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Abstract— This paper characterizes the capacity of a class of the decoding of the quantized signal from the relay, because
modulo additive noise relay channels, in which the relay olerves  the two signals may be correlated in a general relay channel.
a corrupted version of the noise and has a separate channel to This technique is known as Wyner-Ziv coding. Quantize-and-

the destination. The capacity is shown to be strictly below he . .
cut-set bound in general and achievable using a quantize-an forward is a natural strategy for the modulo channel comeidle

forward strategy at the relay. This result confirms a conjectire  in this paper where the relay observes only the noise. This is
by Ahlswede and Han about the capacity of channels with rate because there is no message for the relay to decode; all the

limited state information at the destination for this parti cular relay can do is to describe the noise to the destination.

class of channels. The converse result contained in this paper crucially de-
pends on two properties of modulo-sum channels. In these
channels a uniform distribution on the input alphabet actge

The relay channel is a fundamental building block ithe maximum possible entropy of the output, regardless of
network information theory. Complete characterizatiorthed the statistics of the additive noise. Further, under a unifo
relay channel capacity would be a first step toward findirigput distribution, the output of a modulo-sum channel soal
the capacities of larger networks. Although the capacity aidependent of the additive noise. This has the consequence
the general relay channel is not yet known, the capacities af simplifying the converse: the side information in Wyner-
many specific classes of relay channels have been foundeThgis coding is not useful since the destination’s observat®o
special classes include the degraded, reversely degrddied ihdependent of the relay’s output.
orthogonal [2], semideterministic [3], and recently a spkec A relay channel where the relay only gets to observe some
class of deterministic [4] relay channels. All the abovayel possibly stochastic function of the noise and has a dedicate
channels for which capacities are characterized have amg thfinite capacity channel to the destination can be viewed as
in common: they achieve their respective cut-set boundss. Tl channel with rate limited state information availablehie t
makes converses straightforward. Unfortunately it appteat destination. The capacity result for modulo-sum relay cieds
the cut-set bound cannot be achieved for many practi@incides with a hypothesis by Ahlswede and Han [6] about
relay channels. Efforts to find different bounds, or prove ththe capacity of channels with rate limited state infornmatio
looseness of the cut-set bound have proved to be quite diifficthe destination.

Zhang's partial converse [5] demonstrated the latter; dal2¢
provided some justifications for why the cut-set bound canno II. ABINARY SYMMETRIC RELAY CHANNEL
be tight in all cases.

In this paper we find the capacity for a non-trivial class We begin by deriving the capacity of a particular binary
of modulo-sum relay channels. In these channels, the refmmetric relay channel. The derivation will be directly- ap
observes a correlated version of the noise between theesoutticable to a broader class of modulo-sum relay channels. Th
and the destination, and has a dedicated channel to g¥@ple binary symmetric case is used to distil the essential
destination. We show that the capacity can be strictly belsyeps and ideas.
the cut-set bound, and is achievable by a quantize-andaforw Consider the relay channel as shown in Kij. 1. Here, the
strategy [1, Theorem 6]. The quantize-and-forward stgate§hannel inputX goes through a binary symmetric channel
was previously only known to achieve the cut-set bour(8SC) with crossover probabilityto reachy’, i.e.,Y = X+Z
capacity of one class of deterministic relay channels [4fe T (mod 2) withZ being an i.i.d.Ber(p) random variable. The
modulo-sum relay channel appears to be a first example ofeddy gets to observe a noisy versionhfnamelyY; = Z+V,
channel where this strategy achieves a capacity stricliywbe WhereV is an i.i.d. Ber(d) random variable. The relay also
the cut-set bound. has a separate BSC to the destinatiba X7 + N, where N

The quantize-and-forward strategy was designed for usei$nan i.i.d. Ber(e) random variable.
channels where the relay has a poor quality channel fromLet us define
the source. In this strategy the relay quantizes its redeive
signal, and transmits the quantized signal to the destinati Ry = max 1(X1;5), 1)

The destination first decodes the quantized signal from the
relay, then uses this signal to help decode the source nmeesséay future reference. If there were no corrupting variable
The destination may also use its own received signal to helgen the capacity of this channel is as recently charaetriz
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where each element is generated i.i-d. ][, p(z;), and

V ~ Ber(3) N~ Berle) p(xz;) has theBer(3) distribution. Fix ap(u|y1) such that it
l l satisfies the constraidi{U; Y;) < R,. Generat@™/(Ui*1) ji.d
7 ~ Ber(p) () {Relay— () 7 n-sequencesU(t),t € {1...27(UiY1)} where each element

|

| is generated i.i.d~ [T, p(us).

