) —2 é"i_kai_Z k. —
et A —— )\ )\ i z 1 _ i — 2
P P R E § o q (1—q)
re 2A£LZ z )
= — g\ § A § : 2 (1 - )t (20)

In the previous expression the symtﬁl[2 indicates the summation over those generalized VN

types with minimum distance 2. Moreovek”, , _ is defined ag™:=1 (, ) = B

As opposed toﬁ(l , in ([d4), An k. IN (20) depends on the component code representation.
Using (20) we can expresEI (4) for a D-GLDPC code as

2 AW 1
*)\(merZ)\Z ko2 () (=) < (21)

In the reminder of this section, we prove thiatl(21) can betamitis an explicit upper bound to

the decoding thresholg‘. We start by proving the following theorem.

Theorem 3:Let us consider arin, k) linear block variable component code with minimum

distanced,,;, = 2. We have

k k
2An— —z *\2 *\k—z 2Avu *\ U
ST IR () (1 - gt = S (), (22)
u=1

z=0

where A, ,, is the number of the VN weight-2 codewords generated by weigimformation
words.

Proof: Let C be the(n, k) variable component code and Iét be the chosen generator
matrix for C. Moreover, letS, _, ;. be the generick x (n — 2 + k — z)) matrix obtained by
selectingn — 2 columns inG andk — z columns in the(k x k) identity matrix.

Let us apply Theorern]1 to the cod introduced at the end of Sectiéd Il. Each codeword
¢’ € C' is composed of the concatenation of a codeworéd C with one of the possible
2% sequences of bits (where by the linearity of the all-zero length: sequence is always

concatenated with the all-zero codeword @f Combining this observation with Theorem 1
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and introducing the notatios,, o, . = [S¢,|SI__] we observe that a necessary (though not

sufficient) condition for havingank(S,,—2x—.) < k is thatS _, covers a weight-2 codeword of
C.

Next, we develop\,,_5;_. as

kn(n —1 k .
An—2,k—z - Q (]{7 ) — €n—2k—z2

2 —Zz
Z k— Z rank(S,—2x—-)
Sn—2k-z Sn—2k—z
— Z (k —rank(S,—2k-2))
Sn2k—z
=3 (k—rank ([SF,[S} _.]))
SS 2Sh_.
_ZZ k — rank 37?2|Sk Z]))7
c 31

—z

Wherer] is used to indicate the summation over th&&g, such thal‘S,f}_2 covers a weight-2

codeword ofC. Then, we can write

k
2An—2,k—z *\ 2z *\k—z
3 2Bt (1 - )

2=0

k
== Z Z > (k= rank ([SF,|S_.])) (¢7)7 (1 —¢7)F~

zO cSI

—z

:—ZZZ k- rank (ISSLISE))) () (1 )" (23)

c zOSI

—z

By hypothesis there are no VNs with minimum distance 1. THen,a given weight-2
codewordc € C, any submatrixS, . is such thatS, _,,_. can cover at most one codeword
of C/, i.e. the codewordc|u.] subject toc = u.G. If we denote bywy(u.) the Hamming
weight of u., for each weight-2 codeword € C the summation ovet in (23) can always start
from wy(u.). In fact, forz = 0,...,wy(u.) — 1 it is not possible forS, ;. to cover the
codeword[c|u.], S0 thatk — rank ([S¢,|Si_.]) = 0. That allows writing the second member
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in (23) as
“EE: jf: > (k —rank ([SS,|SE_.])) (¢°)7 (1 —q")F . (24)

z=wpg(uc) St

For givenz > wy (u.), the codeword[c|u.] is covered by exactly(’;/’:zzfgl‘jzg) matrices

S,_2x_-. Hence, there are exact(ﬁ wH “g) non-null terms in

D (k= rank(ST,|SE L)) (¢°)* (1 —q")*~

SI
Deleting from G two columns corresponding to a weight-2 codewordCofeduces the rank
of this matrix by one, leading to a rarnk— 1. In fact, considering the VN minimum distance
dwin = 2, removing the first column cannot reduce the rank (CorolfBryand removing the
second column reduces the rank (Theofdm 1) necessarily ®yWa can then conclude that
each of the(:_{*}) non-null terms in the summation s (k — rank ([SZ,[St_.])) is equal
to one, independently of. Then we can further develop_(24) as

k— wH(uC) * x\k—z
- (") (1 —q")" (25)
? _ Z( ()

