
ar
X

iv
:c

s/
06

03
01

3v
1 

 [
cs

.I
T

] 
 2

 M
ar

 2
00

6

On the MacWilliams Identity for Convolutional Codes

Heide Gluesing-Luerssen∗, Gert Schneider∗

March 2, 2006

Abstract: The adjacency matrix associated with a convolutional code collects in a
detailed manner information about the weight distribution of the code. A MacWilliams
Identity Conjecture, stating that the adjacency matrix of a code fully determines the
adjacency matrix of the dual code, will be formulated, and an explicit formula for the
transformation will be stated. The formula involves the MacWilliams matrix known from
complete weight enumerators of block codes. The conjecture will be proven for the class
of convolutional codes where either the code itself or its dual does not have Forney indices
bigger than one. For the general case the conjecture is backed up by many examples, and
a weaker version will be established.
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1 Introduction

Two of the most famous results in block code theory are MacWilliams’ Identity Theorem
and Equivalence Theorem [12], [13]. The first one relates the weight enumerator of a
block code to that of its dual code. The second one states that two isometric codes are
monomially equivalent. The impact of these theorems for practical as well as theoretical
purposes is well-known, see for instance [14, Ch. 11.3, Ch. 6.5, Ch. 19.2] or the classification
of constant weight codes in [7, Thm. 7.9.5].

The paramount importance of the weight function in coding theory makes an under-
standing of weight enumerators, isometries, and, more explicitly, possible versions of the
MacWilliams Theorems a must for the analysis of any class of codes. For instance, after
realizing the relevance of block codes over finite rings, both theorems have seen general-
izations to this class of codes, see for instance [22] and [2]. For convolutional codes the
question of a MacWilliams Identity Theorem has been posed already about 30 years ago.
In 1977 Shearer/McEliece [20] considered the weight enumerator for convolutional codes as
introduced by Viterbi [21]. It is a formal power series in two variables counting the number
of irreducible (“atomic”) codewords of given weight and length; for the coding-theoretic

∗University of Groningen, Department of Mathematics, P. O. Box 800, 9700 AV Groningen, The Nether-

lands; gluesing@math.rug.nl, schneider@math.rug.nl

1

http://arxiv.org/abs/cs/0603013v1


relevance see, e. g., [21, Sec. VII] and [9, Sec. 4.3]. Unfortunately, a simple example in [20]
made clear that a MacWilliams Identity does not exist for these objects. A main step
forward has been made in 1992 when Abdel-Ghaffar [1] considered a more refined weight
counting object: the weight enumerator state diagram. For unit constraint-length codes
he derives a MacWilliams Identity in form of a list of separate formulas relating the labels
of this diagram to those of the dual code.

In this paper we will present a MacWilliams Identity for the class of convolutional codes
where either the code or its dual does not have Forney indices bigger than one. Duality of
codes will be defined in the standard way based on the vanishing of the canonical bilinear
form on F[z]n. Our result generalizes not only the block code case, but also Abdel-Ghaffar’s
transformation for unit constraint-length codes. We will show in Section 6 that the list of
identities given in [1] can be written in closed form just like in our MacWilliams Identity.
In addition to the result just mentioned we will also formulate an explicit conjecture on a
MacWilliams Identity for all classes of convolutional codes. It is backed up by a wealth of
examples, and a weaker version will be proven.

The weight counting object in our considerations is the so-called adjacency matrix of the
encoder. This matrix has been discussed in detail by McEliece [17], but appears already in
different notations earlier in the literature. Indeed, one can show that it basically coincides
with the labels of the weight enumerator state diagram as considered in [1]. The adjacency
matrix is defined via a state space description of the encoder as introduced in [15]. In this
sense our approach follows a series of papers where system theoretic methods have been
used successfully in order to investigate convolutional codes, see for instance [18], [19], [3],
and [8]. The matrix is labeled by the set of all state pairs, and each entry contains the
weight enumerator of all outputs associated with the corresponding state pair. The whole
matrix contains considerably more detailed information about the code than the weight
enumerator discussed above. Indeed, it is well-known [17], [5] how to derive the latter
from the adjacency matrix. Furthermore, in [5] it has been shown that, after factoring
out the group of state space isomorphisms, the adjacency matrix turns into an invariant
of the code, called the generalized adjacency matrix.

The main outline of our arguments is as follows. In the next section we will introduce
two block codes canonically associated with a convolutional code. They are crosswise dual
to the corresponding block codes of the dual convolutional code. Later on this fact will
allow us to apply the MacWilliams Identity for block codes suitably. Indeed, in Section 3
we will introduce the adjacency matrix Λ and show that its nontrivial entries are given
by the weight enumerators of certain cosets of these block codes. The main ingredient for
relating Λ with the adjacency matrix of the dual will be a certain transformation matrix H
as it also appears for the complete weight enumerator of block codes. This matrix will be
studied in Section 4, and a first application to the adjacency matrix will be carried out.
In Section 5 we will be able to show our main results. Firstly, we prove that entrywise
application of the block code MacWilliams Identity for the matrix HΛtH−1 will result in a
matrix that up to reordering of the entries coincides with the adjacency matrix of the dual
code. Secondly, for codes where the dual does not have Forney indices bigger than one we
will show that the reordering of the entries comes from a state space isomorphism. As a
consequence, the resulting matrix is indeed a representative of the generalized adjacency
matrix of the dual code. This is exactly the contents of our MacWilliams Identity Theorem.
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We end the introduction with recalling the basic notions of convolutional codes. Through-
out this paper let

F = Fq be a finite field with q = ps elements where p is prime and s ∈ N. (1.1)

A k-dimensional convolutional code of length n is a submodule C of F[z]n of the form

C = imG := {uG
∣∣ u ∈ F[z]k}

where G is a basic matrix in F[z]k×n, i. e. there exists some matrix G̃ ∈ F[z]n×k such that
GG̃ = Ik. In other words, G is noncatastrophic and delay-free. We call G an encoder and
the number δ := max{deg γ | γ is a k-minor of G} is said to be the degree of the code C. A
code having these parameters is called an (n, k, δ) code. A basic matrix G ∈ F[z]k×n with
rows g1, . . . , gk ∈ F[z]n is said to be minimal if

∑k
i=1 deg(gi) = δ. For characterizations

of minimality see, e. g., [4, Main Thm.] or [16, Thm. A.2]. It is well-known [4, p. 495]
that each convolutional code C admits a minimal encoder G. The row degrees deg gi of
a minimal encoder G are uniquely determined up to ordering and are called the Forney
indices of the code or of the encoder. It follows that a convolutional code has a constant
encoder matrix if and only if the degree is zero. In that case the code can be regarded as
a block code.

The weight of convolutional codewords is defined straightforwardly. We simply extend
the ordinary Hamming weight wt(w1, . . . , wn) := #{i | wi 6= 0} defined on Fn to polyno-
mial vectors in the following way. For v =

∑N
j=0 v

(j)zj ∈ F[z]n, where v(j) ∈ Fn, we put

the weight of v to be wt(v) =
∑N

j=0wt(v
(j)).

Finally we fix the following notions. For δ > 0 we will denote by e1, . . . , eδ the unit
vectors in Fδ. For any matrix M ∈ Fa×b we denote by imM := {uM | u ∈ Fa} and
kerM := {u ∈ Fa | uM = 0} the image and kernel, respectively, of the canonical linear
mapping u 7→ uM associated with M . Moreover, for any subset S ⊆ Fℓ we denote by
〈S〉 the F-linear subspace generated by S. If S = {a1, . . . , at} is finite we simply write
〈a1, . . . , at〉 for 〈S〉. We will also use the notation 〈a, U 〉 := 〈a〉 + U for any a ∈ Fℓ and
any linear subspace U ⊆ Fℓ.

2 Preliminaries

The controller canonical form of an encoder is a well-known means of describing convolu-
tional codes. Since our paper is completely based on this description we will first present
the definition of the controller canonical form and thereafter discuss some of the basic
properties as needed later on. It also allows us to conveniently introduce the two block
codes associated with a convolutional code that are crucial for our investigation.

Definition 2.1 Let G ∈ F[z]k×n be a basic and minimal matrix with Forney indices
δ1, . . . , δr > 0 = δr+1 = . . . = δk and degree δ :=

∑k
i=1 δi. Let G have the rows gi =∑δi

ν=0 gi,νz
ν , i = 1, . . . , k, where gi,ν ∈ Fn. For i = 1, . . . , r define the matrices

Ai =

( 0 1
. . .

1
0

)
∈ Fδi×δi , Bi =

(
1 0 · · · 0

)
∈ Fδi , Ci =




gi,1
...

gi,δi


 ∈ Fδi×n.
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Then the controller canonical form of G is defined as the matrix quadruple (A,B,C,D) ∈
Fδ×δ × Fk×δ × Fδ×n × Fk×n where

A =

(
A1

. . .
Ar

)
, B =

(
B̄
0

)
with B̄ =

(
B1

. . .
Br

)
, C =

(
C1

...
Cr

)
, D =

( g1,0
...

gk,0

)
= G(0).

As is made precise next the controller canonical form describes the encoding process of
the matrix G in form of a state space system.

Remark 2.2 It is easily seen [5, Prop. 2.1, Thm. 2.3] that G(z) = B(z−1I −A)−1C +D.
As a consequence, one has for u =

∑
t≥0 utz

t ∈ F[z]k and v =
∑

t≥0 vtz
t ∈ F[z]n

v = uG ⇐⇒
{

xt+1 = xtA+ utB
vt = xtC + utD

for all t ≥ 0

}
where x0 = 0.