1 Encoding: We describe the encoding for blo¢k To send

' messagew;,w; € {1...2"%}, the transmitter simply sends
X(w;). The relay, having observed the entire corrupted noise
sequence from the previous blocK; ;_;, looks in its U
codebook and finds a sequentkt;) that is jointly strongly

in [4] typical with Y ;_;. It encodes and sends its indgxacross

) the private channel to the destination. Only the relay tratss
€ = maxmin{/(X;Y) + Ro, [(X;Y,Y1)}. (2) 1o the destination in the last block B.

p(x)
Decoding: The destination, upon decodirtg, looks for a
Both hash-and-forward [4], a strategy where the relay ‘ S ) )
simply hashesY; into equal sized bins, and the classiqx’_1 such thatX (w;—,) is jointly strongly typical with both

. i L. K (ij ti), anin_ .
guantize-and-forward are capacity achieving. The mutipl ben)alys's of ihe Probability of Error: Because of the

access cut-set boundi§$X;Y’) + Ry. This bound is obtained mmetry of the code construction we can perform the

by considering the achievable rate assumlng.that the re@l alysis assuming (1) was sent over all the blocks. Since
already knew the message the source would like to transn%.

One way to interpret the achievability of the multiple acces - decodings of different blocks are independent we can
y P ; y IP'€ aG€30cus on the probability of error over the first block, andmiro
cut-set bound is that ifl” were absent, decodind is

the same as decoding. So, the relay, by sending paritythe time indices. The error events are:

information aboutZ, can be interpreted to be performing g, . (X(1),Y,Y;) are not jointly strongly typical.
a version of decode-and-forward, as if it already knows the p, . 7 (U(t),Y,) are jointly strongly typical.

message; random parities fgr turn into random parities for g, . (X(1),Y, U(t)) are not jointly strongly typical.

Fig. 1. A Binary Relay Channel

X. This interpretation would fail if the relay’s observatioh E,: The destination makes an error decoding the
Z is corrupted byl. To the best of the authors’ knowledge, next block.

the capacity of this class of relay channels whéis present Es: FJw#1,(X(w),Y,U(t)) are jointly strongly
has not been characterized previously. typical.

The following is a reasonable strategy for this channel.
The relay tries to quantiz&; in such a way as to minimize
the uncertainty abouf at the destination. The main result o . .
this paper is that the above approach is capacity achiewing ?‘4'8'1]’ sincegX(1),Y) — Y1 — U(t) forms a Markov chain,

a class of modulo-sum relay channels including the chanrfé Es 0 Ef N Ef) < g5 for n s_uff|C|entIy large. Since by
in Fig. 1. construction/ (U; Y1) < Ry, the indext can be sent to the

destination with an arbitrarily small probability of errso
P(E,) < 5%. Finally, the probability that another randomly
generatedX (w) is jointly strongly typical with bothY and

For n sufficiently large we haveP(E;) < %, and

1;P(EQ N Ef) < :%. By the Markov lemma [7, Lemma

Theorem 1. The capacityC' of the binary relay channel in

Fig.[1 is . d .
0.0 U(t) is less tharp—(/(X3Y:U)=7)_ Using the union bound, we
C= max 1—H(Z|U) (3) have,P(Es N, Ef) < 2nR2-nI(X:Y:U)=7) Thus, when
p(uly1):I(U;Y1)<Ro
where the maximization may be restricted t@'s with R<I(X;Y,U), 4)

[U| < |Dh]+2, and Ry is as defined in[{1). . o
we haveP(Es N (,_, Ef) < 5, for sufficiently largen.
Now, sinceX andU are independent, we have

