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Abstract

The iterative decoding threshold of low-density parity-check (LDPC) codes over the binary erasure

channel (BEC) fulfills an upper bound depending only on the variable and check nodes with minimum

distance 2. This bound is a consequence of the stability condition, and is here referred to as stability

bound. In this paper, a stability bound over the BEC is developed for doubly-generalized LDPC codes,

where the variable and the check nodes can be generic linear block codes, assuming maximum a

posteriori erasure correction at each node. It is proved that in this generalized context as well the bound

depends only on the variable and check component codes with minimum distance 2. A condition is also

developed, namely the derivative matching condition, under which the bound is achieved with equality.

I. INTRODUCTION

LDPC codes [1] have been intensively studied in the last decade due to their capability to

approach the Shannon limit under iterative belief-propagation decoding. An LDPC code of length

N and dimensionK can be graphically represented as a bipartite graph, known as Tanner graph,

with N variable nodes (VNs) andM ≥ N −K check nodes (CNs) [2]. In the Tanner graph, the

degree of either a VN or a CN is defined as the number of edges connected to it. A degree-n

VN of an LDPC code can be interpreted as a length-n repetition code, i.e., as a(n, 1) linear

block code repeatingn times its only information bit towards the check node decoder (CND).

Instead, a degree-n CN of an LDPC code can be interpreted as a length-n single parity-check

(SPC) code, i.e., as a(n, n− 1) linear block code.

An extension of the concept of LDPC code is represented by doubly-generalized LDPC (D-

GLDPC) codes [3], where the VNs and the CNs are allowed to be generic (n, k) linear block

codes instead of repetition and SPC codes, respectively. Ifonly the CND is generalized while

all the VNs are repetition codes, then the code is said a generalized LDPC (GLDPC) code, or

a Tanner code [2].

In a D-GLDPC code the codes used as VNs and CNs are calledcomponent codes. In this work

each component code is supposed to be a linear block code having a minimum distancedmin ≥ 2.

The VNs and the CNs which are not repetition or SPC codes, are referred to asgeneralized

nodes. The corresponding code structure is depicted in Fig. 1. An(n, k) generalized VN is

characterized byn connections towards the CND; moreover,k of the N D-GLDPC encoded
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Fig. 1. Structure of a D-GLDPC code.

bits are associated with the VN, and interpreted by the VN as its k information bits. Then, the

codeword length of a D-GLDPC code withNV VNs isN =
∑NV

i=1 ki (ki being the dimension of

the i-th VN). An (n, k) generalized CN is characterized byn connections towards the variable

node decoder (VND), and is associated withn−k independent parity check equations. Then, the

number of parity-check equations for a D-GLDPC code withNC CNs isM =
∑NC

i=1(ni−ki) (ki

andni being the dimension and length of thei-th check node, respectively). For a description

of a D-GLDPC code iterative decoder over the AWGN channel andBEC we refer to [3] and

[4], respectively.

For LDPC code ensembles, an important role is played by a theorem known as thestability

condition [5]–[7]. The most important consequence of the stability condition is the possibility

to upper bound the asymptotic iterative decoding threshold. If the communication channel is a

BEC with erasure probabilityq, the stability condition leads to the following upper boundon

the asymptotic thresholdq∗ for the LDPC ensemble:

q∗ ≤ [λ′(0) ρ′(1)]−1. (1)

The inequality (1) is referred to asstability boundin this paper1. In (1),λ′(0) = λ2 is the fraction

1We use the nomenclature stability bound as, even though (1) is sometimes referred to as the stability condition, strictly

speaking it is a consequence of it. For more details we refer to [7, Theorem 3.66] and the related discussion.
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of edges connected to the length-2 repetition VNs, whileρ′(1) is the derivative (computed at

x = 1) of the LDPC CNs degree distributionρ(x) =
∑

j≥2 ρjx
j−1, whereρj is the fraction

of edges connected to SPC CNs of lengthj. The bound (1) was first developed from density

evolution. Next we propose a simple graphical interpretation of (1) using extrinsic information

transfer (EXIT) charts [8]. Let us denote byIA the averagea priori mutual information in input

to the VND or to the CND. Furthermore, let us denote byIE,V (IA, q) andIE,C(IA) the average

extrinsic information for the VND and CND respectively (these functions are usually referred to

asEXIT functions). Then, (1) is equivalent to the following condition: forq = q∗, the derivative

of the VND EXIT function IE,V (IA, q), with respect toIA and evaluated atIA = 1, must be

smaller than the derivative of the inverse CND EXIT functionI−1
E,C(IA) evaluated atIA = 1.

That is (1) is equivalent to requiring

∂IE,V (IA, q
∗)

∂IA

∣
∣
∣
IA=1

≤
dI−1

E,C(IA)

dIA

∣
∣
∣
IA=1

. (2)

There exist LDPC degree distributions achieving the bound (1) with equality, so that their

threshold over the BEC assumes the simple closed formq∗ = [λ′(0)ρ′(1)]−1. For such LDPC

distributions, the first occurrence of a tangency point between the VND EXIT functionIE,V (IA, q)

and the inverse CND EXIT functionI−1
E,C(IA) appears atIA = 1, i.e.







IE,V (1, q
∗) = I−1

E,C(1)

∂IE,V (IA, q∗)

∂IA

∣
∣
∣
IA=1

=
dI−1

E,C
(IA)

dIA

∣
∣
∣
IA=1

.
(3)

For LDPC code ensembles characterized by VNs and CNs with degree at least 2, the first

equality is always satisfied as both terms are equal to 1. Thisoccurs also for D-GLDPC codes

with all variable and check component codes having a minimumdistancedmin ≥ 2 [9], which

is an assumption of this paper. Then, only the second equality is considered in the sequel, and

is referred to as thederivative matching condition.

