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Joint source and channel coding for MIMO systems:

Is it better to be robust or quick?

Tim Holliday, Andrea J. Goldsmith, and H. Vincent Poor

Abstract

We develop a framework to optimize the tradeoff between diversity, multiplexing, and delay in MIMO systems

to minimize end-to-end distortion. The goal is to find the optimal balance between the increased data rate provided

by antenna multiplexing, the reduction in transmission errors provided by antenna diversity and automatic repeat

request (ARQ), and the delay introduced by ARQ. We first focuson the diversity-multiplexing tradeoff in MIMO

systems, and develop analytical results to minimize distortion of a vector quantizer concatenated with a space-time

MIMO channel code. In the high SNR regime we obtain a closed-form expression for the end-to-end distortion

as a function of the optimal point on the diversity-multiplexing tradeoff curve. For large but finite SNR we find

this optimal point via convex optimization. The same general framework can also be used to minimize end-to-end

distortion for a broad class of practical source and channelcodes, which we illustrate with an example.

We then consider MIMO systems using ARQ retransmission to provide additional diversity at the expense of

delay. We show that for sources without a delay constraint, distortion is minimized by maximizing the ARQ window

size. This results in an ARQ-enhanced multiplexing-diversity tradeoff region, with distortion minimized over this

region in the same manner as without ARQ. However, under a source delay constraint the problem formulation

changes to account for delay distortion associated with random message arrival and random ARQ completion

times. Moreover, the simplifications associated with a highSNR assumption break down for this analysis, since

retransmissions, and the delay they cause, become rare events. We thus use a dynamic programming formulation to

capture the channel diversity-multiplexing tradeoff at finite SNR as well as the random arrival and retransmission

dynamics. This fomulation is used to solve for the optimal multiplexing-diversity-delay tradeoff to minimize end-

to-end distortion associated with the source encoder, channel, and ARQ retransmissions. Our results show that a

delay-sensitive system should adapt its operating point onthe diversity-multiplexing-delay tradeoff region to the

system dynamics. We provide numerical results that demonstrate significant performance gains of this adaptive

policy over a static allocation of diversity/multiplexingin the channel code and a static ARQ window size.

Keywords: ARQ, diversity-multiplexing-delay tradeoff, joint source-channel coding, MIMO channels.

I. INTRODUCTION

Multiple antennas can significantly improve the performance of wireless systems. In particular, with

channel knowledge at the receiver a data rate increase equalto the minimum number of transmit/receive
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antennas can be obtained by multiplexing data streams across the parallel channels associated with the

channel gain matrix. Alternatively, multiple antennas enable transmit and/or receive diversity which de-

creases the probability of error. In a landmark result Zhengand Tse [27] developed a rigorous fundamental

tradeoff between the data rate increase possible via multiplexing versus the channel error probability

reduction possible via diversity, characterizing how a higher spatial multiplexing gain leads to lower

diversity and vice versa. The main result in [27] is an explicit characterization of the diversity-multiplexing

tradeoff region. This result generated much activity in finding diversity-multiplexing tradeoffs for other

channel models as well as design of space-time codes that achieve any point on the tradeoff region [1],

[8], [6], [16], [18], [24]. The diversity-multiplexing tradeoff was also extended to the multiple access

channel in [23]. Delay provides a third dimension in the tradeoff region, and this dimension was explored

for MIMO channels based on the automatic repeat request (ARQ) protocol in [7]. In particular, this work

characterized the three-dimensional tradeoff between diversity, multiplexing, and ARQ-delay for MIMO

systems.

Our goal in this paper is to answer the following question: “Given the diversity-multiplexing-delay

tradeoff region, where should a system operate on this region?”. In order to answer this question we

require a performance metric from a layer above the physicallayer; while physical layer tradeoffs are

based on the channel model, the optimization between these tradeoffs depends on what is most important

for the application’s end-to-end performance. The higher layer metric of interest in this paper will be

end-to-end distortion. Specifically, our system model consists of a lossy source encoder concatenated

with a MIMO channel encoder and, in the last section, an ARQ retransmission protocol. Our goal is to

determine the optimal point on the diversity-multiplexingor diversity-multiplexing-delay tradeoff region

that minimizes the combined distortion due to the source compression, channel, and delays in the end-to-

end system.

Our problem formulation differs from the Shannon-theoretic joint source-channel coding problem in that

we do not assume asymptotically long block lengths for either the source or channel code. In particular, the

traditional joint source/channel code formulation assumes stationary and ergodic sources and channels in

the asymptotic regime of large source dimension and channelcode blocklength. Shannon showed that under

these assumptions the source should be encoded at a rate justbelow channel capacity and then transmitted

over the channel at this rate. Since the rate is less than capacity, the channel introduces negligible error,

hence the end-to-end distortion equals the distortion introduced by compressing the source to a rate below

the channel capacity. Shannon’s well-known separation theorem indicates that this transmission scheme

is optimal for minimizing end-to-end distortion and does not require any coordination between the source

and channel coders or decoders other than agreeing on the channel transmission rate [4], [5].



Our joint source/channel code formulation is fundamentally different from Shannon’s since we assume

a finite blocklength for the channel code. This assumption isinherent to the diversity-multiplexing tradeoff

since, without finite blocklength, the channel introduces negligible error and hence the diversity gain in

terms of channel error probability is meaningless. The finite blocklength guarantees there is a nonnegligible

probability of error in the channel transmission. Thus there is a tradeoff between resolution at the source

encoder and robustness at the channel encoder: limiting source distortion requires a high-rate source code,

for which the multiple antennas of the channel must be used mainly for multiplexing. Alternatively, the

source can be encoded at a lower rate with more distortion, and then the channel error probability can

be reduced through increased diversity. Our joint source/channel code must determine the best tradeoff

between these two to minimize end-to-end distortion. When retransmission is possible and the source is

delay-sensitive, there is an additional tradeoff between reducing channel errors through retransmissions

versus the delay these retransmissions entail.

Joint source/channel code optimization for the binary symmetric channel (BSC) with finite blocklength

channel codes and asymptotically high source dimension waspreviously studied in [15]. We will use

several key ideas and results from this prior work in our asymptotic analysis, in particular its decomposition

of end-to-end distortion into separate components associated with either the source code or the channel

code. By applying this decomposition to MIMO channels instead of the BSC, we obtain the optimal

operating point on the Zheng/Tse diversity-multiplexing tradeoff region in the asymptotic limit of high

source dimension and channel SNR. For any SNR the MIMO channel under multiplexing can be viewed

as a parallel channel, and source/channel coding for parallel channels has been previously explored in

[17]. That work differs from ours in that the source models were not high dimensional and the nonergodic

parallel channels did not have the same diversity-multiplexing tradeoff characterization as in a MIMO

system.

