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Abstract— This paper characterizes the capacity of a class of
modulo additive noise relay channels, in which the relay observes
a corrupted version of the noise and has a separate channel to
the destination. The capacity is shown to be strictly below the
cut-set bound in general and achievable using a quantize-and-
forward strategy at the relay. This result confirms a conjecture
by Ahlswede and Han about the capacity of channels with rate
limited state information at the destination for this parti cular
class of channels.

I. I NTRODUCTION

The relay channel is a fundamental building block in
network information theory. Complete characterization ofthe
relay channel capacity would be a first step toward finding
the capacities of larger networks. Although the capacity of
the general relay channel is not yet known, the capacities of
many specific classes of relay channels have been found. These
special classes include the degraded, reversely degraded [1],
orthogonal [2], semideterministic [3], and recently a special
class of deterministic [4] relay channels. All the above relay
channels for which capacities are characterized have one thing
in common: they achieve their respective cut-set bounds. This
makes converses straightforward. Unfortunately it appears that
the cut-set bound cannot be achieved for many practical
relay channels. Efforts to find different bounds, or prove the
looseness of the cut-set bound have proved to be quite difficult.
Zhang’s partial converse [5] demonstrated the latter; Zahedi [2]
provided some justifications for why the cut-set bound cannot
be tight in all cases.

In this paper we find the capacity for a non-trivial class
of modulo-sum relay channels. In these channels, the relay
observes a correlated version of the noise between the source
and the destination, and has a dedicated channel to the
destination. We show that the capacity can be strictly below
the cut-set bound, and is achievable by a quantize-and-forward
strategy [1, Theorem 6]. The quantize-and-forward strategy
was previously only known to achieve the cut-set bound
capacity of one class of deterministic relay channels [4]. The
modulo-sum relay channel appears to be a first example of a
channel where this strategy achieves a capacity strictly below
the cut-set bound.

The quantize-and-forward strategy was designed for use in
channels where the relay has a poor quality channel from
the source. In this strategy the relay quantizes its received
signal, and transmits the quantized signal to the destination.
The destination first decodes the quantized signal from the
relay, then uses this signal to help decode the source message.
The destination may also use its own received signal to help

the decoding of the quantized signal from the relay, because
the two signals may be correlated in a general relay channel.
This technique is known as Wyner-Ziv coding. Quantize-and-
forward is a natural strategy for the modulo channel considered
in this paper where the relay observes only the noise. This is
because there is no message for the relay to decode; all the
relay can do is to describe the noise to the destination.

The converse result contained in this paper crucially de-
pends on two properties of modulo-sum channels. In these
channels a uniform distribution on the input alphabet achieves
the maximum possible entropy of the output, regardless of
the statistics of the additive noise. Further, under a uniform
input distribution, the output of a modulo-sum channel is also
independent of the additive noise. This has the consequence
of simplifying the converse: the side information in Wyner-
Ziv coding is not useful since the destination’s observation is
independent of the relay’s output.

A relay channel where the relay only gets to observe some
possibly stochastic function of the noise and has a dedicated
finite capacity channel to the destination can be viewed as
a channel with rate limited state information available to the
destination. The capacity result for modulo-sum relay channels
coincides with a hypothesis by Ahlswede and Han [6] about
the capacity of channels with rate limited state information to
the destination.

II. A B INARY SYMMETRIC RELAY CHANNEL

We begin by deriving the capacity of a particular binary
symmetric relay channel. The derivation will be directly ap-
plicable to a broader class of modulo-sum relay channels. The
simple binary symmetric case is used to distil the essential
steps and ideas.

Consider the relay channel as shown in Fig. 1. Here, the
channel inputX goes through a binary symmetric channel
(BSC) with crossover probabilityp to reachY , i.e.,Y = X+Z

(mod 2) withZ being an i.i.d.Ber(p) random variable. The
relay gets to observe a noisy version ofZ, namelyY1 = Z+V ,
whereV is an i.i.d.Ber(δ) random variable. The relay also
has a separate BSC to the destinationS = X1 +N , whereN
is an i.i.d.Ber(ǫ) random variable.

