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Abstract—We study a problem of broadcasting confidential mes-
sages to multiple receivers under an information-theoretic secrecy
constraint. Two scenarios are considered: 1) all receivers are to ob-
tain a common message; and 2) each receiver is to obtain an inde-
pendent message. Moreover, two models are considered: parallel
channels and fast-fading channels.

For the case of reversely degraded parallel channels, one eaves-
dropper, and an arbitrary number of legitimate receivers, we deter-
mine the secrecy capacity for transmitting a common message, and
the secrecy sum-capacity for transmitting independent messages.
For the case of fast-fading channels, we assume that the channel
state information of the legitimate receivers is known to all the ter-
minals, while that of the eavesdropper is known only to itself. We
show that, using a suitable binning strategy, a common message
can be reliably and securely transmitted at a rate independent of
the number of receivers. We also show that a simple opportunistic
transmission strategy is optimal for the reliable and secure trans-
mission of independent messages in the limit of large number of
receivers.

Index Terms—Confidential messages, cryptography, fading
channels, information-theoretic secrecy, key distribution, multi-
casting, multiuser diversity, parallel channels, wiretap channel.

I. INTRODUCTION

ANUMBER of existing and emerging applications require
a key distribution mechanism to selectively broadcast

confidential messages to legitimate receivers. For example,
in pay-TV systems, a content provider wishes to selectively
broadcast certain content to a subset of customers who have
subscribed to it. An online key distribution mechanism enables
the service provider to distribute a decryption key to these legit-
imate receivers while securing it from potential eavesdroppers.
The content can be encrypted via standard cryptographic proto-
cols, so that only customers who have access to the decryption
key can view it. In the absence of such a mechanism, current
solutions rely on variants of traditional public key cryptography
(see, e.g., [7]) and are vulnerable to attacks such as piracy [9].

The problem of broadcasting confidential messages in an in-
formation-theoretic setting was formulated by Wyner [25]. The
so-called wiretap channel model introduced by Wyner in his
work has three terminals: a sender, a legitimate receiver, and
an eavesdropper. For this formulation, Wyner investigated the
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fundamental tradeoff between the rate to the legitimate receiver
and the eavesdropper’s equivocation (the number of bits the
eavesdropper must correctly guess to decode the message, given
its observations), and characterized the associated rate-equivo-
cation region when the eavesdropper has a degraded channel
compared to the legitimate receiver. This formulation is gener-
alized for nondegraded broadcast channels in [5], and applied
to Gaussian channels in [13].

Recently, the wiretap channel has received renewed interest
for secure communication in wireless environments [20], [2],
[12], [15], [17], [11]. The approach in these works is to exploit
the channel variations experienced by the receivers to enable
secure communication even when the eavesdropper has, on av-
erage, a channel stronger than that of the receiver. Some treat-
ments [11], [12], [20] observe that for secure communication
over ergodic fading channels, it is sufficient to have only statis-
tical knowledge of the eavesdropper’s channel, and the proposed
strategies carefully adapt to the channel variations of the legiti-
mate receiver.

In this paper, motivated by the key-distribution application,
we further investigate physical-layer security within Wyner’s
wiretap channel framework by extending it to broadcast sce-
narios in which there are multiple receivers.

We begin by extending the wiretap model to the case of
parallel broadcast channels with one sender, multiple legitimate
receivers, and one eavesdropper. We consider two scenarios:
1) there is a common message to be delivered to all legiti-
mate receivers; and 2) there are individual messages to be
delivered to each legitimate receiver. For the first scenario, we
first derive upper and lower bounds on the common-message
secrecy capacity. These bounds coincide when the receivers
are reversely degraded. For the second scenario, we establish
the secrecy sum-capacity for the reversely degraded case. The
capacity-achieving scheme is simple: transmit to the strongest
receiver on each parallel channel and use independent code-
books across the subchannels. Our results can be viewed as
generalizations of the results in [8], which considers a similar
setup without the presence of an eavesdropper. Interestingly,
however, the specializations of our capacity-achieving schemes
to the case of no eavesdropper are different from those in [8].

