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Approaching the Zero-Outage Capacity of
MIMO-OFDM Without Instantaneous Water-Filling

Joon Hyun Sung and John R. Barry, Senior Member, IEEE

Abstract—Orthogonal-frequency-division multiplexing (OFDM)
transforms a frequency-selective multiple-input multiple-output
(MIMO) fading channel into a MIMO-OFDM channel that
has a well-defined outage capacity. A transmitter with channel
knowledge can achieve this capacity by a combination of eigen-
beamforming and water-filling; the eigenbeamforming transforms
the MIMO-OFDM channel into a parallel bank of scalar channels,
and the water-filling procedure optimally allocates rate and en-
ergy to the scalar channels—a form of adaptive modulation. This
paper shows that the water-filling procedure is not necessary to
approach the zero-outage capacity of the MIMO-OFDM channel;
it is sufficient instead to use a combination of eigenbeamforming
and a fixed (nonadaptive) rate allocation. The fixed allocation
depends only on the statistics of the channel and is independent
of the particular channel realization. This paper proves that the
capacity penalty incurred by the fixed allocation approaches zero
as the number of antennas grows large. Numerical results indicate
that the convergence is fast; for example, the fixed allocation
suffers an SNR penalty of less than 0.2 dB for a 6-input 6-output
Rayleigh-fading MIMO-OFDM channel at 8 bits per signaling
interval, when the channel is assumed to be uncorrelated between
antennas and between channel taps. A main conclusion is that
eigenbeamforming is the most valuable way to exploit knowledge
of the channel at the transmitter, and that any subsequent adaptive
modulation has minimal relative value.

Index Terms—Closed-loop multiple-input-multiple-output or-
thogonal-frequency-division multiplexing, eigenbeamforming,
fading channels, outage capacity, rate allocation.

I. INTRODUCTION

I NFORMATION theory for single-user communications
over fading channels has been thoroughly studied for

decades [1]. Two types of capacity measures have emerged:
the average or ergodic capacity, and the outage capacity. The
availability of channel-state information (CSI) at the trans-
mitter does not dramatically impact the average capacity of
a single-input–single-output (SISO) channel [2]. The same is
true for a multiple-input–multiple-output (MIMO) channel at
high signal-to-noise ratio (SNR) [3]–[6]. On the other hand,
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transmitter CSI has a dramatic impact on the outage capacity
of both SISO [7] and MIMO [8] channels.

This paper concerns the outage capacity. In particular, we
use the zero-outage capacity, also known as the delay-limited
capacity [1], [9], as a metric for the maximum achievable rate
of fading channels with a zero outage probability. When out-
ages are unavoidable, the zero-outage capacity is zero. A posi-
tive zero-outage capacity can be achieved only when the trans-
mitter knows CSI [1], but even this is not always enough; for ex-
ample, the zero-outage capacity is zero with transmitter CSI on
a Rayleigh flat-fading SISO channel [2]. However, when there is
diversity [10], such as from frequency selectivity or from mul-
tiple antennas, a positive zero-outage capacity can be achieved
with the knowledge of CSI at the transmitter [1], [7], [11]. Not
surprisingly, MIMO channels can have a large zero-outage ca-
pacity due to the spatial diversity from its antenna arrays at both
ends. In fact, on a Rayleigh-flat-fading channel, the zero-outage
capacity is not only nonzero, but also approaches the average
capacity as the number of antennas tends to infinity [8].

We consider the MIMO-OFDM channel, which is the effec-
tive channel that results from an application of orthogonal-fre-
quency-division multiplexing (OFDM) to a frequency-selective
fading MIMO channel, and which has a well-defined outage
capacity. We assume that the underlying frequency-selective
channel is uncorrelated between channel taps. A transmitter
with CSI can achieve this capacity by a combination of eigen-
beamforming [12] and water-filling; the eigenbeamforming
transforms the MIMO-OFDM channel into a parallel bank
of scalar channels, and the water-filling procedure optimally
allocates rate and energy to the scalar channels, a classical
power-allocation problem in information theory [13].