We next observe that those weight-2 codewardsC associated with the samey (u.) (i.e.
generated by information words having the same weight) ymedhe same contribution ih (25),
since only the Hamming weight of the information words matters. This observation allows

us to write [2b) as

Z2A2uz(z_u) -0 (26)

where A, is the number of weight-2 codewords= C such thatwy(u.) = u. In general A, ,

depends on the variable component code representationofygrthat
k

> () @ra-er ey,

we finally obtain [2R). O

Theoren B allows us to write the first member [ofl(21) as

* rep+z)\ Z2A2u

*u
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The length-2 repetition VNs can be embedded into the sunomatrer the generalized VN types
with minimum distance 2. In fact, the only weight-2 codewarfda length-2 repetition VN is
= [1,1], which is generated by a weight-1 information word. Them, &dength-2 repetition

VN we have
k
2 As
)\(rep) Y — 2P
2 z:: N (q ) 2  q

Hence, [(2L) can be put into the more compact form

2] ki (4)
A2 1
i = (q*)" 27
> <= 27)

u=1

where now the summatioEm is over all the VN types with minimum distance 2, both repeitit
and generalized.

The first part of [(2I7) is a real polynomid?(-) in the variableg*. This polynomial can be
written asP(z) = 21 \; P,(z), where P,(-) is a degreés; real polynomial associated with the
dmin = 2 type<4 VNs. EachP;(+) is a monotonically increasing function (since all its caaéints
are positive). Consequently(-) is a monotonically increasing function and its inverge!(-)

exists. We have then proved the following theorem, whiclinésrhain contribution of this paper.

Theorem 4 (Stability bound over the BEC for D-GLDPC codé&®)e asymptotic thresholg
of a D-GLDPC code ensemble over the BEC, assuming MAP erasurection at each com-

ponent code, fulfills

1
= (g). (28)
where
=Y NP(x) with  Pz) = 20 g

3 u=1 T

and
9 AW
= i Ci ith j =2
C ;p C wi C o

]

For an LDPC code ensemble{28) retugis< [\'(0) p/(1)]7}, i.e. the well-known stability
bound for LDPC codes.
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Property 1: For a length-2 repetition VN (i.e. for a conventional LDPCgdee-2 VN) we
have P;(x) = x. Hence, if the onlyd,;, = 2 VNs are length-2 repetition codes, we have
Pl(z) = (1/)\§rep)) z. This is the case for GLDPC codes.

Property 2: For a lengthr, SPC CN (i.e. for a conventional LDPC degree€N) we have
CZ' =n; — 1.

Property 3: Any length#; and weight-2 binary sequence is a codeword for a lengt8PC
CN. Then,C; for a lengthn; CN with minimum distance 2 is maximum when the CN is a SPC

code. In other words(; fulfills
Ci <n; —1,
where the equality holds when the CN is a SPC code.

Property 4: For any VN with minimum distancé,,;, = 2, the value ofP;(x) depends on the
chosen generator matrix through the coefficiemf%. This is true for allz, except atzr = 0 and

at x = 1 where we have

and

respectively. Independently of the VN representation, ihlele assumed by, (x) atz = 1 is

equal to the value of’; for the samei,,;, = 2 linear block code when used as a CN.

Property 5: For a D-GLDPC code ensemble satisfying the derivative niagcbondition, the
iterative decoding threshold over the BEC assumes the sifiopin ¢* = P~1(1/C).
It should be noted that in gener&l~!(1/C') is not a closed form for the threshold. However,

there are simple cases in whi¢h!(-) can be explicited. An example is provided in the appendix.

VI. CONCLUSION

In this paper, a stability bound over the BEC has been deeeldpr D-GLDPC codes. It

generalizes the inequality < [\'(0)p/(1)]7!, valid for LDPC code ensembles. We have shown
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that for D-GLDPC codes, as for LDPC codes, the only varialnld eheck component codes
contributing to the bound are those having minimum distéhdk derivative matching condition
sufficient to achieve the bound with equality has also bedmet® If the derivative matching
condition is fulfilled, then the decoding threshold over BteC for D-GLDPC codes is expressed
by a simple formula, although in general not in closed-fofrar GLDPC codes this formula

always leads to a closed-form threshold expression.

