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Abstract

We consider the detection of binary (antipodal) signals transmitted in a spatially multiplexed fashion

over a fading multiple-input multiple-output (MIMO) channel and where the detection is done by means

of semidefinite relaxation (SDR). The SDR detector is an attractive alternative to maximum likelihood

(ML) detection since the complexity is polynomial rather than exponential. Assuming that the channel

matrix is drawn with i.i.d. real valued Gaussian entries, westudy the receiver diversity and prove that

the SDR detector achieves the maximum possible diversity. Thus, the error probability of the receiver

tends to zero at the same rate as the optimal maximum likelihood (ML) receiver in the high signal to

noise ratio (SNR) limit. This significantly strengthens previous performance guarantees available for the

semidefinite relaxation detector. Additionally, it provesthat full diversity detection is in certain scenarios

also possible when using a non-combinatorial receiver structure.
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I. INTRODUCTION

Herein, we consider the detection of binary symbols transmitted over ann bym multiple-input multiple-

output (MIMO) channel modelled according to

y = Hs+ v (1)

wheres ∈ Bm , {±1}m, H ∈ Rn×m andv,y ∈ Rn. In what follows,y is referred to as the vector of

received signals; H as thechannel matrix; s as thetransmitted message; andv as the additivenoisebased

on their physical interpretations in the digital communications context. The additive noise is assumed to

be white and Gaussian with a variance ofρ−1 per component. It will also be assumed that the channel

matrix, H, is known to the receiver and that all possible transmitted messages,s, are equally likely.

The problem of detecting a vector of symbols (not necessarily binary) transmitted over a MIMO

channel is of general interest as it arises frequently in digital communications. Examples include, but

are not limited to, the multiuser detection problem in CDMA [1] and communications over a multiple

antenna channel [2]. However, while the detection problem is the same for many areas, the structure and

assumptions regarding the channel matrix,H, will typically differ depending on the specific context. Inthe

interest of simplicity, we will assume that the channel matrix may be modelled using i.i.d. Gaussian entries

with zero mean and finite variance, an assumption motivated by the problem of wireless communication

over a richly scattered fading multiple antenna channel [2]. The signal to noise ratio (SNR) of the channel

is equal toρ and we will focus on an analysis of the high SNR regime.

The maximum likelihood (ML) estimate ofs, ŝML , is well known to be given by

ŝML = arg min
ŝ∈Bm

‖y −Hŝ‖2 (2)

where‖ · ‖ denotes the Euclidian norm, i.e. the ML detector, or receiver, selects the message,ŝ, which

minimizes the distance between the received signals and thehypothesized noise-free message,Hŝ. An

error is declared wheneverŝML 6= s and it well known that the ML detector is optimal in the sense that

it minimizes the probability of error. However, for a general channel matrix,H, and vector of received

signals,y, the ML detection problem in (2) has been shown to be NP-hard [3] and the full search solution

has a complexity ofO(2m) wherem is the number of symbols jointly detected. A similar result holds for

the sphere decoding algorithm which is able to provide exactsolutions to (2) at an expected complexity

on the order ofO(2γm) for someγ ∈ (0, 1] [4]. The complexity is thus, although significantly lower

than the full search, still exponential.

Thus, the use of suboptimal (but computationally advantageous) alternatives to ML detection is

motivated. However, when applied to a fading channel there is unfortunately often a significant loss
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in performance associated with many of the suboptimal alternatives. This is illustrated in Fig. 1 where

the probability of error for three different detectors is shown for the case whereH ∈ R4×4. By comparing

the ML detector and minimum mean square error (MMSE) detector [2] it can be seen that not only is the

MMSE suboptimal, but the rate at which the probability of error tends to zero with increasing SNR is

significantly lower than that of the optimal ML detector. This in turn results in a large loss in performance

in the high SNR regime. The rate at which the error probability vanishes, or more precisely the slope

(in log-log scale) of the error probability curve in the highSNR regime, is commonly referred to as

the diversity of the detector and it is well known that the MMSE detector hasa significantly lower

diversity than the ML detector [2]. However, the third curvein Fig. 1 shows the probability of error for

a receiver structure known as the semidefinite relaxation (SDR) detector or receiver. The SDR detector

was (in the communications literature) first proposed in [5], [6], [7] for CDMA multiuser detection but

is applicable for the detection of binary signals transmitted over any MIMO channel on the form of (1).

The SDR receiver is based on a convex relaxation technique where the optimization in (2) is simplified

by first expanding the feasible set and then applying a rounding procedure to obtain an approximate

solution to (2). Note that this statement is also true for thezero forcing (ZF) and MMSE receivers

where an unconstrained least squares problem (a regularized least squares problem in the MMSE case) is

initially solved and where the symbol estimates are then obtained by componentwise threshold decisions.

However, the semidefinite relaxation differs from ZF and MMSE receivers in that the problem is first

lifted into a higher dimensional space before the relaxation takes place. From Fig. 1 it is apparent that

the SDR receiver, although suboptimal in the sense that it does not achieve the minimum probability of

error, does not suffer the loss in diversity experienced by the MMSE receiver.

The main contribution of this work is the analytic proof of the observation above. Namely, if the

entries ofH ∈ Rn×m are i.i.d. zero mean Gaussian with a finite variance andn ≥ m, then the SDR

receiver achieves the maximum possible receiver diversity. The result is formally stated in Theorem 1 in

Section II-B and represents a non-trivial extension of previously known performance guarantees available

for the SDR detector, see e.g. [8], [6], [9].

The topic of receiver diversity has received significant attention in the digital communications literature

and other low complexity receivers have been designed specifically with diversity in mind. Perhaps, most

prominent among these receivers are the lattice-reduction-aided (LRA) receivers [10], [11]. In the LRA

receiver one performs a change of basis under which the conditioning ofH is improved and then applies

a simple (e.g. ZF, MMSE or decision feedback) detector in thenew basis. It has also recently been

shown that it is possible to construct (low complexity) fulldiversity receivers based on these ideas [12],
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again under the assumption thatn ≥ m. However, the design philosophies underlying the LRA and SDR

detectors are fundamentally different. Were as the LRA is combinatorial in nature the SDR detector is

based on the minimization of a continuous function over a convex set. Further, in the LRA receiver it is

assumed that the transmitted message belongs to an (infinite) integer lattice which enables the change of

basis while in the SDR approach explicit use is made of the binary symbol assumption.

As previously stated, we treat the SDR receiver under the assumption that the channel matrix is

i.i.d. Gaussian and real valued. The main reason for this is that the SDR receiver is most easily treated in

the real valued case. It should however be mentioned that theextension to the complex case is non-trivial

and that numerical results suggest that a theorem, analogous to Theorem 1, may not hold in this case.

However, the numerical results also indicate that the loss in diversity (with respect to the ML detector)

remains small. We discuss this issue further in Section VI-B. Additionally, the underdetermined (n < m)

case is treated in Section VI-A. In the latter case our proof of Theorem 1 provides a lower bound on the

diversity achieved by the SDR receiver which shows that ifm− n is not too large, then the diversity of

the SDR is strictly larger than that of the MMSE and ZF receivers.

In Section II we review the SDR receiver and present the main contribution of this work, namely

Theorem 1. In Section III a short outline of the proof is givenand the rigorous analysis is given in

Section IV and Section V. Further, a short discussion of how the results may possibly be generalized to

other scenarios is given in Section VI. Also, although it makes no difference for the analytical results,

we will in the numerical examples normalize the channel matrix, H, such that each component has a

variance ofn−1, yielding unit energy symbols at the receiver.

II. SEMIDEFINITE RELAXATION

The use of semidefinite relaxation for bounding the optimal value of a combinatorial optimization

problem was first considered in the late seventies [13] (where it was used to bound the Shannon capacity

of a graph). Theoretical work in the nineties [14] along withthe introduction of practical methods for

solving semidefinite programs [15], [16], [17] made the semidefinite relaxation a viable method for finding

approximate solutions to many combinatorial problems. A famous example where the SDR technique

can be applied is themax cutproblem in graph theory [18]. The application of SDR to the detection

problem considered herein has also been studied in the communications literature [5], [6], [7].

We will in Section II-A provide a short review of the SDR detector in the communications context. It

is not the intention to give a complete treatment of the SDR detector in terms of implementation or to

discuss the various improvements which have been proposed but rather to introduce notation and capture
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specific assumptions made herein. The reader is instead referred to the original works [5], [6], [7] for a

thorough treatment of the SDR detector in the context of digital communications. See also, apart from

the above, [19] for a comprehensive collection of results regarding semidefinite programming in general

and also specific results regarding the semidefinite relaxation technique.

A. The SDR Detector

In order to introduce the semidefinite relaxation techniqueit is useful to note that the (non-convex)

optimization problem given by

min
X, x

Tr(LX)

s.t. diag(X) = e

X = xxT

(3)

wheree is the vector of all ones and where

L ,




HTH −HTy

−yTH yTy



 , x ,




ŝ

1



 (4)

is equivalent to (2) in the sense that the solution to (2) is easily obtained from the solution to (3) and vice

verse [5], [6], [19]. Essentially, the formulation of (3) isobtained by lifting (2) into a higher dimension

where the criterion is linear in the optimization variable.The rank one constraint onX along with the

diagonal constraint ensure there is a one to one correspondence between the feasible sets of (2) and (3).

The optimal point of (2) is related to the optimal point of (3)throughx as shown in (4).

As (3) and (2) are equivalent they are also equally hard to solve from a complexity theoretic point of

view. In particular, it follows from [3] that (5) is also NP-hard in general. However, consider now instead

the optimization problem given by

min
X

Tr(LX)

s.t. diag(X) = e

X � 0

(5)

whereX � 0 means thatX is symmetric and positive definite. SinceX = xxT impliesX � 0 it follows

that (5) represents a relaxation of (3). The problem in (5) isreferred to as the semidefinite relaxation

of (3) (or equivalently (2)) and serves as the basis for the semidefinite relaxation detector.

It is useful to note that (5) is aconvexproblem which can be efficiently solved in polynomial time [16],

[20]. In particular, there is an interior point algorithm which solves (5) to any fixed precision inO(m3.5)

time [21], see also [5] where this algorithm is presented in the digital communications context. In practice,
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only a few iterations with a complexity comparable to that ofinverting anm by m matrix are required

in order to obtain an approximate solution to (5).

