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Abstract

We consider the detection of binary (antipodal) signalesmaitted in a spatially multiplexed fashion
over a fading multiple-input multiple-output (MIMO) chaglrand where the detection is done by means
of semidefinite relaxation (SDR). The SDR detector is araetive alternative to maximum likelihood
(ML) detection since the complexity is polynomial rathearthexponential. Assuming that the channel
matrix is drawn with i.i.d. real valued Gaussian entries, skedy the receiver diversity and prove that
the SDR detector achieves the maximum possible diversitysTthe error probability of the receiver
tends to zero at the same rate as the optimal maximum likadi®L) receiver in the high signal to
noise ratio (SNR) limit. This significantly strengthensypoeis performance guarantees available for the
semidefinite relaxation detector. Additionally, it proubat full diversity detection is in certain scenarios

also possible when using a non-combinatorial receivecsira.
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. INTRODUCTION

Herein, we consider the detection of binary symbols trattethbver am by m multiple-input multiple-

output (MIMO) channel modelled according to
y=Hs+v 1)

wheres € B™ £ {£1}™, H € R™™ andv,y € R™ In what follows,y is referred to as the vector of
received signalsH as thechannel matrixs as thetransmitted messagandv as the additivenoisebased

on their physical interpretations in the digital commutiimas context. The additive noise is assumed to
be white and Gaussian with a variancegof' per component. It will also be assumed that the channel
matrix, H, is known to the receiver and that all possible transmittegsagess, are equally likely.

The problem of detecting a vector of symbols (not necessaiitary) transmitted over a MIMO
channel is of general interest as it arises frequently intaligommunications. Examples include, but
are not limited to, the multiuser detection problem in CDMB hnd communications over a multiple
antenna channel [2]. However, while the detection problethé same for many areas, the structure and
assumptions regarding the channel matix will typically differ depending on the specific context.thre
interest of simplicity, we will assume that the channel ixatray be modelled using i.i.d. Gaussian entries
with zero mean and finite variance, an assumption motivayeithd problem of wireless communication
over a richly scattered fading multiple antenna channelTBE signal to noise ratio (SNR) of the channel
is equal top and we will focus on an analysis of the high SNR regime.

The maximum likelihood (ML) estimate af, Sy, is well known to be given by

Sw, = arg min [|y — Hs|* 2
where|| - | denotes the Euclidian norm, i.e. the ML detector, or regeselects the message, which
minimizes the distance between the received signals an@iytpethesized noise-free messagks. An
error is declared wheneveg;, # s and it well known that the ML detector is optimal in the serisatt
it minimizes the probability of error. However, for a gerlechannel matrix,H, and vector of received
signals,y, the ML detection problem irf]2) has been shown to be NP-H&irerid the full search solution
has a complexity 0O (2") wherem is the number of symbols jointly detected. A similar reswtds for
the sphere decoding algorithm which is able to provide egakitions to[[R) at an expected complexity
on the order ofO(27™) for some~ € (0, 1] [4]. The complexity is thus, although significantly lower
than the full search, still exponential.

Thus, the use of suboptimal (but computationally advardagk alternatives to ML detection is

motivated. However, when applied to a fading channel thererifortunately often a significant loss
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in performance associated with many of the suboptimal rtires. This is illustrated in Fidl 1 where
the probability of error for three different detectors i®sim for the case wherH < R**4. By comparing
the ML detector and minimum mean square error (MMSE) detd2{dt can be seen that not only is the
MMSE suboptimal, but the rate at which the probability ofoertends to zero with increasing SNR is
significantly lower than that of the optimal ML detector. Sl turn results in a large loss in performance
in the high SNR regime. The rate at which the error probabildnishes, or more precisely the slope
(in log-log scale) of the error probability curve in the hi@NR regime, is commonly referred to as
the diversity of the detector and it is well known that the MMSE detector hasignificantly lower
diversity than the ML detector [2]. However, the third cuineFig. [ shows the probability of error for
a receiver structure known as the semidefinite relaxati@R()Sdetector or receiver. The SDR detector
was (in the communications literature) first proposed in [6], [7] for CDMA multiuser detection but
is applicable for the detection of binary signals transeditover any MIMO channel on the form dfl (1).
The SDR receiver is based on a convex relaxation techniquenthe optimization in[2) is simplified
by first expanding the feasible set and then applying a raungrocedure to obtain an approximate
solution to [2). Note that this statement is also true for #ieeo forcing (ZF) and MMSE receivers
where an unconstrained least squares problem (a reguldeiast squares problem in the MMSE case) is
initially solved and where the symbol estimates are theainbt by componentwise threshold decisions.
However, the semidefinite relaxation differs from ZF and MM&ceivers in that the problem is first
lifted into a higher dimensional space before the relaxatakes place. From Fi@l 1 it is apparent that
the SDR receiver, although suboptimal in the sense thatds dmt achieve the minimum probability of
error, does not suffer the loss in diversity experiencedhgyNIMSE receiver.

The main contribution of this work is the analytic proof ofetlbbservation above. Namely, if the
entries of H € R™"*™ are i.i.d. zero mean Gaussian with a finite variance and m, then the SDR
receiver achieves the maximum possible receiver divershg result is formally stated in Theorddh 1 in
Sectiorl-B and represents a non-trivial extension of jmesly known performance guarantees available
for the SDR detector, see e.g. [8], [6], [9].

The topic of receiver diversity has received significargmtibn in the digital communications literature
and other low complexity receivers have been designed figadlyi with diversity in mind. Perhaps, most
prominent among these receivers are the lattice-redueied (LRA) receivers [10], [11]. In the LRA
receiver one performs a change of basis under which the womidig of H is improved and then applies
a simple (e.g. ZF, MMSE or decision feedback) detector in nibes basis. It has also recently been

shown that it is possible to construct (low complexity) fdiversity receivers based on these ideas [12],
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again under the assumption that- m. However, the design philosophies underlying the LRA andRSD
detectors are fundamentally different. Were as the LRA imlwoatorial in nature the SDR detector is
based on the minimization of a continuous function over averrset. Further, in the LRA receiver it is
assumed that the transmitted message belongs to an (ipfiniger lattice which enables the change of
basis while in the SDR approach explicit use is made of thargisymbol assumption.

As previously stated, we treat the SDR receiver under thenaston that the channel matrix is
i.i.d. Gaussian and real valued. The main reason for thisasthe SDR receiver is most easily treated in
the real valued case. It should however be mentioned thabttemsion to the complex case is non-trivial
and that numerical results suggest that a theorem, anadagotiheoreni]l, may not hold in this case.
However, the numerical results also indicate that the lnsdiversity (with respect to the ML detector)
remains small. We discuss this issue further in SedfionlvA&ditionally, the underdetermined (< m)
case is treated in Secti@n VIFA. In the latter case our prddfteeorentl provides a lower bound on the
diversity achieved by the SDR receiver which shows that if n is not too large, then the diversity of
the SDR is strictly larger than that of the MMSE and ZF recesve

In Section we review the SDR receiver and present the maintribution of this work, namely
Theorem[L. In Sectiofdll a short outline of the proof is givemd the rigorous analysis is given in
SectionIY and SectiofdlV. Further, a short discussion of hosvresults may possibly be generalized to
other scenarios is given in Sectibnl VI. Also, although it e&ko difference for the analytical results,
we will in the numerical examples normalize the channel mald, such that each component has a

variance ofn !, yielding unit energy symbols at the receiver.

Il. SEMIDEFINITE RELAXATION

The use of semidefinite relaxation for bounding the optimalu® of a combinatorial optimization
problem was first considered in the late seventies [13] (wltewas used to bound the Shannon capacity
of a graph). Theoretical work in the nineties [14] along wille introduction of practical methods for
solving semidefinite programs [15], [16], [17] made the siefinite relaxation a viable method for finding
approximate solutions to many combinatorial problems. mdas example where the SDR technique
can be applied is thenax cutproblem in graph theory [18]. The application of SDR to théed&on
problem considered herein has also been studied in the coioations literature [5], [6], [7].

We will in SectiondI=A provide a short review of the SDR dei@cin the communications context. It
is not the intention to give a complete treatment of the SDRater in terms of implementation or to

discuss the various improvements which have been propagedther to introduce notation and capture
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specific assumptions made herein. The reader is insteade@fe the original works [5], [6], [7] for a
thorough treatment of the SDR detector in the context oftaligiommunications. See also, apart from
the above, [19] for a comprehensive collection of resulggrding semidefinite programming in general

and also specific results regarding the semidefinite rataxa¢chnique.