Let us define

R0 = max
p(x1)

I(X1;S), (1)

for future reference. If there were no corrupting variableV ,
then the capacity of this channel is as recently characterized
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Fig. 1. A Binary Relay Channel

in [4]

C = max
p(x)

min{I(X ;Y ) +R0, I(X ;Y, Y1)}. (2)

Both hash-and-forward [4], a strategy where the relay
simply hashesY1 into equal sized bins, and the classic
quantize-and-forward are capacity achieving. The multiple
access cut-set bound isI(X ;Y )+R0. This bound is obtained
by considering the achievable rate assuming that the relay
already knew the message the source would like to transmit.
One way to interpret the achievability of the multiple access
cut-set bound is that ifV were absent, decodingX is
the same as decodingZ. So, the relay, by sending parity
information aboutZ, can be interpreted to be performing
a version of decode-and-forward, as if it already knows the
message; random parities forZ turn into random parities for
X . This interpretation would fail if the relay’s observationof
Z is corrupted byV . To the best of the authors’ knowledge,
the capacity of this class of relay channels whenV is present
has not been characterized previously.

The following is a reasonable strategy for this channel.
The relay tries to quantizeY1 in such a way as to minimize
the uncertainty aboutZ at the destination. The main result of
this paper is that the above approach is capacity achieving for
a class of modulo-sum relay channels including the channel
in Fig. 1.

Theorem 1: The capacityC of the binary relay channel in
Fig. 1 is

C = max
p(u|y1):I(U ;Y1)≤R0

1−H(Z|U) (3)

where the maximization may be restricted toU ’s with
|U| ≤ |Y1|+ 2, andR0 is as defined in (1).

A. Proof of Achievability

Fix the input distribution ofX as Ber(12 ). The capacity
can be achieved by a direct application of Theorem6 in [1],
if we identifyU with Ŷ1. A separate proof is provided here for
completeness based on the theory of jointly strongly typical
sequences [7].

We transmit at rateR over B − 1 blocks, each of length
n. For the last block no message is transmitted. AsB → ∞,
R(B−1)

B
becomes arbitrarily close toR.

Codebook Generation: Generate2nR independently and
identically distributedn-sequences,X(w), w ∈ {1 . . . 2nR}

where each element is generated i.i.d.∼
∏n

i=1 p(xi), and
p(xi) has theBer(12 ) distribution. Fix ap(u|y1) such that it
satisfies the constraintI(U ;Y1) ≤ R0. Generate2nI(U ;Y1) i.i.d
n-sequences,U(t), t ∈ {1 . . . 2nI(U ;Y1)} where each element
is generated i.i.d.∼

∏n

i=1 p(ui).
Encoding: We describe the encoding for blocki. To send

messagewi, wi ∈ {1 . . .2nR}, the transmitter simply sends
X(wi). The relay, having observed the entire corrupted noise
sequence from the previous blockY1,i−1, looks in its U

codebook and finds a sequenceU(ti) that is jointly strongly
typical with Y1,i−1. It encodes and sends its indexti across
the private channel to the destination. Only the relay transmits
to the destination in the last block B.

Decoding: The destination, upon decodingti, looks for a
wi−1 such thatX(wi−1) is jointly strongly typical with both
U(ti), andYi−1.

Analysis of the Probability of Error: Because of the
symmetry of the code construction we can perform the
analysis assumingX(1) was sent over all the blocks. Since
the decodings of different blocks are independent we can
focus on the probability of error over the first block, and drop
the time indices. The error events are:

E1 : (X(1),Y,Y1) are not jointly strongly typical.
E2 : 6 ∃t, (U(t),Y1) are jointly strongly typical.
E3 : (X(1),Y,U(t)) are not jointly strongly typical.
E4 : The destination makes an error decodingt in the

next block.
E5 : ∃w 6= 1, (X(w),Y,U(t)) are jointly strongly

typical.

For n sufficiently large we haveP (E1) < ǫ
5B , and

P (E2 ∩ Ec
1) < ǫ

5B . By the Markov lemma [7, Lemma
14.8.1], since(X(1),Y)−Y1 −U(t) forms a Markov chain,
P (E3 ∩ Ec

1 ∩ Ec
2) < ǫ

5B for n sufficiently large. Since by
constructionI(U ;Y1) ≤ R0, the indext can be sent to the
destination with an arbitrarily small probability of errorso
P (E4) < ǫ

5B . Finally, the probability that another randomly
generatedX(w) is jointly strongly typical with bothY and
U(t) is less than2−n(I(X;Y,U)−γ). Using the union bound, we
have,P (E5 ∩

⋂4
i=1 E

c
i ) < 2nR2−n(I(X;Y,U)−γ). Thus, when

R < I(X ;Y, U), (4)

we haveP (E5 ∩
⋂4

i=1 E
c
i ) < ǫ

5B , for sufficiently largen.
Now, sinceX andU are independent, we have

I(X ;Y, U) = I(X ;Y |U) (5)

= H(Y |U)−H(Z|U) (6)

= 1−H(Z|U), (7)

whereH(Y |U) = 1, because for binary symmetric channels
under the uniform input distributionBer(12 ), the outputY is
independent of the additive noiseZ, and henceU . Collecting
terms we see thatP (

⋃5
i=1 Ei) <

ǫ
B

, so that using the union
bound again we can make the probability of error over all of
theB blocks less thanǫ as long asR < 1−H(Z|U).