We first develop a closed-form expression for the optimal “distortion exponent”, introduced in [17],

under asymptotically high SNR. Specifically, for a multiplexing rate r and average distortion measure

D(r) we compute

d∗D = min
r

[

lim
SNR→∞

log D̄(r)

log SNR

]

, (1)

whered∗D is the optimal exponential rate at which the distortion goesto zero with SNR. We show that the

optimal distortion exponent corresponds to a particular point on the diversity-multiplexing tradeoff curve

that is determined by the source characteristics. We also demonstrate there is no loss in optimality for

separate source and channel encoding and decoding given thechannel transmission rate. Our optimization

framework can also be used to optimize the diversity-multiplexing tradeoff at finite SNR, however the

solution is no longer in closed-form and must be found using tools from convex optimization. We extend



this general optimization framework to a wide variety of practical source-channel codes in non-asymptotic

regimes.

We next consider the impact of ARQ retransmissions and theirassociated delay. When the source does

not have a delay constraint, the ARQ delay incurs no cost in terms of additional distortion. Hence, the

ARQ protocol should use the maximum window size to enhance the diversity-multiplexing tradeoff region

associated with the MIMO channel alone. The large window size essentially allows coding over larger

blocklengths than without ARQ, which from Shannon theory does not reduce data rate, only probability of

error. In the high SNR regime the optimal distortion exponent for the diversity-multiplexing tradeoff region

enhanced by ARQ is found in the same manner as without ARQ. Notsurprisingly, a delay constraint on

the source changes the problem considerably, since the source burstiness and queuing delay must now be

incorporated into the problem formulation. These characteristics are known to be a significant obstacle

in merging analysis of the fundamental limits at the physical layer with end-to-end network performance

[10]. In this setting the simplicity associated with the high SNR regime breaks down, since at high SNR

retransmissions and their associated delay have very low probability, which essentially removes the third

dimension of delay in our tradeoff region. We thus use dynamic programming to model and optimize over

the system dynamics as well as the fundamental physical layer tradeoffs to minimize end-to-end distortion

of a MIMO channel with ARQ.

The remainder of this paper is organized as follows. In the next section we present the channel model

and summarize the diversity-multiplexing tradeoff results from [27]. In Section III we develop our source

encoding framework and apply the MIMO channel error probability results of [27] to the upper and lower

bounds on end-to-end distortion of [15]. Section IV obtainsa closed-form expression for the optimal

operating point on the MIMO channel diversity-multiplexing tradeoff curve in the high SNR regime to

minimize end-to-end distortion. This optimal point is alsofound for large, but finite, SNR using convex

optimization. In Section V we present a similar formulationfor optimizing diversity and multiplexing

in progressive video transmission using space-time codes.ARQ retransmission and its corresponding

delay is considered in Section VI, where a dynamic programming formulation is used to optimize the

operating point on the diversity-multiplexing-delay tradeoff region for minimum end-to-end distortion of

delay-constrained sources. A summary and closing thoughtsare provided in Section VII.

II. CHANNEL MODEL

We will use the same channel model and notation as in [27]. Consider a wireless channel withM

transmit antennas andN receive antennas. The fading coefficientshij that model the gain from transmit

antennai to receive antennaj are independent and identically distributed (i.i.d.) complex Gaussian with

unit variance. The channel gain matrixH with elementsH(i, j) = (hij : i ∈ {1, . . .M}, j ∈ {1, . . . , N})



is assumed to be known at the receiver and unknown at the transmitter. We assume that the channel

remains constant over a block ofT symbols, while each block is i.i.d. Therefore, in each blockwe can

represent the channel as

Y =

√

SNR

M
HX+W, (2)

whereX ∈ CMxT andY ∈ CNxT are the transmitted and received signal vectors, respectively. The additive

noise vectorW is i.i.d. complex Gaussian with unit variance.

We construct a family of codes for this channel{C(SNR)} of block lengthT for eachSNR level.

DefinePe(SNR) as the average probability of error andR(SNR) as the number of bits per symbol for

the codebook. A channel code scheme{C(SNR)} is said to achieve multiplexing gainr and diversity

gain d if

lim
SNR→∞

R(SNR)

log2 SNR
= r, (3)

and

lim
SNR→∞

log2 Pe(SNR)

log2 SNR
= −d. (4)

All logarithms we consider will have base 2 and we therefore suppress this base notation in the remainder

of the paper. For eachr we define the optimal diversity gaind∗(r) as the supremum of the diversity gain

achieved by any scheme. The main result from [27] that we willuse in the next section is summarized

in the following statement.

Diversity-Multiplexing Tradeoff [27]: Assume the block length satisfiesT ≥ M + N − 1. Then the

optimal tradeoff between diversity gain and multiplexing gain is the piecewise-linear function connecting

the pointsd∗(r) = (M − r)(N − r), for integer values ofr such that0 ≤ r ≤ min(M,N). This function

d∗(r) is plotted in Figure 1.

In the Zheng/Tse framework the rate of the codebook{C(SNR)} must scale withlog SNR, otherwise

the multiplexing gain will go to zero. Hence, in the following sections we will assume, without loss of

generality, that the rate of the codebook isTr log SNR for any choice of0 ≤ r ≤ min(M,N) and block

lengthT . We also assume that the codebook achieves the optimal diversity gaind∗(r) for any choice of

r. Codes achieving the optimal diversity-multiplexing tradeoff for MIMO channels have been investigated

in many works, including [6], [8], [9], [20] and the references therein.

III. END-TO-END DISTORTION

This section presents our system model for the end-to-end transmission of source data. We use the

same source coding model as [15] in order to exploit their decomposition of end-to-end distortion into



Fig. 1. The optimal diversity-multiplexing tradeoff forT ≥ M +N − 1.

separate source and channel distortion components. We assume the original source datau is a random

variable with probability densityh(u), which has support on a closed and bounded subset ofℜk with

non-empty interior. Ans-bit quantizer is applied tou via the following transformation:

Q(u) =
2s
∑

i=1

viI[Ai](u), (5)

where I[Ai](u) = I[u ∈ Ai] is the standard indicator function, and{Ai}
2s

i=1 is a partition ofℜk into

disjoint regions. Each regionAi is represented by a single codevectorvi. Thepth-order distortion due to

the encoding process is

Ds(Q) =
2s
∑

i=1

∫

Ai

||u− vi||
ph(u)du, (6)

where||u− vi||
p is thepth power of the Euclidian norm.