In this paper, we show that the zero-outage capacity can be
approached with one of two simpler allocations: the frequency-
uniform-spectral-efficiency (FUSE) allocation or the fixed-rate
(FIXED) allocation. The FUSE allocation forces each OFDM
tone to have the same spectral efficiency, so that the problem
of water-filling jointly over space and frequency reduces to a
set of independent water-fillings over space only, once for each
OFDM tone. The FIXED allocation is totally nonadaptive, with
no water-filling at all; instead, the rates are deterministically al-
located to match the channel statistics, independent of the partic-
ular channel realization. We will see that, despite their reduced
complexity, the FUSE and FIXED allocations are nearly optimal
in terms of the zero-outage capacity they achieve. The main con-
tributions of this paper are as follows:

• we introduce the FUSE and FIXED allocation strategies,
and we derive their optimal allocation (Proposition 1 and
Proposition 3);
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• we prove that the penalties of the FUSE and FIXED allo-
cations, relative to the optimal water-filling over space and
frequency, converge to zero when the number of antenna
tends to infinity (Proposition 2 and Proposition 4);

• we present high-SNR analysis which shows that the
penalties of the FUSE and FIXED allocations are small
for a moderate number of antennas (Proposition 5 and
Proposition 6).

The analytic results for the FUSE and FIXED allocations can
immediately apply to a practical closed-loop MIMO-OFDM
system, providing theoretical limits and potentials for practical
allocation strategies [14], [15].

The rest of paper is organized as follows. Section II describes
a model for the MIMO fading frequency-selective channel, and
it reviews how a frequency-selective MIMO channel is con-
verted into a bank of scalar channels by OFDM and eigenbeam-
forming. Section III introduces the power-allocation problem
and proposes the FUSE and FIXED allocations. We also analyze
the limiting performance of the FUSE and FIXED allocations as
the number of antennas goes to infinity. In Section IV, we con-
duct high-SNR analysis to show that the penalties of the FUSE
and FIXED allocations quickly converge to zero. Section V pro-
vides numerical results via Monte Carlo simulations. Finally we
conclude in Section VI.

II. SYSTEM MODEL

We consider the following linear discrete-time baseband
MIMO channel with transmit and receive antennas:

(1)

where is the vector of symbols transmitted during
the th signaling interval, and is the vector of
received samples for the th signaling interval, and where is
the channel matrix for the -th delay. The channel
memory is denoted by , so that the channel is flat-fading
(memoryless) when , and it can be frequency-selective
when . We assume that realizations of are ran-
domly chosen at the beginning of transmission and remain
fixed for all channel uses [5]. The noise sequence

is white zero-mean circularly symmetric Gaussian with
, where denotes Hermitian

transpose, is the identity matrix, and the Kronecker
delta function is unity when and zero otherwise.

We assume Rayleigh fading with a potentially nonuniform
power profile. A special case is when the channel is spatially un-
correlated, so that , where is an ma-
trix of independent and identically distributed (i.i.d.)
entries, in which denotes a complex random vari-
able, whose real and imaginary parts are independent Gaussian
random variables with zero mean and variance . The
channel is normalized so that . The power profile
is called uniform when . We also
assume, for the sake of analysis simplicity, that the channel taps
( ) are also temporally uncorrelated, so that the elements
in are uncorrelated with the elements in when .

An effective strategy for dealing with the intersymbol in-
terference (ISI) that results from frequency selectivity is to
use OFDM [16], which leads to the MIMO-OFDM system
illustrated in Fig. 1(a) [12]. The th transmit antenna con-
veys a block of information symbols by
first taking the inverse discrete Fourier transform, which
gives , adding a cyclic prefix of length

, and finally passing the sequence of symbols to
a digital-to-analog converter and upconverter. The receiver
downconverts and samples the signal at its th antenna and
removes the cyclic prefix, which gives .

Taking the DFT yields . The net result is a
bank of memoryless MIMO channels, one for each tone [12],
[17], [18]:

...
...

...

(2)

where is the vector of infor-
mation symbols transmitted at the th tone, and where

is the corresponding received vector. The
equivalent MIMO-OFDM channel is shown in Fig. 1(b). The
additive noise in (2) is statistically identical to . The

matrix represents the memoryless channel at
the th tone, where

(3)

For the special case of a memoryless channel ( ),
reduces to , independent of , so that all tones see the same
memoryless channel. We assert without proof the following
about the statistics of .

Assertion 1: For spatially uncorrelated channels, the compo-
nents of each are i.i.d. .