From now on we will assume our data to be as follows.

General Assumption 2.3 Let C ⊆ F[z]n be an (n, k, δ) code with minimal encoder
matrix G ∈ F[z]k×n. Furthermore, assume that the Forney indices of C are given by
δ1, . . . , δr > 0 = δr+1 = . . . = δk and let (A,B,C,D) be the corresponding controller
canonical form.

The two index sets

I := {1, 1 + δ1, 1 + δ1 + δ2, . . . , 1 +
∑r−1

i=1 δi}, J := {δ1, δ1 + δ2, . . . ,
∑r

j=1 δj = δ} (2.1)

will be helpful in the sequel. One easily derives the following properties.

Remark 2.4 One has ABt = 0 and BBt =
(
Ir 0
0 0

)
. Furthermore, imB = 〈ei | i ∈ I〉 and

kerB = im (0(k−r)×r, Ik−r) ⊆ Fk. Finally,

(BtB)i,j =

{
1, if i = j ∈ I
0, else,

, (AtA)i,j =

{
1, if i = j /∈ I
0, else,

, (AAt)i,j =

{
1, if i = j /∈ J
0, else.

As a consequence, AtA+BtB = Iδ.

The following two block codes will play a crucial role throughout the paper.

Definition 2.5 For C as above we define C const := C∩Fn to be the block code consisting of
the constant codewords in C. Moreover, let C

C
:= im

(
C
D

)
⊆ Fn and define r̂ ∈ {0, . . . , n−k}

such that dimC
C
= k + r̂.

The following properties of these codes are easily seen from the controller canonical form.

Remark 2.6 (1) Suppose the encoder matrix G is as in Definition 2.1. Then C
C

=

im
(
C
D

)
= 〈gi,ν | i = 1, . . . , k, ν = 0, . . . , δi〉. Recalling that two different encoders of C

differ only by a left unimodular transformation it follows immediately that the block
code C

C
does not depend on the choice of the encoder G but rather is an invariant of

the code C. Since rankD = k it is clear that the dimension of C
C
is indeed at least k.
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(2) One has dimC const = k − r and precisely, with the notation from (1),

C const = 〈gi | i = r + 1, . . . , k〉 = (kerB)D := {uD | u ∈ kerB}. (2.2)

This also shows C const ⊆ C
C
. Furthermore we have imD = imBtD ⊕ C const.

In accordance with block code theory the dual of a convolutional code is defined with
respect to the canonical bilinear form

β : F[z]n × F[z]n −→ F[z],
(
(a1, . . . , an), (b1, . . . , bn)

)
7−→

n∑

j=1

ajbj .

With this notation the dual code is explicitly defined as

Ĉ := {w ∈ F[z]n | β(w, v) = 0 for all v ∈ C}. (2.3)

In the sequel we will also let β denote the canonical bilinear form on Fℓ for any ℓ ∈ N. In
that case we will use the notation U⊥ := {v ∈ Fℓ | β(v, u) = 0 for all u ∈ U} ⊆ Fℓ for the
orthogonal of a subspace U ⊆ Fℓ. The different notation Ĉ versus U⊥ for the dual of a
convolutional code C versus a block code U is simply to avoid cumbersome notation later
on. It is well known [17, Thm. 7.1] that

if C is an (n, k, δ) code, then Ĉ is an (n, n − k, δ) code. (2.4)

The two block codes from Definition 2.5 and the corresponding objects C
Ĉ
and Ĉ const for

the dual code Ĉ behave as follows under duality.

Proposition 2.7 One has (C
C
)⊥ = Ĉ const. As a consequence, Ĉ has exactly n − k − r̂

zero Forney indices and r̂ nonzero Forney indices. Moreover, dimC
Ĉ
= n− k + r.

Proof: Using the notation and statement of Remark 2.6(1) we obtain

c ∈ (C
C
)⊥ ⇐⇒ β(c, gi,ν) = 0 for all i = 1, . . . , k, ν = 0, . . . , δi

⇐⇒ β(c, gi) = 0 for all i = 1, . . . , k ⇐⇒ c ∈ Ĉ ∩ Fn = Ĉ const,

where the second equivalence uses the fact that c is a constant vector. The consequences
are clear from the definition of r and r̂. ✷

Example 2.8 Let q = 2, n = 5, k = 2, and C ⊆ F2[z]
5 be the code generated by the basic

and minimal encoder G =

(
1 + z + z3 z2 z2 1 z

1 1 0 1 0

)
. Thus δ = 3, δ1 = 3, δ2 = 0, and

r = 1. The associated controller canonical form is

A =



0 1 0
0 0 1
0 0 0


 , B =

(
1 0 0
0 0 0

)
, C =



1 0 0 0 1
0 1 1 0 0
1 0 0 0 0


 , D =

(
1 0 0 1 0
1 1 0 1 0

)
.

Using Equation (2.2) we obtain C const = im
(
1 1 0 1 0

)
while C

C
= F5

2. As a conse-

quence, r̂ = 3. It can easily be checked that the dual code Ĉ is generated by the basic and
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minimal matrix Ĝ =



1 z 0 1 + z 0
0 z z z 1
0 0 1 0 z


. Indeed, it has r̂ = 3 nonzero Forney indices

as stated in Proposition 2.7. The controller canonical form is

Â = 0, B̂ = I3, Ĉ =



0 1 0 1 0
0 1 1 1 0
0 0 0 0 1


 , D̂ =



1 0 0 1 0
0 0 0 0 1
0 0 1 0 0


 .

Moreover,

C
Ĉ
= im




0 0 1 0 0
0 0 0 0 1
0 1 0 1 0
1 0 0 1 0


 , Ĉ const = {0}.

This is indeed in compliance with Proposition 2.7 since (C
C
)⊥ = Ĉ const and (C

Ĉ
)⊥ = C const.

Let us now return to the general case. Block code theory allows us to apply the
MacWilliams transformation to the block codes in Proposition 2.7. Before doing so it
will be useful to define the weight enumerator for arbitrary affine sets in Fn as it will be
needed in the following sections. Recall the Hamming weight wt(a) for a ∈ Fn.

Definition 2.9 Let C[W ]≤n denote the vector space of polynomials over C of degree at
most n. For any affine subspace S ⊆ Fn we define the weight enumerator of S to be the
polynomial we(S) :=

∑n
j=0 αjW

j ∈ C[W ]≤n, where αj := #{a ∈ S | wt(a) = j}. We also
put we(∅) = 0.

Recall that the classical MacWilliams Identity for block codes states that for k-dimensional
codes C ⊆ Fn = Fn

q one has

we(C⊥) = q−kH
(
we(C)

)
, (2.5)

where H is the MacWilliams transformation

H : C[W ]≤n −→ C[W ]≤n, H(f)(W ) := (1 + (q − 1)W )nf
(

1−W
1+(q−1)W

)
. (2.6)

Observe that the mapping H is C-linear and satisfies H2(f) = qnf . It should be kept
in mind that H depends on the parameters n and q. Since throughout this paper these
parameters will be fixed we do not indicate them explicitly.

Let us now return to convolutional codes. Using (2.5) and Proposition 2.7 one immedi-
ately obtains

Corollary 2.10 qk+r̂we(Ĉ const) = H
(
we(C

C
)
)
.

3 The Adjacency Matrix of a Code

The (weight) adjacency matrix as defined next has been introduced in [17] and studied in
detail in [5]. The aim of this section is to survey the structure and redundancies of the
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adjacency matrix for a given convolutional code. Let the data be as in (1.1) and General
Assumption 2.3. Recall from Remark 2.2 that the controller canonical form leads to a
state space description of the encoding process where the input is given by the coefficients
of the message stream while the output is the sequence of codeword coefficients. The
following matrix collects for each possible pair of states (X,Y ) the information whether
via a suitable input u a transition from X to Y is possible, i. e., whether Y = XA + uB
for some u, and if so, collects the weights of all associated outputs v = XC + uD.

Definition 3.1 We call Fδ the state space of the encoder G (or of the controller canonical

form). Define F := Fδ × Fδ. The (weight) adjacency matrix Λ(G) = (λX,Y ) ∈ C[W ]q
δ×qδ

is defined to be the matrix indexed by (X,Y ) ∈ F with the entries

λX,Y := we({XC + uD | u ∈ Fk : Y = XA+ uB}) ∈ C[W ]≤n.

A pair of states (X,Y ) ∈ F is called connected if λX,Y 6= 0, else it is called disconnected.
The set of all connected state pairs is denoted by ∆ ⊆ F .

Observe that in the case δ = 0 the matrices A, B, C do not exist while D = G. As
a consequence, Λ = λ0,0 = we(C) is the ordinary weight enumerator of the block code
C = {uG | u ∈ Fk} ⊆ Fn.

Example 3.2 Let the data be as in Example 2.8. In order to explicitly display the
adjacency matrices corresponding to G and Ĝ we need to fix an ordering on the state
space F3

2. Let us choose the lexicographic ordering, that is, we will order the row and
column indices according to

(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1). (3.1)

Then it is lengthy, but straightforward to see that

Λ(G) =




1+W 3 0 0 0 W+W 2 0 0 0
W+W 2 0 0 0 W+W 2 0 0 0

0 W 2+W 3 0 0 0 W+W 4 0 0
0 W 2+W 3 0 0 0 W 2+W 3 0 0
0 0 W 2+W 3 0 0 0 W 2+W 3 0
0 0 W+W 4 0 0 0 W 2+W 3 0
0 0 0 W 3+W 4 0 0 0 W 3+W 4

0 0 0 W 3+W 4 0 0 0 W 2+W 5




.