We then extend our results for the case of parallel channels to
the case of fast-fading channels, emphasizing Rayleigh fading.
In our problem formulation, we assume that the channel state
information (CSI) for all legitimate receivers is revealed to all
communicating parties—including the eavesdropper—while
only the eavesdropper knows its own CSI.

Again, we consider both common and independent message
transmission over such fading channels. For the common mes-
sage case, we describe a scheme that achieves a nonvanishing
rate in the limit of many legitimate receivers. In our construc-
tion, transmitter CSI is required and plays an important role. By
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contrast, when there is no secrecy constraint, transmitter CSI
has a more limited impact on the multicasting rate over ergodic
channels. Indeed, the regular (nonsecrecy) capacity appears to
be not too far from the maximum rate achievable using schemes
with a nonadaptive (flat) power allocation.

For the case of independent messages, we develop an op-
portunistic scheme that selects the receiver with the strongest
channel at each time. With Gaussian wiretap codebooks for each
legitimate receiver, we show that this scheme achieves the sum-
capacity in the limit of large number of receivers. Our results
can be interpreted as the wiretap analog of the multiuser diver-
sity results in settings without secrecy constraint (see, e.g., [24]).

The paper is organized as follows. Section II provides some
notation for the paper. Section III formally describes the channel
models of interest. The main results are summarized in Sec-
tion IV. Details of the analysis of the scenario of a common
message are presented in Sections V and VII for the cases of
parallel and fading channels, respectively. In turn, Sections VI
and VIII provide the analysis for the scenario of independent
messages for the cases of parallel and fading channels, respec-
tively. Finally, Section IX contains some concluding remarks.

II. NOTATION

A summary of some notation used in the paper is as follows.
First, upper case letters are used for random variables and the
lower case for their realizations. Also, sequences are denoted
using superscripts and sequence elements with parentheses; e.g.,

.
The entropy of a discrete random variable is denoted by

, and the mutual information between random variables
and is denoted by . Following this convention,

denotes the probability mass function of random variable
. In addition, we use to denote expectation, and, when not

clear from context, we use a subscript to indicate the distribution
with respect to which the expectation is being taken; e.g.,
denotes expectation with respect to the distribution for .

We also use to denote the distribution of a circu-
larly symmetric complex-valued Gaussian random variable with
zero-mean and variance , and define for
any . Finally, we use “bar” notation (e.g., and ) to denote
rates associated with common message transmission, to distin-
guish them from (sum) rates for transmission of independent
messages (e.g., and ).

III. PROBLEM AND CHANNEL MODELS

In this section, we formally define the problem and broadcast
channel models of interest.

A. Problem Model

We formulate the problems of interest as extensions of the
wiretap channel model introduced by Wyner [25] for studying
reliable and secure communication in an information-theoretic
framework. As such, we emphasize that in our models there is
no prior key shared between the sender and legitimate receivers,
and both the encoding and decoding functions, and the code-
book itself, are public.

Within this framework, we emphasize Wyner’s notion of se-
crecy capacity, which is the maximum rate of reliable communi-

cation to the intended receivers subject to the constraint of van-
ishing mutual information at the eavesdropper. Moreover, we
adopt Wyner’s definition of “perfect secrecy” as the scenario in
which the block-length-normalized mutual information at the
eavesdropper vanishes in the limit of long block lengths, which
is sufficient for a variety of applications. However, we note that
this is significantly weaker than both the notion considered by
Shannon [21], which requires that the mutual information be
zero regardless of the block length, and the notion by Maurer
and Wolf [19] which requires that the (unnormalized) mutual
information approach zero with the block length. In our con-
cluding remarks, we comment further on such issues.

Finally, we restrict our attention to the secrecy capacity in this
paper, rather than the entire rate-equivocation region described
by Wyner. This is because in the motivating key-distribution ap-
plication of interest, the key length is limited by the equivoca-
tion rate, which is effectively the minimum number of bits the
eavesdropper needs to correctly guess to decode the message.
Accordingly, the secrecy capacity is of primary interest.

B. Parallel Channels

In this broadcast model, there are parallel subchannels
connecting a single sender to each of legitimate receivers and
an eavesdropper, where and are parameters.