Let denote the positive ordered eigenvalues
of , ordered so that ,
where . For spatially uncorrelated channels,

is the minimum number of antennas at
the two ends [19]. Let be a singular-value
decomposition of the -th memoryless MIMO channel, where

and are and unitary matrices,
respectively, and where is an diagonal matrix
with diagonal components .

An eigenbeamformer [8], [20], [21] uses as a prefilter
for the -th tone, as shown in Fig. 1(b), so that
for some input vector . A matched-filter receiver (one that
is matched to the cascade of the eigenbeamforming prefilters
and the underlying MIMO-OFDM channel) then uses as a
receive filter for the -th tone, as shown in Fig. 1(b), so that
the output of the -th such receive filter is . To-
gether, the eigenbeamforming and matched filtering transform
the MIMO-OFDM channel of (2) into a bank of scalar
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Fig. 1. (a) A MIMO-OFDM system with transmit and receive filters. (b) An equivalent discrete-time model for MIMO-OFDM on the left andMN scalar channels
by eigenbeamforming on the right.

channels over space ( ) and frequency (
) [12], such that

(4)

as illustrated in Fig. 1(c). The noise samples are i.i.d.
, since the matrices are unitary.

Note that, since the unitary eigenbeamforming and matched
filtering do not decrease mutual information, the parallel scalar
channels in (4) have the same mutual information as the MIMO-
OFDM channel of (2). We should emphasize that the capacity
of the effective MIMO-OFDM channel of (2) is strictly smaller
than the capacity of the underlying frequency-selective MIMO
channel of (1), since the use of the cyclic prefix at the trans-
mitter (and discarding it at the receiver) incurs a loss of mutual
information. This paper makes no attempt to quantify this loss
in capacity, except to mention that it goes to zero as
[12]. Instead, our focus is on the capacity of the MIMO-OFDM
channel in (2) itself.

In the model of (4), the eigenvalues , which are random
variables, play a key role in the capacity analysis. We define
some useful functions of . First, the empirical distribu-
tion of over an index set for and is
defined as

(5)

where is an indicator function, such that is unity if
the condition is satisfied and zero otherwise, and where
denotes the cardinality of . Let

and (6)

indicate the universe index set, encompassing all and . Note
that is a random function for a finite . For flat fading
( ), however, converges to a nonrandom limit in
distribution as [6]. From Assertion 1, we deduce that

also converges to a nonrandom limit when .
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Other useful functions are arithmetic and geometric means of
[16]. For a given index set , we define the arithmetic

and geometric means of as

(7)

and

(8)

respectively, both of which are also random. A well-known in-
equality is for any with equality if and only if
is independent of and over .

III. POWER ALLOCATION FOR MIMO-OFDM

We consider single-user communications over the parallel
scalar channels of (4). Let denote the
energy of for the th (space) and th (frequency) scalar
channel. For given and , the maximum mutual
information between and is [8]

(9)

The units of are bits per signaling interval, which
reduces to bits/sec/Hz when the rate loss due to the cyclic
prefix is negligible. Since the channel is random, is
also a random variable. We declare an outage occurrence when

is smaller than the transmission rate , and define
the outage probability as . We
are interested in the maximum that can be achieved with

. In this context, the zero-outage capacity is defined
as [8]

(10)

where the first supremum is over all satisfying an av-
erage-energy constraint:

(11)

In terms of (11), the average SNR per receive antenna is simply
.

The optimization in (10) is a power-allocation problem,
where we find such that is maximized. The optimal
choice of is obtained by solving [8] and [22]

Minimize

Subject to (12)

as described in the following theorem.

Theorem 1 (From [8]): The optimal power allocation is given
by , with , where

(13)

ensures that is satisfied, and where the index
set in (13) identifies the used channels according to

.
Proof: See [8].

In Theorem 1, the average energy requirement is a function
of , that is, . The zero-outage capacity at an SNR
of is then obtained by inverting this function,

. Generally, is positive if [8],
where denotes the universe index set in (6). When ,

corresponds to the zero-outage capacity of a flat-
fading MIMO channel.

The solution in Theorem 1 requires performing water-filling
over channels, and thus its computational complexity can
be high, especially when is very large. This motivates
us to find reduced-complexity allocation strategies. We reduce
complexity by applying two stricter constraints when solving
the allocation problem: the frequency-uniform-spectral-effi-
ciency and fixed-rate constraints.