A. The SDR Detector

In order to introduce the semidefinite relaxation technigue useful to note that the (non-convex)
optimization problem given by
min Tr(LX)
X, x
st. diag(X) =e 3)
X = xxT

wheree is the vector of all ones and where

s H'™H -HTy Lo |
-y'H yly 1

1>

(4)

is equivalent to[{R2) in the sense that the solutior3o (2) slgabtained from the solution t@l(3) and vice
verse [5], [6], [19]. Essentially, the formulation dfl (3) @btained by lifting [2) into a higher dimension
where the criterion is linear in the optimization variablde rank one constraint oK along with the
diagonal constraint ensure there is a one to one correspoad®tween the feasible sets [af (2) ddd (3).
The optimal point of[[R) is related to the optimal point dfl (Byoughx as shown in[{4).

As (@) and [[2) are equivalent they are also equally hard teesitbm a complexity theoretic point of
view. In particular, it follows from [3] that{{5) is also NPahd in general. However, consider now instead
the optimization problem given by

m}én Tr(LX)
s.t. diag(X) =e (5)
X>0
whereX > 0 means thaK is symmetric and positive definite. Sinde= xxT implies X = 0 it follows
that [3) represents a relaxation @ (3). The problem[n (S)eferred to as the semidefinite relaxation
of @) (or equivalently[[R)) and serves as the basis for theidefinite relaxation detector.

It is useful to note thafd5) is eonvexproblem which can be efficiently solved in polynomial timé&]1

[20]. In particular, there is an interior point algorithm igh solves[(b) to any fixed precision @ (m?35)

time [21], see also [5] where this algorithm is presentedéndigital communications context. In practice,
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only a few iterations with a complexity comparable to thatiraferting anm by m matrix are required
in order to obtain an approximate solution [ (5).

It is straightforward to see that when the optimal solution() is rank one it is also an optimal
solution to [B). The existence of rank one solutions[fo (Shasvever by no means guaranteed and in
general, the solution t@l(5) can only serve as a basis foirobtaan approximate solution tgl(3). In fact,
it is possible to characterize exactly (in termsHf s andv) when [3) will and will not have rank one
solutions, see [22] for necessary and sufficient conditions

When the optimal point off{5) is not rank one, some type of chng procedure has to be used to
round the optimal point of({5) to a point in the feasible §8t (Bhere are several suggestions for this
in the literature. Among the more powerful approaches arenadamization technique [18], [6] and an
approximation using the dominant eigenvector [5]. Nun@r&vidence suggests that the randomization
technique results in superior error performance. We shalldver consider the very simple strategy of
simply using the signs of the last column & where X* is an optimal point of[{5). This approach
was also mentioned in [5] but discarded in favor of the (sigpeeigenvector approach. However, as the
simpler approach already achieves the maximum diversitghed only consider this approach in detail.
It should however be noted that the proof extends to the damiaigenvector case in a straightforward
manner by simply appealing to results regarding the coityiraf eigenvectors corresponding to distinct
(multiplicity one) eigenvalues.

To summarize, we obtain the SDR estimaig,r as follows. LetX* be the minimizer of[{5). Then

Sspr Is defined according to

[§SDR]Z' é Sgn([X*]i,m+1), 7= 1, ey, (6)
where
1 x>0
sgn(z) =
-1 =<0

is the sign function, i.e$spr is given by the signs of the last column &f*. Note that although it is
possible for [b) to have several optimal solutions it is alsv@ossible to pick some unique optimizer,
X*, from the optimal set. Thus, it can be assumed #agk is uniquely determined by and H.

Finally, it should be mentioned that extensions to the nefisemidefinite relaxation detectors have
appeared in the literature. These include for example sidan to M/-PSK constellations [23] and/-

QAM constellations [24]. However, the analysis of theseergions is not treated herein.
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B. SDR Performance

The extraordinary performance of the SDR technique in maepsahave been a motivating reason
for its study and there are results in the literature regardhe quality of the semidefinite relaxation
approximation of[{B) for more or less arbitrary choices @& thatrixL (in {)). These include the bound
in [8] which is a generalization of a previous result for thexncut problem [18]. There are also some
results relating the semidefinite relaxation to other rafixs available for binary quadratic programs
(such as[(R)) [25].

In the context of digital communications it has previousbeh shown that several low complexity
detectors may be viewed as further relaxations of the SDBcthat [6]. Notably, these low complexity
detectors include both the ZF and MMSE detectors and gieagtsupport for the SDR approach although
the results in [6] relate to the objective values of the ratipns rather than directly to the quality of
the estimatess. Further, a probabilistic bound on the difference in optimigjective value betweerh](5)
and [3) was given in [9] for the large system limit. Also, as\pously mentioned, the conditions for rank
one solutions to[{5) were complectly characterized in [2BEve it was also established that the detector
was free of an error floor under the assumption #atH is full rank. However, the result in [22] does
not extend to a statement regarding the diversity. Speltyfiaais possible to show (using the result
of [22]) that an alternative SDR receiver which calls an emdenever[{b) is not of rank one would
not have the maximum diversity. In other words, the secorabetof the SDR receiver where high rank
solutions are used to obtain symbol estimates is crucidiédoSDR performance and must be taken into
account in the analysis.

The main contribution of this work is a rather strong statetmegarding SDR performance when
applied to a fading channel, namely that under the modelnwith an i.i.d. Gaussian channel for
which n > m the SDR detector will have a diversity equal to that of theropt, ML, detector. Loosely
speaking, although suboptimal, the SDR detector will havesaor probability which vanishes at the
same rate as the ML detector in the high SNR limit and the lesstd suboptimality will be a shift in

SNR and not a loss dliversity We formally state this as follows.

Theorem 1:Assume thatH € R™*™ in (@) consist of i.i.d. Gaussian entries of zero mean andlifixe
(non-zero) variance. Assume further that> m. Then
InP (éML 75 S) n

InP (s
i BPGspr#s) . PG #s)  n
p—00 lnp pP—00 lnp 2

It is important to note that the SDR (and maximum) diversgy;iin this case and not. This is

because we explicitly consider a real valued channel mdfjixas opposed to the complex channel case
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more frequently studied in the literature. It is straightfard to show the maximum achievable diversity
in this case isy by extending the proof of [26] to cover the real valued casethe case of ZF and
MMSE the diversity is”‘Terl which can be seen by following the argument of Section 8.15.12]
with a real valued channel matrix.

Following [27] we will throughout this work make use of thenslyol = to denoteexponential equality

defined according to

i S (p)

p—oo Inp

fp=p* & = —d. ©)

Similar definitions will also apply to the symbots and >. For reference, we list the most important
properties of the exponential equality in Appen@ix I. Us{ily generally allows for a more compact (and

suggestive) notation and in this notation the statementhafiofen{]l becomes

w3

P (Sspr #8) =P (Smr #8) =p 2.

Now, most of remaining part of this work is devoted to the frob Theorem[d. The formal proof
is divided into several lemmas presented in Sedfign IV ancti®eM. However, before presenting the

proof in full, a short outline is given in Sectidnllll.

I[1l. THE SDR DIVERSITY PROOF, OUTLINE

Note that due to the symmetry of the problem (and the detedtaran without loss of generality
be assumed that = e was transmitted. This will also be done in the sequel. In/#the- 2 case it is
possible to graphically illustrate the feasible s&t,of (8) in order to gain intuition. To this end, consider

parameterizingk € X as in [28] or [5], i.e. according to

1 =z vy
X=|z 1 2
y z 1
The feasible sety, is illustrated in Fig[R. The rank one matriX,, that corresponds to the transmitted
messages = e, is also indicated in the figure.

Intuitively, one can characterize the error events of thdRSBceiver as follows. When the optimal
point of (8), X*, is close toX, then the rounding procedure described in Seclibn Il will bée ao
recover the correct rank one matrix, nam&y. It is only when the optimal point of15) is far froX,
that an error can occur.

Consider now the introduction of a hyperplafg, as in Fig[2 that separates the pointsiinthat are

close to and far fronX,.. Specifically, letX, be the points inX that are on the same side #f as X,
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and letX_ be the points on the other side. Assume also #at chosen such that points i, are
rounded off toX,. Let us also first consider the zero noise case, i.e. when0. In this caseX is

always optimal for[{(b) with a criterion value equal to 0. e, letr > 0 be given by

7= _ min Tr(LX),
XeXNH

i.e. T is the minimum objective value over the intersection of thipdrplane and the feasible set, assuming
v = 0. As the criterion functionIr(LX), is linear andY is convex it follows that the criterion function
for any X € X_ will also satisfyTr(LX) > 7.