Definition 1: A product broadcast channel is one in which the
constituent subchannels have finite input and output alphabets,
are memoryless and independent of each other, and are charac-
terized by their transition probabilities

(1)

where denotes the se-
quence of symbols transmitted on subchannel , where

denotes the sequence of
symbols obtained by receiver on subchannel , and where

denotes the sequence of
symbols received by the eavesdropper on subchannel . The
alphabet of is , and the alphabet for both and
is .

A special class of product broadcast channels, known as the
reversely degraded broadcast channel [8] are of particular in-
terest.

Definition 2: A product broadcast channel is reversely de-
graded when each of the constituent subchannels is degraded
in a prescribed order. In particular, for each subchannel , there
exists a permutation of the set

such that the following Markov chain is satis-
fied, i.e.,

With this definition, is an or-
dering of the receivers from strongest to weakest in the th sub-
channel, and we will at times find it convenient to adopt the ad-
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Fig. 1. An example of reversely degraded parallel broadcast channel, in which
there are M = 3 subchannels connecting a single sender to each of K = 2
legitimate receivers and an eavesdropper. The input symbols to the subchan-
nels are (X ;X ;X ). The output symbols at the kth intended receiver are
(Y ; Y ; Y ), and at the eavesdropper are (Y ; Y ; Y ). Note that the
order of degradation is not the same for all subchannels.

ditional notation . Also, we stress that in Definition
2 the order of degradation need not be the same for all subchan-
nels, so the overall channel need not be degraded. An example
of reversely degraded parallel broadcast channel is depicted in
Fig. 1.

We also emphasize that in any subchannel the receivers
and eavesdropper are physically degraded. Our capacity results,
however, only depend on the marginal distribution of receivers
in each subchannel. Accordingly, our results in fact hold for
the larger class of channels in which there is only stochastic
degradation in the subchannels.

Finally, we obtain further results when the channel is
Gaussian.

Definition 3: A reversely degraded product broadcast channel
is Gaussian when it takes the form

(2)

where the noise variables are all mutually independent, and
and . For this channel,

there is also an average power constraint

We now provide the formal definitions of the common-mes-
sage secrecy capacity and the sum-secrecy capacity for indepen-
dent messages.

Definition 4: An code consists of a message set
, a (possibly stochastic) encoder

mapping the message set to the codewords for the subchan-
nels, and a decoder

for at each receiver. Using to denote mes-
sage estimate at decoder , a common-message-secrecy-rate
is said to be achievable if, for any , there exists a length
code such that for , while

(3)

The common-message secrecy capacity is the supremum over
all achievable rates.

Definition 5: A code for the
product broadcast channel in Definition 1 consists of a message
set , an encoder

mapping the messages for the receivers to the subchannel
inputs, and decoding functions

one at each legitimate receiver. We denote the message estimate
at decoder by . A secrecy rate-tuple is
achievable if, for every , there is a code of length such
that for all , and such that

(4)

with uniformly distributed in . The secrecy
sum-capacity is the supremum of over the
achievable rate tuples .

We remark that our constraint (4) provides perfect equivoca-
tion for each message, even if all the other messages are revealed
to the eavesdropper.

C. Fading Channels

Definition 6: Our fast-fading broadcast model of in-
terest has the following properties. The received sequences

and at the legitimate receivers and eaves-
dropper, respectively, are of the form

(5)

where is the transmitted sequence, and .
The channel gains and noises among all receivers (including
the eavesdropper) are all mutually independent of one another,
and all vary in an independent and identically distributed (i.i.d.)
manner with time, corresponding to fast fading.1 Finally, the
input must satisfy an average power constraint .

In parts of our development, we explicitly restrict our at-
tention to the special case of Definition 6 corresponding to
Rayleigh fading, in which case and

as well.
In addition, in our model the are revealed

to the transmitter, the legitimate receivers and the eaves-
dropper in a causal manner. Implicitly we assume that there
is an authenticated public feedback link from the receivers to
the transmitter. The channel coefficients of the eavesdropper

are known only to the eavesdropper, but the transmitter
and the legitimate receivers know the probability distribution of
the eavesdropper’s channel gains.

1In practice, the fast fading model (5) applies when the codebooks are inter-
leaved such that each symbol sees an independent fade.