A. FUSE Allocation

We first introduce the frequency-uniform-spectral-efficiency
(FUSE) constraint. Unlike the original constraint of (12), which
requires only that the average spectral efficiency (averaged over
the tones) is equal to the target value , the FUSE forces
the spectral efficiency to be at each tone. With the FUSE
constraint, the problem becomes

Minimize

Subject to for each (14)

Proposition 1 (FUSE Allocation): The power allocation that
solves (14) is , where

(15)

ensures that is satisfied for all , and
where is the index set of the used
channels for the th tone.

Proof: From (14), the objective function can be rewritten
as

(16)
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With the FUSE constraint, the problem reduces to indepen-
dent smaller problems

Minimize

Subject to
for all

(17)
For each , the optimal is in the same form of Theorem
1, where and correspond to and in Theorem 1,
respectively, for each .

Inverting with the optimal of Proposition 1 with re-
spect to , we obtain , the zero-outage capacity with the
FUSE constraint. To achieve , we perform water-filling
over scalar channels independently, times. In contrast,
to achieve requires water-filling jointly over the
scalar channels. The FUSE constraint reduces complexity con-
siderably when is large. However, this complexity reduction
leads to a capacity loss, such that . In the fol-
lowing, we attempt to quantify this loss.

Proposition 2: The FUSE allocation is asymptotically loss-
less as the number of antennas gets large, in the sense that

as .
Proof: The proof is based on the fact that the power al-

location is associated with the empirical distribution of
in (5). If two systems have the same empirical distribution for
all channel realizations, they achieve the same zero-outage ca-
pacity. Consider two index sets: the universe index set in (6)
for , and the spatial index set

for a specific (18)

for . When is finite, the empirical distribution func-
tions for and are different, . How-
ever, when approaches infinity, we have
from [23], and therefore both and achieve the same
zero-outage capacity.

Proposition 2 suggests that the penalty of the FUSE alloca-
tion converges to zero as grows. It is an encouraging result
to justify the use of the FUSE allocation, but we are more in-
terested in its performance at a finite . We will show that the
convergence in Proposition 2 is fast by high-SNR analysis in
Section IV and experimental results in Section V.

B. FIXED Allocation

The FUSE constraint forces each tone to have the same
spectral efficiency, but it allows for some adaptation within the
spatial channels of each tone. We now introduce the fixed-rate
(FIXED) constraint, which takes this one step further: it fixes
the rate allocated to each
scalar channel, regardless of . The rate allocation is
deterministic and nonadaptive, and is independent of the partic-
ular fading realization. Once the rates are specified, the
power allocation may be simply calculated from a closed-form
formula, , and thus no dynamic
water-filling is needed. We should emphasize that the FIXED
constraint does not mean that are uniform for all and

. Instead, the rates are optimized to the anticipated
fading statistics so as to minimize the average required energy

. Before presenting the optimal rate allocation, we define the
number of available scalar channels with the FIXED constraint.

Definition 1: Let be the largest integer satisfying
for each . We may interpret as the number

of scalar channels per tone that can convey data at a nonzero
rate with a FIXED allocation.

If a nonzero rate were allocated to with
, the average energy requirement would be infinite. For this

reason, we avoid using such scalar channels. From Assertion 1,
is identical for all . Then, the allocation problem with the

FIXED constraint is to find such that

Minimize

Subject to (19)

where are independent of .

Proposition 3 (FIXED Allocation): The optimal choice of
that minimizes is

(20)

where

(21)

ensures that is satisfied, and where

(22)

is the index set for used channels out of channels for each
. In (21) and (22), denotes the geometric mean of

over , namely

(23)
Proof: Since are independent of , the objec-

tive function in (19) becomes

(24)
where . In (24), work as the
squared channel gains, and each tone has scalar channels.
Since is identical for all from Assertion 1,
the problem reduces to water-filling over scalar channels,
such that is the water-level parameter and is the
index set for used channels. The geometric mean
replaces of Proposition 1 in this case.
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From Proposition 3, we can confirm that are deter-
ministic, obtained from performing water-filling over determin-
istic channels, . Thus, we only need to know

, not all statistics of , to decide .
Once are predetermined, the optimal power allocation
is simply calculated by

(25)

for each realization of . The fact that the required en-
ergy is a function of indicates that the FIXED
allocation requires an adaptive power allocation, even though it
uses a nonadaptive rate allocation. In other words, the FIXED
allocation combines a fixed rate allocation with adaptive power
control to avoid an outage.