We assume that the rate of the channel codebookC{SNR} is matched to the rate of the quantizer

(i.e. s = Tr log SNR). Each codevector from the quantizerv1, . . . , v2s
is mapped into a codeword from

C{SNR} through a permutation mappingπ. We assume the mappingπ is chosen equally likely at random

from the2s! possibilities. The codewordπ(i) is transmitted over the channel described in Section 2 and

decoded at the receiver. Letq(π(j)|π(i)) be the probability that codewordπ(j) is decoded at the receiver

given thatπ(i) was transmitted. The probabilityq(·|·) will depend on theSNR, the quantizerQ’s codeword

set, and the permutation mappingπ. Hence, we can write the total end-to-end distortion as follows:

Dτ (Q, SNR, π) =
2s
∑

i=1

2s
∑

j=1

q(π(j)|π(i))
∫

Aj

||u− vj ||
ph(u)du. (7)



Ideally we would like to be able to analyze the distortion averaged over all index assignments and

possibly remove the dependence onh and Q. In general we cannot find a closed form expression for

this distortion due to the dependence onQ’s codewords,π, h, and the SNR. However, given our matched

source and channel rates = Tr log SNR, is clear that we have a tradeoff between transmitting at a

high data rate to reduce source distortion and transmittingat a low data rate to reduce channel errors.

In particular, if we run full multiplexing in the MIMO channel (i.e. setr = min(M,N)) we can use a

larges. This would result in low distortion at the source encoder but possibly create many transmission

errors. Conversely, we could use full diversity in the channel (i.e. setd = MN) to combat errors and

then suffer the distortion from a low value ofs. Between the two extremes lies a source code rates and

a corresponding channel multiplexing rater that minimizes (7).

Although we cannot find a simple general expression forDτ (Q, SNR, π), in the following subsections

we will determine tight asymptotic bounds for the distortion through the use of high-resolution source

coding theory and high-SNR analysis of the MIMO channel. In addition, as theSNR approaches infinity

we will find a simple expression for the optimal choice ofr ands that depends only on the block length

T , source dimensionk, number of transmit antennasM , and number of receive antennasN .

The high-resolution asymptotic regime is often used in source coding theory to obtain analytical results,

since the performance characteristics of many encoder types are well understood in this regime [26].

Moreover, it has been show that the high resolution asymptotics often provide a good approximation for

non-asymptotic performance [19], [22]. As described in [26], we say that a quantizerQ operates in the

high-resolution asymptotic regime if its noiseless distortion asymptotically approaches

Ds(Q) = 2−ps/k+O(1), (8)

as s goes to infinity, where theO(1) term in (8) may depend onp, k, ands. Many practical quantizers

achieve this asymptotic distortion, e.g. uniform and lattice-based quantizers [3], [25]. This high-resolution

asymptotic regime is quite accurate for our system model since we require the rate of our channel codebook

{C(SNR)} to scale asr log SNR. Hence, at asymptotically high SNR, the source coder will receive an

increasing number of bits, thereby approaching its high-resolution regime.

In the next two subsections we will construct upper and lowerasymptotic bounds for the end-to-end

average distortion of our system. The starting point for both bounds comes from the analysis of [15]. In

Section IV we will show that these bounds are tight and find theoptimal multiplexing rate that minimizes

distortion in the high SNR regime.



A. Upper Bound for Distortion

We first construct an upper bound for the end-to-end distortion (7) that depends onπ. As shown in

[15],

Dτ (Q, SNR, π) =
2s
∑

i=1

2s
∑

j=1

q(π(j)|π(i))
∫

Ai

||u− vj ||
ph(u)du

=
2s
∑

i=1

q(π(i)|π(i))
∫

Ai

||u− vj ||
ph(u)du

+
2s
∑

j,i=1,i 6=j

q(π(j)|π(i))
∫

Ai

||u− vj ||
ph(u)du

≤
2s
∑

i=1

∫

Ai

||u− vj ||
ph(u)du+O(1)

2s
∑

i=1

P (Ai)
2s
∑

j=1,j 6=i

q(π(j)|π(i))

≤ Ds(Q) +O(1)max
i

Pe|π(i)(SNR), (9)

wherePe|π(i) is the probability of codeword error given that codewordπ(i) was transmitted. This bound

essentially splits (7) into two pieces; one corresponding to correctly received channel codewords and

the other corresponding to erroneous channel decoding. Theterm corresponding to correct transmission

is bounded by the noiseless distortionDs(Q) while the term corresponding to errors is bounded by a

constant1 multiplied by the channel codeword error probability.

By construction, the rate of our channel codebook (and hencethe source encoder) iss = Tr log SNR,

therefore

Ds(Q) = 2−ps/k+O(1) = 2−
pTr

k
log SNR+O(1) (10)

ass approaches infinity or, equivalently, aslog SNR approaches infinity. In order to bound the probability

of codeword error we need a few quantities from [27]. For the channel defined in (2), letPout(r log SNR)

anddout(r) be the outage probability and outage exponent that satisfy

Pout(r log SNR) = 2−dout(r) log SNR+o(log SNR). (11)

The exponentdout(r) can be directly computed and the equation for doing so is presented in [27].

We can also bound the probability of error with no outage through

P (error, no outage) ≤ 2−dG(r) log SNR+o(log SNR), (12)

wheredG(r) is the exponent associated with choosing the channel codewords to be i.i.d. Gaussian. Again,

the formula for computingdG(r) can be found in [27]. Then we can bound the overall probability of

1This term isO(1) because our source is bounded.



errorPe(SNR) by

Pe(SNR) ≤ Pout(r log SNR) + P (error, no outage)

≤ 2−dout(r) log SNR+o(log SNR) + 2−dG(r) log SNR+o(log SNR). (13)

With the bound (13) in hand we may now upper bound the total distortion by

Dτ (Q, SNR, π) ≤ 2−
pTr

k
log SNR+O(1) +O(1)2−dout(r) log SNR+o(log SNR) +O(1)2−dG(r) log SNR+o(log SNR). (14)

Note that the distortion upper bound in (14) does not depend on the source-to-channel codeword mapping

π, since the bounds (11) and (12) as well as the source distortion (10) do not depend on this mapping.

Hence, the bound (14) holds for the distortion averaged overall possible source-codeword mappings,

and only depends on the quantizerQ through the parametersp, s, and k. Thus, by averaging over all

source-channel codeword mappings we get that for any quantizerQ satisfying (8) in the high resolution

asymptotic regime, the end-to-end average distortion is bounded above by

D̄τ (SNR) = Eπ[Dτ (SNR, π)]

≤ 2−
pTr

k
log SNR+O(1) +O(1)2−dout(r) log SNR+o(log SNR) +O(1)2−dG(r) log SNR+o(log SNR). (15)

B. Lower Bound for Distortion

Our lower bound for distortion will also make use of a result from [15]. Let D̄τ (Q, SNR) be the

distortion averaged over all2s! possible mappingsπ. Then from [15] we have

D̄τ (Q, SNR) ≥ 2−ps/k+O(1) +O(1)Pe(SNR). (16)

Note that as in the upper bound, for any quantizerQ satisfying (8) in the asymptotic regime, the lower

bound depends onQ only through the parametersp, s and k. However, a key difference between this

bound and the upper bound (14) is that it is based on averagingdistortion over all source-codeword

mappingsπ. In particular, this bound is based on the assumption that each source-to-channel codeword

mapping is random and equally probable (i.e. the probability of mapping a given source codeword to a

given channel codeword is uniform). From [27] we may lower bound the error probabilityPe(SNR) via

the outage exponent as

Pe(SNR) ≥ 2−dout log SNR+o(log SNR). (17)