For instance, in order to compute the entry in the 4th row and 2nd column put X :=
(0, 1, 1), Y := (0, 0, 1). Using the controller canonical form as given in Example 2.8 one
has XA+ uB = Y if and only if u ∈ {(0, 0), (0, 1)} and thus

λX,Y = we
{
XC + uD

∣∣u ∈ {(0, 0), (0, 1)}
}
= we{(1, 1, 1, 0, 0), (0, 0, 1, 1, 0)} = W 2 +W 3.

Likewise we obtain for the dual code

Λ(Ĝ) =




1 W W W 2 W 2 W 3 W 3 W 4

W W 2 1 W W 3 W 4 W 2 W 3

W 3 W 2 W 4 W 3 W 3 W 2 W 4 W 3

W 4 W 3 W 3 W 2 W 4 W 3 W 3 W 2

W 2 W 3 W 3 W 4 W 2 W 3 W 3 W 4

W 3 W 4 W 2 W 3 W 3 W 4 W 2 W 3

W 1 W 2 W W 3 W 2 W 4 W 3

W 2 W W 1 W 4 W 3 W 3 W 2




.
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Later in Theorem 5.8 we will see that these two adjacency matrices determine each other
in form of a generalized MacWilliams identity.

Remark 3.3 The adjacency matrix contains very detailed information about the code.
Firstly, it is well-known that the classical path weight enumerator of a convolutional code
[9, p. 154] can be computed from the adjacency matrix, for details see in [17], [5, Thm. 3.8],
and [9, Sec. 3.10]. Secondly, at the end of Section 3 in [5] it has been outlined that the
extended row distances [10] as well as the active burst distances [6] can be recovered from
the adjacency matrix. As explained in [10], [6] these parameters are closely related to the
error-correcting performance of the code.

It is clear from Definition 3.1 that the adjacency matrix depends on the chosen en-
coder G. This dependence, however, can nicely be described. Since we will make intensive
use of the notation later on we introduce the following.

Definition 3.4 For any P ∈ GLδ(F) define P(P ) ∈ GLqδ(C) by P(P )X,Y = 1 if Y = XP
and P(P )X,Y = 0 else. Furthermore, let Π := {P(P ) | P ∈ GLδ(F)} denote the subgroup
of all such permutation matrices.

By definition, the matrix P(P ) corresponds to the permutation on the set Fδ induced
by the isomorphism P . Notice that P is an isomorphism of groups and basically is the
canonical faithful permutation representation of the group GLδ(F). Obviously, we have

for any Λ ∈ C[W ]q
δ×qδ and any P := P(P ) ∈ Π the identity

(
PΛP−1

)
X,Y

= ΛXP,Y P for all (X,Y ) ∈ F . (3.2)

Now we can collect the following facts about the adjacency matrix.

Remark 3.5

(a) Using the obvious fact wt(αv) = wt(v) for any α ∈ F∗ and v ∈ Fn one immediately
has λX,Y = λαX,αY for all α ∈ F∗. Hence Λ(G) is invariant under conjugation with
permutation matrices that are induced by scalar multiplication on Fδ, i. e., under
conjugation with matrices P(P ) where P = αI for some α ∈ F∗.

(b) In [5, Thm. 4.1] it has been shown that if G1, G2 ∈ F[z]k×n are two minimal encoders
of C then Λ(G1) = PΛ(G2)P−1 for some P ∈ Π. Hence the equivalence class of Λ(G)
modulo conjugation by Π, where G is any minimal encoder, forms an invariant of the
code. It is called the generalized adjacency matrix of C.

(c) Combining (b) and (a) we see that the equivalence class of Λ(G) is already fully
obtained by conjugating Λ(G) with matrices P(P ) where P is in the projective linear
group GLδ(F)/{αI | α ∈ F∗}. This reduces the computational effort when computing
examples.

Let us now return to Definition 3.1. Notice that (X,Y ) ∈ F is connected if and only if
there exists some u ∈ Fk such that (X,Y ) = (X,XA+ uB). Using rankB = r we obtain

Proposition 3.6 ∆ = im
(
I A
0 B

)
is an F-vector space of dimension δ + r.
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Later on we will also need the dual of ∆ in F . With the help of Remark 2.4 it can easily
be calculated and is given as follows.

Lemma 3.7 ∆⊥ = {(X,−XA) | X = (X1, . . . ,Xδ) ∈ Fδ such that Xj = 0 for j ∈ J }.

In the next lemma will show that the nontrivial entries λX,Y of the adjacency matrix
can be described as weight enumerators of certain cosets of the block code C const. More
precisely, we will relate them to the F-vector space homomorphism

ϕ : F −→ Fn, (X,Y ) 7−→ XC + Y BtD. (3.3)

Recall the notation 〈a, U 〉 as introduced at the end of Section 1.

Lemma 3.8 For any state pair (X,Y ) ∈ ∆ we have λX,Y = we
(
ϕ(X,Y )+ C const

)
. More-

over,

λX,Y =




we(C const), if ϕ(X,Y ) ∈ C const,

1
q−1

(
we
(
〈ϕ(X,Y ), C const〉

)
− we(C const)

)
, else.

Proof: First notice that for any (X,Y ) ∈ ∆ the set {u ∈ Fk | Y − XA = uB} is non-
empty. Right-multiplying the defining equation of this set with Bt we get upon use of
Remark 2.4 that Y Bt = uBBt, which says that the first r entries of u are completely
determined by Y . This shows {u ∈ Fk | Y − XA = uB} ⊆ Y Bt + im (0, Ik−r). From
im (0, Ik−r) = kerB, see Remark 2.4, we conclude that these two affine subspaces coincide.
Hence, using Remark 2.6(2), we obtain

λX,Y = we(XC + (Y Bt + kerB)D) = we
(
ϕ(X,Y ) + (kerB)D

)
= we(ϕ(X,Y ) + C const).

This shows the first part of the lemma. If ϕ(X,Y ) ∈ C const, we immediately conclude
λX,Y = we(C const). Otherwise we have λX,Y = we(ϕ(X,Y ) + C const) = we

(
α(ϕ(X,Y ) +

C const)
)
= we

(
αϕ(X,Y ) + C const

)
for all α ∈ F∗. Moreover,

〈ϕ(X,Y ), C const〉 =
⋃

α∈F

(
αϕ(X,Y ) + C const

)
,

where due to ϕ(X,Y ) /∈ C const this union is disjoint. From this the last assertion can be
deduced. ✷

The lemma shows that the mapping ϕ and the block code C const along with the knowl-
edge of ∆ fully determine Λ(G). Moreover, to find out how many state pairs (X,Y ) ∈ ∆
are mapped to C const, we will slightly modify the mapping ϕ.

Lemma 3.9 The homomorphism

Φ : ∆ −→ C
C
/C const, (X,Y ) 7−→ ϕ(X,Y ) + C const

is well-defined, surjective and satisfies

(a) kerΦ = {(X,Y ) ∈ ∆ | ϕ(X,Y ) ∈ C const},
(b) dimkerΦ = δ − r̂, where r̂ is as in Definition 2.5.
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Proof: The well-definedness of Φ simply follows from imϕ ⊆ C
C
. As for the surjectivity

notice that any row of
(
C
D

)
that is not in C const is a row of the matrix

(
C

BBtD

)
, see also

Remark 2.6(2). Moreover, by Remark 2.4 we have im
(

C
BBtD

)
= im

(
I A
0 B

)(
C

BtD

)
= ϕ(∆),

where the latter follows from the definition of the mapping ϕ along with Proposition 3.6.
All this implies the surjectivity of Φ. Now part (a) is trivial. The surjectivity together
with dim∆ = δ + r yields (b) since dimC

C
= k + r̂ while dim C const = k − r. ✷

Let us illustrate the results so far by the previous example.

Example 3.10 Consider again the data from Example 2.8 and 3.2. We can observe the
following properties of the two adjacency matrices.

(1) The matrix Λ(G) has exactly 24 = 16 nonzero entries, while Λ(Ĝ) has exactly 26 = 64
nonzero entries. This is in compliance with Proposition 3.6 applied to C as well as Ĉ.

(2) Each nonzero entry of Λ(G) is the sum of two monomials, while each entry of Λ(Ĝ)
is a monomial. This also follows from the first part of Lemma 3.8 since #C const = 2
while Ĉ const = {0}.

(3) There are 4 entries in Λ(Ĝ) that are equal to 1. This also follows from application
of Lemma 3.9 and Lemma 3.8 to the dual code: we obtain 2δ−r = 4 times the case
λ̂X,Y = we(Ĉ const) = 1 while the second case appearing in Lemma 3.8, being the
difference of the weight enumerators of two block codes, never contains the monomial
1 = W 0. Along the same line of arguments one can also explain that λ0,0 is the only
entry of Λ(G) containing the monomial 1 = W 0.

As a consequence of Lemma 3.9 one has

ϕ(∆) + C const = C
C
. (3.4)

We are now prepared to clarify some more redundancies in the adjacency matrix of C.

Proposition 3.11 Let ∆∗ ⊆ ∆ be any subspace such that ∆ = ∆∗ ⊕ ker Φ. Moreover,
define ∆− := 〈(0, ei) | i /∈ I〉 ⊆ F . Then

(a) ∆⊕∆− = F , hence ∆∗ ⊕ ker Φ⊕∆− = F .

(b) For (X,Y ) ∈ ∆− and (X ′, Y ′) ∈ ∆ one has λX+X′,Y+Y ′ = 0 if and only if (X,Y ) 6= 0.