2456 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 6, JUNE 2008

Note that for such channels, the transmitter must exploit the
CSI of legitimate receivers. Indeed, any scheme that does not
would reveal the message to any eavesdropper that has a channel
statistically equivalent to the intended receiver(s).

We now provide the formal definitions of the common-mes-
sage secrecy capacity and the sum-secrecy capacity for indepen-
dent messages.

Definition 7: An code for the channel con-
sists of an encoding function that maps from the message

into transmitted symbols

for

and a decoding function at each
receiver . A rate is achievable if, for every , there exists
a sequence of length codes such that for
any such that

(6)

Definition 8: An code consists of an
encoding function from the messages with

to transmitted symbols

for

and a decoding function at each
receiver. A secrecy rate-tuple is achievable
if, for any , there exists a length code such that, for
each , with uniformly distributed over

, we have and

(7)

The secrecy sum-capacity is the supremum value of
among all achievable rate tuples.

Note that the entropy term in both (6) and (7) is conditioned
on as these channel gains of the receivers are as-
sumed to be known to the eavesdropper. However, the encoding
and decoding functions do not depend on as this realization
is not known to the sender and the receivers.

An immediate consequence of this formulation is that the se-
crecy capacity depends only on the distribution of and
not on the actual realized sequence of these eavesdropper gains.
Indeed, since the transmitter and the legitimate receivers do not
have the eavesdropper’s CSI, the encoding and decoding func-
tions cannot depend on this information. From this perspective,
in our formulation a message that is secure with respect to any
given eavesdropper is also secure against any statistically equiv-
alent eavesdropper.

IV. MAIN RESULTS

In this section, we summarize our results on the secrecy ca-
pacity of broadcast channels. The detailed development of these
results is provided in subsequent sections.

A. Parallel Channels and a Common Message

We have the following upper and lower bounds on the
common-message secrecy capacity for the product broadcast
channel of Definition 1.

Proposition 1: For the product broadcast channel model, an
upper bound on the secrecy capacity is given by

(8)

where the set is Cartesian product of
the sets , and where each is the collection of
all joint distributions having the
same marginal distribution as
and , and where the maximum is over all marginal
distributions .

Proposition 2: For the product broadcast channel model, an
achievable lower bound on the secrecy capacity is given by

(9)

where the random variables are independent over
some alphabet , and each for is a map-
ping from to .

For the special case of a product broadcast channel that is
reversely degraded, our upper and lower bounds above coincide,
yielding the following common-message secrecy capacity.

Theorem 1: The common-message secrecy capacity for the
reversely degraded channel model is

(10)
We remark that [8] considers the problem of broadcasting

common and independent messages over reversely degraded
channels, but without a secrecy constraint. It is worth noting
that the coding scheme we construct that achieves the secrecy
capacity (10), when specialized to the case of no eavesdropper,
yields a different capacity-achieving scheme than that of [8].
Moreover, an obvious random binning extension of the scheme
presented in [8] does not achieve the secrecy capacity (10).

Finally, for the Gaussian parallel-channel model of Defini-
tion 3, we have the following straightforward extension of The-
orem 1.

Corollary 1: The common-message secrecy capacity for the
Gaussian parallel broadcast channel is

(11)

where is the set of all feasible power allocations, i.e.,

(12)
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B. Parallel Channels and Independent Messages

In absence of the secrecy constraint, the sum-capacity for the
reversely degraded broadcast channel is maximized when only
the strongest receiver on each parallel channel is served [23].
We show that the same scheme is also optimal with the secrecy
constraint. In particular, we establish the following result.

Theorem 2: The secrecy sum-capacity for the reversely de-
graded product broadcast channel is

(13)

where denotes the index of the strongest receiver on channel
. Furthermore, the right-hand side of (13) is an upper bound on

the secrecy sum-capacity when the set of legitimate receivers are
reversely degraded, but the set of these receivers taken together
with the eavesdropper are collectively not reversely degraded.

Finally, for the Gaussian parallel-channel model of Defini-
tion 3, we have the following straightforward extension of The-
orem 2.

Corollary 2: The secrecy sum-capacity for the Gaussian par-
allel broadcast channel is

(14)

where the feasible set of power distributions as defined in (12),
and where denotes the variance of the noise of the strongest
receiver on subchannel .