It is straightforward to see that when the optimal solution to (5) is rank one it is also an optimal

solution to (3). The existence of rank one solutions to (5) ishowever by no means guaranteed and in

general, the solution to (5) can only serve as a basis for obtaining an approximate solution to (3). In fact,

it is possible to characterize exactly (in terms ofH, s andv) when (5) will and will not have rank one

solutions, see [22] for necessary and sufficient conditions.

When the optimal point of (5) is not rank one, some type of rounding procedure has to be used to

round the optimal point of (5) to a point in the feasible set (3). There are several suggestions for this

in the literature. Among the more powerful approaches are a randomization technique [18], [6] and an

approximation using the dominant eigenvector [5]. Numerical evidence suggests that the randomization

technique results in superior error performance. We shall however consider the very simple strategy of

simply using the signs of the last column ofX⋆ whereX⋆ is an optimal point of (5). This approach

was also mentioned in [5] but discarded in favor of the (superior) eigenvector approach. However, as the

simpler approach already achieves the maximum diversity weshall only consider this approach in detail.

It should however be noted that the proof extends to the dominant eigenvector case in a straightforward

manner by simply appealing to results regarding the continuity of eigenvectors corresponding to distinct

(multiplicity one) eigenvalues.

To summarize, we obtain the SDR estimate,ŝSDR as follows. LetX⋆ be the minimizer of (5). Then

ŝSDR is defined according to

[ŝSDR]i , sgn([X⋆]i,m+1), i = 1, . . . ,m (6)

where

sgn(x) =







1 x > 0

−1 x ≤ 0

is the sign function, i.e.̂sSDR is given by the signs of the last column ofX⋆. Note that although it is

possible for (5) to have several optimal solutions it is always possible to pick some unique optimizer,

X⋆, from the optimal set. Thus, it can be assumed thatŝSDR is uniquely determined byy andH.

Finally, it should be mentioned that extensions to the original semidefinite relaxation detectors have

appeared in the literature. These include for example extensions toM -PSK constellations [23] andM -

QAM constellations [24]. However, the analysis of these extensions is not treated herein.



SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY 7

B. SDR Performance

The extraordinary performance of the SDR technique in many areas have been a motivating reason

for its study and there are results in the literature regarding the quality of the semidefinite relaxation

approximation of (3) for more or less arbitrary choices of the matrixL (in (4)). These include the bound

in [8] which is a generalization of a previous result for the max cut problem [18]. There are also some

results relating the semidefinite relaxation to other relaxations available for binary quadratic programs

(such as (2)) [25].

In the context of digital communications it has previously been shown that several low complexity

detectors may be viewed as further relaxations of the SDR detector [6]. Notably, these low complexity

detectors include both the ZF and MMSE detectors and give strong support for the SDR approach although

the results in [6] relate to the objective values of the relaxations rather than directly to the quality of

the estimates,̂s. Further, a probabilistic bound on the difference in optimal objective value between (5)

and (3) was given in [9] for the large system limit. Also, as previously mentioned, the conditions for rank

one solutions to (5) were complectly characterized in [22] where it was also established that the detector

was free of an error floor under the assumption thatHTH is full rank. However, the result in [22] does

not extend to a statement regarding the diversity. Specifically, it is possible to show (using the result

of [22]) that an alternative SDR receiver which calls an error whenever (5) is not of rank one would

not have the maximum diversity. In other words, the second phase of the SDR receiver where high rank

solutions are used to obtain symbol estimates is crucial to the SDR performance and must be taken into

account in the analysis.

The main contribution of this work is a rather strong statement regarding SDR performance when

applied to a fading channel, namely that under the model in (1) with an i.i.d. Gaussian channel for

which n ≥ m the SDR detector will have a diversity equal to that of the optimal, ML, detector. Loosely

speaking, although suboptimal, the SDR detector will have an error probability which vanishes at the

same rate as the ML detector in the high SNR limit and the loss due to suboptimality will be a shift in

SNR and not a loss ofdiversity. We formally state this as follows.

Theorem 1:Assume thatH ∈ Rn×m in (1) consist of i.i.d. Gaussian entries of zero mean and fixed

(non-zero) variance. Assume further thatn ≥ m. Then

lim
ρ→∞

ln P (ŝSDR 6= s)

ln ρ
= lim

ρ→∞

ln P (ŝML 6= s)

ln ρ
= −n

2
.

It is important to note that the SDR (and maximum) diversity is n
2 in this case and notn. This is

because we explicitly consider a real valued channel matrix(1) as opposed to the complex channel case



SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY 8

more frequently studied in the literature. It is straightforward to show the maximum achievable diversity

in this case isn2 by extending the proof of [26] to cover the real valued case. In the case of ZF and

MMSE the diversity isn−m+1
2 which can be seen by following the argument of Section 8.5.1.in [2]

with a real valued channel matrix.

Following [27] we will throughout this work make use of the symbol
.
= to denoteexponential equality,

defined according to

f(ρ)
.
= ρ−d ⇔ lim

ρ→∞

ln f(ρ)

ln ρ
= −d. (7)

Similar definitions will also apply to the symbols
.
≤ and

.
≥. For reference, we list the most important

properties of the exponential equality in Appendix I. Using(7) generally allows for a more compact (and

suggestive) notation and in this notation the statement of Theorem 1 becomes

P (ŝSDR 6= s)
.
= P(ŝML 6= s)

.
= ρ−

n

2 .

Now, most of remaining part of this work is devoted to the proof of Theorem 1. The formal proof

is divided into several lemmas presented in Section IV and Section V. However, before presenting the

proof in full, a short outline is given in Section III.

III. T HE SDR DIVERSITY PROOF, OUTLINE

Note that due to the symmetry of the problem (and the detector) it can without loss of generality

be assumed thats = e was transmitted. This will also be done in the sequel. In them = 2 case it is

possible to graphically illustrate the feasible set,X , of (5) in order to gain intuition. To this end, consider

parameterizingX ∈ X as in [28] or [5], i.e. according to

X =








1 x y

x 1 z

y z 1







.

The feasible set,X , is illustrated in Fig. 2. The rank one matrix,Xe, that corresponds to the transmitted

message,s = e, is also indicated in the figure.

Intuitively, one can characterize the error events of the SDR receiver as follows. When the optimal

point of (5), X⋆, is close toXe then the rounding procedure described in Section II will be able to

recover the correct rank one matrix, namelyXe. It is only when the optimal point of (5) is far fromXe

that an error can occur.

Consider now the introduction of a hyperplane,H, as in Fig. 2 that separates the points inX that are

close to and far fromXe. Specifically, letX+ be the points inX that are on the same side ofH asXe
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and letX− be the points on the other side. Assume also thatH is chosen such that points inX+ are

rounded off toXe. Let us also first consider the zero noise case, i.e. whenv = 0. In this caseXe is

always optimal for (5) with a criterion value equal to 0. Further, letτ ≥ 0 be given by

τ = min
X∈X∩H

Tr(LX),

i.e. τ is the minimum objective value over the intersection of the hyperplane and the feasible set, assuming

v = 0. As the criterion function,Tr(LX), is linear andX is convex it follows that the criterion function

for anyX ∈ X− will also satisfyTr(LX) ≥ τ .

Now allow forv 6= 0 but assume that‖v‖ is significantly smaller thanτ . In this case,Tr(LXe) is still

small asTr(LXe) is continuous inv. At the same time it is guaranteed thatTr(LX) is not significantly

smaller thanτ for any X ∈ X−, again sinceTr(LX) is continuous inv. This implies that there is a

point in X+ with a criterion value close to zero, while all points inX− have objective values which are

at least on the order ofτ . In other words, the optimum overX must belong toX+ and therefore be close

to Xe. This in turn implies that no error is made by the SDR receiver. In short, it is sufficient thatτ is

large in comparison with the noise in order for the detector to make a correct decision. This statement

is also made rigorously by Lemma 1 in Section IV.

The proof of Theorem 1 follows the heuristic argument given above and is divided into two parts.

The first part, is concerned with proving that the error probability of the SDR detector is, in the high

SNR regime, governed by the probability thatτ is atypically small rather than the probability thatv

is atypically large. This statement is formalized by Lemma 2in Section IV. Note that the technique of

interpreting typical errors as caused by particularly bad channels (in our case channels which causeτ to

be small) is common in the literature, see e.g. [2]. It is alsosimilar in many respects to the analysis of

coded multiple antenna systems where errors are typically caused by channels inoutage[27].

The second part of the proof, contained in Section V, is concerned with bounding the probability that

τ is atypically small. Note that in order forτ to be small there must be at least oneX ∈ X ∩ H for

which Tr(LX) is small. In essence, the technique used to establish our bound on the probability ofτ

being small can be summarized as follows.

1) CoverX ∩H (or more precisely a set isomorphic toX ∩H) with ǫ-balls and bound the probability

that each specificǫ-ball contains anX for which Tr(LX) is small.

2) Count the number ofǫ-balls required to coverX ∩ H and use the union bound to bound the

probability thatτ is small.

Much of the difficulty of the proof stems from that the probability that eachǫ-ball contains anX for
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which Tr(LX) is small depends on where inX ∩ H the ǫ-ball is located. Also, the technically most

challenging part of the proof relates to counting the numberof ǫ-balls required to cover certain subsets

of X ∩H. The analysis of each particularǫ-ball is provided by Lemma 3 and the counting argument is

captured in Lemma 4 in Section V. The proof of Theorem 1, givenat the end of Section V, then follows

by combining Lemma 3 and Lemma 4.

IV. T HE SDR DIVERSITY PROOF, PART I

The purpose of this section is to give rigorous justificationof the first part of the heuristic argument

given in Section III and show that the noise,v, can effectively be removed from (or integrated out of)

the analysis of the receiver diversity. To this end, we will begin by giving a proper definition of some of

the concepts appearing in the heuristic argument.