Thus our lower bound for average distortion for any quantizer Q satisfying (8) in the asymptotic regime

of high resolution becomes

D̄τ (SNR) ≥ 2−ps/k+O(1) +O(1)2−dout log SNR+o(log SNR). (18)



IV. M INIMIZING TOTAL DISTORTION

In this section we will optimize the bounds presented in the previous section and show that they are

tight. In order to achieve analytical results for the minimum distortion bound we consider the asymptotic

regime ofSNR approaching infinity. In general, our total distortion is anexponential sum of the form

2f(r) log SNR + 2g(r) log SNR, (19)

where we definef(r) as thesource distortion exponent andg(r) as thechannel distortion exponent. We

minimize total distortion in the form of (19) by choosing theexponentsf(r) andg(r) to be withino(1)

of each other. The functionf(r) depends on the source distortion whileg(r) depends on the channel

error probability. For example, in (18), if we assume the bound is tight and neglect terms that become

negligible at high SNR, thenf(r) = −pTr/k (sinces = Tr log SNR) andg(r) = −dout(r). Note that if

the exponents in (19) are not of the same order then one term inthe sum dominates the other asSNR

approaches infinity. As we shall see, the fact that these two terms are of the same order is the key to

obtaining a closed-form expression for the optimal diversity-multiplexing tradeoff point.

A. Asymptotic Regime

We first consider the upper bound for total distortion (14). We need to match the exponents for the three

terms in the bound, otherwise one term will not go to zero as the SNR goes to infinity. Fortunately, part

of this has already been accomplished in [27]. Specifically,for the case where the block length satisfies

T ≥ M +N − 1 it was shown in [27] thatdout(r) = dG(r) = d∗(r), although theo(log SNR) terms are

not the same. Hence, if we consider the asymptotic regime ofSNR approaching infinity we have

lim
SNR→∞

log D̄τ (SNR)

log SNR
≤ lim

SNR→∞

log
[

2−
pTr

k
log SNR+O(1) +O(1)2−d∗(r) log SNR+o(log SNR)

]

log SNR
.

If we choose anr∗ that solves

d∗(r∗) =
pTr∗

k
, (20)

whered∗(r) is the piecewise linear function connecting(N − r)(M − r) for integer values of0 < r <

min(M,N), then we have

lim
SNR→∞

log D̄τ (SNR)

log SNR
≤ lim

SNR→∞

log
[

2−d∗(r∗) log SNR+O(1) +O(1)2−d∗(r∗) log SNR+o(log SNR)
]

log SNR

≤ lim
SNR→∞

log
[

O(1)2−d∗(r∗) log SNR+o(log SNR)
]

log SNR

= −d∗(r∗).



We now consider the lower bound (18) on average distortion. Again, for the case whereT ≥ M+N−1

we have thatdout(r) = d∗(r). We can match the exponents in (18) by choosing the samer∗ that satisfies

(20), which yields

lim
SNR→∞

log D̄τ (SNR)

log SNR
≥ lim

SNR→∞

log
[

2−
pTr

k
log SNR+O(1) +O(1)2−d∗(r) log SNR+o(log SNR)

]

log SNR

≥ lim
SNR→∞

log
[

2−d∗(r∗)+O(1) +O(1)2−d∗(r∗) log SNR+o(log SNR)
]

log SNR

= −d∗(r∗).

Since the asymptotic upper and lower bounds are tight, we have proved the following theorem:

Theorem 1: In the limit of asymptotically high SNR, the optimal end-to-end distortion for a vector

quantizer cascaded with the MIMO channel characterized by (2) satisfies

d∗D = lim
SNR→∞

D̄τ (SNR)

log SNR
= −min(d∗(r), pT r/k) = −d∗(r∗). (21)

The choice of optimal multiplexing rater∗ is illustrated in Figure 2, which plotsd∗(r) from Figure

1 together withpTr/k as a function ofr. We see that the source distortion exponentpTr/k increases

linearly withr, while the channel distortion exponentd∗(r) decreases piecewise linearly withr. To balance

the source and channel distortion,r∗ is chosen such thatd∗(r∗) = pTr∗/k.

Fig. 2. The optimal multiplexing rater∗ to balance source and channel distortion.

It should be noted that the tightness of the above bounds onlyhold whenT ≥ M + N − 1. For T <

M+N−1 the upper bound remains the same while the lower bound changes, which leaves a gap between

our bounds.



B. Asymptotic Distortion Properties

The asymptotic distortion and optimal distortion exponentfrom Theorem 1 possess a few non-intuitive

properties. First, while it is possible to choosed∗(r) = MN (full multiplexing) or r = min(M,N)

(full diversity), it is never optimal to do so. When minimizing D̄τ (SNR) we require non-zero amounts

of both diversity and multiplexing, otherwise one of the terms in the distortion bounds (15) and (18)

will not tend to zero asSNR approaches infinity. It is also interesting to examine the optimal distortion

exponent as the block lengthT or source dimensionk become large. Ask becomes large (andT remains

fixed) we must increaser∗ in order to match the terms in (20). This is consistent with our intuition

since a high dimensional source will require a large amount of multiplexing, otherwise the distortion at

the source encoder becomes very large. It is more surprisingthat asT becomes large (andk remains

fixed) we should decreaser∗, i.e. increase diversity at the expense of multiplexing. This is in contrast to

traditional source-channel coding, where we encode our source at a rate just below the channel capacity

(min(M,N) log SNR) when the block length tends to infinity. In this case, however, we don’t encode

at channel capacity because the source dimensionk remains fixed asT becomes large. Thus, since the

source encoding rate is proportional toT , we are already getting an asymptotically large channel rate for

source encoding, and therefore should use our antennas for diversity rather than additional rate through

multiplexing.

C. Source-Channel Code Separation

One feature that we do share with the traditional source-channel coding results is the notion of

separation. In a traditional Shannon-theoretic framework, the source encoder needs to know only the

channel capacity to design its source code. Then one may encode the source independently of the channel

(at the channel capacity rate) and achieve the optimal end-to-end distortion. In this case the end-to-end

distortion is due only to the source encoder since the channel is error free (over asymptotically long block

lengths).

In our model we consider a source encoder concatenated with aMIMO channel that is restricted

to transmission over finite block lengths. With this restriction the channel introduces errors even at

transmission rates below capacity. These channel errors give rise to the diversity-multiplexing tradeoff.

Under this finite blocklength channel coding we obtain a source and channel coding strategy to minimize

end-to-end distortion. Our results indicate that separatesource and channel coding is still optimal for this

minimization. However, we now get (equal) distortion from both the source and channel code, in contrast

to the optimal strategy in Shannon’s separation theorem where the source is encoded at a rate below

channel capacity and thus no distortion is introduced by thechannel.