(c) For (X,Y ) ∈ ∆∗ and (X ′, Y ′) ∈ ker Φ one has λX+X′,Y+Y ′ = λX,Y .

Proof: (a) ∆ ∩ ∆− = {0} follows from ei /∈ imB for i /∈ I. The rest is clear since
dim∆− = δ − r = 2δ − dim∆. (b) is obvious from the first direct sum in (a) and the
definition of ∆. As for (c) notice that by linearity and Lemma 3.9(a) ϕ(X,Y ) − ϕ(X +
X ′, Y + Y ′) ∈ C const. Hence ϕ(X,Y ) + C const = ϕ(X +X ′, Y + Y ′) + C const and the result
follows from Lemma 3.8. ✷

Concerning Proposition 3.11(c) it is worth mentioning that the converse statement
[λX,Y = λX̃,Ỹ =⇒ (X,Y ) − (X̃, Ỹ ) ∈ kerΦ] is in general not true as different affine
sets may well have the same weight enumerator. Moreover, notice that the results above
are obviously true for any direct complement of ∆ in F . Our particular choice of ∆− will
play an important role due to the following corollary.
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Corollary 3.12 One has ϕ|∆− = 0 and C
C

=
⋃

(X,Y )∈∆∗

(
ϕ(X,Y ) + C const) with the

union being disjoint.

Proof: The first part follows directly from the definition of all objects involved. The
inclusion “⊇” of the second statement is obvious. For the other inclusion let XC + uD ∈
C
C

for some (X,u) ∈ Fδ+k. Using that imD = imBtD + C const, see Remark 2.6(2),

this yields XC + uD = XC + Y BtD + a for some Y ∈ Fδ and a ∈ C const. Hence
XC + uD ∈ ϕ(X,Y ) + C const where (X,Y ) ∈ F . Now ϕ|∆− = 0 and Lemma 3.9(a) imply
that without loss of generality (X,Y ) ∈ ∆∗. The disjointness of the union follows from
∆∗ ∩ ker Φ = {0} with the same lemma. ✷

We will conclude this chapter by computing the sum over all entries of the adjacency
matrix of a convolutional code in order to demonstrate how the terminology developed
above facilitates this task. The result will be needed later on for proving Theorem 4.7.

Proposition 3.13 The entries of the adjacency matrix satisfy
∑

(X,Y )∈∆∗

λX,Y = we(CC) and
∑

(X,Y )∈F

λX,Y =
∑

(X,Y )∈∆

λX,Y = qδ−r̂we(CC).

Proof: Using Lemma 3.8 and Corollary 3.12 we obtain
∑

(X,Y )∈∆∗

λX,Y =
∑

(X,Y )∈∆∗

we(ϕ(X,Y ) + C const) = we(C
C
).

Next notice that
∑

(X,Y )∈F λX,Y =
∑

(X,Y )∈∆ λX,Y as any disconnected state pair (X,Y )
satisfies λX,Y = 0. Hence with Proposition 3.11(c) and Lemma 3.9(b) we get

∑

(X,Y )∈∆

λX,Y =
∑

(X̄,Ȳ )∈ker Φ

∑

(X,Y )∈∆∗

λX+X̄,Y+Ȳ =
∑

(X̄,Ȳ )∈ker Φ

∑

(X,Y )∈∆∗

λX,Y

=
∑

(X̄,Ȳ )∈ker Φ

we(C
C
) = qδ−r̂we(C

C
). ✷

It is straightforward to verify the second result of this proposition for Example 2.8/3.2.

4 The MacWilliams Matrices

Recall the notation from (1.1) and fix some δ ∈ N. In this section we will define a set
of complex matrices that are essential for our transformation formula as discussed in the
next section, and we will collect some of their properties. To define the matrices we will
use complex-valued characters on Fδ, i. e., group homomorphisms (Fδ,+) −→ (C∗, ·). It is
a well known fact [11, Thm. 5.5], that, using a fixed primitive p-th root of unity ζ ∈ C, the
character group on Fδ is given as {ζτ(β(X, · )) | X ∈ Fδ}, where τ : F −→ Fp, a 7−→∑s−1

i=0 a
pi

is the usual trace form and β is the canonical bilinear form on Fδ. It will be convenient
to define

θX := ζτ(β(X, · )) : Fδ −→ C∗ for all X ∈ Fδ. (4.1)

For easier reference we list the following properties.
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Remark 4.1 (a) The character θX is nontrivial if and only if X 6= 0. This follows from
the fact that for X 6= 0 we have #imβ(X, ·) = q, while the Fp-linear and surjective
mapping τ satisfies #ker τ = ps−1 = q

p .

(b) Applying a standard result on characters [11, Thm. 5.4] we have
∑

Y ∈Fδ θX(Y ) = 0 if
X 6= 0 while

∑
Y ∈Fδ θ0(Y ) = qδ.

(c) For all X, Y ∈ Fδ and all P ∈ GLδ(F) we have θX(Y ) = θY (X) and θXP (Y ) =
θX(Y P t).

(d) For all X, Y, Z1, Z2 ∈ Fδ one has θX(Z1)θY (Z2) = θ(X,Y )(Z1, Z2) where the latter is

defined on F2δ analogously to (4.1), that is, θ(X,Y )(Z1, Z2) := ζτ(β((X,Y ),(Z1,Z2))) with β

also denoting the canonical bilinear form on F2δ.

Definition 4.2 Let ζ ∈ C∗ be a fixed primitive p-th root of unity. For P ∈ GLδ(F) we
define the P -MacWilliams matrix as

H(P ) := q−
δ
2

(
θXP (Y )

)
(X,Y )∈F

∈ Cqδ×qδ .

For simplicity we also put H := H(I). For δ = 0 we simply have H = 1.

Remark 4.3 Notice that the MacWilliams matrices depend on δ. Since this parameter
will be fixed throughout our paper (except for the examples and Remark 4.6) we will
not explicitly denote this dependence. Moreover, the matrices depend on the choice of the
primitive root ζ. This dependence, however, can easily be described. Suppose ζ1 and ζ2 are
two primitive p-th roots of unity and let H1 and H2 be the corresponding I-MacWilliams
matrices. Then ζd1 = ζ2 for some 0 < d < p and, using the Fp-linearity of τ , it is easy
to check that H2 = P(dI)H1 = H1P(d−1I). Making use of Remark 3.5(a) this results in
H2Λ

tH−1
2 = H1Λ

tH−1
1 and H2ΛH2 = H1ΛH1. Since all later expressions will be of either

of these forms, our results later on do not depend on the choice of ζ.

Obviously, the matrix H is symmetric. Moreover, all MacWilliams matrices are in-
vertible since the qδ different characters are linearly independent in the vector space of
C-valued functions on Fδ. However, the inverse of these matrices can even easily be cal-
culated. Recall the matrices P(P ) from Definition 3.4.

Lemma 4.4 One has H2 = P(−I) and hence H4 = I. Furthermore,

H(P ) = P(P )H = HP
(
(P t)−1

)
for all P ∈ GLδ(F).

In particular the inverse of a MacWilliams matrix is a MacWilliams matrix again.

Proof: For the computation of H2 fix any pair (X,Y ) ∈ F . Then, upon using the rules
in Remark 4.1(b) and (c),

(H2)X,Y = q−δ
∑

Z∈Fδ

θX(Z)θZ(Y ) = q−δ
∑

Z∈Fδ

θX+Y (Z) =

{
1, if Y = −X

0, else

}
= P(−I)X,Y .

The rest of the lemma can be checked in the same way using again Remark 4.1(c). ✷
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Example 4.5 Let p = q = 2 and δ = 3. Then ζ = −1 and with respect to the lexico-
graphic ordering (3.1) on F3

2 we obtain

H =
1√
8




1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1




.

Remark 4.6 It should be mentioned that the MacWilliams matrices as presented here
appear already in classical block code theory in the context of complete weight enumera-
tors. Given a block code C ⊆ Fn the complete weight enumerator is defined as

cwe(C) :=
∑

(c1,...,cn)∈C

n∏

i=1

Xci ∈ C[Xa | a ∈ F].

Obviously, we obtain the ordinary weight enumerator we(C) from cwe(C) by putting
X0 = 1 and Xa = W for all a ∈ F∗. Let now δ = 1 and H ∈ Cq×q be the cor-
responding MacWilliams matrix. Then H is the standard matrix interpretation of the
C-vector space automorphism h : 〈Xa | a ∈ F〉

C
−→ 〈Xa | a ∈ F〉

C
defined via h(Xa) =

q−
1

2

∑
b∈F ζ

τ(ab)Xb. Extending h to a C-algebra-homomorphism on C[Xa | a ∈ F] it
is well-known [14, Ch. 5.6, Thm. 10] that the complete weight enumerators of a k-
dimensional block code C ⊆ Fn

q and its dual satisfy the MacWilliams identity cwe(C⊥) =

q−k+n
2 h
(
cwe(C)

)
. At this point it is not clear to us why the MacWilliams matrix appears

in the seemingly unrelated contexts of complete weight enumerators for block codes and
adjacency matrices for convolutional codes.