A. Proof of Achievability

Fix the input distribution ofX as Ber(1). The capacity I(X;Y,U) = I(X;Y|U) (5)
can be achieved by a direct application of Theorgim [1], =H(Y|U)- H(Z|U) (6)
if we identify U with Y;. A separate proof is provided here for =1-H(Z|U), 7)
completeness based on the theory of jointly strongly typica
sequences [7]. where H(Y'|U) = 1, because for binary symmetric channels

We transmit at rateR over B — 1 blocks, each of length under the uniform input distributiorﬁ?er(%), the outputY” is
n. For the last block no message is transmitted./As»> oo, independent of the additive noisg and hencd/. Collecting
@ becomes arbitrarily close t&. terms we see thaP(Uf:1 E;) < %, so that using the union
Codebook Generation: Generate2™ independently and bound again we can make the probability of error over all of
identically distributedn-sequencesX(w),w € {1...2"%} the B blocks less thar as long ask < 1 — H(Z|U).



B. Converse

The converse will be easy once we prove the followinfecall thatRo = mnax I(X1;5). Thus, we have shown the

lemma. following inequalities:

Lemma 1: Let Z, V, N be independent Bernoulli random Ro > 1 Z[(ym U;) (17)
variablesand let; = Z+V, Y =X+ Z,andS = X, + N n

as shown in Fig[]1l. The following inequality holds for any 1
encoding scheme at the relay, H(Z"|S") = ZH (Zi|U:). (18)
H(Z"[S") = min nH(Z|U) (8) Introducing a standard tlmesharlng random variajlethe

p(uly1):I(U;Y1)<Ro
above equations can be rewritten as
where the minimization on the right-hand side may b

restricted toU’s with || < || + 2. L IO — 5 — .
U<l Ry > n;I(YM,wQ—z)—ImQ,UQ@)
Proof: The proof of the lemma is closely based on the (19)
proof of [7, Theorem 14.8.1]. Fixing an encoding scheme at &
the relay, our strategy is to show that there always exidfs a —H(Z"|S™) > — ZH(ZAUi, Q=1)=H(Zg|Uqg,Q)
for which H(Z"|S") > nH(Z|U) andI(Y1;U) < Ry. This " =

would allows us to conclude that (20)
S Now, since( is independent ot7,, we have
H(ZYSY) 2 omin o nH(ZU). Q Is indep Q
I(Y1g; UqlQ) = I(Y1q;Uq, Q) — I(Y1g; Q) = I (Y1g; Uqg, Q).
We start by finding a lower bound fd# (Z™|S™): (21)
n Finally, 1o and Zgy have the same joint distribution 8§
H(Z"|S") = > H(Zi|S", Z1, ..., Zi_1) (9) andZ, so defininglU = (Ug,Q), Z = Zg and,Y; = Yiq,
i=1 we have shown the existence of a random varidbkch that
> H(Zi|S", 27 YY) (10) Ry > I(Yy;U) (22)
ifll H(Z™S™) >nH(Z|U) (23)
= Z H(Z;|S™, i) (11) for any particular encoding scheme at the relay. Since fenev

N
Il
-

possible encoding scheme at the relay we can construct an

where in the third line we use the fact thaf — SmY: ! i.i.d. U satisfying the above equations, the minimum over all
S~z forms a Markov chain. The Markov chaln fol- U's satisfyingI(U;Y) < Ro must satisfy[(B). The cardinality
Iows becaus&,’s are i.i.d.,S™ is only a function ofY;", and bound is the same as in [7, Theorem 14.8.1]. u

Z; can only be affected byZ*~! through S™. Now define

U; = (S™, Y1), we get: The converse can now be proved in a straightforward

manner with:

H(Z"|S™) > Z (Zi|Uy). (12) nR=H(W) (24)
=1 =I(W;Y"™,S™)+ HW|Y™, S™) (25)

Next, note thatZ — Y; — X; — S forms a Markov chain. As @
a result, < I(W;Y™, 8™) + ne, (26)
I(X758™) > I1(Y{"; S™) (13) < I(X™ Y™, 8") + nen (27)
= Z (Y143 S™ Y11, -, Yi(i=1)) (14) ® I(X™Y™|S™) + ney, (28)
= | = H(Y™|S™) — H(Y™[S™, X™) + nen (29)