B. Converse

The converse will be easy once we prove the following
lemma.

Lemma 1: Let Z, V , N be independent Bernoulli random
variables and letY1 = Z +V , Y = X +Z, andS = X1 +N

as shown in Fig. 1. The following inequality holds for any
encoding scheme at the relay,

H(Zn|Sn) ≥ min
p(u|y1):I(U ;Y1)≤R0

nH(Z|U) (8)

where the minimization on the right-hand side may be
restricted toU ’s with |U| ≤ |Y1|+ 2.

Proof: The proof of the lemma is closely based on the
proof of [7, Theorem 14.8.1]. Fixing an encoding scheme at
the relay, our strategy is to show that there always exists aU

for which H(Zn|Sn) ≥ nH(Z|U) and I(Y1;U) ≤ R0. This
would allows us to conclude that

H(Zn|Sn) ≥ min
p(u|y1):I(U ;Y1)≤R0

nH(Z|U).

We start by finding a lower bound forH(Zn|Sn):

H(Zn|Sn) =

n∑

i=1

H(Zi|S
n, Z1, ..., Zi−1) (9)

≥
n∑

i=1

H(Zi|S
n, Zi−1, Y i−1

1 ) (10)

=

n∑

i=1

H(Zi|S
n, Y i−1

1 ) (11)

where in the third line we use the fact thatZi − SnY i−1
1 −

SnY i−1
1 Zi−1 forms a Markov chain. The Markov chain fol-

lows becauseZi’s are i.i.d.,Sn is only a function ofY n
1 , and

Zi can only be affected byZi−1 throughSn. Now define
Ui = (Sn, Y i−1

1 ), we get:

H(Zn|Sn) ≥

n∑

i=1

H(Zi|Ui). (12)

Next, note thatZ−Y1−X1−S forms a Markov chain. As
a result,

I(Xn
1 ;S

n) ≥ I(Y n
1 ;Sn) (13)

=
n∑

i=1

I(Y1i;S
n|Y11, ..., Y1(i−1)) (14)

=

n∑

i=1

I(Y1i;S
n, Y i−1

1 ) (15)

where in the third line we use the fact thatY1i is independent
of Y i−1

1 and consequentlyI(Y1i;Y
i−1
1 ) = 0. Using our

definition ofU we get

I(Xn
1 ;S

n) ≥

n∑

i=1

I(Y1i;Ui). (16)

Recall thatR0 = max
p(x1)

I(X1;S). Thus, we have shown the

following inequalities:

R0 ≥
1

n

n∑

i=1

I(Y1i;Ui) (17)

1

n
H(Zn|Sn) ≥

1

n

n∑

i=1

H(Zi|Ui). (18)

Introducing a standard timesharing random variableQ, the
above equations can be rewritten as

R0 ≥
1

n

n∑

i=1

I(Y1i;Ui|Q = i) = I(Y1Q;UQ|Q)

(19)

1

n
H(Zn|Sn) ≥

1

n

n∑

i=1

H(Zi|Ui, Q = i) = H(ZQ|UQ, Q)

(20)

Now, sinceQ is independent ofY1Q, we have

I(Y1Q;UQ|Q) = I(Y1Q;UQ, Q)− I(Y1Q;Q) = I(Y1Q;UQ, Q).
(21)

Finally, Y1Q andZQ have the same joint distribution asY1

andZ, so definingU = (UQ, Q), Z = ZQ and,Y1 = Y1Q,
we have shown the existence of a random variableU such that

R0 ≥ I(Y1;U) (22)

H(Zn|Sn) ≥ nH(Z|U) (23)

for any particular encoding scheme at the relay. Since for every
possible encoding scheme at the relay we can construct an
i.i.d. U satisfying the above equations, the minimum over all
U ’s satisfyingI(U ;Y ) ≤ R0 must satisfy (8). The cardinality
bound is the same as in [7, Theorem 14.8.1].