First of all, the feasible set,X , of (5) is given by

X , {X ∈ Sm+1 | diag(X) = e, X � 0} (8)

whereSm+1 denotes the set of symmetric matrices. LetH be the hyperplane (or affine subset ofSm+1)

given by

H , {X ∈ Sm+1 | Tr(MXMT) = 1} (9)

where

M ,

[

I −e

]

∈ Rm×m+1. (10)

It will later be established that anH chosen this way is sufficient for separating point close toXe from

points far fromXe. The optimal value ofTr(LX) over the intersection setX ∩ H is under the zero

noise,v = 0, assumption given by

τ , min
X∈X∩H

Tr(L0X) (11)

where

L0 ,




Q −Qe

−eTQ eTQe



 = MTQM

andQ , HTH. Note thatL0 is equal toL in (4) whenv = 0. It is also straightforward to show thatτ

is equivalently given by

τ = inf
Y∈Y

Tr(QY) (12)

where

Y , M(X ∩H)MT = Ỹ ∩ {Y ∈ Sm | Tr(Y) = 1} (13)
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and

Ỹ = MXMT. (14)

The setỸ is a linear mapping ofX ⊂ Sm+1 onto Sm given by MXMT under which the criterion

Tr(L0X) and H have a somewhat simpler structure. Note also thatỸ is convex since it is a linear

transformation of a convex set. The main reason for introducing (12) is that it is frequently more

convenient to work with (12) rather than with (11) directly.

We are now able to pose and prove the first lemma regarding the error probability of the SDR detector.

In essence, we wish to establish that a largeτ is sufficient for correct detection. These statements are

captured by Lemma 1 given below (note again thats = e is assumed to be the transmitted message).

Lemma 1:Let τ be given by (11). Then

τ > 4‖v‖2 ⇒ ŝSDR = e.

Proof: We will first prove the lemma under the assumption that the optimal point of (5) is rank deficient

and then argue that this assumption can be made without loss of generality. Thus, consider anX ∈ X
for which X ⊁ 0 (X is positive semidefinite but not positive definite) and partition X as

X =




AT

aT





[

A a

]

=




ATA ATa

aTA aTa





whereA ∈ Rm×m anda ∈ Rm. Note that this is possible sinceX has at most rankm. Note also that

‖a‖ = 1 follows from diag(X) = e. Further, note that the matrixL defined in (4) can be written as

L ,




HTH −HTy

−yTH yTy



 =




HT

−yT





[

H −y

]

.

Thus,

Tr(LX) =Tr








HT

−yT





[

H −y

]




AT

aT





[

A a

]





=Tr





[

H −y

]




AT

aT





[

A a

]




HT

−yT









=Tr((HAT − yaT)(HAT − yaT)T)

=‖HAT − yaT‖2

where‖ · ‖ above refers to the the Frobenius norm. Now, the model of (1) for s = e yields (throughy)

Tr(LX) = ‖H(AT − eaT)− vaT‖2.
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Note that

‖H(A− eaT)− vaT‖

≥‖H(A− eaT)‖ − ‖vaT‖

=‖H(A− eaT)‖ − ‖v‖

where the last equality follows from‖a‖ = 1. Thus, whenever

‖H(A− eaT)‖ > 2‖v‖ ⇔ ‖H(A− eaT)‖2 > 4‖v‖2

it follows that

Tr(LX) > ‖v‖2. (15)

At the same time, for

Xe ,




e

1





[

eT 1
]

it follows that

Tr(LXe) =Tr








HT

−yT





[

H −y

]




e

1





[

eT 1
]





=Tr





[

H −y

]




e

1





[

eT 1
]




HT

−yT









=Tr((He− y)(He − y)T)

=‖He− y‖2 = ‖v‖2. (16)

Thus, by (15) and (16), it follows that

‖H(A− eaT)‖2 > 4‖v‖2 ⇒ Tr(LX) > Tr(LXe) (17)

which implies thatX can not be optimal for (5) if

‖H(A− eaT)‖2 > 4‖v‖2 ⇔ ‖H(A− eaT)‖ > 2‖v‖.

Now, note that

(A− eaT) = M




AT

aT



 ,
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for M defined in (10) and

‖H(A− eaT)‖2

=Tr



HM




AT

aT





[

A a

]

MTHT





=Tr



HTHM




AT

aT





[

A a

]

MT





=Tr(HTHMXMT). (18)

Let X⋆ ∈ X be the optimal point for (5) and letY⋆ ∈ Ỹ be given byY⋆ , MX⋆MT. Note that

Tr(QY⋆) ≤ 4‖v‖2

for Q = HTH as otherwiseX⋆ would not be optimal due to (17) and (18).

Assume (as in the lemma) that

τ > 4‖v‖2.

This implies thatTr(QY) > 4‖v‖2 for any Y ∈ Y. The same conclusion could also be drawn for

any Y ∈ Ỹ which satisfiesTr(Y) ≥ 1. This follows sinceỸ is a convex set which contains0 (since

0 = MXeM
T). That is, if there wereY ∈ Ỹ for which Tr(Y) ≥ 1 and Tr(QY) ≤ 4‖v‖2 then

Ỹ , γY ∈ Y for someγ ∈ (0, 1] andTr(QỸ) ≤ 4‖v‖2 contrary to the assumption.

Thus, under the assumption of the lemma, it follows that

Tr(Y⋆) < 1

and‖diag(Y⋆)‖∞ < 1 asY⋆ � 0 implies thatY⋆ has positive diagonal elements. Now, partitionX⋆ as

X⋆ =




B b

bT 1





wherediag(B) = e due todiag(X⋆) = e. ComputingY⋆ explicitly under this partitioning yields

Y⋆ = MX⋆MT = B− ebT − beT + eeT

which implies

‖e− b‖∞ = 1
2‖diag(Y⋆)‖∞ < 1

2

sincediag(Y⋆) = 2e− 2b. Thus, the rounding procedure given in (6) will round the last column ofX⋆,

namelyb, to e and it follows that̂sSDR = e.
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What remains now is to show that the optimal point of (5) must be rank deficient. By applying the

result in [29] it is known that there will always be a rank deficient optimal point. A potential problem

could arise if there are several optimal points, some of which are full rank. We will however show this

that this is not possible.

In order for any optimal point of (5) to be full rank, all off diagonal elements ofL in (4) must

be identically zero. This follows since otherwise there would be a search direction in the nullspace of

diag(X) = e for which the criterion function would decrease, contradicting the optimality of any full

rankX. ThusHTH has zero off diagonal elements (as it appears inL) andH has orthogonal columns.

In this special case the SDR will always have rank one solutions which are unique as long as the ML

problem has a unique solution [22]. However, the assumptionthat τ > 4‖v‖2 implies that

‖y −He‖2 < ‖y −Hŝ‖2

for any ŝ ∈ Bm, ŝ 6= e, and it follows that the ML solution is unique. Therefore, there are no full rank

solutions under the assumption in the lemma. This completesthe proof. �

Essentially, Lemma 1 states that for an error to occur in the high SNR regime one of two thing must

happen. Eitherτ is atypically small orv is atypically large. As stated in Section III it can be arguedthat

the probability of the former event outweighs the probability of the latter. This is formally stated by the

following Lemma which concludes this section.

Lemma 2:Let τ be given by (11). Then

P
(
τ ≤ ρ−1

) .
≤ ρ−d ⇒ P (ŝSDR 6= e)

.
≤ ρ−d. (19)

Proof: Assume (as was done in the lemma) that

P
(
τ ≤ ρ−1

) .
≤ ρ−d.

This, combined withP
(
τ ≤ ρ−1

)
≤ 1, implies that for any arbitrarily smallδ > 0 there is a constant,c,

for which

P
(
τ ≤ ρ−1

)
≤ cρ−d+δ

for all ρ ≥ 0. Now, by Lemma 1,

pe , P (ŝ 6= e) ≤ P
(
τ ≤ 4‖v‖2

)
.

Introduce a Gaussian vector,w ∈ Rn, with i.i.d. zero mean elements of variance one and note that

ρ−1‖w‖2 has the same distribution as‖v‖2. Let f‖w‖2(γ) denote the probability density function of
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γ = ‖w‖2. As τ is independent ofv (andw) it follows that,

pe ≤ P
(
τ ≤ 4ρ−1‖w‖2

)

=

∫ ∞

0
P
(
τ ≤ 4ρ−1‖w‖2 | ‖w‖2 = γ

)
f‖w‖2(γ)dγ

=

∫ ∞

0
P
(
τ ≤ 4ρ−1γ

)
f‖w‖2(γ)dγ

≤ c4d−δρ−d+δ

∫ ∞

0
γd−δf‖w‖2(γ)dγ

= c4d−δρ−d+δE
{

‖w‖2(d−δ)
}

= c′ρ−d+δ

for somec′ independent ofρ. Note thatc′ <∞ follows since‖w‖ has finite moments. Thus,

pe
.
≤ ρ−d+δ.

However, as the relation holds for arbitrary smallδ > 0 it follows that

pe
.
≤ ρ−d

which concludes the proof. �

V. THE SDR DIVERSITY PROOF, PART II

Let τ be given by (11) or equivalently (12). In light of Lemma 2 all that remains to be done in order

to prove Theorem 1 is to provide a bound on

P
(
τ ≤ ρ−1

)

in the high SNR limit. Note however that at this point the variableρ−1 is just a dummy variable and we

can, and will, replaceρ−1 by ǫ and study the probability thatτ ≤ ǫ for small ǫ > 0. Thus, what remains

to be done is to boundP (τ ≤ ǫ) aroundǫ = 0. We will also in the remaining part of this work focus

on the optimization problem given in (12) rather than the equivalent problem in (11).

The probability thatTr(QY) ≤ ǫ for some particularY ∈ Y will generally depend on the specificY

considered (as mentioned in Section III). In order to deal with this we shall first partitionY into a finite

number of subsets{Yi},

Y ⊂
⋃

i

Yi,

such thatP (Tr(QY) ≤ ǫ) is more or less constant for allY within one such subset. Then, the probability

that τ ≤ ǫ will be bounded by applying the union bound according to

P (τ ≤ ǫ) ≤
∑

i

P (τi ≤ ǫ) (20)
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where

τi , inf
Y∈Yi

Tr(QY)

and where by property (37b) in Appendix I it is known that the sum in (20) will in the exponential

equality sense be given (or completely dominated) by its maximal term.