In this paper, the stability upper bound (1) and the derivative matching condition are extended

to D-GLDPC codes (and to GLDPC codes as a sub-case). Our derivations lead to the conclusion

that only the check and variable component codes with minimum distancedmin = 2, including

length-2 repetition codes and SPC codes, contribute to the stability bound. We also show that
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for D-GLDPC codes satisfying the derivative matching condition the asymptotic threshold over

the BEC can be expressed by a simple formula.

The paper is organized as follows. Some definitions and the notation used in the paper are

introduced in Section II. In Section III the possibility to reduce the rank of a linear block

code generator matrix by column elimination is discussed. Using these results, in Section IV

and Section V the stability bound is developed for GLDPC codes and for D-GLDPC codes,

respectively. Final remarks are given in Section VI.

II. DEFINITIONS AND BASIC NOTATION

We assume as transmission channel a BEC with erasure probability q. For a bipartite graph

with random connections, theextrinsic channel(that is the channel over which the messages are

exchanged between the VND and the CND during the iterative decoding process) is modelled

as a second BEC with erasure probabilityp depending on the decoding iteration [10], where it

is readily proved thatIA = 1−p. Since we express both the VND and the CND EXIT functions

as functions ofp (and q for the VND), their derivatives are evaluated atp = 0 (corresponding

to IA = 1). In this case (2) becomes

∂IE,V (p, q
∗)

∂p

∣
∣
∣
p=0

≥
dIE,C(p)

−1

dp

∣
∣
∣
p=0

. (4)

Under the hypothesis of a random bipartite graph, the VND andCND EXIT functions can be

expressed as

IE,V (p, q) =

IV∑

i=1

λi I
(i)
E,V (p, q) (5)

and

IE,C(p) =

IC∑

i=1

ρi I
(i)
E,C(p), (6)

respectively, whereIV and IC are the number of different VN and CN types,I
(i)
E,V (p, q) and

I
(i)
E,C(p) are the EXIT functions for thei-th VN type and for thei-th CN type, respectively, and

λi andρi are the fractions of edges towards the VNs of typei and the CNs of typei, respectively.
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For the sake of clarity, it is useful to isolate the contribution of the repetition component codes

in (5) and the contribution of the SPC component codes in (6),so that

IE,V (p, q) =

(rep)
∑

j≥2

λ
(rep)
j · (1− q p j−1) +

(gen)
∑

i

λi I
(i)
E,V (p, q)

=

(rep)
∑

j≥2

λ
(rep)
j − q λrep(p) +

(gen)
∑

i

λi I
(i)
E,V (p, q) (7)

IE,C(p) =

(SPC)
∑

j≥2

ρ
(SPC)
j · (1− p)j−1 +

(gen)
∑

i

ρi I
(i)
E,C(p)

= ρ SPC(1− p) +

(gen)
∑

i

ρi I
(i)
E,C(p). (8)

In (7), j is the length of the generic repetition VN,λ(rep)
j is the fraction of edges connected to

the repetition VNs of lengthj, andλrep(x) ,
∑

j≥2 λ
(rep)
j xj−1. We use in (7) the well known

EXIT function expression over the BEC for a(j, 1) repetition VN, i.e.IE(p, q) = 1 − q p j−1.

The second summation in (7) is over all the generalized VN types. Analogously, in (8)j is the

length of the generic SPC CN,ρ(SPC)
j is the fraction of edges towards the SPC CNs of length

j, ρSPC(x) ,
∑

j≥2 ρ
(SPC)
j xj−1, and we use the well-known EXIT function expression over the

BEC for a (j , j − 1) SPC CN, i.e.IE(p) = (1− p)j−1.

The EXIT function of an(n, k) generalized VN over the BEC, when maximum a posteriori

(MAP) erasure correction is performed at the VN, can be expressed as

IE(p, q) = 1−
1

n

n−1∑

t=0

k∑

z=0

at,z p
t (1− p)n−t−1 qz (1− q)k−z, (9)

which can be readily obtained from [10, eq. 36] with

at,z = [(n− t) ẽn−t,k−z − (t + 1) ẽn−t−1,k−z].

The parameter̃eg,h (with g = 0, . . . , n andh = 0, . . . , k) is known as the(g, h)-th un-normalized

split information function, defined as explained next. Considering a representationG of the

generator matrix for the(n, k) VN, and appending to it the(k × k) identity matrix Ik, ẽg,h

is equal to the summation of the ranks over all the possible submatrices obtained selectingg

columns out ofG andh columns out ofIk. We remark that the split information functions for

a generalized VN, and therefore its MAP EXIT function (9), depend on the chosen generator
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matrix representation [9]. Then, the performance of the overall D-GLDPC code depends on the

code representation used for the variable component codes.For the same reason, two generalized

VNs associated with the same code, but with different generator matrices (i.e. different mappings

between information words and codewords) must be regarded in (7) as VNs of different types.

The EXIT function of a generalized(n, k) CN over the BEC, when MAP decoding is

performed at the CN, can be obtained by lettingq → 1 in (9). The obtained expression, equivalent

to [10, eq. 40], is

IE(p) = 1−
1

n

n−1∑

t=0

at p
t(1− p)n−t−1, (10)

with

at = (n− t) ẽn−t − (t+ 1)ẽn−t−1

For g = 0, . . . , n, ẽg is known as theg-th un-normalized information function of the(n, k)

code, a concept first introduced in [11]. It is defined as the summation of the ranks over all the

possible submatrices obtained by selectingg columns out of the generator matrixG. As opposed

to the split information functions̃eg,h, the information functions̃eg are independent of the code

representation. Thus, different check component code representations are associated with the

same EXIT function for the generalized CN. The performance of a GLDPC or D-GLDPC code

is then independent of the specific representation of its generalized check component codes.