The converse can now be proved in a straightforward
manner with:

nR = H(W ) (24)

= I(W ;Y n, Sn) +H(W |Y n, Sn) (25)

(a)

≤ I(W ;Y n, Sn) + nǫn (26)

≤ I(Xn;Y n, Sn) + nǫn (27)

(b)
= I(Xn;Y n|Sn) + nǫn (28)

= H(Y n|Sn)−H(Y n|Sn, Xn) + nǫn (29)

(c)

≤ n−H(Zn|Sn, Xn) + nǫn (30)

= n−H(Zn|Sn) + nǫn (31)

(d)

≤ max
p(u|y1):I(U ;Y1)≤R0

n(1−H(Z|U)) + nǫn (32)

= nC + nǫn (33)



where
(a) follows from Fano’s inequality,
(b) follows from the fact thatXn is independent ofSn,
(c) follows from the fact that the maximum entropy

of a binary random variable of lengthn is n,
(d) follows from Lemma1.

Thus, we have shown that for any relaying scheme with a
low probability of error,R ≤ C.

C. Comments on Theorem 1

The capacity of the binary symmetric relay channel
considered above is achieved essentially by digitizing the
separate channel between the relay and destination. All
that matters is that the capacity of the separate channel is
sufficiently high to support the relay’s description ofU , the
quantization variable. There is no advantage in joint source
channel coding at the relay. The input codebook forX is
drawn from the uniformBer(12 ) distribution, identical to the
capacity achieving distribution if the relay were absent; the
source merely increases its rate once the relay is introduced.

There are two conditions which are important for the
converse to work. The channel between the source and
destination should be additive and modular. These two
conditions allow for two crucial simplifications in the
converse. First, a uniform input distribution maximizes the
output entropy, regardless of any information that the relay
may convey about the noise; this was used in (30). Second,
the linear nature of the channel, combined with the expansion
in (29), reduces the role of the relay to essentially source
coding with a distortion metric being the conditional entropy
of Z. This is in contrast to a general relay channel where
the relay observes a combination of the source message and
noise, so there is an opportunity for the destination to use its
received signal to act as side information in the decoding of
the relay’s quantized message. For the binary symmetric relay
channel, the uniform input distribution completely eliminates
any aid the destination’s output can provide in the decoding
of the relay’s message; this makes the converse easier to prove.

D. Capacity Can be Below the Cut-set Bound

To see that the capacity of Theorem 1 can be strictly below
the cut-set bound, consider the case in whichZn has an i.i.d.
Ber(12 ) distribution. The capacity can now be evaluated as

C = 1− h(h−1(1 −R0) ∗ δ), (34)

whereh(p) = −p log2 p − (1 − p) log2(1 − p), andα ∗ β =
α(1−β)+(1−α)β. This capacity expression follows by noting
that I(U ;Y1) = H(Y1) −H(Y1|U), so that the constraint in
the maximization of Theorem 1 can be rewritten as

H(Y1|U) ≥ H(Y1)−R0. (35)

Now we use Wyner and Ziv’s version of the conditional
entropy power inequality for binary random variables [8] to
claim that if

H(Y1|U) ≥ α, (36)

then

H(Z|U) ≥ h(h−1(α) ∗ δ), (37)

with equality ifY1 givenU is aBer(h−1(α)) random variable.
Wyner and Ziv’s inequality holds because whenZ is Ber(12 )
we can writeZ = Y1 + V , whereV is Ber(δ) andY1 andV
are independent.

Now, letα = H(Y1)−R0. Observe that theU that achieves
equality in (37), i.e., theU that gives rise toY1 given U as
Ber(h−1(H(Y1) − R0)), is precisely theU that minimizes
the Hamming distortion ofY1 under a rate constraintR0 in
standard rate-distortion theory. This is because rate-distortion
theory states that for binary random variables, under a rate
constraintR0, the minimum achievable average distortionν
must satisfyH(ν) = H(Y1|U) = H(Y1) − R0 andY1 given
U must beBer(ν). Further, asY1 is Ber(12 ), the distribution
of the optimalU is alsoBer(12 ). The capacity (34) follows
by using thisU in (3) and by substitutingH(Y1) = 1 and
α = 1−R0 in (37).