Corollary 1: The FIXED constraint implies the FUSE con-
straint in the sense that for all .

Proof: In the proof of Proposition 3, we already showed
that the rate allocation is independent of .

Complexity reduction is remarkable with the FIXED alloca-
tion, but fixing rate allocation could incur a significant penalty.
Let denote the zero-outage capacity with the FIXED
allocation. Since the FIXED constraint is stricter than the FUSE
constraint, we have . The fact that

is smaller than can seriously decrease the zero-outage
capacity, as will be discussed in Section IV. When is suffi-
ciently large, however, the performance degradation is not crit-
ical. As tends to infinity, we have the following proposition.

Proposition 4: The FIXED allocation is asymptotically
lossless as the number of antennas gets large, in the sense that

as .
Proof: Let and let be the spatial index

set in (18). From Proposition 3, depends on the empir-

ical distribution of

(26)

if including , which is identical for all . The
goal is to show that is equal to , the empir-
ical distribution for in (5), as . When

, becomes nonrandom, and thus
, implying that the den-

sity function of is a delta function at . Therefore,
. If , this corresponds to

. Therefore, by substituting into
(5), we obtain for infinite . Therefore,

converges to as sine and
account for and , respectively. From

Proposition 2, we deduce that is asymptotically iden-
tical to as .

We showed in Proposition 2 that water-filling over spatial
channels is sufficient to approach . Furthermore, Propo-
sition 4 illustrates that even a nonadaptive rate allocation can

achieve . In other words, water-filling is not necessary to
approach in MIMO-OFDM. Note that the FIXED allo-
cation must be matched to channel statistics, while the FUSE
allocation is independent of statistics.

For flat-fading channels ( ), Proposition 4 implies that
the spatial rate allocation can be predetermined according to
channel statistics and fixed for all channel uses without incur-
ring any penalty. This optimality of the FIXED allocation can
be explained by the fact that MIMO channels tend to lose their
randomness as the size of MIMO channel grows.

IV. ASYMPTOTIC BEHAVIOR AT HIGH SNR

We have seen that both the FUSE and FIXED allocations do
not incur any capacity loss when , but it is of obvious
practical interest to know how these allocation strategies per-
form when is finite. As water-filling is a complicated process,
it is difficult to analyze the zero-outage capacity directly. For
this reason, we instead examine the asymptotic behavior at high
SNR. First of all, in the case of the optimal power allocation in
Theorem 1, we have the following result:

Theorem 2 (From [8]): As SNR tends to infinity,
asymptotically approaches

(27)

as long as , where is the universe index set
in (6) and is the SNR.

Proof: See [8].

The capacity increase provided by a MIMO system is often
quantified by the spatial multiplexing gain [24], [25], defined
as the limit of the ratio as SNR goes
to infinity. Theorem 2 tells us that this gain is equal to ,
independent of . Nevertheless, does have an impact on

, since in (27) is a function of . In this
context, is an important factor to understand the
impact of on , but difficult to evaluate analytically. We
resort to Monte-Carlo simulations to evaluate as
summarized in Fig. 2 for and
by averaging over 10,000 Rayleigh independent
channels with the uniform power profile. Fig. 2 clearly shows
that is an increasing function of , meaning that

is also increasing with , and converges as grows.
It would still be nice to have a closed-form formula for

to understand the behaviors of better. We
are also interested in what would happen when . Does

increase without a bound when ? How fast
does the penalty of the FUSE allocation converge to zero as

? To answer these questions, we use arithmetic mean,
instead of geometric mean, to derive a closed-form bound as
follows.

Proposition 5: The asymptote of in (27) is bounded
by

(28)
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Fig. 2. 1= [1=G ] for M � M Rayleigh-fading channels with channel memory L by Monte Carlo simulations.

For spatially uncorrelated channels, the bound in (28) is maxi-
mized for the uniform power profile, that is

, for which in (28) can be evaluated as

(29)

Proof: Deferred to Appendix A.