C. Fading Channels and a Common Message

Several recent works [2], [11], [12], [15] have observed that
secure communication is possible over fading channels even
when the eavesdropper’s channel is on an average stronger
than a legitimate receiver’s channel. This is accomplished by
adapting the rate and transmit power to the channel of the
intended receiver.

We develop additional insight into the robustness of such
schemes by considering the case when a common message has
to be delivered to multiple receivers, while keeping it secret
from potential eavesdroppers. The common message constraint
requires us to adapt rate and power to the channel gains of sev-
eral legitimate receivers simultaneously. Despite such a strin-
gent requirement, we demonstrate that it is possible to broadcast
at a strictly positive rate independent of the number of legitimate
receivers. In particular, we have the following theorem.

Theorem 3: The common-message secrecy rate for the fast-
fading broadcast channel is bounded by

(15)

where

(16a)

and

(16b)

When the channel gains are identically distributed across
the users, note that both lower and upper bounds in (16) are
independent of the number of receivers . The fact that the
common-message secrecy capacity does not vanish with the
number of users is surprising. Simple schemes such as trans-
mitting when all the users have a channel gain above a threshold
or time-sharing between the users only achieve a rate that van-
ishes with the number of users. In contrast, our lower bound
is achieved by a scheme that simultaneously adapts to the time
variations of all the legitimate users.

In the high signal-to-noise ratio (SNR) regime, the bounds
Theorem 3 specialize as follows.

Corollary 3: When the channel gains of all the receivers are
distributed as , the bounds in (16) are asymptotically

(17a)

(17b)

where is the Euler-Gamma constant ( ).

Evaluating (17) at high SNR, when , gives

in b/s/Hz (18)

We remark that since this scheme achieves a rate independent
of the number of receivers, it achieves the best possible scaling
with the number of receivers. However, it is not known whether
the scheme is capacity achieving. Indeed, even for the special
case corresponding to a single legitimate receiver ( ), the
fast-fading secrecy capacity is not yet known [12], [16].

D. Fading Channels and Independent Messages

The problem of broadcasting independent messages to
multiple receivers over ergodic fading channels has been well
studied when there is no security constraint; see, e.g., [14],
[23]. For such scenarios, an opportunistic transmission scheme
is shown to attain the largest sum-capacity. We establish the
following analogous result for secure transmission.

Proposition 3: For the fast-fading broadcast channel, the se-
crecy sum-capacity is bounded by

(19)

where

(20a)
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Fig. 2. Upper and lower bounds on the secrecy sum-capacity in (20) for the broadcasting of independent messages in Rayleigh fast-fading environments in the
high-SNR regime, as a function of the number of legitimate receivers.

and

(20b)
with denoting the gain of the strongest of the legitimate
receivers (at any instant).

Our upper and lower bounds in (20) are distinguished by the
inclusion of the operator is inside the expectation of the
former. Hence, the arguments of the expectation differ whenever

, and so an upper bound on the rate gap is

(21)

As the number of legitimate receivers grows, the event
happens increasingly rarely and for the

case of identical Rayleigh distributed fading, the gap between
the bounds vanishes. As a result, we obtain the following
theorem.

Theorem 4: For the fast-fading broadcast channel with iden-
tical Rayleigh-distributed fading and large , the secrecy ca-
pacity scales according to

(22)

where we use to denote terms that approach zero as
.

Theorem 4 establishes that an architecture that uses single-
user Gaussian wiretap base codes in conjunction with oppor-
tunistic transmission achieves the secrecy sum-capacity in the
limit of a large number of receivers.

For finite values of , incorporating synthesized noise into
the transmission as a masking technique yields still higher rates

[12], [16]. However, even with such refinements, there remains
a gap between the upper and lower bounds. Fig. 2 illustrates
the upper and lower bounds in (20) in the high-SNR regime
for identically distributed Rayleigh-fading distribution. We note
that even for a moderate number of users, these bounds are close
and further improvements will only provide diminishing gains
in this regime.

We also remark that Theorem 4 more generally guarantees
an arbitrarily small gap between upper and lower bounds on the
secrecy sum-capacity for Rayleigh-fading channels of fixed co-
herence time, provided the number of receivers is large enough.