It is interesting to note that this corresponds to the identification of typical error events (or classes of

error events), which is closely related to the analysis of typical outageevents in [27]. However, in [27]

typical events where identified by classifying particularly bad channels,H, while here, we shall use the

concept to identify particularly troublesome subsets ofY. In essence, we shall partitionY based on the

eigenvalues ofY ∈ Y (or how close to singularY is). Then the subset which dominates (20) will be

found by optimizing over the possible eigenvalue combinations. Note also that these subsets will generally

depend onǫ but that we will adopt a somewhat casual terminology and refer to them simply as subsets

rather than by the technically more correct term “sequenceof subsets”. However, before considering the

general partitioning ofY into such subsets we will treat two motivating, and relatively simple, special

cases to gain intuition.

A. Special cases

1) Rank one matrices:First, let us consider the set of rank one matricesY ∈ Y, i.e. the set given by

YR1 , Y ∩ {Y | Rank(Y) = 1}.

For any particularY in this set, with an eigenvalue decomposition given byY = σuuT where‖u‖ = 1,

we have

Tr(QY) = σuTQu. (21)

As σ = 1 due to the constraintTr(Y) = 1 it follows that

P (Tr(QY) ≤ ǫ) = P
(
‖Hu‖2 ≤ ǫ

) .
= ǫ

n

2

for this particularY ∈ YR1. It can also be shown that there are exactly2m − 1 distinct Y ∈ YR1. In

essence, each suchY corresponds to the point at which line (inX ) connecting

Xŝ ,




ŝ

1





[

ŝT 1
]

andXe intersects the hyperplaneH, given in (9). Therefore, by applying the union bound to the finite

number of rank oneY ∈ YR1 it follows that

P (τR1 ≤ ǫ)
.
= ǫ

n

2
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where

τR1 = inf
Y∈YR1

Tr(QY).

Note also that there is a one-to-one correspondence betweenthe rank one matrices and all possible

messages (not equal to the transmitted message),ŝ ∈ Bm\e, that are searched over by the ML detector.

This is also the reason why

P (τR1 ≤ ǫ)
.
= P(ŝML = e) .

2) Full rank matrices:Next, consider the set of full rank (or more preciselywell conditioned) Y ∈ Y
given by

YFR , Y ∩ {Y | Y � cI}

for some constantc > 0, and let

τFR , inf
Y∈YFR

Tr(QY).

As the criterion function,Tr(QY), may be bounded as

Tr(QY) ≥ cTr(Q) = c‖H‖2

for anyY ∈ YFR it follows directly that

P (τFR ≤ ǫ)
.
≤ ǫ

mn

2

by applying property (37d) in Appendix I. This result can also be strengthened to show that

P (τFR ≤ ǫ)
.
= ǫ

mn

2 .

3) Discussion:The implication of the result in Sections V-A.1 and V-A.2 is that the event thatτ ≤ ǫ

is (in the limit) much less likely to be caused by one of the matrices inYFR than one of the matrices

in YR1. The probability of the former is on the order ofǫ
mn

2 while the later is onlyǫ
n

2 and ǫ
mn

2 ≪ ǫ
n

2

whenǫ is small (providedm > 1). Thus, (in a very loose sense) the reason for the high diversity of the

SDR detector is that the elements added in the relaxation (the ones inYFR) are less likely to cause errors

than the elements already present in the feasible set of the ML detection problem (the ones inYR1).

The question which however remains to be answered is if thereis some other set ofY, somewhere

between the full rank and rank one matrices, which can causeτ ≤ ǫ to occur with a probability

substantially larger thanǫ
n

2 . The answer to this question is somewhat surprisinglyno provided that

n ≥ m (but yes in somen < m cases). In fact, most of the remaining part of the paper is concerned

with the formal proof of this statement.
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B. The General Case

In the general case we consider sets on the form given by

Y(a,b) , Y ∩ {Y | ǫak ≤ σk(Y) ≤ ǫbk} (22)

wherea = (a1, . . . , am), b = (b1, . . . , bm) andσk(Y) denotes thekth eigenvalue ofY. For notational

convenience we will also in (22) interpretǫak as0 for ak = ∞ in order to allow one or more eigenvalues

to be identically equal to zero. We can without loss of generality assume that the eigenvalues are ordered

and that0 ≤ a1 ≤ . . . ≤ am, 0 = b1 ≤ . . . ≤ bm andbk ≤ ak for k = 1, . . . ,m. Note that the assumption

that b1 = 0 can be made since (22) would, due to theTr(Y) = 1 constraint ofY in (13), be empty

otherwise. Similarly to before we define

τ(a,b) , inf
Y∈Y(a,b)

Tr(QY). (23)

In what follows, a bound on the probability ofτ(a,b) ≤ ǫ is obtained by first partitioningY(a,b)
into even smaller sets (essentiallyǫ-balls) and then using the union bound to boundP (τ(a,b) ≤ ǫ). It

will be more convenient to work with a square root factorization of Y ∈ Y instead of withY directly.

Thus, we define a function,

ϕ : Sm+ 7→ Rm×m (24)

(whereSm+ denotes the set of symmetric, positive semidefinite matrices) for whichA = ϕ(Y) satisfies

A = UΣ
1

2 and whereUΣUT = Y is the eigenvalue decomposition ofY. That is,ϕ provides square

root factors ofY which have orthogonal columns with norms equal to
√
σi. Let A(a,b) be given by

A(a,b) , ϕ(Y(a,b)), (25)

i.e. A(a,b) is the set of square root factors which can be obtained fromY ∈ Y(a,b). Note that

Tr(QY) = ‖HA‖2 sinceQ = HTH andA = ϕ(Y). The random variableτ(a,b), defined in (23), can

thus be equivalently defined by

τ(a,b) = inf
A∈A(a,b)

‖HA‖2. (26)

We are now ready to provide the first lemma regarding the probability that ‖HÃ‖2 ≤ ǫ for any Ã in

an ǫ
1

2 -ball around a given center pointA ∈ A(a,b).

Lemma 3:ConsiderA ∈ A(a,b) and define

Aǫ(A) , {Ã | ‖Ã−A‖ ≤ ǫ
1

2 }. (27)
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Further, let

τ(A) , inf
Ã∈Aǫ(A)

‖HÃ‖2. (28)

Then,

P (τ(A) ≤ ǫ)
.
≤ ǫν where ν ,

m∑

k=1

n(1− ak)
+

2
.

and where(·)+ = max(0, ·).

Proof: Note that, due to the rotational symmetry of the distribution of H, it can without loss of generality

be assumed thatA is diagonal (and equal toΣ
1

2 whereΣ is a diagonal matrix containing the eigenvalues

of Y ∈ Y for which A = ϕ(Y)).

Pick someδ > 0 and consider the event that

‖H‖ ≤ ǫ−δ (29)

and where at least one column ofH, hk, satisfies

‖hk‖ ≥ 2ǫ
1−ak

2
−δ. (30)

We will first show that this event implies thatτ(A) > ǫ and next that the event fails to occur with a

probability which is no larger (in the
.
≤ sense) thanǫν−nmδ. Hence

P (τ(A) ≤ ǫ) ≤ P
(

‖H‖ ≥ ǫ−δ ∪ ‖hk‖ < 2ǫ
1−ak

2
−δ ∀k

)

.
≤ ǫν−nmδ.

Note first that (30) implies

‖hkσ
1

2

k ‖ ≥ 2ǫ
1

2
−δ

for at least onek sinceσk ≥ ǫak . Note also that this implies

‖HA‖ = ‖HΣ
1

2 ‖ ≥ 2ǫ
1

2
−δ.

Now, consider‖HÃ‖ for any Ã satisfying‖Ã −A‖ ≤ ǫ
1

2 . Under the additional assumption of (29) it

follows that

‖HÃ‖ =‖HA−H(A− Ã)‖

≥‖HA‖ − ‖H(A− Ã)‖

≥ 2ǫ
1

2
−δ − ǫ

1

2
−δ

= ǫ
1

2
−δ > ǫ

1

2
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where the last inequality holds wheneverǫ ≤ 1. Note also that‖HÃ‖ > ǫ
1

2 implies ‖HÃ‖2 > ǫ.

Therefore, (29) and (30) implies thatτ(A) > ǫ.

Now, consider the probability that (30) fails to hold, e.g. that

‖hk‖ < 2ǫ
1−ak

2
−δ

for all k = 1, . . . ,m. As the columns ofH are independent this probability can be upper bounded as

P
(

‖hk‖ < 2ǫ
1−ak

2
−δ ∀k

)

=

m∏

k=1

P
(

‖hk‖ < 2ǫ
1−ai

2
−δ

)

.
≤

m∏

k=1

ǫ
n(1−ak−2δ)+

2 ≤ ǫν−nmδ

where we have used

P
(
‖h‖ ≤ ǫ

c

2

)
= P

(
‖h‖2 ≤ ǫc

) .
≤ ǫ

nc
+

2

according to (37d) in Appendix I withǫ = ρ−1. The probability that (29) fails to hold can be upper

bounded as

P
(

‖H‖ > ǫ−δ
) .
≤ ǫ∞

according to (37e) in Appendix I. Therefore, by applying theunion bound,

P (τ(A) ≤ ǫ) ≤ P
(

‖H‖ ≥ ǫ−δ ∪ ‖hk‖ < 2ǫ
1−ak

2
−δ ∀k

)

.
≤ ǫν−nmδ + ǫ∞

.
≤ ǫν−nmδ.

However, asδ > 0 was arbitrary it follows that

P (τ(A) ≤ ǫ)
.
≤ ǫν

which concludes the proof. �

The next lemma provides a bound on the number ofǫ
1

2 -balls (defined as in (27)) which are required

to completely cover the setA(a,b). Lemma 4 is the technically most difficult result of this workand

we discuss this lemma below but save the the stringent proof for Appendix II.