From Proposition 5, the first question is clearly answered; as
for finite and , the bound in (28) is finite such

that it converges

(30)

Therefore, also converges to a finite value for infinite .
This means that the gain from frequency selectivity ( ),
compared to flat fading ( ), is limited. The increase by
results in the capacity penalty of the FUSE allocation, meaning
that the penalty is finite.

On the other hand, to investigate the convergence speed of
the FUSE allocation in Proposition 2, we derive the following
corollary from Proposition 5.

Corollary 2: As SNR tends to infinity, asymptoti-
cally approaches

(31)

where is the spatial index set in (18). From Assertion 1,
is equal to with the universe index set in (6). With
the uniform power profile, is upper-bounded by

.
Proof: The proof is straightforward since

from Proposition 1.

Corollary 2 shows that the spatial multiplexing gain of the
FUSE allocation is also linearly proportional to , but
has in the logarithm instead of ,
which results in a SNR penalty. We define the SNR penalty
of the FUSE allocation relative to the optimal allocation in
Theorem 1 as

SNR penalty (32)

which accounts for the additional SNR required by the FUSE
allocation over the optimal allocation at high SNR. The SNR
penalty is approximated by replacing the geometric mean with
the arithmetic mean, as described in (32). Note that the approx-
imate SNR penalty in (32) is maximized for the uniform power
profile in case of uncorrelated channels, for which the approxi-
mate penalty can be evaluated into a closed-form formula:

SNR penalty (33)

Thus, it is the uniform power profile that incurs the largest
SNR penalty in the FUSE allocation, which is a function of
the channel memory ( ) and the number of antennas ( and

). According to computer simulations, the uniform power
profile also maximizes the exact SNR penalty in (32), but no
analytic proof has been found.
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Fig. 3. SNR penalty at high SNR due to the FUSE constraint, as a function ofM , when L = 4. The approximation by arithmetic mean (squares) is from (33),
while the actual SNR penalty (circles) evaluate (32) using Monte Carlo simulations.

It should be noted that the approximation in (32) uses the
bounds of and , which could be totally mis-
leading. However, we can confirm that the behaviors of (33) well
match what is expected. For instance, the approximate penalty
becomes 0 dB (no penalty) when either or . The
result for agrees with Proposition 2. When ,
it converges to , that is, the penalty is
bounded.

To verify the validness of the approximation in (33) for fi-
nite and , Fig. 3 illustrates the SNR penalty in (32) and
its approximation in (33) for a square MIMO channel (

) with as ranges from 1 to 10. For the actual
SNR penalty in (32), we used Monte Carlo simulations by av-
eraging over 10 000 independent Rayleigh-fading channels. In
Fig. 3, we can observe that the approximation is slightly smaller
than the actual SNR penalty, but both clearly demonstrates that
the penalty approaches quickly to 0 dB. In other words,
quickly converges to as .

Finally, the following proposition shows the asymptotic be-
haviors of the FIXED allocation.

Proposition 6: As SNR tends to infinity

(34)

where

(35)

is the geometric mean of over
, and where is defined in

Definition 1.
Proof: Deferred to Appendix B.

Proposition 6 shows that is asymp-
totically proportional to rather than . For some types of
fading, can be smaller than , which means that the FIXED
allocation incurs a lower spatial multiplexing gain. The differ-
ence in spatial multiplexing gain leads to an infinite penalty
as SNR grows. For example, when the channel is spatially
uncorrelated Rayleigh fading and square ( ),

is at most since is exponential distributed
and diverges [26]. We conjecture, from computer
simulations, that for any channel though
we can only prove this for small by explicitly calculating

from the marginal distribution of [27]. On
the other hand, when the channel is nonsquare ( ),
we have as deduced from [26], and
the FUSE allocation has the same spatial multiplexing gain as
the optimal allocation in the sense that
is equal to .

V. NUMERICAL RESULTS

We have investigated three power-allocation strategies for
MIMO-OFDM with eigenbeamforming as follows:

• optimal allocation (Theorem 1);
• FUSE allocation (Proposition 1);
• FIXED allocation (Proposition 3);
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Fig. 4. Zero-outage capacities in bits per signaling interval for the optimal power allocation, the FUSE allocation, and the FIXED allocation for L = 4.

which achieve , , and , respectively. It
has been shown that both and converge to

as the antenna array size tends to infinity. In this sec-
tion, we show via Monte Carlo simulations that and

are nearly optimal for moderate antenna array sizes.
Monte Carlo simulations generated 10 000 independent sets of
square channels ( ) with the uniform power
profile. We assume that OFDM has tones.