In the next section we will investigate a conjecture concerning a MacWilliams Identity
Theorem for the adjacency matrices of convolutional codes and their duals. It states
that for the data as in General Assumption 2.3 and for any P ∈ GLδ(F) the matrix
q−kH

(
H(P )Λ(G)tH(P )−1

)
is a representative of the generalized adjacency matrix of Ĉ

(in the sense of Remark 3.5(b)), see Conjecture 5.2. Using Lemma 4.4 and the fact

Ht = H one easily observes that HΛ(G)H = P(−I)
(
HΛ(G)tH−1

)t
. Therefore the matrix

HΛ(G)H will be particularly helpful and will be studied first. Let, as usual, the data be
as in General Assumption 2.3 and Definition 3.1 and remember r̂ from Proposition 2.7.
Put

ℓX,Y :=
(
HΛ(G)H

)
X,Y

for (X,Y ) ∈ F . (4.2)

The entries ℓX,Y can be described explicitly. In the sequel we will use for any pair (X,Y ) ∈
F the short notation (X,Y )⊥ := 〈(X,Y )〉⊥ to denote the orthogonal space in F . The
following result will be crucial for the MacWilliams Identity Conjecture as studied in the
next section.
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Theorem 4.7 Let (X,Y ) ∈ F . Then

ℓX,Y =





0, if (X,Y ) /∈ (ker Φ)⊥,

q−r̂we(C
C
), if (X,Y ) ∈ ∆⊥,

1
qδ(q−1)

(
q
∑

(Z1,Z2)∈(X,Y )⊥ λZ1,Z2
− qδ−r̂we(C

C
)
)

else.

Furthermore,
ℓX+U,Y+V = ℓX,Y for all (U, V ) ∈ ∆⊥.

The last statement can be regarded as a counterpart to Proposition 3.11(c). In fact, both
these invariance properties will be needed to derive a correspondence between the matrix
HΛ(G)H and the adjacency matrix of the dual code in Section 5.

Proof: Fix (X,Y ) ∈ F .
1) We begin with proving the identity

qδℓX,Y =
∑

(Z1,Z2)∈(X,Y )⊥

λZ1,Z2
− 1

q − 1

∑

(Z1,Z2)/∈(X,Y )⊥

λZ1,Z2
. (4.3)

Using Remark 4.1(d), we have

qδℓX,Y =
∑

Z1, Z2∈Fδ

θX(Z1)λZ1,Z2
θZ2

(Y ) =
∑

(Z1,Z2)∈F

θ(X,Y )(Z1, Z2)λZ1,Z2
.

If (X,Y ) = (0, 0), Equation (4.3) follows. Thus let (X,Y ) 6= (0, 0). Choose (V1, V2) ∈ F
such that F = (X,Y )⊥ ⊕ 〈(V1, V2)〉. This allows, recalling Remark 3.5(a), to further
simplify ℓX,Y . Indeed,

qδℓX,Y =
∑

α∈F

∑

(Z1,Z2)∈(X,Y )⊥

θ(X,Y )(Z1 + αV1, Z2 + αV2)λZ1+αV1,Z2+αV2

=
∑

α∈F

θ(X,Y )(αV1, αV2)
∑

(Z1,Z2)∈(X,Y )⊥

λZ1+αV1,Z2+αV2

=
∑

(Z1,Z2)∈(X,Y )⊥

λZ1,Z2
+
∑

α∈F∗

θ(X,Y )(αV1, αV2)
∑

(Z1,Z2)∈(X,Y )⊥

λZ1+V1,Z2+V2
.

Since (X,Y ) 6= (0, 0) the character α 7→ θ(X,Y )(αV1, αV2) is nontrivial on F and thus

qδℓX,Y =
∑

(Z1,Z2)∈(X,Y )⊥

λZ1,Z2
−

∑

(Z1,Z2)∈(X,Y )⊥

λZ1+V1,Z2+V2
(4.4)

=
∑

(Z1,Z2)∈(X,Y )⊥

λZ1,Z2
− 1

q − 1

∑

(Z1,Z2)/∈(X,Y )⊥

λZ1,Z2
,

where the last identity is again derived from Remark 3.5(a) considering that (X,Y )⊥ is a
subspace of F . This completes the proof of (4.3).
2) Now we will prove each case of the second assertion separately. First let (X,Y ) /∈
(ker Φ)⊥. This implies kerΦ * (X,Y )⊥. Hence (V1, V2) above can be chosen in ker Φ and
therefore Proposition 3.11(c) along with (4.4) yields ℓX,Y = 0.
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3) Let (X,Y ) ∈ ∆⊥, which implies ∆ ⊆ (X,Y )⊥ and therefore (F\(X,Y )⊥) ∩ ∆ = ∅.
Using Equation (4.3) together with the fact that λZ1,Z2

= 0 for (Z1, Z2) 6∈ ∆ one gets

qδℓX,Y =
∑

(Z1,Z2)∈(X,Y )⊥∩∆

λZ1,Z2
− 1

q − 1

∑

(Z1,Z2)∈(F\(X,Y )⊥)∩∆

λZ1,Z2
=

∑

(Z1,Z2)∈∆

λZ1,Z2
= qδ−r̂we(C

C
),

where the last identity follows from Proposition 3.13.
4) Finally, for the last case let (X,Y ) ∈ (ker Φ)⊥\∆⊥. Thus, ker Φ ⊆ (X,Y )⊥, but
∆ * (X,Y )⊥. Again, using Equation (4.3) together with Proposition 3.13, we obtain

ℓX,Y =
1

qδ(q − 1)

(
(q − 1)

∑

(Z1,Z2)∈(X,Y )⊥

λZ1,Z2
−

∑

(Z1,Z2)/∈(X,Y )⊥

λZ1,Z2

)

=
1

qδ(q − 1)

(
q

∑

(Z1,Z2)∈(X,Y )⊥

λZ1,Z2
− qδ−r̂we(C

C
)
)
.

5) It remains to show ℓX+U,Y+V = ℓX,Y for any (U, V ) ∈ ∆⊥. Since ∆⊥ ⊆ (ker Φ)⊥ the
statement is obvious in the first two cases of ℓX,Y . For the remaining case notice that in
the expression for ℓX,Y we have

∑

(Z1,Z2)∈(X,Y )⊥

λZ1,Z2
=

∑

(Z1,Z2)∈(X,Y )⊥∩∆

λZ1,Z2
=

∑

(Z1,Z2)∈(X+U,Y+V )⊥∩∆

λZ1,Z2

for any (U, V ) ∈ ∆⊥. This completes the proof. ✷

At this point it is possible to derive a formula for the MacWilliams transformation H
as defined in (2.6) applied to the entries ℓX,Y . It will play a central role in the next

section. Recall from (2.3) the notation Ĉ for the dual code of C. Notice from (4.2) that
the polynomials ℓX,Y are in C[W ]≤n so that indeed the mapping H can be applied.

Proposition 4.8 Let (X,Y ) ∈ F . Then

q−kH(ℓX,Y ) =





0, if (X,Y ) /∈ (ker Φ)⊥,

we(Ĉ const), if (X,Y ) ∈ ∆⊥,

1
q−1

(
we
(
〈Ĉ const, c(X,Y )〉

)
− we

(
Ĉ const

))
, else,

where in the last case c(X,Y ) is any element in
[
ϕ
(
(X,Y )⊥ ∩∆∗

)
+ C const

]⊥
\ Ĉ const.

Proof: Use the form of ℓX,Y as given in Theorem 4.7. The first case is immediate
as H(0) = 0. The second case is exactly Corollary 2.10. The third case requires more
work. Thus, let (X,Y ) ∈ (ker Φ)⊥\ ∆⊥, hence ker Φ ⊆ (X,Y )⊥, but ∆ * (X,Y )⊥. As
a consequence, (X,Y )⊥ ∩∆ is a hyperplane of ∆ and kerΦ is contained in (X,Y )⊥ ∩∆.
Using the direct complement ∆∗ of ker Φ in ∆ as introduced in Proposition 3.11 we obtain
(X,Y )⊥ ∩∆ =

(
(X,Y )⊥ ∩∆∗

)
⊕ kerΦ and (X,Y )⊥ ∩∆∗ is a hyperplane in ∆∗. With the

help of Proposition 3.11(c) and Lemma 3.9(b) we get

∑

(Z1,Z2)∈(X,Y )⊥

λZ1,Z2
=

∑

(Z1,Z2)∈(X,Y )⊥∩∆

λZ1,Z2
= qδ−r̂

∑

(Z1,Z2)∈(X,Y )⊥∩∆∗

λZ1,Z2
.
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By Lemma 3.8 λZ1,Z2
= we

(
ϕ(Z1, Z2) + C const

)
and these cosets are pairwise disjoint for

(Z1, Z2) ∈ (X,Y )⊥ ∩∆∗, see Corollary 3.12. Therefore we obtain

∑

(Z1,Z2)∈(X,Y )⊥

λZ1,Z2
= qδ−r̂

∑

(Z1,Z2)∈(X,Y )⊥∩∆∗

we
(
ϕ(Z1, Z2) + C const

)
= qδ−r̂we

(
H(X,Y )

)

where

H(X,Y ) :=
⋃

(Z1,Z2)∈(X,Y )⊥∩∆∗

(
ϕ(Z1, Z2) + C const

)
= ϕ

(
(X,Y )⊥ ∩∆∗

)
+ C const.

We will show next that H(X,Y )⊥ = 〈Ĉ const, c(X,Y )〉 for some element c(X,Y ). In order
to do so we need to compute the dimension of H(X,Y ). Since kerϕ ∩∆∗ = {0} we have
dimϕ

(
(X,Y )⊥ ∩∆∗

)
= dim

(
(X,Y )⊥ ∩∆∗

)
= dim∆∗ − 1. Furthermore, Lemma 3.9(a)

shows that ϕ(∆∗) ∩ C const = {0}. As a consequence,

dimH(X,Y ) = dim∆∗ − 1 + dim C const = k + r̂ − 1.