Lemma 4:LetA(a,b) andAǫ(A) be defined as in (25) and (27), respectively. Then there is a collection

of points,A = {Ai}, for which

A(a,b) ⊂
⋃

Ai∈A

Aǫ(Ai)
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and

|A|
.
≤ ǫ−µ

where|A| denotes the number of elements ofA and where

µ ,

m∑

k=2

(m− k + 2)(1 − bk)
+

2
. (31)

Proof: Given in Appendix II. �

Essentially, the proof of Lemma 4 relies on a geometric argument based on the dimensionality of low

rank subsets ofA. Specifically, as part of the proof of Lemma 4 it is shown that the set of rankr matrices

A ∈ A, i.e.

ARr , A ∩ {A | Rank(A) = r},

is part of adr-dimensional (smooth) manifold where

dr ,
r∑

k=2

(m− k + 2), r = 2, . . . ,m

andd1 , 0. The manifold containingARr is locally diffeomorphic (having a one-to-one differentiable

relation) with thedr-dimensional unit cube inRdr (this is a property of any smoothdr-dimensional

manifold [30] and not specific toARr). The volume,V , covered by onedr-dimensionalǫ
1

2 -ball is on the

order of

V
.
= (ǫ

1

2 )dr = ǫ
dr

2

and therefore one needs on the order of

N
.
=

1

V

.
= ǫ

−dr

2 (32)

suchǫ
1

2 -balls to cover the unit cube inRdr . By exploiting that there is a differentiable (and therefore

continuous) map between the unit cube and the manifold this result carries over to a covering ofARr.

Thus, the set of rankr matrices,ARr, can be covered by a collection of points,Ar, satisfying

|Ar|
.
≤ ǫ−µr

where

µr =
dr
2

=

r∑

k=2

(m− k + 2)

2
.

Extending this line of reasoning from rankr dimensional subsets,ARr, to subsets which are close to

being low rank in the sense that the singular values ofA are bounded by powers ofǫ yields the result

stated in Lemma 4. Note also that this is similar to the discussion following Theorem 4 in [27].
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Now, Lemma 3 and Lemma 4 can be combined in order to bound the probability thatA(a,b) contains

an A for which ‖HA‖2 ≤ ǫ. Then, by optimizing overa andb, one can find the set of the form of

A(a,b) most likely to contain such anA. It can also be argued that this set will dominate the probability

of error in the high SNR regime. These ideas are captured by the following lemma.

Lemma 5:Let τ be defined as in (11). Then

P (τ ≤ ǫ)
.
≤ ǫζ

where

ζ , inf
1≥c2≥...≥cm≥0

n

2
+

m∑

k=2

(n−m+ k − 2)ck
2

. (33)

Proof: Consider picking someb = (b1, . . . , bm) for which b1 = 0 and b1 ≤ b2 ≤ . . . ≤ bm ≤ 1 and

choose aδ > 0. Let a = (a1, . . . , am) be given such thata1 = δ and ak = bk + δ if bk + δ ≤ 1 or

ak = ∞ otherwise fork = 2, . . . ,m.

The probability thatτ(a,b) ≤ ǫ whereτ(a,b) is defined in (23) can be bounded, using the union

bound according as

P (τ(a,b) ≤ ǫ) ≤
∑

Ai∈A

P (τ(Ai) ≤ ǫ)

whereA is chosen according to Lemma 4 and whereτ(Ai) is given by (28). Each term in the sum is

upper bounded by

P (τ(Ai) ≤ ǫ)
.
≤ ǫν

whereν is given in Lemma 3. The number of terms in the sum is upper bounded by

|A|
.
≤ ǫ−µ

whereµ is given by (31). Thus, the probability thatτ(a,b) ≤ ǫ is bounded as

P (τ(a,b) ≤ ǫ)
.
≤ ǫν−µ

where

ν − µ =

m∑

k=1

n(1− ak)
+

2
−

m∑

k=2

(m− k + 2)(1 − bk)
+

2

≥n
2
+

m∑

k=2

(n−m+ k − 2)(1 − bk)
+

2
− mnδ

2

≥ζ − mnδ

2
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and where the property

(1− ak)
+ ≥ (1− bk)

+ − δ

(for ak chosen as above) was used to establish the first inequality. The second inequality follows by the

definition of ζ in (33) along withbk ≥ 0.

Now, let

A , ϕ(Y)

whereϕ is given by (24). Note that we can pick a finite set ofb ∈ [0, 1]m, B = {bi}, such that

A ⊂
⋃

b∈B

A(a,b) (34)

wherea = a(b) according to the above. This follows since by specifyingb = (b1, . . . , bm) we include

the matricesY ∈ Y for which thekth eigenvalue satisfiesǫbk+δ ≤ σk ≤ ǫbk if bk < 1 and σk ≤ ǫ if

bk = 1. Thus we can cover the entire range ofσk ∈ [0, 1] with a finite number ofbk ∈ [0, 1]. For the

special case ofk = 1 we know thatσ1 is bounded away from0 due toTr(Y) = 1 which implies that

σ1 ∈ [ǫδ, 1] for sufficiently smallǫ given thatδ > 0 which is why b1 = 0 can be assumed without loss

of generality.

Using the union bound it follows that

P (τ ≤ ǫ) ≤
∑

b∈B

P (τ(a,b) ≤ ǫ)

.
≤ǫζ−mnδ

2

since each term in the sum satisfies

P (τ(a,b) ≤ ǫ)
.
≤ ǫζ−

mnδ

2

and the number of terms is finite. However, asδ > 0 was arbitrary it follows that

P (τ(a,b) ≤ ǫ)
.
≤ ǫζ

which concludes the proof. �

In light of Lemma 5 the proof of Theorem 1 is now almost trivial. All that remains is to computeζ

in (33) and apply Lemma 2. We give the proof below.

Proof (of Theorem 1):For the case wheren ≥ m all terms in the sum appearing in (33) are non negative.

Thus, the minimum in (33) is achieved forc2 = . . . = cm = 0 and it follows that

ζ =
n

2
.
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This, combined with Lemma 2, proves that

P (ŝSDR 6= e)
.
≤ ρ−

n

2 .

Next, note that the error probability of the SDR receiver is lower bounded by

P (ŝSDR 6= e) ≥ P (ŝML 6= e)
.
= ρ−

n

2

since the ML detector achieves the minimum probability of error. It therefore follows that

P (ŝSDR 6= e)
.
= P(ŝML 6= e)

.
= ρ−

n

2 .

By noting again thats = e can be assumed without loss of generality the statement of Theorem 1 follows.

�

VI. EXTENSIONS

At this stage, only the case of real valued systems on the formof (1) have been considered. Also, for

the proof of Theorem 1 it was assumed thatn ≥ m. In this section, we discuss the extensions which

would follow by relaxing these constraints and some illustrative numerical examples are given.

A. Then < m case

As stated above, full diversity has so far been shown under the condition thatn ≥ m. However, a

careful inspection of the proofs show that the only part which explicitly relies on this assumption is when

it is argued thatc2 = . . . = cm = 0 is an optimal point for (33) in then ≥ m case. However, nontrivial

bounds on the diversity will follow wheneverζ in (33) is strictly positive. The following theorem provides

a lower bound on the diversity for the case whenn < m.

Theorem 2:Given the assumptions of Theorem 1 but forr , m− n > 0, it holds that

lim
ρ→∞

ln P (ŝSDR 6= s)

ln ρ
≤ −d

where

d =
1

2

(

m− r(r + 3)

2

)

(35)

Proof: All that needs to be done in this case is to find the optimum in (33) and apply Lemma 2. To this

end, note that the optimum of (33) is achieved forck = 1 for all k satisfying

n−m+ k − 2 < 0 ⇔ k ≤ m− n+ 1
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andck = 0 for k satisfying

n−m+ k − 2 ≥ 0 ⇔ k ≥ m− n+ 2.

The value ofζ in (33) is thus given as

ζ =
n

2
+

m−n+1∑

k=2

n−m+ k − 2

2
=

1

2

(

m− r(r + 3)

2

)

This completes the proof. �

Note that this result is only nontrivial if

m >
r(r + 3)

2

as otherwise Theorem 2 would simply state that the probability of error is less than one. Further, we

have no specific reason to believe that the bound is tight (in the sense that
.
≤ could be replaced by

.
=)

in the n < m case, even in the cases where the bound is non-trivial. An indication of this is given in

Fig. 3 where the diversity of the SDR detector seems to be larger than2 which is predicted by (35). It

is however also unreasonable to expect the bound to be very loose in the sense that the SDR detector

would maintain the same diversity as the ML detector in the general case wheren < m. This is indicated

by Fig. 4 where the error probability of the SDR is significantly larger than that of the ML detector.

Intuitively, in the n < m case, it can become likely that a matrix with higher rank thanone achieves

the minimum in (12). Therefore, the typical error events of the SDR detector no longer coincide with

the error events of the ML detector and the SDR detector can experience a loss in diversity. We do not

however, as pointed out above, expect the loss to be as large as what is indicated by (35).

A possible way to strengthen the analysis in then < m case can actually be seen by turning back

to Fig. 2. Essentially, as part of proving Theorem 1 (and Theorem 2) the intersection ofX andH is

covered withǫ-balls. However, due to the linearity of the objective function it is already known that the

minimum objective value over the intersection set must be achieved by one of the boundary points of

X . Therefore, it would suffice to cover the intersection ofH with the boundaryof X . This would in

turn strengthen the bound on|A| in Lemma 4 but would also require a framework for parameterizing

the boundary set. It may also be possible to use the structureof the problem in other ways. One such

way could be to make use of the results in [29] (where bounds onthe rank of extremal matrices for

semidefinite programs are provided) to further limit the part of the feasible set that needs to be covered.
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B. Complex channel matrices

It is well known that the SDR receiver is also applicable to the case where 4-QAM symbols are

transmitted over a complex valued MIMO channel, see e.g. [5]. The most direct strategy is to rewrite

the problem in an equivalent real valued form according to



ℜ(yc)

ℑ(yc)



 =




ℜ(Hc) −ℑ(Hc)

ℑ(Hc) ℜ(Hc)








ℜ(sc)
ℑ(sc)



+




ℜ(vc)

ℑ(vc)



 (36)

whereyc ∈ CN , Hc ∈ CN×M , sc ∈ CM andvc ∈ CN are the (to (1)) corresponding complex valued

quantities and whereℜ(·) andℑ(·) denote the real and imaginary parts.