A. Spatially Uncorrelated Channels

Fig. 4 shows , , and against SNR in
dB for and when the fading is spatially
uncorrelated as described in Section II. When (SISO),
both and are zero, as reported in [2]. The op-
timal allocation has nonzero because water-filling across
tones exploits the frequency diversity from channel memory,
otherwise it too would be zero. In stark contrast, when ,

and become nonzero due to spatial (antenna)
diversity. As explained in Section IV, and have
the same asymptotic slope, i.e., spatial multiplexing gain (

), while has a lower slope ( ). Thus, it can
be seen that the gap between and grows with
SNR, and the FIXED constraint incurs an unbounded penalty
in the end as SNR tends to infinity. As the antenna array sizes
increase to and , both and are
very close to , as expected from Fig. 3. Even for
or , has a lower asymptotic slope ( )
than or , and eventually incurs an unbounded

penalty as SNR goes to infinity. However, for a range of prac-
tical SNR, Fig. 4 illustrates the penalty of the FIXED allocation
is small.

To emphasize how far and are separated
from , Fig. 5 illustrates the SNR penalty, which is the
additional SNR required by the FUSE and FIXED allocations
relative to the optimal allocation at a given transmission rate

ranging from 2 to 14 bits per signaling interval. The SNR
penalty corresponds to horizontal separation from in
Fig. 4. The FUSE allocation incurs an SNR penalty of more
than 0.8 dB for , but the penalty reduces to less than
0.3 dB for and . From Fig. 3, the SNR penalties
converge to in decibels for ,
respectively, as goes to infinity. For FIXED allocation, the
SNR penalty at is quite large due to a shallower slope
of (i.e., smaller multiplexing gain, ). Fig. 5(b)
illustrates that the penalty is more than 1 dB and quickly di-
verges. For and , the FIXED allocation also
has a shallower slope in Fig. 4 and the SNR penalties ultimately
diverge. However, Fig. 5(b) demonstrates that the SNR penal-
ties for are surprisingly small, less than 0.5 and
0.3 dB for and , respectively. For both the FUSE
and FIXED allocations, Fig. 5 confirms that the penalties be-
come small for a moderate , implying that the convergence
of and toward is fast.

As observed in Section IV, the SNR penalty is a function of
. When , there is no penalty, while the SNR penalty in-

creases with . In Fig. 6, we plot the SNR penalty for various
. An interesting observation is that the increasing step size is
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Fig. 5. SNR penalty of the FUSE and FIXED allocations for M 2 f2; 4; 6g and L = 4.

getting smaller as grows and the SNR penalty looks to con-
verge to a finite value. This agrees with Proposition 5, where we
have shown the SNR penalty is finite.

B. Spatially Correlated Channels

In the following, we examine the performance of the FUSE
and FIXED allocations when the fading on the transmitter side
is spatially uncorrelated, while spatial fading at receive antennas
is correlated [17]. This is a typical setting when the receiver is
located in open space so that no local scattering occurs around
receive antennas. Let be the correlation matrix
for the th tap, where denotes the -th column of the matrix

. We assume that the fading statistics are the same for all
transmit antennas, that is, is independent of . Then, each
channel matrix is

(36)

where denotes the matrix square root, such that
, and where is an matrix

with independent entries. From channel normal-
ization, , where denotes the trace
of diagonal elements of a square matrix [19]. If the fading
is spatially uncorrelated, the correlation matrix reduces to

.
When the channel is spatially correlated, the spatial multi-

plexing gain, defined as , is proportional to the
rank of rather than . As the rank
is a function of , there can be a significant growth in capacity
[12], [17].

We use the approximation in [28] for the correlation matrices,
such that

(37)
where is the antenna spacing relative to wavelength. The two
parameters, and , denote the average arrival angle and the
variance of the angle spread for the th path, respectively, both
in radian. The angle spread indicates the degree of correlation.
When , the fading at the th path is totally correlated and
each collapses to a rank- matrix.