Let us suppose that a generic VN is a(n, k) linear block codeC, with generator matrixG.

We denote byC′ the (n+ k, k) linear block code generated by[G|Ik]. The generic codeword of

C is denoted byc, while the generic codeword ofC′ by c
′. We havec′ = [c|u], wherec andu

must satisfyc = uG: the codeC′ then depends on the chosen generator matrix representation

for C. It is readily shown thatd′min ≥ dmin +1, wheredmin andd′min are the minimum distances

of C andC′, respectively.

III. REDUCING A GENERATOR MATRIX RANK BY COLUMN ELIMINATION

For a given(n, k) linear block codeC and for a given representationG of its generator matrix,

we denote bySt a generic submatrix obtained by selectingt columns out ofG, and byS t the

submatrix composed of then− t remaining columns.
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Definition 1: We say thatS t covers a non-null codewordc ∈ C when there are no ‘1’ positions

of c corresponding to columns belonging toSt.

Example 1:Let us consider a(7, 3) simplex code with generator matrix

G =








1 0 0 1 1 0 1

0 1 0 1 0 1 1

0 0 1 0 1 1 1








,

and let us denote byS2 the submatrix composed of the last two columns ofG. Then, the only

non-null codeword covered byS2 is [0, 1, 1, 1, 1, 0, 0].

The following theorem states that in order to reduce the rankof a given generator matrix by

column elimination, it is necessary and sufficient that the removed pattern of columns covers at

least one non-null codeword.

Theorem 1:Let us consider an(n, k) linear block codeC. For any generator matrix repre-

sentation, we haverank(St) < k if and only if St covers at least one codeword.

Proof: [Sufficiency] Suppose thatS t covers a codeword̂c, and consider a representation̂G

of the generator matrix wherêc is one of the rows. It follows that removing from̂G the n− t

columns associated withS t reduces the rank because at least one of the rows becomes an all-zero

row, so thatrank(St) < k. Since any representation of the generator matrix can be obtained from

any other representation by row summations only, and since row summations cannot modify the

rank of submatrices composed of generator matrix columns, we haverank(St) < k also for any

representation other than̂G.

[Necessity] Conversely, let us suppose thatrank(St) < k for a given generator matrix repre-

sentation. Using the same argument as for the sufficiency, weobserve that this inequality must

be satisfied also for any other representation of the generator matrix. As removingS t from any

generator matrix leads to a(k× t) matrix with reduced rank, it must be possible to obtain (from

any generator matrix representation) a generator matrix where one or more rows have only ‘0’

in those positions corresponding toSt. All these rows are non-null codewords ofC covered by

S t.

Corollary 1: We haverank(St) = k for all St if and only if n− t < dmin.
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Proof: [Sufficiency] Let us suppose thatrank(St) = k for all St. By applying Theorem 1

it follows that no submatrixS t (composed ofn − t columns) can cover any codeword. Then

n− t < dmin.

[Necessity] Conversely, let us suppose thatn− t < dmin. Then, no submatrixS t (composed of

n− t columns) can cover any codeword. By applying Theorem 1 we conclude thatrank(St) = k

for all St.

Example 2:All the codewords of the(7, 3) simplex code of Example 1 have Hamming weight

4. As one of these codewords is[1, 1, 1, 0, 0, 0, 1], Theorem 1 guarantees that if we remove the first

three and the last column fromG given in Example 1 (or from any matrix obtained performing

row summations onG) we obtain a(3× 3) matrix with rank smaller than 3. On the other hand,

by Corollary 1 we know that, even if we remove any set of three or less columns, the rank of

G remains unchanged.

In [9] the concept ofindependent setwas introduced. Given a(k × n) rank-r binary matrix,

an independent set of sizes is defined as any set ofs columns such that removing these columns

from the matrix leads to a(k × (n− s)) matrix with a rank smaller thanr. By Theorem 1 we

now state that a necessary and sufficient condition for a set of s columns to be an independent

set of a(k × n) generator matrix is that thes columns cover at least one codeword. Moreover,

by Corollary 1 we recognize that any set ofs < dmin columns cannot form an independent set

for the generator matrix.

IV. STABILITY BOUND AND DERIVATIVE MATCHING FOR GLDPC CODES

In GLDPC codes all the variable component codes are repetition codes, which in (7) leads to
∑(rep)

j≥2 λ
(rep)
j = 1. The EXIT function over the BEC for the VND is then given byIE,V (p, q) =

1− qλrep(x). It follows

∂IE,V (p, q)

∂p

∣
∣
∣
p=0

= −q λ
(rep)
2 . (11)

From (8), the derivative ofIE,C(p) at p = 0 is

dIE,C(p)

dp

∣
∣
∣
p=0

= −ρ′SPC(1) +

(gen)
∑

i

ρi
dI

(i)
E,C(p)

dp

∣
∣
∣
p=0

. (12)
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In order to develop (12) it is necessary to explicit the derivative of each generalized CN type

EXIT function. This task can be performed by exploiting Corollary 1, as explained next.

Consider an(n, k) generalized CN with EXIT functionIE(p) in the form (10). It is readily

shown that
dIE(p)

dp

∣
∣
∣
p=0

=
(n− 1)a0 − a1

n
.