However, the proof of Theorem 1 does unfortunately not extend to cover this case. The specific reason

is found in Lemma 3 where the rotational symmetry ofH is explicitly used. This symmetry is lost in the

formulation given in (36), even in the case whereHc is i.i.d. compex, circularly symmetric, zero mean

Gaussian. More importantly, numerical simulations suggest that the extension of Theorem 1 to this case

may not even be true. An indication of this can be seen in Fig. 5where it is plausible to believe that the

SDR receiver does experience a loss of diversity. However, it should also be pointed out that we do not

expect the loss (if any) to be very large in general. This belief is based on extensive simulations, such

as the one shown in Fig. 6, that indicates a high SDR diversityin the complex case.

At first sight, what would be required in order to cover the complex case would be to update Lemma 3

for the structure of the effective channel matrix,H, in (36). It is however also likely that Lemma 4

would need to be strengthened (as discussed in Section VI-A)in order to obtain a tight bound on the

diversity. However, these steps remain a challenge. Also, note that if the SDR detector does not achieve

full diversity, the issue of providing a lower bound on the error probability (or equivalently an upper

bound on diversity) will also become more challenging.

VII. C ONCLUSIONS

In this paper we have shown that when applied to a fading channel, modelled by a real valued matrix

with i.i.d. Gaussian entries of zero mean and finite variance, the semidefinite relaxation detector achieves

the maximum possible diversity. This provides a strong performance guarantee for the SDR approach,

when applied in the communications context. Based on the discussions in Section VI it does not seem

reasonable to expect such a strong statement to hold for an arbitrary system. Nonetheless, it is still

reasonable to assume that the SDR detector will be superior to the class of linear detector and other

relaxation techniques.
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APPENDIX I

EXPONENTIAL EQUALITY

For the readers convenience, we list the (for this work) mostimportant properties associated with the

definition of exponential equalityin (7). These properties are easily derived from the definition in (7)

and can also be found (often implicitly) in many texts, see e.g. [27], [2]. Thus, we state the properties

without proof.

1) Scaling property:For anya ∈ [−∞,∞] andc ∈ (−∞,∞) it holds that

f(ρ)
.
= ρ−a ⇒ cf(ρ)

.
= ρ−a. (37a)

2) Summation property:For anya, b ∈ [−∞,∞] it holds that

f(ρ)
.
= ρ−a, g(ρ)

.
= ρ−b ⇒ f(ρ) + g(ρ)

.
= ρ−min(a,b) (37b)

This property extends in the obvious way to the sum of finitelymany terms.

3) Multiplication property:For anya, b ∈ [−∞,∞] it holds that

f(ρ)
.
= ρ−a, g(ρ)

.
= ρ−b ⇒ f(ρ)g(ρ)

.
= ρ−(a+b) (37c)

if the cases wherea+ b is not well defined are excluded.

4) Extremal realizations of Gaussian vectors:Let h ∈ Rd be a vector of i.i.d. Gaussian elements of

finite non-zero variance. Then

P
(
‖h‖2 ≤ ρ−c

) .
= ρ−

dc
+

2 (37d)

for c ∈ (−∞,∞), wherec+ , max(c, 0) and

P
(
‖h‖2 ≥ ρc

) .
= ρ−∞ (37e)

for c > 0. These properties follow by noting that‖h‖2 is χ2 distributed withd degrees of freedom,

see e.g. [2, Section 5.4.2].

It should also be noted that the properties given in (37a), (37b) and (37c) also hold with
.
≤ or

.
≥ in place

of
.
=.

APPENDIX II

PROOF OFLEMMA 4

Before proving Lemma 4 we establish the following technicalresult regarding the feasible set of (12).
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Lemma 6:The setY defined in (13) satisfies

Y = {Y ∈ Sm | Tr(Y) = 1,Y � 1
4dd

T,d = diag(Y)}. (38)

Proof: Consider the transformation given by



Y a

aT c





︸ ︷︷ ︸

P

=




I −e

0T 1





︸ ︷︷ ︸

T

X




I 0

−eT 1



 (39)

or inversely,

X =




I e

0T 1





︸ ︷︷ ︸

R




Y a

aT c








I 0

eT 1



 (40)

sinceT−1 = R. Note also thatY is given byY = MXMT asM =
[

I −e

]

by (10). ExpandingX

from (40) yields

X =




Y + aeT + eaT + eceT a+ ec

aT + ceT c



 .

Thus, the constraintdiag(X) = e for X ∈ X implies thatc = 1 for Y ∈ Y sinceY ⊂ Ỹ = MXMT

for Y given in (13) and wherẽY is given in (14). Further, forc = 1

diag(Y + aeT + eaT + eeT) = diag(Y) + 2a+ e = e

which implies that

a = −1
2diag(Y). (41)

Thus, given a matrixY ∈ Ỹ there is actually a uniqueX ∈ X for which Y = MXMT. In other words,

the mapping fromX to Ỹ is one-to-one.

SinceT (andR) are invertible the constraintX � 0 is equivalent toP � 0. However,P � 0 if and

only if its Schur complement [20] is positive semidefinite, i.e. if

Y − c−1aaT � 0.

Thus, by combining (41) withc = 1 and identifyingd = −2a the equalities of (13) and (38) are

established. �

We are now in a position to prove the statement given by Lemma 4. For convenience the lemma is

restated below.
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Lemma 4:LetA(a,b) andAǫ(A) be defined as in (25) and (27) respectively. Then there is a collection

of points,A = {Ai}, for which

A(a,b) ⊂
⋃

Ai∈A

Aǫ(Ai)

and

|A|
.
≤ ǫ−µ

where

µ ,

m∑

k=2

(m− k + 2)(1 − bk)
+

2
.

Proof: Consider the triplet(U,λ, z) ∈ Rm×m × Rm × Rm and the system of equations given by

Tr(Λ2) = 1 (42a)

diag(UΛ2UT) = Uz (42b)

UTU = I (42c)

Λ2 − 1
4zz

T � 0 (42d)

whereΛ , diag(λ). The set of solutions to (42) will in what follows be denoted by M. The set of

solutions to (42a), (42b) and (42c) but not necessarily (42d) is denoted byN and it follows thatM ⊂ N .

From (42a) and (42c) it follows thatλ andU in the solution set are bounded. However, asU is full

rank due to (42c) it follows through (42b) thatz is also bounded. Therefore, bothN andM are compact

(closed and bounded) sets.

The constraints of (42) are such that any solution,(U,λ, z), of (42) satisfiesUΛ2UT ∈ Y and any

eigenvalue decomposition,Y = UΣUT, of Y ∈ Y solves (42) forΛ = Σ
1

2 and some (unique)z. To see

this, consider the eigenvalue decomposition,Y = UΣUT, of someY ∈ Y whereY is given by (13).

Note also thatY belongs toY if and only if it satisfies the constraints of (38) as proven inLemma 6.

The orthogonality ofU ∈ Rm×m is a property of the eigenvalue decomposition and therefore(42c) is

satisfied. ForΛ = Σ
1

2 and z = UTdiag(UΛ2UT) the constraint of (42b) is satisfied. AsY ∈ Y it

follows thatY − 1
4dd

T � 0 whered = diag(Y). Therefore,diag(Y) = diag(UΛ2UT) = Uz implies

UΛ2UT − 1
4UzzTUT � 0 ⇔ Λ2 − 1

4zz
T � 0

which means that (42d) is satisfied. Finally, the constraintTr(Y) = 1 in (38) implies Tr(Λ2) = 1

and (42a) is satisfied. Reversing the reasoning and applyingLemma 6 show that any solution to (42)

must also have the property thatUΛ2UT ∈ Y.
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The value of introducing (42) is that it will, through the implicit function theorem [31], provide a

means of parameterizing the eigenvalues and vectors ofY ∈ Y. To this end, let

p , m+
m(m+ 1)

2
+ 1,

q , m2 + 2m,

andω ∈ Rq be given by

ω , (U,λ, z).

Define

H : Rq 7→ Rp

according to

H(ω) ,








Tr(Λ2)− 1

diag(UΛ2UT)−Uz

svec(UTU− I)








and note thatH(ω) = 0 corresponds to (42a), (42b) and (42c). In the above,svec(·) referrers to the

vector obtained by stacking the upper triangular part of a symmetric matrix into a vector. Let

ω̄ , (Ū, λ̄, z̄)

be a solution of (42) andI be an index set satisfying

I ⊂ {1, . . . , q} (43)

and

|I| = p. (44)

Denote byωI ∈ Rp the vector of components inω indexed byI and letωIc ∈ Rq−p be the vector

consisting of the remaining components. The implicit function theorem [31] states that if
∣
∣
∣
∣

∂H(ω)

∂ωI

∣
∣
∣
∣
ω=ω̄

6= 0, (45)

then there is a neighborhood,U ⊂ Rq, containingω̄ and a differentiable mapping

g : Rq−p 7→ Rp

satisfyingωI = g(ωIc) for anyω ∈ U ∩H−1({0}).
Further (45) implies the existence of a differentiable mapping

ψ : D 7→ R



SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY 31

for which ω = ψ(ξ), whereξ , ωIc − ω̄Ic ∈ Rq−p, whereD is an open subset ofRq−p containing

0 and whereR , ψ(D) ⊂ Rq. This mapping is easily obtained fromg by including the components

in ωIc and performing a translation to a neighborhood of0. Thus, assuming that (45) is satisfied, the

solution set of (42) is locally parameterized byq−p scalar parameters. It will in fact later be shown that

given any solution, ω̄, to (42) there will be some index set,I, satisfying (43) and (44) for which (45)

is satisfied. This implies thatN is a q − p dimensional (smooth) manifold embedded inRq [32]. Note

however that the specific index set,I, required to satisfy (45) will generally depend on the particular ω̄

chosen. This is analogous to the problem of parameterizing the unit circle based on solvingx2 + y2 = 1

where the choice ofx or y as thefree parameter depends on if the parametrization neighborhood should

includex = 0 or y = 0.