We now show that the capacity as given in (34) is strictly
below the cut-set bound. The cut-set bound equals [1]

max
p(x,x1)

min{I(X,X1;Y, S), I(X ;Y, S, Y1|X1)}. (38)

WhenZ is Ber(12 ), we have

I(X,X1;Y, S) = H(Y, S)−H(Y, S|X,X1) (39)

≤ 2−H(Z,N |X,X1) (40)

= 1−H(Z) + 1−H(N) (41)

= R0, (42)

where the equality in (40) is achieved by lettingX andX1

have independent and identicalBer(12 ) distributions.
Similarly, for the broadcast bound we have

I(X ;Y, S, Y1|X1) = I(X ;Y |S, Y1, X1) (43)

= H(Y |S, Y1, X1)−H(Z|S, Y1, X,X1)
(44)

≤ 1−H(V |S, Y1, X,X1) (45)

= 1−H(δ). (46)

In the first line, we use the fact thatX is independent of
Y1 andS given X1. In the third line, we again use the fact
that Y1 = Z + V and sinceZ is Ber(12 ), so is Y1, thus
Z = Y1 + V , andY1 andV are independent. The equality in
(45) is achieved again withX andX1 as independentBer(12 )
distributed random variables. Since both (40) and (45) are
achieved with equality with the same maximizingp(x, x1), we
have shown that the cut-set bound for this particular channel
is equal to

min{R0, 1−H(δ)}. (47)

The capacity given by (34) is strictly below the cut-set bound
for all values ofR0 ≥ 1−H(δ).
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Fig. 2. The modulo-sum Relay Channel

III. E XTENSION TO MODULAR RELAY CHANNELS

We now extend the capacity results in Section II to include
the general modulo-sum relay channel depicted in Fig. 2.
The source and the destination are related by a modulo-sum
channel. The relay observesY1, which is a correlated version
of the noiseZ with a conditional distributionp(y1|z). The
relay also has a dedicated channel to the destination with a
capacity

R0 = max
p(x1)

I(X1;S). (48)

The binary symmetric relay channel considered in Section II
is a specific instance of the modulo-sum relay channel. The
capacity proof for the binary case can be augmented to give
the capacity of the modulo-sum relay channel.

Theorem 2: The capacity of a modular and additive relay
channel, in which the relay observesY1, with p(y1|x, y, z) =
p(y1|z), and the destination observesY = X+Z modm from
the source andS from the relay through a separate channel
with transition probabilitiesp(s|x1), is

C = max
p(u|y1):I(U ;Y1)≤R0

m−H(Z|U) (49)

where the maximization may be restricted toU ’s with
|U| ≤ |Y1|+ 2, andR0 is as defined in (48).

Achievability follows by applying a simple extension to the
achievability proof of Theorem1. The binary symmetric relay
channel converse appropriately modified to reflect the different
alphabet sizes remains valid. This is because all the necessary
conditions for the converse to work are satisfied. The modulo-
sum channel is linear, and the uniform distribution appliedat
the input maximizes the output channel entropy regardless of
how much is known about the additive noise, so (30) holds.

IV. CONNECTION TOAHLSWEDE-HAN CONJECTURE

The Ahslwede-Han [6] conjecture states that for channels
with rate limited state information to the decoder as shown in
Fig. 3, the capacity is given by,

C = max I(X ;Y |Ŝ′) (50)

where the maximum is taken over all probability distributions
of the formp(x)p(s′)p(y|x, s′)p(ŝ′|s′) such that

I(Ŝ′;S′|Y ) ≤ R0

and the auxillary random variablêS′ has cardinality
|Ŝ ′| ≤ |S ′|+ 1.

S′ //

��

Encoder

R0

��

X // p(y|x, s′) // Y

Fig. 3. Channel with rate limited state information to the decoder

For these channels, the outputY depends stochastically on
both the inputX and the particular channel stateS′. The
channel state is observed at another encoder that has a digital
link to the destination with capacityR0. The conjecture claims
that the state variableS′ should be quantized at rateR0 in
such a way as to maximize the resulting mutual information
betweenX and Y . By identifying S′ with Y1, and Ŝ′ with
U , we observe that the class of relay channels described
in Theorem 2 is a special case of the channel with rate
limited state information to the decoder. We also note that the
uniform distribution onX maximizes the capacity and makes
Y independent ofS′, so that the rates achievable by (50) and
(49) are identical1, thus confirming the conjecture for the class
of channels described in this paper.

V. CONCLUSION

The capacity of a class of modular additive relay channels
was found. The capacity was shown to be strictly below the
cut-set bound and achievable using a quantize-and-forward
scheme where quantization is performed with a new metric,
the conditional entropy of the noise at the destination. This is
the first example of a relay channel for which the capacity can
be strictly below the cut-set bound. It was proved that there
is no advantage to performing joint source channel coding of
the relay’s message over its dedicated link to the destination;
digitizing the link is capacity achieving. The capacity derived
here confirms a conjecture by Ahlswede and Han about the
capacity of the rate limited channels with state information for
this class of channels.
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