APPENDIX |
D-GLDPC CobEs WITHSPC \ARIABLE NODES

GLDPC codes employing strong generalized CNs (such as HaghaniBCH CNSs) represent a
possible solution for obtaining a good compromise betweaterall performance and error floor.
Examples of such GLDPC code constructions are describetRir{[L6]. In general, increasing
the fraction of strong generalized CNs can be very favordétde the point of view of the
overall code minimum distance and then of the error floor,drasents drawbacks.

A first drawback is represented by an overall code rate losshvimakes GLDPC codes
with large fractions of strong generalized CNs of interestydor low or very low rate [17].
The reason is briefly reviewed next. Let us consider a morergércode structure, namely a
D-GLDPC code. If we denote by, ; and byr ; the code rate of the typeVNs and of the

type- CNSs, respectively, the overall design rate is

> pi(L=rcy)
Zi Ai Tv,i ’

which is monotonically increasing respect to any; and to anyr¢ ;. A generalized CN of length

R=1-

(29)

n has a code rate smaller than the code rate of a lengdfC CN. Then, a large fraction of
strong generalized CNs determines an overall rate lossLIDR& codes this rate loss is difficult
to compensate even using large fractions of length-2 repet/Ns (which are the highest rate
VNs available if all the node in the Tanner graph have minimdistance at least 2) so that
usually the overall GLDPC code remains of low rate. A secoravback is that GLDPC codes
with large fractions of strong generalized CNs and largetioas of length-2 repetition VN are
typically characterized by a poor asymptotic threshold tu¢he large area gap between the
EXIT curves in the EXIT function (see the Area Theorem in 18]

Allowing the generalization of the VND together with the gealization of the CND provides

an increased flexibility in the code design, that can be etquldo overcome the above mentioned
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limitations. In particular, the rate loss due to the geneeal CNs can be compensated using
generalized VNs with a code rate larger than 1/2. In thisexdnta special class of generalized
VNs is represented byn,n — 1) SPC VNs each one having edges towards the CND and
associated witm — 1 encoded bits. It is shown in [19] that these codes can be tede
exploited for the design of D-GLDPC codes with good watérdaid error floor performance.
In this appendix, we develop the polynomig)(-) defined in Theoreml4 for such VNs when
represented in both systematic and cyclic form. We alsogse@m numerical example illustrating
the capabilities offered by D-GLDPC codes with SPC VNSs.

A. SPC Variable Nodes in Systematic Form

Let us suppose that the VNs of typeare lengths; SPC codes in systematic form, i.e.,

represented by th&n; — 1) x n;) generator matrix

(100 ... 01
010 ..01
G=|001..01
000 ... 1 1|

Each of these VNs had)) weight-2 codewords. Specifically, there are-1 weight-2 codewords

(=D =2) \yeight-2 codewords generated

generated by weight-1 information wordg’, ") =
by weight-2 information words and no weight-2 codewordsegated by information words of

weight larger than 2. Then

n;—1 if u=1
AS’L - (nl - 1)(”@ - 2)/2 if u=2
so that
P’(x):nz'(ni—l)xjtz <ni_1>2(ni_2)x2

_2ni=l) (H”f‘?x). (30)



B. SPC Variable Nodes in Cyclic Form

(11 0
01 1
00 1

0

0

0

0
0
0

1
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0
0
0

1

Let the VNs of type: be (n;,n; — 1) SPC codes in cyclic form, i.e. generated by

In this case we obtain an expressionffx) different from [30). In fact, it is readily shown that
in a SPC code represented in cyclic form, an information wadrdeight u generates a weight-2
codeword if and only if all its ‘1’ positions are contiguoughen, for allu = 1,...,n; — 1 we

have AY), = n; — u, from which

n;—1

Pi(z) = ZM 2

n.
u=1 v

2z 1—n;a™t+ (n;—1)a™
(x —1)?

rx—1 n;
2z 2™ —ny(r—1)—1]

(31)

If n; =2 orn; =3, then [30) coincides witH (31) as expected. Specificaltynfiboth [30) and
(3T) we obtainP;(x) = x and P;(x) = 2 2® + 3 « for n; = 2 andn; = 3, respectively.