In [11] variable-rate and fixed-rate schemes are developed
for the case of a single receiver in a slow fading environment.
Straightforward extensions of these schemes for multiple re-
ceivers reveals the following insights. The variable-rate scheme
achieves our upper bound (20a), whereas the fixed-rate scheme
achieves our lower bound (20b). Since these two expressions
coincide as the number of receivers tends to infinity, it follows
that the gains of variable-rate schemes become negligible in this
limit.

As a final remark, we comment on collusion attacks. As noted
earlier, any number of statistically equivalent eavesdroppers
does not affect our capacity—as long as they do not collude.
However, if the eavesdroppers collude, they can combine the
received signals and attempt to decode the message. In such
scenarios, the upper and lower bounds in Proposition 3 can be
extended by replacing the term with , where
is the vector of channel gains of the colluding eavesdroppers.
One interesting implication of the resulting bounds is that the
secrecy capacity is positive unless the colluding eavesdropper
population grows as .

V. PARALLEL CHANNELS AND A COMMON MESSAGE

In this section, we establish our results concerning the trans-
mission of a common message over parallel channels. In partic-
ular, we prove Propositions 1 and 2 and Theorem 1 and Corol-
lary 1 stated in Section IV-A.
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A. Upper Bound on Capacity

Proof of Proposition 1:
Suppose there exists a sequence of codes such that,

for every and sufficiently large , we have that for all

(23)

We first note that from Fano’s inequality we have

(24)

Combining (23) and (24) we have, for all
and

(25)

(26)

(27)

where (25) follows from the fact that

forms a Markov chain, and (26) holds because the parallel sub-
channels in Definition 1 are mutually independent so that

(28)

We now upper-bound each term in the summation (27). We
have

(29)

(30)

(31)

where (29) follows from the fact that the channel is memoryless,
and (30) is obtained by defining to be a (time-sharing) random
variable uniformly distributed over independent
of all other variables. The random variables
are such that, conditioned on , they have the same joint
distribution as . Finally, (31) follows
from the fact that the mutual information is concave with respect
to the input distribution , a property that is verified in
Appendix A.

Combining (31) and (27) we have

(32)

where the last step follows from that fact that for any input dis-
tribution , the objective function

only depends on the marginal distributions .
Finally, note that (32) depends on the joint distribution across
the subchannels while the secrecy capacity only depends on the
marginal distribution. Accordingly, we tighten the upper bound
by considering the worst distribution in

, yielding (8).

B. Lower Bound on Capacity

We now present a coding scheme that achieves the our lower
bound.

We first discuss the structure of the coding scheme in-
formally. We construct independent random codebooks

, one for each subchannel. Codebook has nearly
codewords, randomly partitioned into

bins, one for each possible message. Hence, there are nearly
codewords per bin. Given a particular mes-

sage to be sent, the encoder selects
codewords, one for each subchannel. Specifically, if the mes-
sage is , then for each subchannel the encoder randomly
selects for transmission one of the codewords from the th
bin in . This bin structure of the codebooks is depicted in
Fig. 3 for the case of subchannels.

To decode, each legitimate receiver attempts to find a message
that is jointly typical with its set of received sequences. As
we now show, the rate of the code can be chosen arbitrarily
close to as defined in (9) and guarantees both successful
decoding with high probability for each legitimate receiver, and
near-perfect equivocation at the eavesdropper.
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Fig. 3. Binning encoder for the secure product broadcast channel, for the case ofM = 2 subchannels. The set of codewords for representing a particular message
w 2 f1; . . . ; 2 g in themth subchannel are denoted by U (w); . . . ; U (w). To encode a particular message w, the encoder randomly selects one of the
Q codewords in the associated bin for transmission in the mth subchannel, for m = 1; . . . ;M .

Before presenting our proof, we make some remarks. As
mentioned earlier, when specialized to the case in which there
is no eavesdropper (and hence no secrecy constraint), our con-
struction is different from that developed by El Gamal [8] for
such product broadcast channels. In particular, as illustrated in
Fig. 4 for the case of subchannels, our construction has
the distinguishing feature that independent codebooks are used
for the different subchannels. By comparison, with the scheme
in [8], each message is mapped to a -dimensional code-
word and the th component of the codeword is transmitted on
subchannel . This corresponds to a single-codebook scheme.
By extending this scheme to provide secrecy by incorporating
random binning, one can achieve, again for the reversely de-
graded channel,

(33)

which we observe is in general smaller than that achieved by
our construction, viz., (10). Ultimately, allowing the sizes of
bins to depend on the mutual information at the eavesdropper
on each particular subchannel makes it possible to confuse the
eavesdropper on each subchannel, and thereby achieve higher
secrecy rates than (33).