We havea0 = 0 if and only if the generalized CN has minimum distancedmin ≥ 2. In fact,

the generator matrix of the check component code is full rank(rank = k) by definition, so

ẽn = k. Furthermore, from Corollary 1, removing any single columnfrom the generator matrix

does not reduce the rank if and only ifdmin ≥ 2, in which case we obtaiñen−k = n k, so that

a0 = n ẽn − ẽn−1 = n k − n k = 0. As recalled in Section I, the hypothesisdmin ≥ 2 is always

assumed in this paper. Then, we can assumea0 = 0.

If dmin ≥ 2 for the CN we obtain

dIE(p, q)

dp

∣
∣
∣
p=0

= −
a1
n
,

wherea1 = (n − 1)ẽn−1 − 2 ẽn−2 = k n (n − 1) − 2 ẽn−2. By applying again Corollary 1, we

obtain

a1







= 0 if dmin ≥ 3

> 0 if dmin = 2 .
(13)

If the CN exhibits a minimum distancedmin ≥ 3, then removing any pair of columns from the

generator matrix does not affect the rank. In this case2 ẽn−2 = 2 k
(
n

2

)
= k n (n − 1), hence

a1 = 0.

According to these results, the only generalized CNs that contribute to the summation in the

second term of (12) are those characterized bydmin = 2. By recalling that all the SPC codes

have minimum distance 2, we conclude that (12) only depends on the check component codes

with dmin = 2. The derivative atp = 0 of the CND EXIT function can be then expressed as

dIE,C(p)

dp

∣
∣
∣
p=0

= −ρ′SPC(1)−

[2]
∑

i

ρi
kini(ni − 1)− 2 ẽni−2

ni

= −ρ′SPC(1)−

[2]
∑

i

ρi
2∆

(i)
n−2

ni

(14)
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where the notation
∑[2] is adopted to indicate the summation over those generalizedCN types

with minimum distance 2. In (14), we have denoted by∆
(i)
n−2 the expressionkini(ni−1)/2−ẽni−2,

that does not depend on the chosen representation for thei-th generalized CN type.

The next theorem states that∆
(i)
n−2 is equal to the multiplicityA(i)

2 of the weight-2 codewords

for the CNs of typei.

Theorem 2:For any linear block check component code with minimum distance dmin = 2,

the parameter∆n−2 equals the multiplicityA2 of the CN codewords with Hamming weight 2,

i.e.

∆n−2 = A2 .

Proof: Let Sn−2 be the generic(k× (n−2)) matrix obtained by removing 2 columns from

(any representation of) the CN generator matrix. By Corollary 1 we have that eitherrank(Sn−2) =

k or rank(Sn−2) = k− 1: considering a CN withdmin = 2, removing any single column cannot

reduce the rank so that removing two columns can reduce the rank at most by one.

We have

∆n−2 =
kn(n− 1)

2
− ẽn−2

=
∑

Sn−2

k −
∑

Sn−2

rank(Sn−2)

=
∑

Sn−2

(k − rank (Sn−2)) ,

where we know that each term in the summation is either equal to 0 or to 1. By Theorem 1 any

such term is equal to 1 if and only ifSn−2 covers a (necessarily weight-2) codeword.

The derivative atp = 0 of the inverse CND EXIT functionI−1
E,C(p) is given by1/dIE(p)/dp|p=0.

Combining (11), (14) and Theorem 2, for GLDPC codes, (4) becomes

q∗ ≤
[

λ
(rep)
2

(

ρ′SPC(1) +

[2]
∑

i

ρi
2A

(i)
2

ni

)]−1

. (15)
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We can further simplify (15) by noting that

ρ′SPC(1) =

(SPC)
∑

j

ρj (j − 1)

=

(SPC)
∑

j

ρj
2A

(j)
2

nj

,

as for a SPC CNnj = j andA(j)
2 =

(
j

2

)
= j (j − 1)/2. Hence, (15) can be written in the more

compact form

q∗ ≤



λ
(rep)
2

[2]
∑

i

2ρi
ni

A
(i)
2





−1

=
[

λ
(rep)
2 C

]−1

(16)

where

C =

[2]
∑

i

ρi Ci with Ci =
2A

(i)
2

ni

,

and where now
∑[2] indicates the summation over all thedmin = 2 check component codes,

both SPC and generalized.

For GLDPC codes satisfying the derivative matching condition (3) (the first occurrence of

a tangency point betweenIE,V (p, q) and I−1
E,C(p) appears atp = 0), the threshold assumes the

simple closed formq∗ = [λ
(rep)
2 C]−1. If only generalized CNs withdmin ≥ 3 are used, then (15)

becomesq∗ ≤ [λ
(rep)
2 ρ′SPC(1)]

−1. If the derivative matching condition is fulfilled in this case, we

obtain q∗ = [λ
(rep)
2 ρ′SPC(1)]

−1.

V. STABILITY BOUND AND DERIVATIVE MATCHING FOR D-GLDPC CODES

The derivative atp = 0 of the CND EXIT function of D-GLDPC codes is the same as

for GLDPC codes, that is dI−1
E (p)/dp|p=0 = −1/C. The partial derivative of the VND EXIT

function with respect top and evaluated atp = 0, is developed next.