Based on the correlation model in (36) and (37), we calcu-
late , , and via Monte Carlo simula-
tions. As the rank of is increasing with , also in-
creases notably. Simulations show that this is true for
and . Fig. 7 illustrates the SNR penalty of the FUSE
allocation for when the angle spread is either large
( ) or small ( ). The SNR penalty of un-
correlated fading is also plotted as a benchmark. We assume
that there are , whose average angles are

. From Fig. 7, it can be seen that the SNR
penalties are 0.1 dB for small spread and 0.15 dB for large
spread, both of which are less than that of the uncorrelated
channel for both small and large spreads. Fig. 7 shows a ten-
dency that the SNR penalty of a spatially correlated channel in-
creases as the angle spread gets larger and in the end will reach
the SNR penalty of a spatially uncorrelated channel.

VI. CONCLUSION

We proposed the FUSE and FIXED allocation strategies for
a closed-loop MIMO-OFDM system, as a replacement for the
high-complexity optimal solution based on a joint water-filling
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Fig. 6. SNR penalty of the FUSE allocation forM = 4 as L grows from 1 to 5.

over space and frequency [8]. We proved that the FUSE and
FIXED allocations incur no capacity penalty as the number of
antennas tends to infinity. Both strategies are also nearly optimal
with a finite number of antennas and high SNR. For example,
on a 4 4 Rayleigh channel with memory , the SNR
penalty of both FUSE and FIXED allocations is less than 0.5 dB
at transmission rates ranging from 2 to 14 bits per signaling in-
terval. This paper theoretically shows that a nonadaptive rate al-
location, such as the FIXED allocation, is sufficient to approach
the capacity with MIMO-OFDM. Adaptive eigenbeamforming
is necessary, but adaptive allocation is not. These theoretical re-
sults have important practical implications, since the FUSE and
FIXED allocations are readily adapted to give simple and real-
istic allocation algorithms [14], [15].

APPENDIX A
PROOF OF PROPOSITION 5

In this section, we prove Proposition 5. The upper bound in
(28) comes from . First, we prove the evaluation
of in (29) with the uniform power profile. Then, we
show the uniform power profile maximizes the upper bound.

Lemma 1:

(38)

where is the universe index set in (6), and denotes the
Frobenius norm of a matrix [19].

Proof: From the definition of arithmetic mean

(39)

Since , we have

(40)

Since , (40) reduces to

(41)
Substituting (41) into (39), we obtain (38).

With the uniform power profile, (38) becomes

(42)
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Fig. 7. SNR penalty of the FUSE allocation when spatially correlated for both the large spread (� = 0:25) and small spread (� = 0) when L = 4 and
M = 4.

where the elements of are i.i.d. . Then,
is a chi-square random variable with

degrees of freedom. We can evaluate with the distri-
bution function

(43)

where

(44)

is the Gamma function [29]. Then, we have the assertion in (29).
Second, to show that the uniform power profile maximizes

the upper bound in (28), we consider the following lemma.

Lemma 2: Suppose that is an
vector, whose elements are i.i.d. random vari-

ables with . Let be a scalar, where
is an deterministic vector.

Then, that minimize subject to are

(45)

Proof: Let be a function from a vector
space to a real scalar value. For any
and belonging to , we have the inequality:

(46)

if , where comes from the fact that is a linear
operator. The inequality is because is
convex:

(47)

for . Therefore, from (46), is convex.
Define an permutation matrix

(48)
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where denotes an all-zero vector. Note that
. Then we have

where is true because are i.i.d. and thus the order of
does not matter, that is, for any , and

where comes from Jensen’s inequality [13] since is
convex. The equality in holds if and only if are con-
stant. Therefore, from , we prove that (45) mini-
mizes .

From (38), the arithmetic mean is ,
where the elements of are i.i.d. . Then, by letting

, we prove the assertion.

APPENDIX B
PROOF OF PROPOSITION 6

The proof is similar to Theorem 2 [8]. Let
. First, we derive a lower bound for ,

which holds for all SNR. From Proposition 3, we have

(49)

Then

(50)

where the second inequality comes from (49). Thus, we have
the inequality

(51)

where is the geometric mean in (35), which is identical for
all .

On the other hand, we consider a region

(52)

for which we use all channels at a rate of , such that
in Proposition 3 is . Then

(53)

As

(54)

Therefore, (53) asymptotically becomes

(55)

at high SNR. From (51) and (55), we have the assertion in (34).
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