= I(Vii; 8™ Y7 ) (15) "
=1 <n-—H(Z"|S", X") + ne, (30)

where in the third line we use the fact the; is independent o em

of Yi~! and consequentlyf(Yy;;Y;™') = 0. Using our =n—H(Z"[S") + ne, (31)

definition of U we get (d)

N max n(l— H(Z|U)) +ne,  (32)
p(uly1):I(U;Y1)<Ro

I(X7;8™) =) I(Yas; Uy). (16)

o = nC + ney, (33)



where then
(a) follows from Fano’s inequality,
(b) follows from the fact thatX” is independent o™,
(c) follows from the fact that the maximum entropy
of a binary random variable of lengthis n,

H(Z|U) > h(h ™ () % 9), (37)

with equality if Y} givenU is aBer(h~!(«)) random variable.
Wyner and Ziv's inequality holds because wh&ris Ber(1)

2
(d) follows from Lemmal. we can writeZ = Y} +V, whereV is Ber(§) andY; andV
Thus, we have shown that for any relaying scheme with z&e independent.
low probability of error,k < C. Now, leta = H(Y;) — Ry. Observe that thé& that achieves
C. Comments on Theorem 1 equality in [3T), i.e., thdJ that gives rise td¥; given U as

2 : ! ST
The capacity of the binary symmetric relay chann er(h (H(Yl). RO.))’ is precisely thel/ that minimIzes
. . . . T e Hamming distortion of; under a rate constrain®, in
considered above is achieved essentially by digitizing th . . o )
T ndard rate-distortion theory. This is because ratetiign
separate channel between the relay and destination. . .
. . heory states that for binary random variables, under a rate
that matters is that the capacity of the separate channel IS

sufficiently high to support the relay’s description Bt the constraintR,, the minimum achievable average distortion
guantization variable. There is no advantage in joint saurmUSt satisfyH (v) = HW\|U) = H(Y1) — Ry and ¥, given

. 1 2
channel coding at the relay. The input codebook oris U must be_'Ber(l/).. Further, a‘?/l Is Ber(3), t_he distribution
. TN g T . of the optimalU is also Ber(3). The capacity[(34) follows

drawn from the uniformBer(3) distribution, identical to the : . 2 L -

, o RS by using thisU in @) and by substitutingd (Y;) = 1 and
capacity achieving distribution if the relay were absehg t o =1- Ry in @)
. . . . — - 0 .
source merely increases its rate once the relay is intratuce We now show that the capacity as given [i(34) is strictly

There are two conditions which are important for th%%low the cut-set bound. The cut-set bound equals [1]
converse to work. The channel between the source an

destination should be additive and modular. These two ax min{/(X, X,;Y,5),I(X;Y,S,Y1|X1)}. (38)
conditions allow for two crucial simplifications in the p(z,a1)
converse. First, a uniform input dl_stnbutlo_n maximize® thWhenZ is Ber(
output entropy, regardless of any information that theyrela

may convey about the noise; this was used[in (30). Second, I(X,X;Y,8)=H(Y,S) - H(Y,S|X,X1) (39)
the linear nature of the channel, combined with the expansio <2 H(ZN|X, X)) (40)
in (29), reduces the role of the relay to essentially source :1 I Z7 1 ’ H(N 41
coding with a distortion metric being the conditional eplyo =1-H(Z)+1-H(N) (41)
of Z. This is in contrast to a general relay channel where = Ry, (42)
the relay observes a combination of the source message and I . . .

noise, so there is an opportunity for the destination to tse \I{]vhere the equality in{20) is achieved by lettidg and X,
received signal to act as side information in the decoding o
the relay’s quantized message. For the binary symmetiagy rel
chann_zl, rt]hedunif_orm_ input distribution cor.r(;ple.teh;] elicrjaiesd_ I(X:Y, 8,1 X1) = I(X;Y]S, Y1, X1) (43)
any aid the destination’s output can provide in the decoding B _

of the relay’s message; this makes the converse easierte.pro = H(Y|5,¥1, %) - H(Z]5, Y1, X, X1)

1), we have

ave independent and identicBbr (%) distributions.
Similarly, for the broadcast bound we have