D. Non-asymptotic Bounds

We now analyze the behavior of our distortion bounds and the corresponding choice ofr∗ for finite SNR.

In particular, we will consider the case of large but finite SNR, such that the SNR is sufficiently large to

neglect theO(1) term in the exponent of (8) and (18), and to assumeO(1) ≈ 1 and neglect theo(log SNR)

exponential term in (15) and (18). With these approximations the optimal diversity-multiplexing tradeoff

is obtained by solving the following convex optimization problem:

min
r

2−
pT

k
r log SNR + 2−d∗(r) log SNR (22)

s.t. 0 ≤ r ≤ min(M,N).

Figures 3, 4, and 5 provide numerical results based on the solution to (22) comparing the total end-

to-end distortion versus the number of antennas assigned tomultiplexing. Each plot contains four curves

that represent differentSNR levels. The difference between the three plots is the ratio of the block length

T to source vector dimensionk. Notice that forT much smaller thank (Figure 3) we will use almost

all of our antennas for multiplexing. Fork of the same order asT (Figure 4) we will choose about the

same number of antennas for multiplexing and for diversity.For k smaller thanT (Figure 5) we will use

more antennas for diversity than for multiplexing. Note that even at low SNR we can still findr∗ via the

convex optimization formulation in (22), but must include the neglected termsO(1) ando(log SNR) in

the distortion expressions to which we apply this optimization. In our numerical results we found that

neglecting these terms for SNRs above 20 dB had little impact.
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Fig. 3. Total distortion vs. number of antennas assigned to multiplexing in an 8x8 system (T << k).
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V. PRACTICAL SOURCE AND CHANNEL CODING

While the results in the previous section lead to closed formsolutions for optimal joint source-channel

coding in the high SNR regime, they only apply to a specific class of source and channel codes and

distortion metrics. We now examine the diversity-multiplexing tradeoff for a broad class of source codes,

channel codes, and distortion metrics. The basic optimization framework (22) can still be applied to this

more general class of problems. Furthermore, this framework can be applied in non-asymptotic settings,

thereby allowing us to study the diversity-multiplexing tradeoff under typical operating conditions. In

this section we present an example of end-to-end distortionoptimization, via the diversity-multiplexing

tradeoff, for source/channel distortion models that are fitted to real video streams and MIMO channels.



We use the progressive video encoder model developed in [13]. The overall mean-square distortion is

evaluated as

Dτ = De +Dc, (23)

whereDe is the distortion induced by the source encoder andDc is the distortion created by errors in the

channel. Although the total distortion is represented by two separate components, each component shares

some common terms so we will still have a tradeoff between diversity and multiplexing. The model for

source distortionDe developed in [13] consists of a six-parameter analytical formula that is fitted to a

particular traffic stream. Numerical results forDe as a function of the source encoding rate are provided

in [13, Figure 2]. The source encoder design is based on a parameterβ corresponding to the amount of

redundant data in consecutive encoding blocks. In general alarger value ofβ leads to a smallerDe at

the cost of increased complexity.

The model for the channel distortionDc is fitted to the following equation,

Dc = σ2Pe(Nu)

[

γ + β

γ
ln

(

1 +
γ

β

)

−
1

γ
+

1

2

]

, (24)

where givenβ the parametersσ2 and γ are based on the particular source encoder and traffic stream,

Nu is the number of antennas used for multiplexing, andPe(Nu) is the probability of codeword error

as a function ofNu. We will assume sources withβ = .01 in our analysis since it provides the lowest

distortion for any given rate. This source encoder setting also provides the highest sensitivity to channel

errors, which allows us to highlight the tradeoff between multiplexing and diversity in our optimization.

Our channel transmission scheme follows the setup in [16]. We use 8 transmit and 8 receive antennas

with a set of linear space-time codes that can trade off multiplexing for diversity (specifically, these codes

only trade integer values ofr and (M,N)). The actual code construction in [16] is fairly complex and

involves several inner and outer codes designed to handle both Ricean and Rayleigh fading channels in

a MIMO orthogonal frequency division multiplexing (OFDM) system. For the purposes of our numerical

results the actual code design is irrelevant, we only require the probability of error as a function of SNR

and the number of antennas assigned to multiplexing, which is given in [16, Figure 4]. Our optimization

can be applied to space-time channel codes developed by other authors [8], [6], [18] by using the error

probability associated with their codes in our optimization.

Since the channel coding scheme of [16] does not permit us to assign fractions of antennas, we must

solve the following integer program for the optimal distortion and number of multiplexing antennas:

min
Nu

De +Dc (25)

s.t. Nu ∈ {1, 2, 4, 8}.



1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

350

400

450

500
Total Distortion vs. Multiplexing Antennas

Number of Antennas Assigned to Multiplexing 

T
ot

al
 D

is
to

rt
io

n

SNR=.11
SNR=.15
SNR=.25
SNR=.39
SNR=.67
SNR=1

Fig. 6. Total distortion vs. number of antennas assigned to multiplexing for differing levels of SIR.

Figure 6 contains a set of curves that show the total distortion achieved as a function of the number of

antennas assigned to multiplexing. The uppermost curve corresponds to the lowestSNR and the bottom

curve corresponds to the highestSNR. We see that we have an explicit tradeoff here that depends onSNR.

At low SNR the total distortion is minimized by assigning most antennas to diversity to compensate for

the high error probability in the channel. AsSNR increases we assign more antennas to multiplexing since

this is a better use of antennas when the error probability islow. One significant difference between this

plot and the asymptotic results in Section IV is that here we do assign our antennas to full multiplexing

as theSNR becomes large. The reason we observe this behavior is that the rate of our codebook in

this example does not scale withSNR. Thus, as theSNR becomes large we eventually reach a point

where distortion would be reduced by moving to a higher rate code that is not available in the 8x8

space-time code under consideration. Hence, the optimal choice in this case is to eventually move to

full multiplexing. The implication of this result is that a MIMO system should have enough antennas to

exploit full multiplexing at all availableSNRs. A design framework for such codes has been developed

in [6], but the error probability analysis of these codes is still needed to perform the joint source-channel

coding optimization.

VI. THE DIVERSITY-MULTIPLEXING-DELAY TRADEOFF

Instead of accepting decoding errors in the channel, many wireless systems perform error correction via

some form of ARQ. In particular, the receiver has some form oferror detection code, and if a transmission

error is detected on a given packet, a feedback path is used tosend this error information back to the

transmitter, which then resends part or all of the packet to increase the chance of successful decoding.

The packet retransmissions, combined with random arrival times of the messages at the transmitter, cause



queues to form in front of the source coder and hence each block of data will experience random delays.

Here, the notion of delay we wish to capture is the time between the arrival time of a message at the

transmitter and the time at which it is successfully decodedat the receiver (also known as the “sojourn

time” in queueing systems).