This implies dimH(X,Y )⊥ = n − k − r̂ + 1 = dim Ĉ const + 1. Furthermore, H(X,Y ) ⊆
imϕ+ C const = C

C
and along with Proposition 2.7 this yields Ĉ const ⊆ H(X,Y )⊥. All this

shows that there exists some c(X,Y ) ∈ H(X,Y )⊥\ Ĉ const such that

H(X,Y )⊥ = 〈Ĉ const, c(X,Y )〉.

Now we can compute q−kH(ℓX,Y ). From Theorem 4.7 we derive

q−kH(ℓX,Y ) = q−kH
( 1

qδ(q − 1)

(
q

∑

(Z1,Z2)∈(X,Y )⊥

λZ1,Z2
− qδ−r̂we(C

C
)
))

=
1

q − 1
q−r̂−k

(
qH
(
we
(
H(X,Y )

))
−H

(
we(C

C
)
))

=
q−r̂−k

q − 1

(
q · qk+r̂−1we

(
〈Ĉ const, c(X,Y )〉

)
− qk+r̂we(Ĉ const)

)
,

where the last identity is again due to (2.5) and Corollary 2.10. This proves the desired
result. ✷

The last proposition together with Lemma 3.8 reveals an immediate resemblance of
the entries q−kH(ℓX,Y ) to that of any given adjacency matrix of the dual code of C.
Indeed, firstly notice that both matrices have the same number of zero entries since
#(ker Φ)⊥ = qδ+r̂ is exactly the number of connected state pairs of the dual code. More-
over, Proposition 4.8 tells us that q−kH(ℓX,Y ) has #∆⊥ = qδ−r entries equal to we(Ĉ const).

Applying Lemmas 3.8 and 3.9 to the dual code Ĉ we see that the adjacency matrix of the
dual code has the same number of entries equal to we(Ĉ const). The remaining entries
also have an analogous form. All this indicates that there might be a strong relation be-
tween q−k

(
H(ℓX,Y )

)
and the adjacency matrix of the dual code. This will be formulated

in a precise conjecture in the next section and proven for a specific class of codes. The
difficulty for proving this will be, among other things, that we need a concrete descrip-
tion of the mapping (ker Φ)⊥\ ∆⊥ −→ F , (X,Y ) 7→ c(X,Y ) as used in the last part of
Proposition 4.8.
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5 A MacWilliams Identity for Convolutional Codes

In this section we will formulate the MacWilliams identity and prove it for a particular
class of codes. Let again the data be as in (1.1) and General Assumption 2.3. Denote the
associated adjacency matrix Λ(G) simply by Λ. Furthermore, let Ĉ be the dual code. We
fix the following notation.

General Assumption 5.1 Let Ĉ have encoder matrix Ĝ ∈ F[z](n−k)×n and let the corre-
sponding controller canonical form be denoted by (Â, B̂, Ĉ, D̂). Moreover let the associated
adjacency matrix be written as Λ̂ =:

(
λ̂X,Y

)
and let ∆̂ be the space of connected state

pairs for Ĉ. Finally, we define the mappings ϕ̂ and Φ̂ for the code Ĉ analogously to (3.3)
and Lemma 3.9 and, the spaces ∆̂− and ∆̂∗ analogously to Proposition 3.11. Recall from
by Proposition 2.7 that Ĉ has r̂ nonzero Forney indices.

We know from (2.4) that C and Ĉ both have degree δ and thus the adjacency matrices Λ

and Λ̂ are both in C[W ]q
δ×qδ . As a consequence we have all results of Section 3 literally

available in a ̂ -version, and we will make frequent use of them.

Notice that duality implies GĜt = 0. From Remark 2.2 we know that

G(z) = B(z−1I −A)−1C +D, Ĝ(z) = B̂(z−1I − Â)−1Ĉ + D̂.

Since D, D̂ both have full row rank this implies

imD = ker D̂t. (5.1)

Now we can formulate our conjecture. Recall the definition of the MacWilliams matrixH
from Definition 4.2.

Conjecture 5.2 The matrix q−kH
(
HΛtH−1

)
, where H is applied entrywise to the given

matrix, is a representative of the generalized adjacency matrix of Ĉ. In other words, there
exists some P ∈ GLδ(F) such that

λ̂X,Y = q−kH
(
(HΛtH−1)XP,Y P

)
for all (X,Y ) ∈ F . (5.2)

Recall from Remark 3.5(b) that the adjacency matrices for two different minimal encoders
of Ĉ differ by conjugation with a suitable matrix P(P ) ∈ Π. This explains the presence
of the matrix P ∈ GLδ(F) above. Of course, P depends on the chosen encoders G and Ĝ.
It is worth mentioning that in the case δ = 0 Identity (5.2) immediately leads to the
MacWilliams identity for block codes as given in (2.5). Notice also that, due to Lemma 4.4
and Equation (3.2), the conjecture implies the same statement if we replace H by an
arbitrary Q-MacWilliams matrix H(Q).

The conjecture is backed up by many numerical examples. A proof, however, is still
open for the general case. As a first step a somewhat weaker result will be proven in
Theorem 5.5. Thereafter we will fully prove the conjecture for codes where δ = r̂ or δ = r.
In that case we will even be able to precisely tell which transformation matrix P ∈ GLδ(F),
depending on G and Ĝ, to choose for (5.2) to be true. We need the following lemma. It
still applies to the general situation.
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Lemma 5.3 Let

M :=

(
ĈCt Ĉ(BtD)t

B̂tD̂Ct 0

)
∈ F2δ×2δ.

Then

(a) imM ⊆ (ker Φ)⊥.

(b) ker Φ̂⊕ ∆̂− ⊆ kerM .

(c) imM ∩∆⊥ = {0}.
(d)M is injective on ∆̂∗.

(e) rankM = r+r̂ andM⊕∆⊥ = (ker Φ)⊥ where M :=imM= {(X,Y )M | (X,Y ) ∈ ∆̂∗}.

Proof: First notice that by (5.1) M t =
(

C
BtD

)(
Ĉt (B̂tD̂)t) and therefore

β
(
(X ′, Y ′), (X,Y )M

)
= (X ′, Y ′)M t(X,Y )t = β

(
ϕ(X ′, Y ′), ϕ̂(X,Y )

)
(5.3)

for all (X,Y ), (X ′, Y ′) ∈ F . Remember also that ϕ̂(X,Y ) ∈ C
Ĉ
for all (X,Y ) ∈ F .

(a) follows from (5.3) since for (X ′, Y ′) ∈ ker Φ we have ϕ(X ′, Y ′) ∈ C const = (C
Ĉ
)⊥.

(b) If (X,Y ) ∈ ker Φ̂ ⊕ ∆̂−, then ϕ̂(X,Y ) ∈ Ĉ const by Corollary 3.12 and Lemma 3.9(a).
Thus ϕ̂(X,Y ) ∈ (C

C
)⊥ while ϕ(X ′, Y ′) ∈ C

C
for all (X ′, Y ′) ∈ F . Now (5.3) along with

the regularity of the bilinear form β shows (X,Y )M = (0, 0).

(c) Let (X,Y )M ∈ ∆⊥. Then by (5.3) we have ϕ̂(X,Y ) ∈ ϕ(∆)⊥. Since also ϕ̂(X,Y ) ∈
C
Ĉ
= (C const)

⊥, we obtain from (3.4) and Proposition 2.7 that ϕ̂(X,Y ) ∈ Ĉ const. But then

(X,Y ) ∈ ker Φ̂ and (b) implies (X,Y )M = (0, 0).

(d) Let (X,Y )M = 0 for some (X,Y ) ∈ ∆̂∗. Similarly to (c) we obtain by use of (5.3)
and (3.4)

ϕ̂(X,Y ) ∈ (imϕ)⊥ ∩ C
Ĉ
= (imϕ)⊥ ∩ (C const)

⊥ = (imϕ+ C const)
⊥ = Ĉ const.

But this means that (X,Y ) ∈ ker Φ̂ and the assumption (X,Y ) ∈ ∆̂∗ finally yields
(X,Y ) = (0, 0).

(e) The rank assertion follows from (d) and (b) since dim ∆̂∗ = r+r̂ and dim(ker Φ̂⊕∆̂−) =
2δ− (r+ r̂). The rest is immediate from the above and dim(ker Φ)⊥ − dim∆⊥ = r+ r̂. ✷

The following result will be crucial for investigating Conjecture 5.2.

Theorem 5.4 Let M ∈ F2δ×2δ be as in Lemma 5.3. Then

λ̂X,Y = q−kH(ℓ(X,Y )M ) for all (X,Y ) ∈ ∆̂.

Proof: Recall that ∆̂ = ker Φ̂ ⊕ ∆̂∗. For (X ′, Y ′) ∈ ker Φ̂ and (X,Y ) ∈ ∆̂∗ we have
λ̂X′+X,Y ′+Y = λ̂X,Y due to Proposition 3.11(c). Furthermore, ℓ(X′,Y ′)M+(X,Y )M = ℓ(X,Y )M

by Lemma 5.3(b). Hence it suffices to show the result for (X,Y ) ∈ ∆̂∗. For (X,Y ) = (0, 0)
the result is obviously true by Lemma 3.8 and Proposition 4.8. Thus let (X,Y ) 6= (0, 0).
By Lemma 5.3(e) this yields (X,Y )M ∈ (ker Φ)⊥\ ∆⊥. Hence q−kH(ℓ(X,Y )M ) needs
to be computed according to the last case in Proposition 4.8. In order to do so we
need to find a vector c

(
(X,Y )M

)
satisfying the requirements given there. We will show
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that ϕ̂(X,Y ) is such a vector. First of all, it is clear that ϕ̂(X,Y ) ∈ C
Ĉ
= (C const)

⊥.