Now allow for v # 0 but assume thdtv|| is significantly smaller than. In this caseTr(LXe) is still
small asTr(LX,) is continuous inv. At the same time it is guaranteed that LX) is not significantly
smaller thanr for any X € X_, again sincelr(LX) is continuous inv. This implies that there is a
point in X with a criterion value close to zero, while all points 1. have objective values which are
at least on the order af. In other words, the optimum ove¥ must belong toY, and therefore be close
to Xe. This in turn implies that no error is made by the SDR receireshort, it is sufficient that is
large in comparison with the noise in order for the deteatomiike a correct decision. This statement
is also made rigorously by Lemni& 1 in Sectlog IV.

The proof of Theoren]1 follows the heuristic argument givéowe and is divided into two parts.
The first part, is concerned with proving that the error plolitg of the SDR detector is, in the high
SNR regime, governed by the probability thatis atypically small rather than the probability that
is atypically large. This statement is formalized by Lenitha Section[I\V. Note that the technique of
interpreting typical errors as caused by particularly badnmels (in our case channels which catge
be small) is common in the literature, see e.g. [2]. It is @spilar in many respects to the analysis of
coded multiple antenna systems where errors are typicallged by channels ioutage[27].

The second part of the proof, contained in Seclidn V, is corexkwith bounding the probability that
7 is atypically small. Note that in order for to be small there must be at least adKec X N H for
which Tr(LX) is small. In essence, the technique used to establish ourdbon the probability ofr
being small can be summarized as follows.

1) CoverX NH (or more precisely a set isomorphic 40N H) with e-balls and bound the probability

that each specifie-ball contains arX for which Tr(LX) is small.

2) Count the number ot-balls required to cove® N 4 and use the union bound to bound the

probability thatr is small.

Much of the difficulty of the proof stems from that the prodaypithat eache-ball contains anX for
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which Tr(LX) is small depends on where it N A the e-ball is located. Also, the technically most
challenging part of the proof relates to counting the nundferballs required to cover certain subsets
of X NH. The analysis of each particulatball is provided by Lemm@&l3 and the counting argument is
captured in LemmABl4 in Sectiéd V. The proof of Theoldm 1, gizethe end of SectionlV, then follows
by combining Lemm&l3 and Lemni& 4.

IV. THE SDR DIVERSITY PROOF, PART |

The purpose of this section is to give rigorous justificatifrthe first part of the heuristic argument
given in Sectior 1l and show that the noise, can effectively be removed from (or integrated out of)
the analysis of the receiver diversity. To this end, we wdbim by giving a proper definition of some of
the concepts appearing in the heuristic argument.

First of all, the feasible setY, of (@) is given by
X £ (X € S™! | diag(X) =e, X = 0} (8)
whereS™*! denotes the set of symmetric matrices. Eebe the hyperplane (or affine subsetS¥#+1!)
given by
HE (X eS| Tr(MXMT) =1} (9)

where
M 2 [1 _e] e Rmxm+1, (10)

It will later be established that & chosen this way is sufficient for separating point clos&tofrom
points far fromX,. The optimal value oflr(LX) over the intersection set' N ‘H is under the zero

noise,v = 0, assumption given by

£ min Tr(LeX 11
TS min r(LoX) (11)
where
Le| ¢ T _mrqum
—eTQ €eTQe

andQ = HTH. Note thatLg is equal toL in @) whenv = 0. It is also straightforward to show that
is equivalently given by

T :Si(rég)Tr(QY) (12)

where

YEMEXNH)MT =Yyn{Y eS™ | Tr(Y) = 1} (13)
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and
Yy =MxM". (14)

The set) is a linear mapping oft c S™t! onto S™ given by MXMT™ under which the criterion
Tr(LoX) and % have a somewhat simpler structure. Note also ffiais convex since it is a linear
transformation of a convex set. The main reason for introduql3) is that it is frequently more
convenient to work with[{A2) rather than with-{11) directly.

We are now able to pose and prove the first lemma regardingtbemobability of the SDR detector.
In essence, we wish to establish that a largis sufficient for correct detection. These statements are

captured by LemmBl 1 given below (note again that e is assumed to be the transmitted message).

Lemma 1:Let 7 be given by[(IIl). Then
T > 4HV||2 = SgpR = €.

Proof: We will first prove the lemma under the assumption that thémdtpoint of [3) is rank deficient
and then argue that this assumption can be made without fogsnerality. Thus, consider ak € X

for which X 3 0 (X is positive semidefinite but not positive definite) and pianrti X as

X =

AT ATA ATa
A 4

al alA aTa

where A € R™*™ anda € R™. Note that this is possible sinG€ has at most rank.. Note also that

|laj| = 1 follows from diag(X) = e. Further, note that the matrik defined in [#) can be written as

HTH —HT HT
e —y'TH yTyy - -y [H _y}'
Thus,
HT AT]
Te(LX) =Tr o H -y | 1A al
AT B:a
=1Ir [H —y} aT [A a _yT

=Tr(HAT — ya")(HA™ —ya")")
~[|HAT —ya®|?
where|| - || above refers to the the Frobenius norm. Now, the moddllofdd} £ e yields (throughy)

Tr(LX) = |H(AT — eaT) — vaT| 2.
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Note that
|[H(A — eaT) — val||
>[|H(A —ea®)|| — [Jva™||
=|[H(A —ea®)|| —||v]|
where the last equality follows frorfal| = 1. Thus, whenever
(A —ea®)|| > 2|lv| & [H(A — ea™)|* > 4||v|?

it follows that

Tr(LX) > ||v|%.
At the same time, for )
e

Xe é [eT 1]
1

it follows that

=Tr

wiaxo=n ([ ] ] [ e 1)
o

=Tr((He — y)(He —y)")
=|He —y|* = |Iv|*
Thus, by [Ib) and{16), it follows that
[H(A —eah)|* > 4|v|* = T(LX) > Tr(LXe)

which implies thatX can not be optimal fol{5) if

IH(A — ea®)||* > 4][v[* & |H(A — ea®)]| > 2[|v].

Now, note that

al

(A —eal) =M [AT} )

12

(15)

(16)

17)
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for M defined in [(ID) and

(A — ea®)|?

AT
—Tv | HM { A a} MTHT
aT

~Tr [ HTHM AT [A a] MT
a

=Tr(H'HMXMT). (18)
Let X* € X be the optimal point for{5) and Ié&f* € Y be given byY* £ MX*MT". Note that
Tr(QY™) < 4f|v|

for Q = HTH as otherwiseX* would not be optimal due td_{17) and{18).
Assume (as in the lemma) that

7> 4|v|?.

This implies thatTr(QY) > 4||v||? for any Y € ). The same conclusion could also be drawn for
anyyY € Y which satisfiesIr(Y) > 1. This follows since) is a convex set which contairs (since

0 = MX.MT). That is, if there wereY € Y for which Tr(Y) > 1 and Tr(QY) < 4[v|?> then

Y 2 4Y € Y for somey € (0,1] andTr(QY) < 4||v||? contrary to the assumption.

Thus, under the assumption of the lemma, it follows that
Tr(Y*) <1
and||diag(Y*)|cc < 1 asY* > 0 implies thatY* has positive diagonal elements. Now, partitin as

B b
bT 1

X* =

wherediag(B) = e due todiag(X*) = e. ComputingY* explicitly under this partitioning yields
Y* = MX*MT =B — eb” — beT +ee’

which implies
le = bllec = 3lldiag(Y*)[loc < 5

sincediag(Y™*) = 2e — 2b. Thus, the rounding procedure given [ (6) will round the BEumn of X*,

namelyb, to e and it follows thatsspr = e.
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What remains now is to show that the optimal point[df (5) mustrénk deficient. By applying the
result in [29] it is known that there will always be a rank difit optimal point. A potential problem
could arise if there are several optimal points, some of Wwhice full rank. We will however show this
that this is not possible.

In order for any optimal point of[{5) to be full rank, all off afjonal elements of. in @) must
be identically zero. This follows since otherwise there lbobe a search direction in the nullspace of
diag(X) = e for which the criterion function would decrease, contrédi the optimality of any full
rank X. ThusHTH has zero off diagonal elements (as it appeark)randH has orthogonal columns.
In this special case the SDR will always have rank one salatiwhich are unique as long as the ML

problem has a unique solution [22]. However, the assumgtiabr > 4|v||? implies that
ly — He|? < [ly — Hs||?

for any s € B™, § # e, and it follows that the ML solution is unique. Thereforegté are no full rank
solutions under the assumption in the lemma. This compteeproof. |
Essentially, Lemma&l1 states that for an error to occur in igh BNR regime one of two thing must
happen. Either is atypically small orv is atypically large. As stated in Sectibnllll it can be argtieat
the probability of the former event outweighs the probapitif the latter. This is formally stated by the

following Lemma which concludes this section.
Lemma 2:Let 7 be given by[(1ll). Then
P(r<p)<p™® =  P(sspr#e)<p (19)
Proof: Assume (as was done in the lemma) that

P (T < p_l) <pd

This, combined withP (7 < p~!) < 1, implies that for any arbitrarily small > 0 there is a constant,
for which
for all p > 0. Now, by Lemmd1L,

pe 2P (8 #e) <P (r<d|v[?).