It follows from (7) that

∂IE,V (p, q)

∂p

∣
∣
∣
p=0

= −q λ
(rep)
2 +

(gen)
∑

i

λi

∂I
(i)
E,V (p, q)

∂p

∣
∣
∣
p=0

. (17)

In order to develop the summation over the generalized VN types in the second part of (17), we

have to explicit the partial derivative respect top of each generalized VN type EXIT function,
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evaluated atp = 0. To this end, let us consider an(n, k) generalized VN whose EXIT function

is given by (9). After defining

f(p) =
n−1∑

t=0

at,z p
t (1− p)n−1−t

we have

∂IE(p, q)

∂p

∣
∣
∣
p=0

= −
1

n

k∑

z=0

(
df(p)

dp

∣
∣
∣
p=0

)

qz (1− q)k−z

=
k∑

z=0

(n− 1)a0,z − a1,z
n

qz (1− q)k−z, (18)

as it is readily shown that thatdf(p)/dp |p=0 = −(n− 1)a0,z + a1,z. The expression (18) can be

further developed by invoking Corollary 1. Since any variable component code has minimum

distancedmin ≥ 2 by hypothesis, removing any single column from the generator matrix G of

the variable component code cannot reduce the rank ofG. It follows

a0,z = n ẽn,k−z − ẽn−1,k−z

= k n

(
k

k − z

)

− k n

(
k

k − z

)

= 0,

thus leading to
∂IE(p, q)

∂p

∣
∣
∣
p=0

= −
k∑

z=0

a1,z
n

qz (1− q)k−z .

Corollary 1 can be invoked again in order to show that

a1,z







= 0 ∀ z if dmin ≥ 3

> 0 ∀ z if dmin = 2,
(19)

where dmin is the variable component code minimum distance. In fact, under the hypothesis

dmin ≥ 3, removing any single column or any pair of columns from (any representation of)G

cannot reduce its rank. Under this hypothesis

a1,z = (n− 1) ẽn−1,k−z − 2 ẽn−2,k−z

= k n (n− 1)

(
k

k − z

)

− 2 k

(
n

n− 2

)(
k

k − z

)

= 0.
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Hence, the only generalized variable component codes contributing to (17) are those with

minimum distancedmin = 2. This is coherent with the fact that, among the repetition component

codes, only those withdmin = 2 (i.e. the length-2 repetition codes) give a non-null contribution

to (17).

Then, (17) can be developed as

∂IE,V (p, q)

∂p

∣
∣
∣
p=0

= − q λ
(rep)
2 −

[2]
∑

i

λi

ki∑

z=0

ki ni(ni − 1)
(

ki
ki−z

)
− 2 ẽni−2,ki−z

ni

qz (1− q)ki−z

= − q λ
(rep)
2 −

[2]
∑

i

λi

ki∑

z=0

2∆
(i)
n−2,k−z

ni

qz (1− q)ki−z. (20)

In the previous expression the symbol
∑[2] indicates the summation over those generalized VN

types with minimum distance 2. Moreover,∆(i)
n−2,k−z is defined askini(ni−1)

2

(
ki

ki−z

)
− ẽni−z,ki−z.

As opposed to∆(i)
n−2 in (14), ∆(i)

n−2,k−z in (20) depends on the component code representation.

Using (20) we can express (4) for a D-GLDPC code as

q∗ λ
(rep)
2 +

[2]
∑

i

λi

ki∑

z=0

2∆
(i)
n−2,k−z

ni

(q∗)z (1− q∗)ki−z ≤
1

C
. (21)

In the reminder of this section, we prove that (21) can be written as an explicit upper bound to

the decoding thresholdq∗. We start by proving the following theorem.

Theorem 3:Let us consider an(n, k) linear block variable component code with minimum

distancedmin = 2. We have
k∑

z=0

2∆n−2,k−z

n
(q∗)z (1− q∗)k−z =

k∑

u=1

2A2,u

n
(q∗)u, (22)

whereA2,u is the number of the VN weight-2 codewords generated by weight-u information

words.

Proof: Let C be the(n, k) variable component code and letG be the chosen generator

matrix for C. Moreover, letSn−2,k−z be the generic(k × (n − 2 + k − z)) matrix obtained by

selectingn− 2 columns inG andk − z columns in the(k × k) identity matrix.

Let us apply Theorem 1 to the codeC′ introduced at the end of Section II. Each codeword

c
′ ∈ C′ is composed of the concatenation of a codewordc ∈ C with one of the possible

2k sequences ofk bits (where by the linearity ofC the all-zero length-k sequence is always

concatenated with the all-zero codeword ofC). Combining this observation with Theorem 1



14 SUBMITTED TO IEEE TRANS. INFORM. THEORY

and introducing the notationSn−2,k−z = [SG

n−2|S
I

k−z] we observe that a necessary (though not

sufficient) condition for havingrank(Sn−2,k−z) < k is thatS
G

n−2 covers a weight-2 codeword of

C.

Next, we develop∆n−2,k−z as

∆n−2,k−z =
kn(n− 1)

2

(
k

k − z

)

− ẽn−2,k−z

=
∑

Sn−2,k−z

k −
∑

Sn−2,k−z

rank(Sn−2,k−z)

=
∑

Sn−2,k−z

(k − rank(Sn−2,k−z))

=
∑

SG
n−2

∑

SI

k−z

(
k − rank

(
[SG

n−2|S
I

k−z]
))

=

[2]
∑

c

∑

SI

k−z

(
k − rank

(
[SG

n−2|S
I

k−z]
))

,

where
∑[2]

c
is used to indicate the summation over thoseSG

n−2 such thatS
G

n−2 covers a weight-2

codeword ofC. Then, we can write

k∑

z=0

2∆n−2,k−z

n
(q∗)z (1− q∗)k−z

=
2

n

k∑

z=0

[2]
∑

c

∑

SI

k−z

(
k − rank

(
[SG

n−2|S
I

k−z]
))