Moreover, due to (X,Y ) ∈ ∆̂∗\{0} we have ϕ̂(X,Y ) 6∈ Ĉ const. Finally applying (5.3)

to (X ′, Y ′) ∈
(
(X,Y )M

)⊥ ∩ ∆∗ shows that ϕ̂(X,Y ) ∈
[
ϕ
((

(X,Y )M
)⊥ ∩ ∆∗

)]⊥
. All

this shows that we may choose c
(
(X,Y )M

)
in Proposition 4.8 as ϕ̂(X,Y ). Now that

proposition yields

q−kH(ℓ(X,Y )M ) =
1

q − 1

(
we
(
〈ϕ̂(X,Y ), Ĉ const〉

)
− we(Ĉ const)

)
,

and this coincides with λ̂X,Y due to Lemma 3.8. ✷

For the sequel let G be any direct complement of (ker Φ)⊥ in F . Due to Lemma 5.3(e)
we have the following decompositions of F .

∆̂
︷ ︸︸ ︷

F
f

��

= ∆̂∗

f0

��

⊕ ker Φ̂

f1
��

⊕ ∆̂−

f2
��

F = M ⊕ ∆⊥ ⊕ G
︸ ︷︷ ︸

(ker Φ)⊥

(5.4)

where, due to identical dimensions, there exist isomorphisms in each column. For f0 we
choose the isomorphism induced by the matrix M from Lemma 5.3, and thus M = imM
as before. This picture leads to the following result.

Theorem 5.5 Consider the diagram (5.4) and let the isomorphism f0 be induced by
the matrix M from Lemma 5.3. Fix any isomorphisms f1 and f2 in the diagram. Let
f := f0 ⊕ f1 ⊕ f2 be the associated automorphism on F . Then

λ̂X,Y = q−kH
(
(HΛH)f(X,Y )

)
for all (X,Y ) ∈ F . (5.5)

As a consequence,

λ̂f−1(−Y,X) = q−kH
(
(HΛtH−1)X,Y

)
for all (X,Y ) ∈ F .

In particular, the entries of the matrices Λ̂ and q−kH
(
HΛtH−1

)
coincide up to reordering.

Proof: Recall from (4.2) that (HΛH)f(X,Y ) = ℓf(X,Y ). We have to consider three cases.

1) If (X,Y ) 6∈ ∆̂, then f(X,Y ) 6∈ (ker Φ)⊥ and λ̂X,Y = 0 = q−kH(ℓf(X,Y )) due to the very

definition of ∆̂ and Proposition 4.8.
2) If (X,Y ) ∈ ker Φ̂ then ϕ̂(X,Y ) ∈ Ĉ const and f(X,Y ) ∈ ∆⊥. Now Lemma 3.8 as well as
Proposition 4.8 yield λ̂X,Y = we(Ĉ const) = q−kH(ℓf(X,Y )).

3) For the remaining case we have (X,Y ) ∈ ∆̂\ ker Φ̂. Writing (X,Y ) = (X1, Y1)+(X2, Y2)
where (X1, Y1) ∈ ∆̂∗ and (X2, Y2) ∈ ker Φ̂, Proposition 3.11(c) yields λ̂X,Y = λ̂X1,Y1

while
Theorem 4.7 implies ℓf(X,Y ) = ℓ(X1,Y1)M . Now the result follows from Theorem 5.4.
For the second statement put Γ := HΛtH−1. Notice first that Lemma 4.4 and the definition
of P(−I) as given in 3.4 yield HΛH = P(−I)Γt. This implies (HΛH)X,Y = ΓY,−X . Now
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we obtain from (5.5) λ̂f−1(X,Y ) = q−kH(ΓY,−X) and thus λ̂f−1(−Y,X) = q−kH(ΓX,Y ). This
concludes the proof. ✷

It needs to be stressed that the theorem does not prove Conjecture 5.2 since we did
not show that f−1(−Y,X) = (XQ,Y Q) for some suitable Q ∈ GLδ(F) and all (X,Y ) ∈
F . The difficulty in proving Conjecture 5.2 consists precisely in finding isomorphisms
f0, f1, f2 for Diagram (5.4) such that f−1(−Y,X) has such a form. This will be accom-
plished next for the class of convolutional codes for which either r or r̂ is equal to δ.

We begin with the case where r̂ = δ. Notice that this is equivalent to saying that all
nonzero Forney indices of Ĉ have value one. Therefore, in this case

Ĝ =

(
D̂1

D̂2

)
+ z

(
Ĉ
0

)
where D̂ =

(
D̂1

D̂2

)
=

(
B̂tD̂

D̂2

)
and rank

(
Ĉ

D̂2

)
= n− k, (5.6)

where the last part follows from minimality of the encoder Ĝ. Furthermore, im D̂2 = Ĉ const.
We will need the following technical lemma.

Lemma 5.6 Let r̂ = δ. Then the controller canonical forms satisfy

(1) B̂tD̂Ct ∈ GLδ(F),

(2) ĈDtB + ĈCtA = −B̂tD̂Ct.

Proof: (1) Since r̂ = δ we have B̂t = (Iδ , 0) and thus B̂tD̂ consists of the first δ rows
of D̂. As a consequence, B̂tD̂ has full row rank δ. Suppose now that rank B̂tD̂Ct < δ.
Since D̂Dt = 0 this implies rank B̂tD̂(Ct,Dt) < δ. Hence there exists a nonzero vector
a ∈ Fδ such that aB̂tD̂(Ct,Dt) = 0. In other words, aB̂tD̂ ∈ (C

C
)⊥ = Ĉ const, where

the last identity follow from Proposition 2.7. Now the full row rank of B̂tD̂ shows that
im B̂tD̂ ∩ Ĉ const 6= {0}, a contradiction to Remark 2.6(2) applied to the code Ĉ. Hence
rank B̂tD̂Ct = δ.
(2) By duality we have ĜGt = 0. From Remark 2.2 we know that the controller canonical
forms determine the corresponding encoders via

G(z) = B(z−1I −A)−1C +D = B
∑

l≥1

zlAl−1C +D and Ĝ(z) = B̂
∑

l≥1

zlÂl−1Ĉ + D̂

where due to nilpotency the sums are finite. Since r̂ = δ all Forney indices of Ĉ are at
most one and therefore Â = 0. Hence Ĝ = zB̂Ĉ + D̂. Now we compute

0 = ĜGt = z(D̂CtBt + B̂ĈDt) +
∑

l≥2

zl
(
D̂Ct(At)l−1Bt + B̂ĈCt(At)l−2Bt

)
.

Hence the coefficients of zl, l ≥ 1, are zero. Left multiplying the coefficient of z by B̂t,
right multiplying it by B, and using B̂tB̂ = I this implies the identity

B̂tD̂CtBtB + ĈDtB = 0. (5.7)

Furthermore, if we multiply the coefficient of zl by B̂t from the left and by BAl−1 from
the right we obtain

0 =
(
B̂tD̂Ct(At)l−1Bt + ĈCt(At)l−2Bt

)
BAl−1 =

(
B̂tD̂CtAt + ĈCt

)(
(At)l−2BtBAl−1

)

=
(
B̂tD̂CtAt + ĈCt

)(
(At)l−2(I −AtA)Al−1

)
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where the last identity is due to Remark 2.4. Addition of these equations yields

0 =
(
B̂tD̂CtAt + ĈCt

)∑

l≥2

(
(At)l−2Al−1 − (At)l−1Al

)
= B̂tD̂CtAtA+ ĈCtA,

where the last identity follows from the nilpotency of A. Now we conclude with Remark 2.4
and the aid of (5.7)

ĈCtA = −B̂tD̂CtAtA = −B̂tD̂Ct + B̂tD̂CtBtB = −B̂tD̂Ct − ĈDtB,

which is what we wanted. ✷

Now we can present an isomorphism f1 for Diagram (5.4).

Lemma 5.7 Let r̂ = δ. Define

M1 :=

(
−ĈCt ĈCtA

0 0

)
∈ F2δ×2δ .

Then

(a) imM1 ⊆ ∆⊥.

(b) ker Φ̂ ∩ kerM1 = {0}.
(c) rankM1 = δ − r.

As a consequence, M1 induces an isomorphism f1 : ker Φ̂ −→ ∆⊥.

Proof: (a) Using Lemma 3.7 it suffices to show that (ĈCt)ij = 0 for all 1 ≤ i ≤ δ and

j ∈ J . From (5.6) we see that all rows in Ĉ are leading coefficient rows in Ĝ. By definition
of the controller canonical form the jth rows of C, where j ∈ J , are leading coefficient
rows of the encoder G. Now ĜGt = 0 implies the desired result. As a consequence we also
have rankM1 ≤ δ − r.

(b) From Lemma 5.6 we know that B̂tD̂Ct ∈ GLδ(F). Let now (X,Y ) ∈ ker Φ̂ ∩ kerM1.
Then XĈCt = 0 and, due to Lemma 5.3(b) we also have (X,Y )M = 0. As a consequence,
XĈCt + Y B̂tD̂Ct = Y B̂tD̂Ct = 0 and from the above we conclude Y = 0. Now (X, 0) ∈
ker Φ̂ yields ϕ̂(X, 0) = XĈ ∈ Ĉ const. Using the full row rank of the rightmost matrix
in (5.6) we conclude X = 0.