Introduce a Gaussian vectox; € R™, with i.i.d. zero mean elements of variance one and note that

p~|wl|* has the same distribution ds/||. Let f2(7) denote the probability density function of



SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY 15

v = ||w||?. As 7 is independent of (andw) it follows that,
pe < P (1 < 4p7Y[w]?)
— [TP (<407 IR | IWIP =) Sz
= /OOO P (7 < 4p719) fijw)(M)dy
< cdf0pTI /0 " e ()
_ 40 ymd+og {”W”2(d—5)} = ptd

for somec’ independent op. Note thatc’ < oo follows since||w|| has finite moments. Thus,

pe < p~ .

However, as the relation holds for arbitrary smalt 0 it follows that

pe<pd

which concludes the proof. |

V. THE SDR DIVERSITY PROOF, PART Il

Let 7 be given by [[Il) or equivalently{IL2). In light of Lemrh 2 dlht remains to be done in order

to prove Theoreriill is to provide a bound on
P(r<p™)

in the high SNR limit. Note however that at this point the ahiep~! is just a dummy variable and we
can, and will, replace~! by ¢ and study the probability that < e for smalle > 0. Thus, what remains
to be done is to bount (7 < ¢) arounde = 0. We will also in the remaining part of this work focus
on the optimization problem given ii{l12) rather than theieajant problem in[{I1).

The probability thatlr(QY) < e for some particulaly € ) will generally depend on the specifi¢
considered (as mentioned in Sectian 111). In order to dedhwhis we shall first partitior)) into a finite
number of subset§);},

ycC Uyu

such thaf® (Tr(QY) < €) is more or less constant for & within one such subset. Then, the probability

that 7 < ¢ will be bounded by applying the union bound according to

P(Tge)§ZP(n§e) (20)

2



SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY 16

where
s 2 inf Tr(QY
T \}Ielym r(Q )

and where by propertyr(3Fb) in Appendix | it is known that themsin (20) will in the exponential
equality sense be given (or completely dominated) by itsimalkterm.

It is interesting to note that this corresponds to the idieation of typical error events (or classes of
error events), which is closely related to the analysis pfdgl outageevents in [27]. However, in [27]
typical events where identified by classifying particufasad channelsH, while here, we shall use the
concept to identify particularly troublesome subsetg/ofin essence, we shall partitig)i based on the
eigenvalues ofY € Y (or how close to singulaly’ is). Then the subset which dominat€s](20) will be
found by optimizing over the possible eigenvalue combaoreti Note also that these subsets will generally
depend orx but that we will adopt a somewhat casual terminology andr ieféhem simply as subsets
rather than by the technically more correct tereeuencef subsets”. However, before considering the
general partitioning ofy into such subsets we will treat two motivating, and reldyivemple, special

cases to gain intuition.

A. Special cases

1) Rank one matricesFirst, let us consider the set of rank one matrideg ), i.e. the set given by
Vr1 £ YN{Y | Rank(Y) = 1}.

For any particulaiY in this set, with an eigenvalue decomposition given¥y= cuu® where||u|| = 1,
we have
Tr(QY) = ou’ Qu. (21)

As o = 1 due to the constrairifr(Y) = 1 it follows that
P(Tr(QY) <e) =P (|Hu|* <¢) =2

for this particularY € )Yr;. It can also be shown that there are exa@ly — 1 distinctY € Ygi. In

essence, each sudh corresponds to the point at which line () connecting

~

S
Xg £ [éT 1}
1

and X, intersects the hyperplar#, given in [9). Therefore, by applying the union bound to thetdi

number of rank on& € Yy, it follows that

P(mri <€) =€
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where

= inf Tr(QY).
TR Ylenyrn r(Q )

Note also that there is a one-to-one correspondence bettheerank one matrices and all possible
messages (not equal to the transmitted message)3 \e, that are searched over by the ML detector.
This is also the reason why

P(Tnge)iP(éwu_:e).

2) Full rank matrices:Next, consider the set of full rank (or more preciselgll conditioned Y €
given by
YVer £V N{Y | Y = I}

for some constant > 0, and let

wr 2 inf Tr(QY).
¥R = nf (QY)

As the criterion function;Ir(QY), may be bounded as
Tr(QY) = cTr(Q) = ol H|”
for any’Y € Vpg it follows directly that

mn

P(rpr <€) <€

by applying property[(37d) in AppendiX I. This result cancat®e strengthened to show that
P(TFR < 6) = 6%.

3) Discussion:The implication of the result in Sectios V-A.1 abhd V-A.2 st the event that < ¢
is (in the limit) much less likely to be caused by one of thennas in Yrg than one of the matrices
in Vr1. The probability of the former is on the order of:* while the later is onlyez ande™s < €2
whene is small (providedn > 1). Thus, (in a very loose sense) the reason for the high diyestthe
SDR detector is that the elements added in the relaxati@enafties in)ergr) are less likely to cause errors
than the elements already present in the feasible set of theéfection problem (the ones Mgy).

The question which however remains to be answered is if tlleseme other set o¥, somewhere
between the full rank and rank one matrices, which can cause ¢ to occur with a probability
substantially larger tham=. The answer to this question is somewhat surprisingyprovided that
n > m (but yesin somen < m cases). In fact, most of the remaining part of the paper iceored

with the formal proof of this statement.
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B. The General Case

In the general case we consider sets on the form given by
V(a,b) 2 YN{Y | e < ap(Y) < €} (22)

wherea = (a1,...,am), b = (b1,...,b,) andox(Y) denotes theith eigenvalue ofY. For notational
convenience we will also i {22) interpret: as0 for a;, = oo in order to allow one or more eigenvalues
to be identically equal to zero. We can without loss of gelitgrassume that the eigenvalues are ordered
andthatt < a1 <...<ap, 0=0b <...<b, andb, < a; for k =1,...,m. Note that the assumption
that b; = 0 can be made sincé€{22) would, due to fRgY) = 1 constraint of) in (I3), be empty

otherwise. Similarly to before we define

A .
T(a,b) = Yelj)rl(g,b) Tr(QY). (23)

In what follows, a bound on the probability afla,b) < € is obtained by first partitioning/(a, b)
into even smaller sets (essentiathpalls) and then using the union bound to bodh(r(a,b) <e). It
will be more convenient to work with a square root factolimatof Y € ) instead of withY directly.
Thus, we define a function,

@ : ST R™X™ (24)

(whereS’" denotes the set of symmetric, positive semidefinite matyiéar which A = ¢(Y) satisfies
A = UX: and whereUSUT = Y is the eigenvalue decomposition ¥. That is, ¢ provides square

root factors ofY which have orthogonal columns with norms equalte;. Let A(a,b) be given by
Ala,b) £ p(V(a, b)), (25)

i.e. A(a,b) is the set of square root factors which can be obtained ffddme )Y(a,b). Note that
Tr(QY) = |HA|? sinceQ = HTH and A = ¢(Y). The random variable(a, b), defined in[2B), can
thus be equivalently defined by

b) = inf [HA|?>. 26
7(a,b) Aéﬁ&mu | (26)

We are now ready to provide the first lemma regarding the fhitiathat |HA||2 < ¢ for any A in

an ez-ball around a given center poi € A(a,b).

Lemma 3:ConsiderA € A(a,b) and define

A(A) 2 {A | |[A - A| < e} 27)
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Further, let

7(A) £ inf |HA|2 (28)
AcA.(A)
Then,

- on(l—a)t
<e)<e 2y n(l —a)"
P(1(A) <e€)<e where v 2 5

and where(-)™ = max(0, ).

Proof: Note that, due to the rotational symmetry of the distributid H, it can without loss of generality
be assumed tha\ is diagonal (and equal th: whereX is a diagonal matrix containing the eigenvalues
of Y € Y for which A = ¢(Y)).