(q∗)z (1− q∗)k−z

=
2

n

[2]
∑

c

k∑

z=0

∑

SI

k−z

(
k − rank

(
[SG

n−2|S
I

k−z]
))

(q∗)z (1− q∗)k−z. (23)

By hypothesis there are no VNs with minimum distance 1. Then,for a given weight-2

codewordc ∈ C, any submatrixSn−2,k−z is such thatSn−2,k−z can cover at most one codeword

of C′, i.e. the codeword[c|uc] subject toc = uc G. If we denote bywH(uc) the Hamming

weight ofuc, for each weight-2 codewordc ∈ C the summation overz in (23) can always start

from wH(uc). In fact, for z = 0, . . . , wH(uc) − 1 it is not possible forSn−2,k−z to cover the

codeword[c|uc], so thatk − rank
(
[SG

n−2|S
I

k−z]
)
= 0. That allows writing the second member
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in (23) as

2

n

[2]
∑

c

k∑

z=wH(uc)

∑

SI

k−z

(
k − rank

(
[SG

n−2|S
I

k−z]
))

(q∗)z (1− q∗)k−z. (24)

For given z ≥ wH (uc), the codeword[c|uc] is covered by exactly
(
k−wH(uc)
z−wH(uc)

)
matrices

Sn−2,k−z. Hence, there are exactly
(
k−wH(uc)
z−wH(uc)

)
non-null terms in

∑

SI

k−z

(
k − rank(SG

n−2|S
I

k−z)
)
(q∗)z (1− q∗)k−z .

Deleting fromG two columns corresponding to a weight-2 codeword ofC reduces the rank

of this matrix by one, leading to a rankk − 1. In fact, considering the VN minimum distance

dmin = 2, removing the first column cannot reduce the rank (Corollary1) and removing the

second column reduces the rank (Theorem 1) necessarily by one. We can then conclude that

each of the
(
k−wH(uc)
z−wH(uc)

)
non-null terms in the summation

∑

SI

k−z

(
k − rank

(
[SG

n−2|S
I

k−z]
))

is equal

to one, independently ofz. Then we can further develop (24) as

2

n

[2]
∑

c

k∑

z=wH(uc)

(
k − wH(uc)

z − wH (uc)

)

(q∗)z (1− q∗)k−z. (25)

We next observe that those weight-2 codewordsc ∈ C associated with the samewH(uc) (i.e.

generated by information words having the same weight) produce the same contribution in (25),

since only the Hamming weight of the information wordsuc matters. This observation allows

us to write (25) as
k∑

u=1

2A2,u

n

k∑

z=u

(
k − u

z − u

)

(q∗)z (1− q∗)k−z, (26)

whereA2,u is the number of weight-2 codewordsc ∈ C such thatwH(uc) = u. In general,A2,u

depends on the variable component code representation. By noting that
k∑

z=u

(
k − u

z − u

)

(q∗)z (1− q∗)k−z = (q∗)u ,

we finally obtain (22).

Theorem 3 allows us to write the first member of (21) as

q∗ λ
(rep)
2 +

[2]
∑

i

λi

ki∑

u=1

2A
(i)
2,u

ni

(q∗)u .
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The length-2 repetition VNs can be embedded into the summation over the generalized VN types

with minimum distance 2. In fact, the only weight-2 codewordof a length-2 repetition VN is

c = [1, 1], which is generated by a weight-1 information word. Then, for a length-2 repetition

VN we have

λ(rep)
2

k∑

u=1

2A2,u

n
(q∗)u = λ(rep)

2 q∗ .

Hence, (21) can be put into the more compact form

[2]
∑

i

λi

ki∑

u=1

2A
(i)
2,u

ni

(q∗)u ≤
1

C
, (27)

where now the summation
∑[2] is over all the VN types with minimum distance 2, both repetition

and generalized.

The first part of (27) is a real polynomialP (·) in the variableq∗. This polynomial can be

written asP (x) =
∑[2]

i λi Pi(x), wherePi(·) is a degree-ki real polynomial associated with the

dmin = 2 type-i VNs. EachPi(·) is a monotonically increasing function (since all its coefficients

are positive). Consequently,P (·) is a monotonically increasing function and its inverseP−1(·)

exists. We have then proved the following theorem, which is the main contribution of this paper.

Theorem 4 (Stability bound over the BEC for D-GLDPC codes):The asymptotic thresholdq∗

of a D-GLDPC code ensemble over the BEC, assuming MAP erasurecorrection at each com-

ponent code, fulfills

q∗ ≤ P−1

(
1

C

)

, (28)

where

P (x) =

[2]
∑

i

λi Pi(x) with Pi(x) =

ki∑

u=1

2A
(i)
2,u

ni

xu

and

C =

[2]
∑

i

ρi Ci with Ci =
2A

(i)
2

ni

.

For an LDPC code ensemble (28) returnsq∗ ≤ [λ′(0) ρ′(1)]−1, i.e. the well-known stability

bound for LDPC codes.
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Property 1: For a length-2 repetition VN (i.e. for a conventional LDPC degree-2 VN) we

have Pi(x) = x. Hence, if the onlydmin = 2 VNs are length-2 repetition codes, we have

P−1(x) =
(

1/λ
(rep)
2

)

x. This is the case for GLDPC codes.

Property 2: For a length-ni SPC CN (i.e. for a conventional LDPC degree-ni CN) we have

Ci = ni − 1.