C. Comparison between Systematic and Cyclic Form

Let us denote by’ (-) and byF.(-) the polynomialP;(-) of a lengthn SPC VN in systematic

and cyclic form, respectively. We show next thanif> 3

if 0<x<l1
if z=1

>0
=0

<0

Py(x) — P.(x)

if z>1.
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In fact, we have

Ps(x)—Pc(x):% [(n_l)x+(n—1)2(n—2) 932] —% (n—u)zx"
:2;2F”— D S0 ) ] (32)

It is readily shown thab "% (n —u) = W Then, P,(1) — P.(1) = 0, a result which is
consistent with Propertyl 4. For< = < 1 we must have"_(n — u) 2% 72 < % which
leads toP,(x) — P.(x) > 0; analogously, for: > 1 we must have "~ (n —u) 22 > #=21n=3)
which leads toP;(z) — P.(x) < 0.

D. D-GLDPC Codes with Length-2 Repetition VNs and SPC VNystefatic Form

Let us consider[{28). Although in general it is not possildesxpressP—!(-) in an explicit
closed form, this is possible in special cases. For instaoiocining a closed form expression
of P~1(.) is possible when the only,,;, = 2 variable component codes are length-2 repetition
codes and length-SPC codes in systematic form. Létbe the fraction of edges connected to
the length-2 repetition VNs and the fraction of edges connected to the lengtBPC VNs (so
A + p is the total fraction of edges connecteddi@, = 2 VNs). We have

P(l‘):)\l’+u2(nn_1) x <n;2x+1>.

By solving for positivey the equationP(y) = =, we obtain

a2 YPAE2 =D WP A=) (=) npa
Y2 (n—Dpu 2(n—2) (n—1) 1 - (33

P Hx) =

In Fig.[2, [33) is plotted for different values ¢f, assuming\ + x = 0.3 and SPC VNs of
lengthn = 7. Each curve is associated with a different valugipie., with a different proportion
between length-2 repetition VNs and length-7 SPC VNs in tNDVHence, the curve labelled
as 0.0 corresponds to the presence of only length-2 repetition,\Wisle the curve labelled as

0.3 to the presence of only SPC VNs. Hence modifyingrovides a wide variety of options.
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Fig. 2. Plot of P~!(.) for a D-GLDPC code where the onlmi, = 2 VNs are length-2 repetition and length-7 SPC VNs.

The total fraction of edges connectedd@in = 2 VNs is A 4+ 1 = 0.3, and each curve is associated with a specific valug. of

E. Distribution Optimization

We consider the optimization problem of a GLDPC and of a D-®GDcode ensemble for
design rateR = 1/2. In both cases we constrain the optimization process bywaltp the
repetition VN degree to range only between 2 and 15 and the @R@egree only between 5
and 15. Moreover, we uggl,21) BCH CNs, imposing a minimum fraction of edges connected
to the BCH CNs equal to 0.7. For the D-GLDPC code ensemble, loev also length-15
SPC CNs in cyclic form. The output of an optimization processr the BEC performed with
differential evolution [20], [21] is reported in Table | @m an edge perspective). For each of
the two optimized distributions the threshold and the &tghdound [28) are shown. While for
the GLDPC code ensemble it is necessary to use only lengép&tition VNs to compensate
the rate loss introduced by the large fraction of BCH CNs vaithoverall poor threshold, for

the D-GLDPC code ensemble the use of SPC VNs allows obtaiainguch larger threshold.
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TABLE |

GLDPCAND D-GLDPCDISTRIBUTIONS WITH LARGE FRACTIONS OFBCH CHECK NODES

‘ ‘ GLDPC ‘ D-GLDPC‘

‘ Variable Nodes ‘

SPGyc 15 0.521581
rep 2 1.000000| 0.132836
rep 14 0.145293
rep 15 0.200291

Check Nodes

BCH 0.700000| 0.721799
SPC5 0.278201
SPC 12 0.174190
SPC 13 0.125810

T 0.291516| 0.478585
P~(1/C) | 0.291902| 0.478585

From an EXIT chart perspective the capability of the SPC Vdsetduce the area gap between

the EXIT curves is illustrated by comparing in Fid. 3 and Hg.
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