Pick somed > 0 and consider the event that
[H|| < e (29)

and where at least one column Hf, h,, satisfies

[y || > 26525 (30)

We will first show that this event implies that{ A) > ¢ and next that the event fails to occur with a

probability which is no larger (in thet sense) thar”~""%. Hence

P(r(A) <¢) <P (HHH > Uy <2670 w;)

< Eu—nm(S

Note first that[[3D) implies

hyof|| > 2370
for at least oné: sinceo, > ¢*. Note also that this implies
[HA| = [H: | > 26277

Now, consider|HA|| for any A satisfying||A — A|| < e. Under the additional assumption &129) it

follows that
|HA|| =|HA —H(A - A)|

>||HA| — [H(A - A)]
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where the last inequality holds whenever< 1. Note also that|HA|| > ¢z implies |HA|J? > e.
Therefore, [[20) and(B0) implies thafA) > e.
Now, consider the probability thaf{B0) fails to hold, elgatt

l—ayp

Iy <267 7°

forall k =1,...,m. As the columns oH are independent this probability can be upper bounded as

P (Hth <2350 Vk)

—:

P (Hth < 26%—5>

e
I
—_

71(17(1,6725)+

€ B El/—nm&

IA-
s

k=1

where we have used

nct

P (I < ) = P (Jh? < ) <

according to [[37d) in Appendi | withk = p~!. The probability that[{29) fails to hold can be upper
bounded as

P (HHH > 6—5) < e
according to[(34e) in Append[X I. Therefore, by applying thréon bound,
P(r(A)<e) <P (HH|| > U ||hy|| < 26350 Wc)

< eu—nmé + €>® éeu—nmé.

However, as®y > 0 was arbitrary it follows that
P(r(A) <e)<e”

which concludes the proof. |
The next lemma provides a bound on the numbetzaballs (defined as in{27)) which are required
to completely cover the set(a,b). Lemmal# is the technically most difficult result of this waakd

we discuss this lemma below but save the the stringent payoAppendixl.

Lemma 4:Let.A(a,b) and.A.(A) be defined as il .(25) and(27), respectively. Then there ilection
of points,2l = {A;}, for which

Ala,b) C | Acd(Ay)
Ae
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and

1A <eH

where|2| denotes the number of elementsfand where

Méi(m—k+2)(l—bk)+. 31)

2
k=2
Proof: Given in AppendiXl. [

Essentially, the proof of Lemnid 4 relies on a geometric aepurbased on the dimensionality of low
rank subsets afl. Specifically, as part of the proof of Lemidh 4 it is shown tihat $et of rank: matrices
AcA,ie.

Ag, 2 AN {A | Rank(A) =1},

is part of ad,.-dimensional (smooth) manifold where

T

dréZ(m—k—i—Z), r=2,...,m
k=2

andd, £ 0. The manifold containingdg, is locally diffeomorphic (having a one-to-one differetia
relation) with thed,-dimensional unit cube iR? (this is a property of any smoott.-dimensional
manifold [30] and not specific talg,). The volume,V, covered by ond,-dimensionak:-ball is on the

order of

&

T

V = (eé)dT — €2

and therefore one needs on the order of

1 —dy.
N = = R (32)

suchez-balls to cover the unit cube iR%". By exploiting that there is a differentiable (and therefor
continuous) map between the unit cube and the manifold #ssltr carries over to a covering ofg,..

Thus, the set of rank matrices,Ag,,, can be covered by a collection of poing,, satisfying
|20, | < Hr

where

dr " (m—k+2)
”’”_2_;:; 2

Extending this line of reasoning from rankdimensional subsets4r.,, to subsets which are close to
being low rank in the sense that the singular valuef\coére bounded by powers efyields the result

stated in Lemmé&l4. Note also that this is similar to the disicusfollowing Theorem 4 in [27].
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Now, LemmdB and Lemn1d 4 can be combined in order to bound ttEapility thatA(a, b) contains
an A for which ||[HA||? < e. Then, by optimizing ovea and b, one can find the set of the form of
A(a, b) most likely to contain such aA. It can also be argued that this set will dominate the prdiabi

of error in the high SNR regime. These ideas are captured dyolfowing lemma.

Lemma 5:Let 7 be defined as if{11). Then

P(r<e <
where
a . N (n—m+k—2)c
<= 120221.1.1.207”20 2 + Z 2 : (33)

k=2
Proof: Consider picking somé = (by,...,b,,) for whichb; = 0 andb; < b < ... <b, <1 and

choose & > 0. Leta = (ay,...,a,,) be given such that; = é anday = by + 9 iIf by +6 < 1 or
ap = oo otherwise fork =2,... m.

The probability thatr(a,b) < ¢ wherer(a,b) is defined in [2B) can be bounded, using the union
bound according as

P(r(a,b) <e¢) < Y P(r(A) <o)
A ed

where®l is chosen according to Lemnih 4 and whe(d\;) is given by [ZB). Each term in the sum is
upper bounded by
P(1(A;) <€) <¢
wherev is given in Lemmd13. The number of terms in the sum is upper dedrby
|2 <eH
wherey is given by [31). Thus, the probability thafa,b) < ¢ is bounded as

P(r(a,b) <e)<e"™#

where

n(l—ap)” i (m —k+2)(1 —by)*

2
k=1 k=2

n o oe~mn-m+k—2)(1-b)" mnd
254-2 —

2 2
k=2

mnd

S
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and where the property
(1 — ak)+ > (1 — bk)+ )

(for a, chosen as above) was used to establish the first inequatie/s&€cond inequality follows by the
definition of ¢ in (33) along withb; > 0.
Now, let
A= p(Y)

wherey is given by [2#). Note that we can pick a finite setoE [0,1]™, B = {b;}, such that

Ac | J Aa,b) (34)
beB
wherea = a(b) according to the above. This follows since by specifyltneg- (b1, ..., b,,) we include

the matricesY € Y for which the kth eigenvalue satisfied*+° < o, < € if b, < 1 andoy, < € if
b, = 1. Thus we can cover the entire rangeaf € [0, 1] with a finite number oft;, € [0,1]. For the
special case ok = 1 we know thato; is bounded away frond due toTr(Y) = 1 which implies that
o1 € [€%,1] for sufficiently smalle given thats > 0 which is whyb; = 0 can be assumed without loss
of generality.
Using the union bound it follows that
P(r<e) <> P(r(ab)<e)
beB

Lot

since each term in the sum satisfies

which concludes the proof. |

In light of Lemmal® the proof of Theorel 1 is now almost triviall that remains is to computé

in (33) and apply LemmBl 2. We give the proof below.

Proof (of Theorerfil1)For the case where > m all terms in the sum appearing i-{33) are non negative.

Thus, the minimum in[(33) is achieved fo§ = ... = ¢, = 0 and it follows that

n
(=73
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This, combined with LemmBl 2, proves that

w3

P (3spr #e€)<p 2.
Next, note that the error probability of the SDR receiverowér bounded by
P (8spr # €) > P (8ur £ €) = p 2

since the ML detector achieves the minimum probability aberlt therefore follows that

w3

P (sspr #e) =P (SuL #e) =p 2.

By noting again thas = e can be assumed without loss of generality the statement@drem 1 follows.
[ |

VI. EXTENSIONS

At this stage, only the case of real valued systems on the &r(@l) have been considered. Also, for
the proof of Theorenill it was assumed that> m. In this section, we discuss the extensions which

would follow by relaxing these constraints and some illaste numerical examples are given.

A. Then < m case

As stated above, full diversity has so far been shown underctindition that, > m. However, a
careful inspection of the proofs show that the only part Whagplicitly relies on this assumption is when
it is argued thaty, = ... = ¢,, = 0 is an optimal point for[(33) in the > m case. However, nontrivial
bounds on the diversity will follow wheneverin @3) is strictly positive. The following theorem provile

a lower bound on the diversity for the case wher: m.
Theorem 2:Given the assumptions of Theordin 1 but fof m —n > 0, it holds that
InP (§SDR 75 S)

lim < —d
p—00 lnp
where
1 r(r+3)
——— _ 35
d 5 <m 5 > (35)

Proof: All that needs to be done in this case is to find the optimuniCl) éhd apply LemmBl2. To this
end, note that the optimum di33) is achieved égr= 1 for all k& satisfying

n—-m+k—-2<0s<ck<m-n+1
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andc¢;, = 0 for k satisfying

n—-m+k—-2>0k>m—n+2.

The value of¢ in @33) is thus given as
m—n-+1

n n—-m+k—2 1 r(r+3)
C=5+ 2 fﬁ(”@‘ > >

k=2

This completes the proof. |

Note that this result is only nontrivial if

r(r+3)
2

m >
as otherwise Theorefd 2 would simply state that the prolatoh error is less than one. Further, we
have no specific reason to believe that the bound is tighth@gnsense that could be replaced by:)

in the n < m case, even in the cases where the bound is non-trivial. Aicatidn of this is given in
Fig. @ where the diversity of the SDR detector seems to bestatftan2 which is predicted by[(35). It

is however also unreasonable to expect the bound to be vesg lm the sense that the SDR detector
would maintain the same diversity as the ML detector in theegal case where < m. This is indicated
by Fig.[4 where the error probability of the SDR is signifidgrarger than that of the ML detector.
Intuitively, in the n < m case, it can become likely that a matrix with higher rank tbae achieves
the minimum in [IR). Therefore, the typical error events lud SDR detector no longer coincide with
the error events of the ML detector and the SDR detector cperance a loss in diversity. We do not
however, as pointed out above, expect the loss to be as largda is indicated by (35).