(c) follows from (a) and (b) since dimker Φ̂ = δ − r. ✷

Now we are able to prove our main result. The crucial step will be a suitable choice for
the space ∆̂∗. Recall that, so far, ∆̂∗ was just any direct complement of ker Φ̂ in ∆̂. As
we will see below, kerM1 is such a direct complement.

Theorem 5.8 Let r̂ = δ, that is, each Forney index of the code Ĉ is at most 1. Then
Q := −B̂tD̂Ct ∈ GLδ(F) and

λ̂X,Y = q−kH
(
(HΛtH−1)XQ,Y Q

)
for all (X,Y ) ∈ F .

As a consequence,
Λ̂ = q−kH

(
P(Q)HΛtH−1P(Q)−1

)
, (5.8)

where the MacWilliams transformation H has to be applied entrywise.
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Proof: The invertibility of Q = B̂tD̂Ct has been shown in Lemma 5.6(1). Choose the
matrices M and M1 as in Lemmas 5.3 and 5.7. By Lemma 5.6(2) we have

M +M1 =

(
0 Q

−Q 0

)
∈ GL2δ(F). (5.9)

Notice that due to r̂ = δ we have F = ∆̂. In particular, the last column of Diagram 5.4
is trivial. Lemma 5.7 shows that ∆̂∗ := kerM1 is a direct complement of ker Φ̂ in F . Now
define the automorphism f : F −→ F as f(X,Y ) = (X,Y )(M +M1). Using Lemma 5.3
and Lemma 5.7, in particular ∆̂∗ = kerM1 and ker Φ̂ ⊆ kerM , we see that f is of the form
f = f0 ⊕ f1 as required in Diagram (5.4). Here f0 and f1 are induced by the matrices M
and M1, respectively. It is easy to see that f−1(−Y,X) = (XQ−1, Y Q−1) and therefore
Theorem 5.5 yields λ̂XQ−1,Y Q−1 = q−kH

(
(HΛtH−1)X,Y

)
. Using (3.2) this implies the

desired result. ✷

Example 5.9 Note that the code C from Example 2.8 satisfies r̂ = δ. Hence we can apply

Theorem 5.8 to this code. The automorphism Q can be calculated as Q =
(

1 0 1
1 0 0
0 1 0

)
and,

using the lexicographic ordering (3.1), the permutation matrix is given by

P(Q) =




1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0




.

Using this as well as the adjacency matrices given in Example 3.2 and the MacWilliams
matrix H in Example 4.5 one can check straightforwardly Identity (5.8).

We can easily transfer our result to convolutional codes with δ = r.

Theorem 5.10 Let δ = r, that is, each Forney index of the code C is at most 1. Then
P := −ĈDtB ∈ GLδ(F) and for all (X,Y ) ∈ F we have λ̂X,Y = q−kH

(
(HΛtH−1)XP,Y P

)
.

In other words,
Λ̂ = q−kH

(
P(P )HΛtH−1P(P )−1

)
.

Proof: Notice that we can apply Theorem 5.8 to the code Ĉ. Hence Q := −BtDĈt is
regular and, since dim Ĉ = n−k, we obtain Λ = q−n+kH(P(Q)HΛ̂tH−1P(Q)−1). Applying
H2(f) = qnf and the C-linearity of H we arrive at q−kH(H−1P(Q)−1ΛP(Q)H) = Λ̂t.
Transposing this equation and remembering that Ht = H while P(Q)t = P(Q)−1, one
gets

Λ̂ = q−kH(HP(Q)−1ΛtP(Q)H−1).

Now Lemma 4.4 yields HP(Q)−1 = HP(Q−1) = P(Qt)H = P(P )H. This concludes the
proof. ✷

Incorporating the permutation matrix into the MacWilliams matrix, see Lemma 4.4, we
can state Theorems 5.8 and 5.10 in terms of P -MacWilliams matrices only.
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Corollary 5.11

(1) If r̂ = δ, then Q = −B̂tD̂Ct ∈ GLδ(F) and Λ̂ = q−kH
(
H(Q)ΛtH(Q)−1

)
.

(2) If r = δ, then P = −ĈDtB ∈ GLδ(F) and Λ̂ = q−kH
(
H(P )ΛtH(P )−1

)
.

Using the notion of the generalized adjacency matrix as defined in Remark 3.5(b) we
obtain the following consequence, formulated independently of any chosen representation.

Theorem 5.12 Let r = δ or r̂ = δ. Then the generalized adjacency matrix of C uniquely
determines the generalized adjacency matrix of the dual code Ĉ. More precisely, let [Λ]
and [Λ̂] be the generalized adjacency matrices of C and Ĉ, respectively. Then, in a sugges-
tive notation,

[Λ̂] = q−kH(H[Λ]tH−1).

We close this section with an example supporting Conjecture 5.2 that is not covered by
the cases in Theorem 5.8 or Theorem 5.10.

Example 5.13 Let q = 3, thus F = F3, and G =
(
1+z2 2+z 0
1 0 2

)
. Put C = imG. Then G

is a minimal basic matrix and thus C is a (3, 2, 2) code. The dual code is given by
Ĉ = im Ĝ where Ĝ =

(
2 + z 2 + 2z2 2 + z

)
. Notice that r = r̂ = 1 6= δ. Using

the controller canonical forms one can straightforwardly compute the adjacency matri-
ces Λ, Λ̂ ∈ C[W ]9×9. Then, via a systematic search one finds that Identity (5.2) is satisfied
if one chooses the regular matrix P = ( 1 1

1 2 ) ∈ GL2(F3). In the same way one can establish
plenty of examples.

6 Unit Constraint-Length Codes

In the last section we want to have a closer look at codes with degree δ = 1, also called
unit constraint-length codes or unit memory codes. Notice that in this case r = r̂ = δ = 1.
The situation now becomes particularly simple since, firstly, GLδ(F) = F∗ and, secondly,
the adjacency matrices Λ and Λ̂ do not depend on the choice of the encoder matrices G
and Ĝ. The latter is a consequence of Equation (3.2) along with Remark 3.5(a), (b).
Notice also that in Diagram (5.4) the second and third column are trivial. Using once more
Remark 3.5(a), we finally see that the statements of both Theorem 5.8 and Theorem 5.10
reduce to the nice short formula

Λ̂ = q−kH(HΛtH−1). (6.1)

In the paper [1] the so-called weight enumerator state diagram has been studied for
codes with degree one. They are defined as the state diagram of the encoder where
each directed edge is labeled by the weight enumerator of a certain affine code. A type
of MacWilliams identity has been derived for these objects [1, Thm. 4]. It consists of a
separate transformation formula for each of these labels. After some notational adjustment
one can show that the weight enumerator state diagram is in essence identical to the
adjacency matrix of the code. Furthermore, if stated in our notation, the MacWilliams
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identity in [1, Thm. 4] reads as

λ̂X,Y =




q−k−1H

(
λ0,0 + (q − 1)(λ0,1 +

∑
Y ∈F λ1,Y )

)
if (X,Y ) = (0, 0)

q−k−1H
(
λ0,0 + qλX,Y − λ0,1 −

∑
Y ∈F λ1,Y

)
else.

(6.2)

In the sequel we will briefly sketch that this result coincides with Identity (6.1). In order
to do so use again ℓX,Y as introduced in (4.2). Then (6.1) turns into

λ̂X,Y = q−kH(ℓ−Y,X) for all (X,Y ) ∈ F . (6.3)

Now we are in a position to derive (6.2). Consider first the case (X,Y ) = (0, 0). Recalling
Theorem 4.7, Proposition 3.13, and Remark 3.5(a) we find

qℓ0,0 = we(C
C
) =

∑

(X,Y )∈F

λX,Y = λ0,0 +
∑

Y ∈F∗

λ0,Y +
∑

X∈F∗

∑

Y ∈F

λX,Y

= λ0,0 + (q − 1)(λ0,1 +
∑

Y ∈F

λ1,Y ).

Using (6.3) this yields the first case of (6.2). For the second case let (X,Y ) ∈ F \(0, 0).
Since ∆⊥ = {0} and (ker Φ)⊥ = F one observes that in Theorem 4.7 the third case has to
be applied. Along with Proposition 3.13 and Remark 3.5(a) this yields

qℓ−Y,X =
1

q − 1

(
q

∑

(Z1,Z2)∈(−Y,X)⊥

λZ1,Z2
− we(C

C
)
)
=

1

q − 1

(
q
∑

α∈F

λαX,αY − we(C
C
)
)

=
1

q − 1

(
q(q − 1)λX,Y + qλ0,0 −

∑

(Z1,Z2)∈F

λZ1,Z2

)

= qλX,Y + λ0,0 −
1

q − 1

∑

(Z1,Z2)∈F\{(0,0)}

λZ1,Z2
= qλX,Y + λ0,0 − λ0,1 −

∑

Y ∈F

λ1,Y .

Combining this with (6.3) leads to the second case of (6.2).

Conclusion

In this paper we studied the adjacency matrices for convolutional codes. We introduced
a transformation consisting of conjugation with the MacWilliams matrix followed by en-
trywise application of the MacWilliams Identity for block codes. We proved that the
resulting matrix coincides up to reordering of the entries with the adjacency matrix of
the dual code, and we presented the reordering mapping explicitly. This result can be
regarded as a weak MacWilliams Identity for convolutional codes. However, we strongly
believe that the reordering of the entries can even be expressed in terms of an isomor-
phism on the state space, and indeed, we proved this statement for a particular class of
convolutional codes. The general case has to remain open for future research.
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