Note that it can without loss of generality be assumed that the domain ofψ, is given by

D = (−κ, κ)q−p, (46)

i.e. thatD is an open hypercube for someκ > 0 [32]. Further, sinceN is compact it can be assumed

that κ is independent of̄ω. It can also, without loss of generality, be assumed thatψ is Lipschitz

continuous [33] onD. This follows since the inverse function theorem guarantees thatψ has continuous

derivatives on the closure ofD, D̄ (actually, in its standard form the inverse function theorem guarantees

continuous derivatives onD but by reducingκ if necessary the continuity can be extended to the closure

of D). Further, again due to the compactness ofN , it can be assumed that the Lipschitz constant ofψ

is independent of̄ω.

In order to prove theexistenceof an index set,I, for which (45) is satisfied it is sufficient to prove

that the Jacobian matrixD,

D ,
∂H(ω)

∂ω

∣
∣
∣
∣
ω=ω̄

∈ Rp×q, (47)

is full rank. In this event, the index set,I, can be taken as the indexes of anyp linearly independent

columns ofD. For our purposes however, we shall need to be a bit more specific about howI is chosen.

Therefore, note again that it will be of particular interestto study parameterizations ofM (andN ) around

solutionsω̄ corresponding to rank deficientY ∈ Y (see the discussion in Section V-A.3). To this end,

consider somēω ∈ M for which λr+1 = . . . = λm = 0, i.e. ω̄ corresponds to a rankr matrix Ȳ ∈ Y.

Here, and in what follows,λk andzk refer to thekth component ofλ andz respectively. For anȳω ∈ M
it follows by (42d) that|zk| ≤ 2|λk| for k = 1, . . . ,m and in particular it follows thatzk = 0 whenever

λk = 0. We will in what follows refer to anyω̄ ∈ N which satisfies bothλr+1 = . . . = λm = 0

and zr+1 = . . . = zm = 0 as a rankr point, even in the case that̄ω 6= M. The reason for using
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this terminology is that it is often difficult to verify that (42d) is satisfied but sufficient to provide a

parametrization around rankr points,ω̄ ∈ N .

Let

pr , m+
r(r + 1)

2
+ 1

and

qr , r(m+ 2)

and note thatp = pm andq = qm. Further, letuk denote thekth column ofU. It will in what follows

be shown thatω, in a neighborhood of a rankr point, ω̄, can be parameterized by specifyingλk and

zk for k = r + 1, . . . ,m, a subset ofm− k parameters fromuk for k = r + 1, . . . ,m, and a subset of

qr − pr parameters from

ωr , (u1, . . . ,ur, λ1, . . . , λr, z1, . . . , zr).

It is straightforward to verify that this amounts to a total of q − p parameters. The specific parameters

chosen fromuk for k = r + 1, . . . ,m and fromωr will remain unspecified. In line with the previous

discussion these must ultimately depend on the specificω̄ around whichM or N is parameterized.

Before proving the preceding statement consider first the slightly more general system of equations

given by

Tr(Λr) + η = 1 (48a)

diag(UrΛrUr) + γ = Urzr (48b)

UT
r Ur = I (48c)

where(Ur,λr, zr,γ, η) ∈ Rm×r ×Rr ×Rr ×Rm ×R1 for somer, 1 ≤ r ≤ m. For now, it is sufficient

to view the addition ofγ and η as (small) perturbations of the constraints in (48). These will later be

used to develop a perturbation analysis of the solutions to (42) around the rankr points.

Let

ωr , (Ur,λr, zr)

and defineω̄r analogously. Define

Hr : R
qr+m+1 7→ Rpr

according to

Hr(ωr,γ, η) ,








Tr(Λ2
r) + η − 1

diag(UrΛ
2
rU

T
r ) + γ −Urzr

svec(UT
r Ur − I)







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and note thatHr(ωr,γ, η) = 0 is equivalent to (48). In order to establish that the solution set of (48)

can (locally around a particular solution (ω̄r,0,0)) be parameterized byqr − pr +m+ 1 parameters it is

sufficient to establish that the Jacobian

Dr =
∂Hr(ω̄r)

∂ω̄r

∣
∣
∣
∣
ω=ω̄

∈ Rpr×qr (49)

is full rank when evaluated at̄ωr satisfyingHr(ω̄r,0, 0) = 0.

Note that, similarly to before, ifDr in (49) is full rank then this implies the existence of a Lipschitz

continuous function

ψr : Dr 7→ Rr (50)

where(Ur,λr, zr) = ψr(ξr,γ, η) for ξr ∈ Rqr−pr , whereDr ∈ Rqr−pr+m+1 is an open neighborhood

of 0, and whereRr = ϕr(Dr). Also, without loss of generality it can be assumed that

Dr = (−κ, κ)qr−pr+m+1.

In order to establish the full rank property ofDr consider the matrix

D̃r ,
∂Hr(ω̄r)

∂(gT
1 , . . . ,g

T
m, z

T
r ,λ

T
r )

∣
∣
∣
∣
ω=ω̄

wheregk is thekth row of Ur, i.e.

Ur =
[

u1 · · · ur

]

=
[

g1 · · · gm

]T
.

Note thatD̃r is related toDr by a permutation of the columns (due to a changed order of differentiation)

and thatD̃r is full rank if and only ifDr is full rank. ComputingD̃r (semi) explicitly yields

D̃r =














0 · · · 0 0 λ̄
T
r

2ḡT
1 Λ̄

2
r − z̄Tr · · · 0T ḡT

1 2Λ̄rḡ
2
1

...
. . .

...
...

...

0T · · · 2gT
mΛ̄2

r − z̄Tr ḡT
m 2Λ̄rḡ

2
m

Ḡ1 · · · Ḡm 0 0














where

Ḡk ,
∂Gr(Ur)

∂gk

∣
∣
∣
∣
ωr=ω̄r

for Gr(Ur) , svec(UT
r Ur − I)

and whereḡ2
i denotes element wise squaring ofḡi. Assume first that2ḡT

i Λ̄
2
r − z̄Tr = 0 for somei,

1 ≤ i ≤ m. This implies through (48b) (andγ = 0) that

ḡT
i Λ̄

2
rḡi = 2ḡT

i Λ̄
2
r ḡi
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and in turnΛ̄2
r ḡi = 0 asΛ2

r � 0. Further, it follows that̄zr = 0 and thatΛ̄r = 0 by insertingz̄r = 0

into (48b). This however violates (48a) and contradicts that ω̄r is a solution to (48). Thus, it can be

assumed that2ḡT
i Λ̄

2
r − z̄Tr 6= 0 for all i = 1, . . . ,m which implies that the firstm+ 1 rows of D̃r are

linearly independent.

Establishing that the lastr(r + 1)/2 rows of D̃r are linearly independent is a standard exercise in

proving that the(m, r)-Stiefel manifold (the set ofm by r unitary matrices) has dimension

mr − r(r + 1)

2

which is a well known result [32]. We will for this reason not provide an explicit proof of this. In fact,

the lastr(r + 1)/2 rows of D̃r are not only linearly independent but also orthogonal.

What now remains to be done, in order to show thatD̃r is full rank, is to prove that none of the first

m+ 1 rows can be written as a linear combination of the remainingr(r + 1)/2 rows. For the first row,

this is obvious due to the structure ofD̃r together withλ̄r 6= 0. For the nextm rows the only potential

problem would be ifgi = 0 for somei. However, as

Gr(Ur) = svec(UT
r Ur − I) =

m∑

i=1

svec(gig
T
i )− svec(I)

it follows that Ḡi is linear in ḡi and equal to zero wheneverḡi = 0. Together with the property that

2ḡT
i Λ̄

2
r − z̄Tr 6= 0 it follows that none of the firstm+ 1 rows can be formed as a linear combination of

the remainingr(r + 1)/2 rows. This establishes that̃Dr, andDr, are full rank. Note that as

D = Dm

it also follows that the assertion of (45) has been proven.

Consider again the parametrization ofN around some rankr ω̄ ∈ N and consider the matrix

P =
∂H(ω)

∂(ωr,ur+1, . . . ,um)

∣
∣
∣
∣
ω=ω̄

.

Note thatP is nothing more thanD with the columns corresponding toλk andzk for k = r+1, . . . ,m

removed. It is straightforward to verify thatP is structured as

P =











Dr 0 · · · 0

× F̄T
r+1 · · · 0

× × . . .
...

× × × F̄T
m











(51)

where

F̄k =
[

ū1 · · · ūk−1 2ūk

]

(52)
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and wherēui is the ith column ofŪ in (Ū, λ̄, z̄) = ω̄. The structure of (52) follows by differentiating

svec(UT
r Ur − I) with respect to thekth column ofUr (remember thatsvec forms a vector of theupper

triangular part of its matrix argument). Note thatFT
k ∈ Rk×m is full rank for anyk, 1 ≤ k ≤ m, (as the

rows are orthogonal) and thatDr ∈ Rpr×qr is full rank as proven earlier. By considering the structure

of P it follows that a linearly independent set of columns can be selected by choosingpr columns form

the set of columns containingDr and k columns from each set containingFk for k = r + 1, . . . ,m.

This, as elaborated on earlier, is however equivalent to thestatement that the set of solutions to (42) can

locally aroundω̄ be parameterized by specifyingqr − pr parameters fromωr, m − k parameters from

uk along withλk andzk for k = r + 1, . . . ,m.

Now, turn attention to the original problem posed by Lemma 4,that is, the problem of obtaining a

covering ofA(a,b) defined in (25) and wherea = (a1, · · · , am), b = (b1, · · · , bm) and0 ≤ b1 ≤ . . . ≤
bm. Let r be the maximum integer for which

0 = b1 = . . . = br < br+1 ≤ . . . ≤ bm.

As stated earlier, ifb1 > 0 thenA(a,b) will be empty for sufficiently smallǫ. It is thus safe to assume

that b1 = 0 andr ≥ 1. Further, it can without loss of generality be assumed thatǫ is arbitrary small. In

particular, it can be assumed that

ǫ
br+1

2 < κ

whereκ is the constant introduced in (46).

Consider the set

M(b) , M∩ {(U,λ, z) | |λi| ≤ ǫ
bi

2 }.