While ARQ increases the probability of decoding a packet correctly, it also introduces additional delay.

The window size of the ARQ protocol determines how many retransmission attempts will be made for a

given packet. The larger this window size, the more likely the packet will be successfully received, and

the larger the possible delays associated with retransmission will be. ARQ can be viewed as a form of

diversity, and hence it complements antenna diversity in MIMO systems. For MIMO systems with ARQ,

there is a three-dimensional tradeoff between diversity due to multiple antennas and ARQ, multiplexing,

and delay. This three-dimensional tradeoff region was recently characterized by El Gamal, Caire, and

Damen in [7], and we will use this region in lieu of the Zheng/Tse diversity-multiplexing region in this

section. We will first summarize results from [7] characterizing this region, then use this region to optimize

the diversity-multiplexing-ARQ tradeoff for distortion under delay constraints.

A. The ARQ Protocol and its Diversity Gain

We assume the sameMxN channel model (2) as before and the following ARQ scheme. Each

information message is encoded into a sequence ofL blocks each of sizeT . Transmission commences with

the first block and after decoding the message the receiver sends a positive (ACK) or negative (NACK)

acknowledgement back to the transmitter. In the case of a NACK the transmitter sends the next block

in the sequence and the receiver uses all accumulated blocksto try to decode the message. This process

proceeds until either the receiver correctly decodes the message or until allL blocks have been sent. If a

NACK is sent after the transmission of theLth block then an error is declared, the message is removed

from the system, and the transmitter starts over with the next queued message. As in [7] we will use the

term “round” to describe a single block transmission of length T . We will refer to allL rounds associated

with the ARQ protocol as an “ARQ block”. Hence, each ARQ blockconsists of up toL rounds, and each

round is of sizeT .

The fading coefficientshij that model the gain from transmit antennai to receive antennaj are i.i.d.

complex Gaussian with unit variance. The channel gain matrix H with elementsH(i, j) = (hij : i ∈

{1, . . .N}, j ∈ {1, . . . ,M}) is assumed to be known at the receiver and unknown at the transmitter.

There are two channel models investigated in [7]: the long-term static model and the short-term static

model. In the long-term static model the channel remains constant over each ARQ block of up toLT

symbols, and the fading associated with each ARQ block is i.i.d. In the short-term static model the fading



is constant over one ARQ round, then changes to a new i.i.d. value. The long-term model applies to a

quasi-static situation such as might be seen in a wireless LAN channel. The short-term model is more

dynamic and might correspond to fading associated with a portable mobile device. The ARQ diversity

gain is very similar for the two models. In particular, the diversity exponent for the short-term static model

is a factor ofL larger than for the long-term static model, corresponding to theL-fold time diversity in the

short-term model. We will use the long-term static model in our analysis and numerical results, since it

allows us to focus on the diversity associated with the ARQ rather than time diversity. Our analysis easily

extends to the short-term static model by adding the extra factor of L to the ARQ diversity exponent.

Under the long-term static channel model, in roundl ∈ {1, . . . , L} of an ARQ block we can represent

the channel as

Yl =

√

SNR
M

HXl +W, (26)

whereXl ∈ CMxT andYl ∈ CNxT are the transmitted and received signals in blockl, respectively. The

additive noise vectorW is i.i.d. complex Gaussian with unit variance.

With the above model in hand let us define a family of codes{C(SNR)}, indexed by the SNR level.

Each code has lengthLT and the bit rate of the first block in each code isb(SNR)/T . Suppose we consider

a sequence of ARQ blocks. At times the random variableB[s] = b(SNR) if a message is successfully

decoded at the receiver, andB[s] = 0 otherwise. Then, we can define the average throughput of the ARQ

protocol using these codes as

η(SNR) = lim inf
τ→∞

1

Tτ

τ
∑

s=1

B[s], (27)

and we can viewη(SNR) as the average number of transmitted bits per channel use. Further define

Pe(SNR) as the average probability of error of the ARQ block (i.e. theprobability that a NACK is sent

afterL transmission rounds). The multiplexing gain of the ARQ protocol is defined in [7] as

r = lim
SNR→∞

η(SNR)
logSNR

, (28)

and the diversity gain as

d = − lim
SNR→∞

logPe(SNR)
logSNR

. (29)

For eachr andL we define the optimal diversity gaind∗(r, L) as the supremum of the diversity gain

achieved by any scheme. ForL = 1 (i.e. no ARQ) we have the original diversity-multiplexing tradeoff

from Section II. Hence,d∗(r, 1) is the piecewise linear functiond∗(r) joining the points(k, (M−k)(N−k),

at integer values ofk for 0 ≤ k ≤ min(M,N). For L > 1 we have the following result from [7].

Diversity Gain of ARQ: The diversity gain for the ARQ protocol with a maximum ofL blocks is

d∗(r, L) = d∗
(

r

L

)

. (30)



The diversity gain achieved by ARQ is quite remarkable. According to (30), for anyr < min(M,N)

we can achieve the full diversity gaind = MN for sufficiently largeL. Thus, forL sufficiently large,

there is no reason to utilize spatial diversity since all needed diversity can be obtained through ARQ.

For L not sufficiently large, the maximum ARQ window size would still be utilized to minimize the

amount of spatial diversity required. The diversity-multiplexing-ARQ tradeoff (30) is analogous to the

Zheng-Tse diversity-multiplexing tradeoffd∗(r). Thus, the same analysis as in Section III can be applied

to minimize end-to-end distortion based on the diversity-multiplexing tradeoffd∗(r, L) induced by the

ARQ. In particular, end-to-end distortion for MIMO channels with asymptotically high SNR and ARQ

retransmissions, in the absence of a delay constraint, is minimized using the following procedure:

1) choose the largest ARQ window sizeL possible,

2) determine the resulting ARQ diversity gaind∗(r, L) from (30)

3) solve (20) for the optimal rater∗ usingd∗(r, L) instead ofd∗(r).

This procedure not only minimizes end-to-end distortion, but also indicates that separate source and

channel coding is optimal, provided the source and channel encoders knowr∗ and the maximum value of

L. Moreover, the results in [8] show that the rate penalty for ARQ is negligible in the high SNR regime.

In order to analyze the diversity, multiplexing, and delay tradeoff for delay-sensitive sources we must

recognize two important subtleties about the above results. First, in systems that transmit delay-constrained

traffic we may not be able to tolerate a long ARQ window (in somecases ARQ may not be tolerated

at all). Second, we must carefully consider the impact of asymptotically high SNR, which is crucial in

the proofs of the above results. Specifically, in the high SNRregime the occurrence of a NACK in the

ARQ protocol becomes a rare event (i.e. the probability of a NACK tends to zero as SNR approaches

infinity). Therefore, with probability tending to one, eachmessage is decoded correctly during the first

transmission attempt – resulting in a multiplexing gain equivalent to that of a system without ARQ. The

increasingly rare errors are corrected by the ARQ process, which results in increased diversity.