A possible way to strengthen the analysis in the< m case can actually be seen by turning back
to Fig.[2. Essentially, as part of proving TheorEin 1 (and Téex2) the intersection o’ and H is
covered withe-balls. However, due to the linearity of the objective fuoutit is already known that the
minimum objective value over the intersection set must ddexed by one of the boundary points of
X. Therefore, it would suffice to cover the intersection?fwith the boundaryof X'. This would in
turn strengthen the bound d®(| in Lemmal# but would also require a framework for parameigiz
the boundary set. It may also be possible to use the struofuttee problem in other ways. One such
way could be to make use of the results in [29] (where boundsherrank of extremal matrices for

semidefinite programs are provided) to further limit thetdirthe feasible set that needs to be covered.
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B. Complex channel matrices

It is well known that the SDR receiver is also applicable te tase where 4-QAM symbols are
transmitted over a complex valued MIMO channel, see e.g.The most direct strategy is to rewrite

the problem in an equivalent real valued form according to

Rlve)| _ [RO) —S(H) | |Rse)| - |R(ve) )
S(ye) S(He)  R(He) | |S(se) S(ve)
wherey,. € CV, H, ¢ CV*M 5. ¢ CM andv. € CV are the (to[lll)) corresponding complex valued
quantities and wher&(-) and3(-) denote the real and imaginary parts.

However, the proof of Theoref 1 does unfortunately not ektercover this case. The specific reason
is found in Lemmd13 where the rotational symmetrykbiis explicitly used. This symmetry is lost in the
formulation given in[(3b), even in the case whdile is i.i.d. compex, circularly symmetric, zero mean
Gaussian. More importantly, numerical simulations sugges the extension of Theoreh 1 to this case
may not even be true. An indication of this can be seen in[Fighé&re it is plausible to believe that the
SDR receiver does experience a loss of diversity. Howevshauld also be pointed out that we do not
expect the loss (if any) to be very large in general. Thisdbe$ based on extensive simulations, such
as the one shown in Figl 6, that indicates a high SDR diveisithe complex case.

At first sight, what would be required in order to cover the ptewr case would be to update Lemfja 3
for the structure of the effective channel matrid, in @8). It is however also likely that Lemnid 4
would need to be strengthened (as discussed in Se€ciiod \-Ayder to obtain a tight bound on the
diversity. However, these steps remain a challenge. Alste that if the SDR detector does not achieve
full diversity, the issue of providing a lower bound on theoerprobability (or equivalently an upper

bound on diversity) will also become more challenging.

VIl. CONCLUSIONS

In this paper we have shown that when applied to a fading alammodelled by a real valued matrix
with i.i.d. Gaussian entries of zero mean and finite variattoe semidefinite relaxation detector achieves
the maximum possible diversity. This provides a strong grerfince guarantee for the SDR approach,
when applied in the communications context. Based on theudgsons in Sectiofn VI it does not seem
reasonable to expect such a strong statement to hold for katraay system. Nonetheless, it is still
reasonable to assume that the SDR detector will be superithet class of linear detector and other

relaxation techniques.
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APPENDIX |

EXPONENTIAL EQUALITY

For the readers convenience, we list the (for this work) nmogiortant properties associated with the
definition of exponential equalityn (). These properties are easily derived from the dediniin (1)
and can also be found (often implicitly) in many texts, see 7], [2]. Thus, we state the properties

without proof.
1) Scaling propertyFor anya € [—oo, o0] ande € (—oo, c0) it holds that
fp) =p~* = cflp) =p~* (37a)

2) Summation propertyfFor anya, b € [—oo, oo] it holds that

Fp) =077 glp) = p~" = f(p) + g(p) = p~ min(@b) (37b)

This property extends in the obvious way to the sum of finitelgny terms.

3) Multiplication property: For anya, b € [—oo, oo] it holds that

Fp)=p77 glp) =p" = f(p)g(p) = p~ @) (37¢c)

if the cases where + b is not well defined are excluded.
4) Extremal realizations of Gaussian vectoiset h € R? be a vector of i.i.d. Gaussian elements of

finite non-zero variance. Then
N

P(h|?<p=) =p~ 5 (37d)
for ¢ € (—o00,00), wherect £ max(c,0) and
P (|[l]* > p%) = p° (37e)

for ¢ > 0. These properties follow by noting thgh||? is x? distributed withd degrees of freedom,

see e.g. [2, Section 5.4.2].
It should also be noted that the properties giverinl(37aH)&nd [37c) also hold witke or > in place

of =.

APPENDIX II

PROOF OFLEMMA 4

Before proving Lemm&l4 we establish the following techniesiult regarding the feasible set bf{(12).
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Lemma 6: The set) defined in [(IB) satisfies

Y={Y eS| Tr(Y)=1Y = 1dd",d = diag(Y)}. (38)

Proof: Consider the transformation given by

- X (39)

or inversely,

X = (40)
ot 1 at ¢| [T 1

R
sinceT~! = R. Note also thafY is given byY = MXMT asM = [1 _e] by (I0). ExpandingX

from (40) yields
Y + ael +eal +ece” a+ec

al + ceT c
Thus, the constrainfiag(X) = e for X € X implies thatc = 1 for Y € Y since) C Y = MxMT
for ) given in [I8) and wher@ is given in [I#). Further, for = 1

diag(Y + aeT + eaT +eel) = diag(Y)+2a+e=e

which implies that

a = —1diag(Y). (41)

Thus, given a matrixY’ € Y there is actually a uniquX e X for which’ Y = MXMT. In other words,
the mapping fromY to ) is one-to-one.
SinceT (andR) are invertible the constrairX > 0 is equivalent toP = 0. However,P = 0 if and

only if its Schur complement [20] is positive semidefinites, iif
Y — ¢ laa® >~ 0.

Thus, by combining[{41) with- = 1 and identifyingd = —2a the equalities of[13) and_(B8) are
established. [
We are now in a position to prove the statement given by Lefmoa convenience the lemma is

restated below.
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Lemmd¥:Let A(a,b) andA.(A) be defined as if(25) and{27) respectively. Then there isleatimn
of points,2l = {A;}, for which

Ala,b) C | Ac(Ay)
A;e

and

A < e

where

#éi(m—km)(l—bkﬁ

2
k=2

Proof: Consider the tripletU, A, z) € R™*™ x R™ x R™ and the system of equations given by

Tr(A%) =1 (42a)
diag(UA?UT) = Uz (42b)
vtu =1 (42c)

A? —1zz" -0 (42d)

where A £ diag(X). The set of solutions td_(#2) will in what follows be denotegl M. The set of
solutions to[(42a)[(42b) anf{42c) but not necessdrlyl(42denoted by\V and it follows thatM C N.
From [42&) and[{42c) it follows thax and U in the solution set are bounded. However,ass full
rank due to[(4Zc) it follows througli{4Rb) thais also bounded. Therefore, both and M are compact
(closed and bounded) sets.

The constraints of({42) are such that any solutidd, A, z), of @3) satisfiesUA2UT ¢ ) and any
eigenvalue decompositioly, = UXUT, of Y € Y solves[[2R) forA = >z and some (unique). To see
this, consider the eigenvalue decompositidh= UXUT, of someY < ) where) is given by [IB).
Note also thafY belongs to) if and only if it satisfies the constraints df_{38) as proverLammal®.
The orthogonality ofU € R™*™ is a property of the eigenvalue decomposition and theref@Z€) is
satisfied. ForA = X3 andz = UTdiag(UA2UT) the constraint of [42b) is satisfied. A8 € Y it
follows thatY — 2dd™ = 0 whered = diag(Y). Thereforediag(Y) = diag(UA2UT) = Uz implies

UA’UT - 1Uzz"UT 0o A? - 122" -0

which means that{42d) is satisfied. Finally, the constrdintyY) = 1 in @8) implies Tr(A?) = 1
and [42h) is satisfied. Reversing the reasoning and applygéngmal® show that any solution tb{42)
must also have the property thEA2UT € ).
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The value of introducing[{42) is that it will, through the ifigit function theorem [31], provide a
means of parameterizing the eigenvalues and vectoh af). To this end, let

+1
pém—k%—kl,

g2 m?+2m,

andw € R? be given by

w= (U, 2).
Define
H:R9+— RP
according to
Tr(A?%) -1

H(w) £ | diag(UA2UT) — Uz
svec(UTU — 1)
and note that (w) = 0 corresponds to{4Pa)[_(42b) arld_(U2c). In the abaeveq(-) referrers to the

vector obtained by stacking the upper triangular part of mragtric matrix into a vector. Let
@ = (U, 2)
be a solution of[(42) and be an index set satisfying
Zc{l,...,q} (43)

and
IZ| = p- (44)

Denote byws € RP the vector of components iw indexed byZ and letwz. € R?"P be the vector
consisting of the remaining components. The implicit fimettheorem [31] states that if

OH (w)
8w1

£ 0, (45)

w=w

then there is a neighborhoad, C R?, containingw and a differentiable mapping
g:RT7P 5 RP

satisfyingwzs = g(wz-) for anyw € U N H~1({0}).