(44)

<1-HV|S Y, X, X 45

D. Capacity Can be Below the Cut-set Bound S (V]S Y1, X, X1) (45)
=1—H(). (46)

To see that the capacity of Theorem 1 can be strictly below
the cut-set bound, consider the case in whithhas an i.i.d. In the first line, we use the fact thaX is independent of
Ber(3) distribution. The capacity can now be evaluated asy; and S given X;. In the third line, we again use the fact

C =1 —h(h~'(1 = Ry) ), (34) thatY; = Z +V and sinceZ_is Ber(3), so is Yy, th_us_
Z =Y1+V,andY; andV are independent. The equality in
whereh(p) = —plog, p — (1 — p)logy(1 —p), anda * 5 = (@F) is achieved again witl' and X, as independenBer (1)
a(1-p)+(1—a)B. This capacity expression follows by notinggjstributed random variables. Since bof](40) ahd (45) are
that I(U; Y1) = H(Y1) — H(Y1|U), so that the constraint in achieved with equality with the same maximizipg, z1 ), we
the maximization of Theorem 1 can be rewritten as have shown that the cut-set bound for this particular chianne

H(Y1|U) > H(Y1) — Ro. (35) s equalto

Now we use Wyner and Ziv's version of the conditional min{Ry,1 — H(d)}. (47)

entropy power inequality for binary random variables [8] to o ) .
claim that if The capacity given by (34) is strictly below the cut-set bbun

for all values of Ry > 1 — H(J).
H(Y1|U) 2 «,
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Fig. 2. The modulo-sum Relay Channel

Ill. EXTENSION TOMODULAR RELAY CHANNELS

Encoder

Fig. 3. Channel with rate limited state information to thealder

For these channels, the outptitdepends stochastically on
both the inputX and the particular channel statf. The

We now extend the capacity results in Secfidn Il to includghannel state is observed at another encoder that has al digit

the general modulo-sum relay channel depicted in Elg.

ik to the destination with capacitiy. The conjecture claims

The source and the destination are related by a modulo-siBt the state variablé’ should be quantized at ratg, in
channel. The relay observé$, which is a correlated versiongych 3 way as to maximize the resulting mutual information
of the noiseZ with a conditional distributionp(y1|z). The petweenX and Y. By identifying S’ with Y;, and §’ with
relay also has a dedicated channel to the destination witrUg we observe that the class of relay channels described

capacity
Ry = max I(Xy;S).

p(z1)

(48)

in Theorem 2 is a special case of the channel with rate
limited state information to the decoder. We also note that t
uniform distribution onX maximizes the capacity and makes

The binary symmetric relay channel considered in Sedfion ¥I independent of’, so that the rates achievable hy](50) and
is a specific instance of the modulo-sum relay channel. T&S) are identicdl thus confirming the conjecture for the class
capacity proof for the binary case can be augmented to givtchannels described in this paper.

the capacity of the modulo-sum relay channel.

V. CONCLUSION

Theorem 2: The capacity of a modular and additive relay The capacity of a class of modular additive relay channels

channel, in which the relay observ&s, with p(y1|x,y, z) =
p(y1|z), and the destination observEs= X +Z modm from

was found. The capacity was shown to be strictly below the
cut-set bound and achievable using a quantize-and-forward

the source ands from the relay through a separate channécheéme where quantization is performed with a new metric,

with transition probabilitie(s|z1), is
m — H(Z|U)

max
p(uly1):I(U;Y1)<Ro

where the maximization may be restricted @'s with
U] < |V1] + 2, and Ry is as defined in[(48).

(49)

the conditional entropy of the noise at the destinationsTi#i

the first example of a relay channel for which the capacity can
be strictly below the cut-set bound. It was proved that there
is no advantage to performing joint source channel coding of
the relay’s message over its dedicated link to the destinati
digitizing the link is capacity achieving. The capacity igded
here confirms a conjecture by Ahlswede and Han about the

Achievability follows by applying a simple extension to th(?:apacity of the rate limited channels with state informafiar
achievability proof of Theorem. The binary symmetric relay this class of channels

channel converse appropriately modified to reflect the idiffe

alphabet sizes remains valid. This is because all the nagess
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