The main difficulty in using these asymptotic results to evaluate delay performance is that in the high

SNR regime there is essentiallyno delay due to ARQ. In other words, queuing delays associated with

retransmissions are rare in the high SNR regime. Based on this fact and using standard results from

queuing theory, one can show that under stable arrival ratesthe arriving messages almost always find the

system empty. Hence, with high probability an arriving message will immediately begin transmission and

suffer no queuing delay. In wireless systems, errors duringa transmission attempt are not rare events.

Indeed, most wireless systems typically become reliable only after the application of ARQ. In other words,

errors after completion of the ARQ process might be rare events, but errorsduring the ARQ process are



not rare. As we shall see in the next subsection, this subtle difference requires a an optimization framework

that can model and optimize over the queuing dynamics associated with ARQ.

B. Delay-Distortion Model

This section presents our model for a delay-sensitive system. We do not assume a high SNR regime in

our analysis since, as stated in the previous section, this leads to rare ARQ errors and hence effectively

removes the ARQ queuing delay. We do assume that the finite SNRis fixed for each problem instance,

i.e. we do not optimize power control, although this optimization was investigated in [7] and shown to

provide significant diversity gains in the long-term staticchannel.

We assume the original source datau is a random vector with probability densityh(u), which has

support on a closed, bounded subset ofℜk with non-empty interior. During each transmission block

of length T an instance ofu arrives at the system independently with probabilityλ and is queued for

transmission. We assume that each message has a deadlinek at the receiver. Hence, if a message arrives

at time t and is not received by timet + kT then its deadline expires and the message is dropped from

the system. We assume that each message is quantized according to the scheme discussed below. The

quantized version of each message is then mapped into a codeword in the codebook{C(SNR)} and

passed to the MIMO-ARQ transmitter discussed in the previous section.

Due to the random message arrival times and the random completion times of the ARQ process we

will have queuing and delay in this system. Our goal is to select a diversity gain, multiplexing gain, and

ARQ window size to minimize the distortion created by both the quantizer and the messages lost due to

channel error or delay. The intuition behind the diversity-multiplexing-ARQ tradeoff is straightforward.

We would like to use as much multiplexing as possible since this will allow us to use more bits to describe

a message and reduce encoder distortion. However, high levels of multiplexing induce more errors in the

wireless channel, thereby requiring longer ARQ windows to reduce errors. The longer ARQ windows

induce higher delays, which also cause higher distortion due to messages missing their deadlines. We

must balance all of these quantities to optimize system performance.

We use the same vector encoder and distortion model from Section III. As before, we assume that the

total average distortionDτ (F,SNR) can be split into two dependent pieces

Dτ (F, SNR) = Ds(F ) +De(d,SNR), (31)

whereDe(d,SNR) is the distortion caused by messages declared in error. Herethe errors are incurred

whenever the ARQ process fails or when a message’s deadline expires. We also assume the distortion

due to erroneous messages is bounded by the overall loss probability:

De(d,SNR) ≤ Pe(SNR) + P{Delay > k}, (32)



whereP{Delay > k} is the probability that a message violates its deadline andPe(SNR) is the probability

of error for the ARQ block, which depends on its window sizeL.

Our goal is to minimize the total delay-distortion bound

Dτ (F,SNR) ≤ Ds(F ) + Pe(SNR) + P{Delay > k}. (33)

In order to optimize (33) we require a formulation that accounts for the different delays experienced by

each message. Hence, as described in the next section, we turn to the theory of Markov decision processes

to model and solve this problem.

C. Minimizing Distortion via Dynamic Programming

We now develop a dynamic programming optimization framework to minimize (33). We assume without

loss of generality that the queue in our system is of maximum size k. This is not a restrictive assumption

since each message requires at least one time block of sizeT for transmission, hence any arriving message

that sees more thank messages in the queue will not be able to meet its deadline andcould be dropped

without affecting our performance analysis. Note that unlike standard queuing models that only track the

number of messages awaiting transmission, we must also track the amount of time a particular message

has waited in the queue. In particular, given that one message is queued for transmission our state space

model must differentiate between a message that has just arrived and a message whose deadline is about

to expire. Since the queue size is bounded, we can only have a finite number of messages in the queue,

and hence the combined message and waiting time model existsin a finite space.

We define the queue processXQ = (XQ(n) : n ≥ 0), which takes values on a finite spaceXQ. Similarly,

we define the state of the ARQ processXL = (XL(n) : n ≥ 0) on a finite spaceXL. Here, the state of the

ARQ process denotes the number of the current transmission round in the current ARQ block. Finally, we

define the overall state of the system as a processX = (X(n) : n ≥ 0) such thatX(n) = (XQ(n), XL(n))

(i.e. the spaceX is the product space ofXQ andXL).

Since the arrival process is geometric and each ARQ round is assumed to be i.i.d., the processX is a

finite-state discrete-time Markov chain. The transition dynamics of this Markov chain are governed by the

choices of diversity, multiplexing, and the ARQ window size. We assume that at the start of each ARQ

block the transmitter chooses the number of bits to assign tothe vector encoder and hence the amount of

spatial diversity and multiplexing in the codeword selected from {C(SNR)}. The transmitter also selects

the length of the ARQ window. These choices then remain fixed until either the message is received

or the ARQ window expires. Define the space of actionsA as the set of all possible combinations of

multiplexing gain and ARQ window length. Note that a choice of multiplexing gain implicitly selects the

number of bits given to the source encoder as well as the amount of spatial diversity. We assume that the



number of antennasM andN are finite and that the ARQ window size is also finite. Hence, the action

spaceA is a finite set.

We define the control policyg as a probability distribution on the spaceX x A. We can view the

elements ofg as

g(x, a) = P{action a chosen in state x}, ∀x ∈ X , a ∈ A.

For any controlg, the Markov chainX is irreducible and aperiodic2. DefineQ(g) as the transition matrix

for X corresponding to control policyg. Hence,Q(g) = (Qi,j(g) : i, j ∈ X ) is a stochastic matrix with

entries

Qi,j(g) = P (X(n+ 1) = j|X(n) = i, g)

=
∑

a∈A

P (X(n+ 1) = j|X(n) = i, A(n) = a)g(i, a)) .

For each state-action pair we define a reward functionr(x, a). For the states inX corresponding to

completion of the ARQ process the reward function denotes the distortion incurred in that particular state.