Further [45) implies the existence of a differentiable magp

Yv:D—R
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for which w = (¢), where¢ £ wz. — @z. € RI°P, whereD is an open subset k%P containing

0 and whereR = (D) C RY. This mapping is easily obtained fropby including the components
in wz. and performing a translation to a neighborhooddofThus, assuming thal“(B5) is satisfied, the
solution set of[[4R) is locally parameterized by p scalar parameters. It will in fact later be shown that
given any solution, @, to (42) there will be some index séf, satisfying [4B) and{44) for which_{#5)
is satisfied. This implies that/ is a ¢ — p dimensional (smooth) manifold embeddedRf [32]. Note
however that the specific index sét, required to satisfy[{45) will generally depend on the paittr &
chosen. This is analogous to the problem of parameteritiaginit circle based on solving + 3% = 1
where the choice af or y as thefree parameter depends on if the parametrization neighborhiooald
includez =0 ory = 0.

Note that it can without loss of generality be assumed thatdibmain ofi, is given by
D= (—k,r)T P, (46)

i.e. thatD is an open hypercube for some> 0 [32]. Further, sinceV is compact it can be assumed
that x is independent ofo. It can also, without loss of generality, be assumed thas Lipschitz
continuous [33] orD. This follows since the inverse function theorem guarasteat:) has continuous
derivatives on the closure @, D (actually, in its standard form the inverse function theoguarantees
continuous derivatives o but by reducings if necessary the continuity can be extended to the closure
of D). Further, again due to the compactness\gfit can be assumed that the Lipschitz constant)of
is independent ofv.

In order to prove theexistenceof an index setZ, for which {(43) is satisfied it is sufficient to prove
that the Jacobian matrib,

s OH(w)

D& — € RPXY, (47)

w=w

is full rank. In this event, the index sef, can be taken as the indexes of gnyinearly independent
columns ofD. For our purposes however, we shall need to be a bit morefgpabbut howZ is chosen.
Therefore, note again that it will be of particular interesstudy parameterizations 8#f (and ) around
solutionsw corresponding to rank deficienf € ) (see the discussion in Sectibn"V-A.3). To this end,
consider somev € M for which \,,; = ... = \,, = 0, i.e. @ corresponds to a rank matrix Y € .
Here, and in what follows); andz; refer to thekth component o\ andz respectively. For any € M

it follows by @24d) that|z;| < 2|\g| for £ =1,...,m and in particular it follows that, = 0 whenever
Ar = 0. We will in what follows refer to anyw € N which satisfies both\,,; = ... = X\, = 0

andz,41 = ... = z, = 0 as a rankr point, even in the case that # M. The reason for using
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this terminology is that it is often difficult to verify thal2d) is satisfied but sufficient to provide a

parametrization around rankpoints,& € N.

Let
prém—FL;_l)—i-l
and
¢ 2 r(m+2)

and note thap = p,, andq = ¢,,. Further, letu; denote thekth column ofU. It will in what follows
be shown thatv, in a neighborhood of a rank point, @, can be parameterized by specifying and
zp for k=r+1,...,m, a subset ofn — k parameters fromy, for k =r +1,...,m, and a subset of
q- — pr parameters from

A
Wr = (U1, Wy Ay ey Apy 21, e vy 21)-

It is straightforward to verify that this amounts to a totdélqo— p parameters. The specific parameters
chosen fromuy for k = r +1,...,m and fromw, will remain unspecified. In line with the previous
discussion these must ultimately depend on the spesifisound whichM or A is parameterized.

Before proving the preceding statement consider first tlghtyy more general system of equations

given by
Tr(A) +7 =1 (48a)
diag(U, A, U,) +~ =U,z, (48b)
UU, =1 (48c)

where(U,, A, z,,7,7) € R™*" x R" x R” x R™ x R! for somer, 1 < r < m. For now, it is sufficient
to view the addition ofy andn as (small) perturbations of the constraints[inl (48). The#kelater be
used to develop a perturbation analysis of the solutionE) éround the rank points.
Let
w, 2 (U, A, 2,)

and definew, analogously. Define
H, : R+ P
according to
Tr(A2) +n—1
H,(wr,v,m) £ | diag(U,AZUY) + v — U, 2,
svec(UTU, — 1)
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and note that, (w,,~,n) = 0 is equivalent to[(48). In order to establish that the sotuset of [48)
can (locally around a particular solutio@,(,0,0)) be parameterized by, — p, + m + 1 parameters it is

sufficient to establish that the Jacobian

_ OH, (@)

D, = € RP-X¥ar (49)

0w, o
is full rank when evaluated ab, satisfying H,(w,,0,0) = 0.

Note that, similarly to before, iD, in @3) is full rank then this implies the existence of a Lipsz
continuous function

Yr : Dy = Ry (50)

where (U, A\, z,) = ¥,(€,,7,n) for &, € R&~P whereD, € R%~P-+m+l js an open neighborhood

of 0, and whereR,. = ¢, (D,). Also, without loss of generality it can be assumed that
D, = (_’{7 I{)qr_pr"l_m"l_l'

In order to establish the full rank property B¥, consider the matrix

S oH@)
"ol ... gl 2T, A

w=w

whereg, is the kth row of U,, i.e.

T
A O P
Note thatD, is related tdD, by a permutation of the columns (due to a changed order adrdiftiation)

and thatD, is full rank if and only if D, is full rank. ComputingD, (semi) explicitly yields

0 . 0 0 X
0gTA2 — 7T ... 0T gl 2A,g?
D, = ' P
0T o 2gTA2 -2l gl 2A.g
G . G 0 0 |
where
G, 2 9G,(Uy) for G,.(U,) £ svec(UrU, — 1)

agk W, =W,
and whereg? denotes element wise squaring @f Assume first thatg A2 — z] = 0 for somei,
1 <i < m. This implies through[{48b) (an¢ = 0) that

gF A%g; = 287 A2g;

T
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and in turnA%g; = 0 as A2 = 0. Further, it follows thatz, = 0 and thatA, = 0 by insertingz, = 0
into (48B). This however violate§ {48a) and contradicts tha is a solution to [(48). Thus, it can be
assumed thatg A2 —z # 0 for all i = 1,...,m which implies that the firstn + 1 rows of D, are
linearly independent.

Establishing that the last(r 4+ 1)/2 rows of D, are linearly independent is a standard exercise in
proving that the(m, r)-Stiefel manifold (the set ofn by r unitary matrices) has dimension

1
mr — 7T(T;_ )

which is a well known result [32]. We will for this reason nabpide an explicit proof of this. In fact,
the lastr(r 4+ 1)/2 rows of D, are not only linearly independent but also orthogonal.

What now remains to be done, in order to show ﬁatis full rank, is to prove that none of the first
m + 1 rows can be written as a linear combination of the remaimifigt 1)/2 rows. For the first row,
this is obvious due to the structure B, together with, # 0. For the nextn rows the only potential
problem would be ifg; = 0 for somei. However, as

m
Gr(U,) =svec(UIU, — 1) = Z svec(gig} ) — svec(I)
i=1
it follows that G; is linear ing; and equal to zero whenevegf = 0. Together with the property that
26T A2 —z! +# 0 it follows that none of the first» + 1 rows can be formed as a linear combination of

the remaining-(r + 1)/2 rows. This establishes th&,, andD,., are full rank. Note that as
D=D,,

it also follows that the assertion di_{45) has been proven.

Consider again the parametrization/gf around some rank @ € N and consider the matrix

0H (w)
P = .
O(Wr, Wrg1s -5 Uy |y
Note thatP is nothing more tham with the columns corresponding 9. andz; fork=r+1,....,m

removed. It is straightforward to verify th& is structured as

D, 0 --- 0
X FT ‘e 0

P— r+1 - (51)
X >< .- .
x x x FI

where

Fy = a; - Up_q 20 (52)
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and wherei; is theith column of U in (U, \,z) = @. The structure of[{32) follows by differentiating
svec(UTU, —I) with respect to théith column of U, (remember thatvec forms a vector of thaipper
triangular part of its matrix argument). Note tHaf € R¥*™ is full rank for anyk, 1 < k < m, (as the
rows are orthogonal) and th&, € RP-*? is full rank as proven earlier. By considering the structure
of P it follows that a linearly independent set of columns can dlected by choosing, columns form
the set of columns containin®,, and £ columns from each set containidg, for k = r +1,...,m.
This, as elaborated on earlier, is however equivalent tathement that the set of solutions [fal(42) can
locally around@ be parameterized by specifying — p, parameters fromwv,., m — k parameters from
uy along with A\, andz, for k=r+1,...,m.