Property 3: Any length-ni and weight-2 binary sequence is a codeword for a length-ni SPC

CN. Then,Ci for a length-ni CN with minimum distance 2 is maximum when the CN is a SPC

code. In other words,Ci fulfills

Ci ≤ ni − 1,

where the equality holds when the CN is a SPC code.

Property 4: For any VN with minimum distancedmin = 2, the value ofPi(x) depends on the

chosen generator matrix through the coefficientsA
(i)
2,u. This is true for allx, except atx = 0 and

at x = 1 where we have

Pi(0) = 0

and

Pi(1) =
2A

(i)
2

ni

= Ci

respectively. Independently of the VN representation, thevalue assumed byPi(x) at x = 1 is

equal to the value ofCi for the samedmin = 2 linear block code when used as a CN.

Property 5: For a D-GLDPC code ensemble satisfying the derivative matching condition, the

iterative decoding threshold over the BEC assumes the simple form q∗ = P−1(1/C).

It should be noted that in generalP−1(1/C) is not a closed form for the threshold. However,

there are simple cases in whichP−1(·) can be explicited. An example is provided in the appendix.

VI. CONCLUSION

In this paper, a stability bound over the BEC has been developed for D-GLDPC codes. It

generalizes the inequalityq∗ ≤ [λ′(0)ρ′(1)]−1, valid for LDPC code ensembles. We have shown
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that for D-GLDPC codes, as for LDPC codes, the only variable and check component codes

contributing to the bound are those having minimum distance2. A derivative matching condition

sufficient to achieve the bound with equality has also been defined. If the derivative matching

condition is fulfilled, then the decoding threshold over theBEC for D-GLDPC codes is expressed

by a simple formula, although in general not in closed-form.For GLDPC codes this formula

always leads to a closed-form threshold expression.

APPENDIX I

D-GLDPC CODES WITH SPC VARIABLE NODES

GLDPC codes employing strong generalized CNs (such as Hamming or BCH CNs) represent a

possible solution for obtaining a good compromise between waterfall performance and error floor.

Examples of such GLDPC code constructions are described in [12]–[16]. In general, increasing

the fraction of strong generalized CNs can be very favorablefrom the point of view of the

overall code minimum distance and then of the error floor, butpresents drawbacks.

A first drawback is represented by an overall code rate loss which makes GLDPC codes

with large fractions of strong generalized CNs of interest only for low or very low rate [17].

The reason is briefly reviewed next. Let us consider a more general code structure, namely a

D-GLDPC code. If we denote byrV, i and byrC,j the code rate of the type-i VNs and of the

type-j CNs, respectively, the overall design rate is

R = 1−

∑

j ρj (1− rC,j)
∑

i λi rV, i
, (29)

which is monotonically increasing respect to anyrV, i and to anyrC,j. A generalized CN of length

n has a code rate smaller than the code rate of a length-n SPC CN. Then, a large fraction of

strong generalized CNs determines an overall rate loss. In GLDPC codes this rate loss is difficult

to compensate even using large fractions of length-2 repetition VNs (which are the highest rate

VNs available if all the node in the Tanner graph have minimumdistance at least 2) so that

usually the overall GLDPC code remains of low rate. A second drawback is that GLDPC codes

with large fractions of strong generalized CNs and large fractions of length-2 repetition VN are

typically characterized by a poor asymptotic threshold dueto the large area gap between the

EXIT curves in the EXIT function (see the Area Theorem in [18]).

Allowing the generalization of the VND together with the generalization of the CND provides

an increased flexibility in the code design, that can be exploited to overcome the above mentioned
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limitations. In particular, the rate loss due to the generalized CNs can be compensated using

generalized VNs with a code rate larger than 1/2. In this context, a special class of generalized

VNs is represented by(n, n − 1) SPC VNs each one havingn edges towards the CND and

associated withn − 1 encoded bits. It is shown in [19] that these codes can be effectively

exploited for the design of D-GLDPC codes with good waterfall and error floor performance.

In this appendix, we develop the polynomialPi(·) defined in Theorem 4 for such VNs when

represented in both systematic and cyclic form. We also propose a numerical example illustrating

the capabilities offered by D-GLDPC codes with SPC VNs.

A. SPC Variable Nodes in Systematic Form

Let us suppose that the VNs of type-i are length-ni SPC codes in systematic form, i.e.,

represented by the((ni − 1)× ni) generator matrix

Gi =













1 0 0 . . . 0 1

0 1 0 . . . 0 1

0 0 1 . . . 0 1
...

...
...

. . .
...

...

0 0 0 . . . 1 1













.

Each of these VNs has
(
ni

2

)
weight-2 codewords. Specifically, there areni−1 weight-2 codewords

generated by weight-1 information words,
(
ni−1
2

)
= (ni−1)(ni−2)

2
weight-2 codewords generated

by weight-2 information words and no weight-2 codewords generated by information words of

weight larger than 2. Then

A
(i)
2,u =







ni − 1 if u = 1

(ni − 1)(ni − 2)/2 if u = 2

0 if u = 3, . . . , ni − 1

so that

Pi(x) =
2

ni

· (ni − 1) x +
2

ni

·
(ni − 1)(ni − 2)

2
x2

=
2(ni − 1)

ni

x

(

1 +
ni − 2

2
x

)

. (30)
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B. SPC Variable Nodes in Cyclic Form

Let the VNs of type-i be (ni, ni − 1) SPC codes in cyclic form, i.e. generated by

Gi =













1 1 0 . . . 0 0

0 1 1 . . . 0 0

0 0 1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 1 1













.