Hence,

r(x, a) = 2−ps/k + I[ARQ Fails] + I[Delay > k]. (34)

Let G be the set of all available control policies. Then for anyg ∈ G define the limiting average value

of g starting from statex as

V (x, g) = lim sup
n→∞

[

(

1

n + 1

) n
∑

k=0

Ex,g [r(X(k), g)]

]

,

wherer(X(k), g) is the random reward earned at timek under control policyg. SinceX is an irreducible

and aperiodic Markov chain for any controlg we know from [2] that the above value function reduces to

V (x, g) = π(g)r(g) ∀ x ∈ X , (35)

whereπ(g) = π(g)Q(g) is the stationary distribution ofX under controlg andr(g) is the column vector

of rewards earned for each statex ∈ X under controlg. Hence, the value function is simply the expected

value of our reward functionr with respect to the stationary distribution ofX. Notice that given our

definition for r in (34), the value functionV (g) provides us with the delay-based distortion (33) caused

by control policyg. Thus we want to minimize distortion by minimizing the valuefunction V (g).

Specifically, our goal is to find ag ∈ G that minimizesV (x, g). From [2] we know this problem can

be solved through the following linear program.

min
s

∑

x∈X

∑

a∈A

r(x, a)sxa (36)

2To create a non-irreducible Markov chain we would be required to successfully transmit a packet with probability one.



subject to:

∑

x∈X

∑

a∈A

(δ(x, x ′)− p(x ′|x, a)) sxa = 0, x ′ ∈ X

∑

x∈X

∑

a∈A

sxa = 1,

sxa ≥ 0; a ∈ A, x ∈ X ,

whereδ(x, x ′) is the Kronecker delta,sxa is the steady-state probability of being in statex and taking

actiona, andp(x ′|x, a) is the probability of jumping to statex ′ given actiona in statex. The state-action

frequenciessxa provide a unique mapping to an optimal controlg∗ [2].

With this dynamic programming formulation in hand we can solve for the optimal diversity gain,

multiplexing gain, and ARQ window size as a function of queuestate and deadline sensitivity. We

demonstrate the performance of these solutions with a numerical example in the next subsection.

D. Distortion Results

Consider the ARQ system described above with messages arriving in each time block with probability

λ = 0.9. We assume a 4x4 MIMO-ARQ system (M = N = 4) with an SNR of 10 dB that utilizes

the incremental redundancy codes proposed in [6], which have been shown to achieve the diversity-

multiplexing-ARQ tradeoff. For these codes we allow the ARQwindow size to take values in a finite set

L ∈ {1, . . . , 4}. We also consider the deadline lengthk ranging over several values (k ∈ {2, . . . , 8}) to

examine the impact of delay sensitivity on the solution to our dynamic program (36). For each value of

k we solve a new version of (36). The plots below contain the data accumulated by averaging over all of

these solutions.

Figure 7 plots the optimal ARQ window length as a function of queue state for different values ofk.

We see that for short deadlines we cannot afford long ARQ windows for any queue state. As the deadlines

become more relaxed we can increase the ARQ window size. However as the queue fills up we are forced

to again decrease the amount of ARQ diversity.

Figure 8 plots the optimal multiplexing gainr as a function of queue state for different values ofk.

Here we see that with short deadlines we must use fairly low amounts of spatial multiplexing (i.e. high

spatial diversity), since we cannot use ARQ diversity. As the deadlines become more relaxed we can

increase the amount of spatial multiplexing and use ARQ for diversity. Once again, as the queue fills up

we must switch back to low levels of multiplexing or, equivalently, high levels of diversity to ensure a

lower error probability and hence that fewer retransmissions are needed to clear a given message from

the system.
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We also evaluate the performance advantage gained by adapting the settings of diversity, multiplexing,

and ARQ rather than choosing fixed allocations. Fork = 4 we computed the distortion resulting from all

possible fixed allocations of ARQ window length and multiplexing gain. The curved surface in Figure 9

plots the distortion of these fixed allocations for all values of L andr. The flat surface in Figure 9 is the

distortion achieved by the adaptive scheme (plotted as a reference), which indicates a distortion reduction

of up to 70 dB. Even in the most favorable cases, the adaptive scheme outperforms any fixed scheme by

more than 50%.

VII. SUMMARY

We have investigated the optimal tradeoff between diversity, multiplexing, and delay in MIMO systems

to minimize end-to-end distortion under both asymptotic assumptions as well as in practical operating
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Fig. 9. Distortion for the fixed allocation problem vs. multiplexing gain vs. ARQ window size (SNR=10 dB).

conditions. We first considered the tradeoff between diversity and multiplexing without a delay constraint.

In particular, for the asymptotic regime of high SNR and source dimension, we obtained a closed-form

expression for the optimal rate on the Zheng/Tse diversity-multiplexing tradeoff region as a simple function

of the source dimension, code blocklength, and distortion norm. We also showed that in this asymptotic

regime separate source and channel coding at the optimized rate minimizes end-to-end distortion. However,

in contrast to codes designed according to Shannon’s separation theorem, the finite blocklength assumption

in our setting causes distortion to be introduced by both thesource code and the channel code, even though

the source encoding rate is below channel capacity. We showed that the same optimization framework

can be applied even without an asymptotically large SNR. However, outside this asymptotic regime,

closed-form expressions for the optimal diversity-multiplexing tradeoff (and corresponding transmission

rate) cannot be found, and convex optimization tools are required to find this optimal operating point.

Finally, we developed an optimization framework to minimize end-to-end distortion for a broad class of

practical source and channel codes, and applied this framework to a specific example of a video source

code and space-time channel code. Our numerical results illustrate quantitatively how the optimal number

of antennas used for multiplexing increases with both the source rate and the SNR.

We then extended our analysis to delay-constrained sourcesand MIMO systems using an ARQ retrans-

mission protocol. ARQ provides additional diversity in thesystem at the expense of delay. Minimizing end-

to-end delay thus entails finding the optimal operating point on the diversity-multiplexing-delay tradeoff

region. We developed a dynamic programming formulation forthis optimization to capture the diversity-

multiplexing tradeoffs of the channel as well as the dynamics of random message arrival times and random

ARQ block completion times. The dynamic program can be solved using standard techniques, which we



applied to a 4x4 MIMO system with different ARQ window sizes and delay constraints. We obtained

numerical results indicating the optimal amount of diversity, multiplexing, and ARQ to use as a function of

the queue state and message deadline. We also demonstrated that adaptation of the diversity-multiplexing

characteristics of the MIMO channel code to the time-varying backlog in the system leads to distortion

reduction of up to 70 dB versus a static allocation.

The unconsummated union between information theory and networks has vexed both communities

for many years. As pointed out in [10], part of the reason for this disconnect is that source burstiness

and end-to-end delay are major components in the study of networks, yet play little role in traditional

Shannon theory where delay is asymptotically infinite and channel capacity inherently assumes a source

with infinite data to send. We hope that our work provides one small step towards consummating this

union by merging information-theoretic tradeoffs associated with the channel with models and analysis

tools from networking to handle source burstiness and system delay. Much work remains to be done in

this area by extending our ideas and developing new ones for coupling the fundamental performance limits

of general multihop networks with queuing delay, traffic statistics, and end-to-end metric optimization for

heterogeneous applications running over these networks.
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