The setM(b) is chosen such that any matrixA ∈ A(a,b) can be expressed asA = UΛ for some

(U,λ, z) ∈ M(b). Thus, the parametrization ofM(b) will also provide a parametrization ofA(a,b).

Let {ψ(l)}Ll=1 be a set of parameterizations (around rankr points) such that

M(b) ⊂
L⋃

l=1

R(l) (53)

where R(l) , ψ(l)(D). The assumption thatǫ
br+1

2 ≤ κ ensures that it is suffice to consider

parameterizations around rankr points,ω̄ ∈ N , in order to coverM(b). Note also that by the assumption

in (46) the coordinate neighborhoods ofψ(l) are all equal toD. Further, sinceM(b) ⊂ N is compact

(and sinceR(l) is open) it can be assumed thatL is finite [31]. DefineD(l)(b) according to

D(l)(b) , ψ−1(M(b) ∩R(l))
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and note thatD(l)(b) ⊂ D. Finally, define

P(l)(b) , {A | ∃z, (U,λ, z) ∈ M(b) ∩R(l), A = UΛ}

whereΛ , Diag(λ) and note that

A(a,b) ⊂
L⋃

l=1

P(l)(b). (54)

So far, the existence of a specific parametrization, given byI, has been proven. However, not much

has been said regarding the properties of this particular parametrization. Thus, to specify the benefits of

the particular parametrization chosen, let in the parameter vectorξ the components obtained by selecting

a subset of(u1, λ1, z1, . . . ,ur, λr, zr) be denoted byθr ∈ Rqr−pr . Similarly, let the components obtained

from uk, for k = r + 1, . . . ,m be denoted byθk ∈ Rm−k. That is,

ξ = (θr,θr+1, λr+1, zr+1, . . . ,θm, λm, zm).

Further, introducêξ and ξ̃ and partition these analogously. Assume thatξ, ξ̂ ∈ D(l)(b), let (U,λ, z) =

ψ(l)(ξ) and (Û, λ̂, ẑ) = ψ(l)(ξ̂) and letA = UΛ and Â = ÛΛ̂ where Λ̂ , Diag(λ̂). Further, let

Ã = Â−A, i.e. Ã is the perturbation inA resulting from a perturbation,̃ξ , ξ̂−ξ, of ξ. The objective

is now to show that if̃ξ ∈ C where

C , {ξ̃ | ‖θ̃r‖∞ ≤ cǫ
1

2 , ‖θ̃k‖∞ ≤ cǫ
1−bk

2 , |λ̃k| ≤ cǫ
1

2 ,

|z̃k| ≤ cǫ
1

2 , k = r + 1, . . . ,m}

andc is some (yet to be defined) constant it will follow that

‖Â−A‖ = ‖Ã‖ ≤ ǫ
1

2 . (55)

In the above and in the following,̂λk, λ̃k, ẑk and z̃k refer to thekth component ofλ̂, λ̃, ẑ and z̃

respectively.

Let uk and ûk denote thekth columns ofU andÛ. Let

(Ũ, λ̃, z̃) = (Û, λ̂, ẑ)− (U,λ, z)

and let ũk denote thekth column ofŨ. The first step is to prove that‖ũk‖∞ ≤ cKkǫ
1−bk

2 for some

constantKk. Note that sinceb1 ≤ . . . ≤ bm it follows immediately from the Lipschitz continuity ofψ

that ‖ũm‖ ≤ cKmǫ
1−bm

2 for some constantKm. This is sinceǫ
1−bk

2 ≤ ǫ
1−bm

2 for k ≤ m implies that

‖ξ̃‖∞ ≤ cǫ
1−bm

2 andKm could simply be selected as the Lipschitz constant (in∞-norm) ofψ.
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For k < m, let Uk ∈ Rm×r be the matrix consisting of the firstk columns ofU, let λk ∈ Rk the

vector of the firstk elements ofλ and letzk ∈ Rk be the vector of the firstk elements ofz. Assume

that ‖ũi‖ ≤ cKiǫ
1−bi

2 for somek < i ≤ m and note that(Uk,λk, zk) must satisfy (48) for

γ =

m∑

i=k+1

λ2idiag(uiu
T
i )− uizi

and

η =

m∑

i=k+1

λ2i .

Note also that, by the structure ofP in (51) it follows that

(Uk,λk, zk) =

ψk(θr,θr+1, λr+1, zr+1, . . . ,θk, λk, zk,γ, η) (56)

whereψk is the function given by the implicit function theorem in (50). By expanding

γ̂ ,

m∑

i=k+1

λ̂2i diag(ûiû
T
i )− ûiẑi

=

m∑

i=k+1

(λi + λ̃i)
2diag((ui + ũi)(ui + ũi)

T)

− (ui + ũi)(zi + z̃i)

and

η̂ ,

m∑

i=k+1

λ2i =

m∑

i=k+1

(λi + λ̃i)
2

it is straightforward to show that̃γ , γ̂ − γ and η̃ , η̂ − η satisfies

‖γ̃‖∞ ≤ cK̃kǫ
1

2 and |η| ≤ cK̃kǫ
1

2

for some constant̃Kk. In essence, the potentially large perturbation (on the order or ǫ
1−bi

2 ) in θi for

i, k < i ≤ m is always multiplied by factors on the order ofǫ
bi

2 which results in a perturbation,̃γ,

on the order ofǫ
1

2 . Note also that it is implicitly assumed thatǫ is such thatcK̃kǫ
1

2 ≤ κ or otherwise

(ωr,γ, η) /∈ Dr. However, asǫ can be assumed arbitrary small this is not a problem.

By the Lipschitz continuity ofψk in (50), it follows that

‖ũk‖2 ≤ cKkǫ
1−bk

2

for some constantKk since the argument in (56) is bounded by

max(cǫ
1−bk

2 , cK̃kǫ
1

2 ) ≤ cK̃kǫ
1−bk

2 .
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By induction it follows that‖ũk‖2 ≤ cKkǫ
1−bk

2 for k = r+1, . . . ,m and‖ũk‖ ≤ cKrǫ
1

2 for k = 1, . . . , r

whereKk, k = r, . . . ,m, are constants independent ofǫ andc. Now, by expanding

Â =ÛΛ̂ = (U+ Ũ)(Λ+ Λ̃)

=UΛ+UΛ̃+ ŨΛ+ ŨΛ̃

it follows thatÃ , Â−A satisfies‖Ã‖ ≤ cKǫ
1

2 for some constant,K. Finally, by selectingc according

to c = K−1 it follows that

‖Ã‖ = ‖Â−A‖ ≤ ǫ
1

2 .

What has been shown so far is that a perturbation,ξ̃, around a point,ξ, in the parameter spaceD(l)

will, given that ξ̃ ∈ C, result in a perturbation ofA, Ã, which satisfies‖Ã‖ ≤ ǫ
1

2 . This implies that

given a set ofξ ∈ D(l)(b), {ξ(l,i)}Ii=1, for which

D(l)(b) ⊂
I⋃

i=1

C(ξ(l,i))

where

C(ξ) , C + ξ,

we will also have a covering ofP(l)(b) given by

P(l)(b) ⊂
I⋃

i=1

Aǫ(A
(l,i)) (57)

whereA(l,i) = U(l,i)Λ(l,i),

(U(l,i),λ(l,i), z(l,i)) , ψ(l)(ξ(l,i)),

Λ(l,i) , Diag(λ(l,i)) and whereAǫ(A) is defined in (27). However, asC(ξ) is simply a (rectangular)

box centered atξ and since

D(l)(b) ⊂ {ξ | ‖θr‖∞ ≤ 2, ‖θk‖∞ ≤ 1, |λk| ≤ ǫ
bk

2 ,

|zk| ≤ 2ǫ
bk

2 , k = r + 1, . . . ,m} (58)

it follows that {ξ(l,i)}Ii=1 could be chosen such that

I
.
≤ ǫ−µ

where

µ =
(qr − pr)

2
+

m∑

k=r+1

(m− k)(1 − bk)
+

2
+

2(1− bk)
+

2
.
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This follows from the general statement that in order to cover a largeM -dimensional box with side

lengthsǫβi , i = 1, . . . ,M , with small boxes of side lengthǫαi , i = 1, . . . ,M , one needs (in the
.
= sense)

M∏

i=1

ǫ−(αi−βi)+ = ǫ−
∑

M

i=1 (αi−βi)+

small boxes in total. Note also that ifαi < βi the “small” boxes are actually wider than the large box in

the ith dimension which is the reason for the(αi − βi)
+ expression as opposed to(αi − βi).

By noting that

qr − pr = (m+ 2)r −m− r(r + 1)

2
− 1 =

r∑

k=2

m− k + 2

and using the assumption thatbk = 0 for k = 1, . . . , r it follows thatµ can be written as

µ =
m∑

k=2

(m− k + 2)(1 − bk)
+

2
.

Thus, it has so far been shown that it is possible to coverP(l) by I
.
≤ ǫ−µ setsAǫ(Ai). By (54) and

sinceL was finite this result extends to the covering ofA(a,b). That is, it has been shown that there

exists a covering,A, which satisfies

A(a,b) ⊂
⋃

Ai∈A

Aǫ(Ai)

and

|A|
.
≤ ǫ−µ

as was asserted by Lemma 4. �
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Fig. 1. The probability of error whenH ∈ Rn×m has i.i.d. real valued Gaussian entries, and wherem = n = 4.
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Fig. 2. Illustration of the feasible set,X , of the SDR detector in (5). The hyperplaneH separates points in the feasible set

that are close to and far fromXe.
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Fig. 3. The probability of error whenH ∈ Rn×m has i.i.d. real valued Gaussian entries, and wherem = 4 andn = 3.



0 4 8 12 16 20 24
10

−2

10
−1

10
0

 

 

ML
MMSE
SDR

PSfrag replacements

P
(ŝ
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Fig. 4. The probability of error whenH ∈ Rn×m has i.i.d. real valued Gaussian entries, and wherem = 4 andn = 2.
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Fig. 5. The probability of error whenH ∈ CN×M has i.i.d. complex valued Gaussian entries, and whereN = M = 2.
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Fig. 6. The probability of error whenH ∈ CN×M has i.i.d. complex valued Gaussian entries, and whereN = M = 4.
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