Now, turn attention to the original problem posed by Lenithdhét is, the problem of obtaining a
covering of A(a, b) defined in[Zb) and whera = (a1, ,am), b= (b1, -+ ,by) and0 <b; < ... <

by,. Let r be the maximum integer for which
O=bi=...=b, <bpy1 < ... < by

As stated earlier, ib; > 0 then A(a,b) will be empty for sufficiently smalk. It is thus safe to assume
thatb; = 0 andr > 1. Further, it can without loss of generality be assumed ¢hatarbitrary small. In

particular, it can be assumed that

wherex is the constant introduced iB{46).
Consider the set
M(b) 2 MA{(U A z) | |\ <es)

The setM(b) is chosen such that any matriX € A(a,b) can be expressed a = UA for some
(U, X, z) € M(b). Thus, the parametrization 0¥ (b) will also provide a parametrization od(a,b).

Let {¢(l>}f:1 be a set of parameterizations (around rargoints) such that
L
M(b) c | JRV (53)
=1

where RO 2 40(D). The assumption that™s* < &« ensures that it is suffice to consider
parameterizations around ranlpoints,w € N, in order to coverM (b). Note also that by the assumption
in @8) the coordinate neighborhoods »f) are all equal toD. Further, sinceM(b) C N is compact
(and sinceR (") is open) it can be assumed thatis finite [31]. DefineD® (b) according to

DO(b) £ v~ (M(b) NRY)
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and note thaD)(b) ¢ D. Finally, define
PO(b) 2 {A | TJz, (U X z) eMbNRY, A=UA}

where A £ Diag(A) and note that
L

A(a,b) c | JPY(b). (54)
=1
So far, the existence of a specific parametrization, givetI bgas been proven. However, not much

has been said regarding the properties of this particuleanpetrization. Thus, to specify the benefits of
the particular parametrization chosen, let in the parametetor£ the components obtained by selecting
a subset ofuy, Ay, 21,...,u,, Ar, 2.) be denoted by, € R%~P-, Similarly, let the components obtained

from uy, for k =r +1,...,m be denoted by, € R™*. That is,

5 = (07‘7 07‘+17 /\7‘+1> 2 I 0m> >\m> Zm).
Further, introduce€ and€ and partition these analogously. Assume #ha§ € DU (b), let (U, \,z) =
Y0 (€) and (U, X, 2) = D (€) and letA = UA and A = UA where A £ Diag(\). Further, let
A = A—A, ie. A s the perturbation imA resulting from a perturbatiorf £ £ — ¢, of £. The objective
is now to show that i € C where
C2{E ] 110r]lc < ce?, [Bklloo < ce =y [My] < ce,

5| <cex, k=r+1,...,m}

andc is some (yet to be defined) constant it will follow that
IA— Al =||A] <. (55)

In the above and in the foIIowingS,\k, S\k, % and z, refer to thekth component of5\, X, 2 and z
respectively.

Let u;, and i, denote thekth columns ofU and U. Let
(U,Az) = (U,\,2)— (U, z)

and leti, denote thekth column of U. The first step is to prove thalii||o, < che% for some

constantK,. Note that sincé; < ... < b, it follows immediately from the Lipschitz continuity ap

1—bm

1—bm .. . 1-b . .
that ||@,, || < cKe = for some constank,,. This is sincee =z~ < ¢ =z for k < m implies that

1€l00 < ce =™ and K, could simply be selected as the Lipschitz constantimorm) of «.
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For k < m, let U, € R™ " be the matrix consisting of the firégt columns ofU, let A\, € R* the
vector of the firstk elements of\ and letz;, € R* be the vector of the first elements ofz. Assume

that || ;|| < cKe 3

for somek < i < m and note thatUy, A, z;) must satisfy[(48) for

m
v = Z Adiag(wuj ) — u;z;
=kt 1

n= f: P

i=k+1
Note also that, by the structure & in (&) it follows that

and

(Uk, Ak, 28) =
¢k(07‘707‘+17/\7‘+1>z7‘+17"' 70/67)\/67'2]977777) (56)

wheret,, is the function given by the implicit function theorem [ 5@y expanding

m
A A 12 1 ~ AT A A
Y= Z A; diag (00, ) — ;2
i=k+1
m

= Z (N + S\Z-)2diag((ui + ;) (u; + ﬁi)T)
i=k+1

— (W +1)(z + Z)

and . .

e A= i+ A
i=k+1 j
-va

it is straightforward to show thay £ 4 nd7 £ 7 — n satisfies

1
2

[Flloe < cKpez  and |n| < cKye

for some constank,. In essence, the potentially large perturbation (on theeroot e%) in 6; for
i, k < i < m is always multiplied by factors on the order of which results in a perturbatiory,
on the order ofez. Note also that it is implicitly assumed thatis such thateK ez < k or otherwise
(wr,yv,7n) ¢ D,.. However, as can be assumed arbitrary small this is not a problem.

By the Lipschitz continuity ofy;, in (&0), it follows that
”flk”z S CK]CE%&
for some constank’;, since the argument ifi.{b6) is bounded by

1— ~ ~ 1—by

1
maX(ce 7, cKpez) < cKpe 2



SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY 38

By induction it follows that]|ay||? < cKpe 5" for k = r+1,...,mand|u|| < cKpez fork=1,....r
where K, k = r,...,m, are constants independent«fndc. Now, by expanding
A-UA= (U+O)A+A)
=UA + UA + UA + UA
it follows that A £ A — A satisfie|A|| < cKe: for some constants. Finally, by selecting: according

to ¢ = K1 it follows that

1Al =JA - Al <e.

What has been shown so far is that a perturbatorground a pointg, in the parameter spad@(®)
will, given that€ € C, result in a perturbation oA, A, which satisfies|A|| < 3. This implies that

given a set o € DU (b), {¢-D}L_ | for which

i=11
I

p(b) < [ J o)

=1
where

C) =C+¢,
we will also have a covering o) (b) given by
PO(b) c | JA(AG)) (57)

where A1) — Ui A WD)
(UED, A 500y 2 0 (g,

AL) 2 Diag(AG)) and whereA (A) is defined in [2I7). However, a&(¢) is simply a (rectangular)

box centered af and since

DYU(b) C{&] 10,00 <2, [Bkllo <1, M| <€,
2| <2F, k=r+1,...,m} (58)
it follows that {¢"9}/_, could be chosen such that

I<e ™

where

p= @ —p) f: (m—k)(1=be)" 20 —b)*

2 2 2
k=r+1
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This follows from the general statement that in order to cavdarge M-dimensional box with side

lengthse®, i = 1,..., M, with small boxes of side lengitf, i = 1,..., M, one needs (in the- sense)
M
[[e P = =i mpo’
=1

small boxes in total. Note also thatdf; < 3; the “small” boxes are actually wider than the large box in
the ith dimension which is the reason for the; — 3;,)™ expression as opposed ta; — 3;).
By noting that

(m +2) rrtl) ZT: k+2
J— ot r-m-— ——— — ot J—
qr — Pr m 5 m
k=2
and using the assumption thiat= 0 for k = 1,...,r it follows that x can be written as

/L:;(m_k+22)(l_bk)+.

Thus, it has so far been shown that it is possible to ca¥ér by I <e * sets A.(A;). By (54) and
since L was finite this result extends to the covering.4fa,b). That is, it has been shown that there

exists a covering)l, which satisfies

Ala,b) C | Ad(Ay)

A e
and
A<
as was asserted by Lemioa 4. [
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SNR [dB]

Fig. 1. The probability of error whebl € R™*™ has i.i.d. real valued Gaussian entries, and where n = 4.



Fig. 2. lllustration of the feasible sef’, of the SDR detector iI5). The hyperplaké separates points in the feasible set

that are close to and far froXe.



SNR [dB]

Fig. 3. The probability of error whell € R™*™ has i.i.d. real valued Gaussian entries, and where 4 andn = 3.



SNR [dB]

Fig. 4. The probability of error whell € R™*™ has i.i.d. real valued Gaussian entries, and where 4 andn = 2.



SNR [dB]

Fig. 5. The probability of error whell € CV** has i.i.d. complex valued Gaussian entries, and wiére M = 2.



SNR [dB]

Fig. 6. The probability of error whell € CV** has i.i.d. complex valued Gaussian entries, and wiére M = 4.
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