In this case we obtain an expression ofPi(x) different from (30). In fact, it is readily shown that

in a SPC code represented in cyclic form, an information wordof weightu generates a weight-2

codeword if and only if all its ‘1’ positions are contiguous.Then, for allu = 1, . . . , ni − 1 we

haveA(i)
2,u = ni − u, from which

Pi(x) =

ni−1∑

u=1

2 (ni − u)

ni

xu

= 2

ni−1∑

u=1

xu −
2

ni

ni−1∑

u=1

u xu

= 2 x
xni−1 − 1

x− 1
−

2 x

ni

·
1− ni x

ni−1 + (ni − 1) xni

(x− 1)2

=
2 x [xni − ni (x− 1)− 1]

ni (x− 1)2
. (31)

If ni = 2 or ni = 3, then (30) coincides with (31) as expected. Specifically, from both (30) and

(31) we obtainPi(x) = x andPi(x) =
2
3
x2 + 4

3
x for ni = 2 andni = 3, respectively.

C. Comparison between Systematic and Cyclic Form

Let us denote byPs(·) and byPc(·) the polynomialPi(·) of a length-n SPC VN in systematic

and cyclic form, respectively. We show next that ifn > 3

Ps(x)− Pc(x)







> 0 if 0 < x < 1

= 0 if x = 1

< 0 if x > 1 .
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In fact, we have

Ps(x)− Pc(x) =
2

n

[

(n− 1) x+
(n− 1)(n− 2)

2
x2

]

−
2

n

n−1∑

u=1

(n− u) xu

=
2 x2

n

[

(n− 2)(n− 3)

2
−

n−1∑

u=3

(n− u) xu−2

]

. (32)

It is readily shown that
∑n−1

u=3(n− u) = (n−2)(n−3)
2

. Then,Ps(1)− Pc(1) = 0, a result which is

consistent with Property 4. For0 < x < 1 we must have
∑n−1

u=3(n− u) xu−2 < (n−2)(n−3)
2

which

leads toPs(x)−Pc(x) > 0; analogously, forx > 1 we must have
∑n−1

u=3(n−u) xu−2 > (n−2)(n−3)
2

which leads toPs(x)− Pc(x) < 0.

D. D-GLDPC Codes with Length-2 Repetition VNs and SPC VNs in Systematic Form

Let us consider (28). Although in general it is not possible to expressP−1(·) in an explicit

closed form, this is possible in special cases. For instance, obtaining a closed form expression

of P−1(·) is possible when the onlydmin = 2 variable component codes are length-2 repetition

codes and length-n SPC codes in systematic form. Letλ be the fraction of edges connected to

the length-2 repetition VNs andµ the fraction of edges connected to the length-n SPC VNs (so

λ+ µ is the total fraction of edges connected todmin = 2 VNs). We have

P (x) = λ x+ µ
2(n− 1)

n
x

(
n− 2

2
x+ 1

)

.

By solving for positivey the equationP (y) = x, we obtain

P−1(x) =
− [nλ+ 2 (n− 1) µ]

2 (n− 2) (n− 1) µ
+

√

[nλ+ 2 (n− 1) µ]2 + 4 (n− 2) (n− 1) nµ x

2 (n− 2) (n− 1) µ
. (33)

In Fig. 2, (33) is plotted for different values ofµ, assumingλ + µ = 0.3 and SPC VNs of

lengthn = 7. Each curve is associated with a different value ofµ, i.e., with a different proportion

between length-2 repetition VNs and length-7 SPC VNs in the VND. Hence, the curve labelled

as0.0 corresponds to the presence of only length-2 repetition VNs, while the curve labelled as

0.3 to the presence of only SPC VNs. Hence modifyingµ provides a wide variety of options.
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Fig. 2. Plot ofP−1(·) for a D-GLDPC code where the onlydmin = 2 VNs are length-2 repetition and length-7 SPC VNs.

The total fraction of edges connected todmin = 2 VNs is λ+µ = 0.3, and each curve is associated with a specific value ofµ.

E. Distribution Optimization

We consider the optimization problem of a GLDPC and of a D-GLDPC code ensemble for

design rateR = 1/2. In both cases we constrain the optimization process by allowing the

repetition VN degree to range only between 2 and 15 and the SPCCN degree only between 5

and 15. Moreover, we use(31, 21) BCH CNs, imposing a minimum fraction of edges connected

to the BCH CNs equal to 0.7. For the D-GLDPC code ensemble, we allow also length-15

SPC CNs in cyclic form. The output of an optimization processover the BEC performed with

differential evolution [20], [21] is reported in Table I (from an edge perspective). For each of

the two optimized distributions the threshold and the stability bound (28) are shown. While for

the GLDPC code ensemble it is necessary to use only length-2 repetition VNs to compensate

the rate loss introduced by the large fraction of BCH CNs withan overall poor threshold, for

the D-GLDPC code ensemble the use of SPC VNs allows obtaininga much larger threshold.
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TABLE I

GLDPCAND D-GLDPCDISTRIBUTIONS WITH LARGE FRACTIONS OFBCH CHECK NODES

GLDPC D-GLDPC

Variable Nodes

SPCcyc 15 0.521581

rep 2 1.000000 0.132836

rep 14 0.145293

rep 15 0.200291

Check Nodes

BCH 0.700000 0.721799

SPC 5 0.278201

SPC 12 0.174190

SPC 13 0.125810

q∗ 0.291516 0.478585

P−1(1/C) 0.291902 0.478585

From an EXIT chart perspective the capability of the SPC VNs to reduce the area gap between

the EXIT curves is illustrated by comparing in Fig. 3 and Fig.4.
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