We now provide the formal details and analysis of the coding
scheme.

Proof of Proposition 2: First, fix the distributions
and the (possibly stochastic) func-

tions . Let and be positive constants, to
be quantified later. With respect to these quantities, define

(34)

and

(35)

Fig. 4. Structure of two coding schemes for common message transmission
over reversely degraded product broadcast channels, for the case of K = 2 le-
gitimate receivers and one eavesdropper. To obtain secrecy, separate codebooks
are required for each subchannel, so that separate binning can be performed on
each. A single codebook is sufficient when there is no secrecy requirement.

The set denotes the set of all sequences that are typ-
ical2 with respect to distribution and the set
denotes the set of all jointly typical sequences with
respect to the distribution . In turn,
denotes the set of all sequences conditionally typical with
respect to a given sequence according to .

The details of our construction are as follows.
1) Codebook Generation:
• Codebook for has a total of

length codeword sequences. Each
sequence is selected uniformly and independently from
the set .

• We randomly partition the sequences into mes-
sage bins so that there are codewords per
bin.

• The set of codewords associated with bin in codebook
is denoted as

(36)

2Throughout our development, we mean typicality in the �-weak sense; see,
e.g., [4, Ch. 3].
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for and . Note that
is the codebook on subchannel .

2) Encoding: To encode message , the encoder randomly
and uniformly selects a codeword in the set for all

. Specifically
• Select integers , where is selected in-

dependently and uniformly from the set .
• Given a message , select a codeword from

codebook for .
• The transmitted sequence on subchannel is denoted by

. The symbol is
obtained by taking the (possibly stochastic) function
of each element of the codeword .

3) Decoding: Receiver , based on its observations
from the parallel subchannels, de-

clares message according to the following rule.
• Let

denote the set of subchannels where receiver has larger
mutual information than the eavesdropper. The receiver
only considers the outputs from these subchannels.

• Receiver searches for a message such that, for each
, there is an index such that

. If a unique has this property, the receiver
declares it as the transmitted message. Otherwise, the re-
ceiver declares an arbitrary message.

We now analyze the properties of this code.
4) Error Probability: We show that, averaged over the en-

semble of codebooks, the error probability is smaller than a con-
stant (to be specified). This demonstrates the existence of a
codebook with error probability less than . We do the analysis
for receiver and, without loss of generality, assume that mes-
sage is transmitted.

We first analyze the false-reject event. Let be the event
. Since

by construction and is obtained by passing through
a discrete memoryless channel, it follows that [4, p. 72, The-
orem 3.1.2], . Accordingly, if denotes the event
that message does not appear typical, then we have

(37)

We next analyze the false-accept event. As before, let
denote the subset of subchannels for

which . In what follows, the index
refers only to subchannels in .
For each , let denote the event that there is a

codeword in the set ( ) typical with . Then

(38)

(39)

where (38) follows from the fact that since the sequences
are drawn independently, the results in [4,

p. 216, Theorem 8.6.1] apply and (39) follows by noting that
.

In turn, let denote the event that message has a code-
word typical on every subchannel. Then

(40)

where (40) follows by independence of codebooks and subchan-
nels.

Finally, the probability of false accept event is given by

which vanishes with increasing by selecting the code param-
eters such that .

Thus, the probability of error averaged over the ensemble of
codebooks is less than

which demonstrates the existence of a codebook with error
probability less than .

5) Secrecy Analysis: We now show that for any typical
code in the ensemble the “perfect equivocation” condition is
satisfied, i.e., the normalized mutual information between the
message and the output of the eavesdropper is vanishing in the
block length. We establish this in two steps. First, our construc-
tion of codebooks is such that an eavesdropper who observes
only the output of channel has near-perfect equivocation,
i.e., 3 Second, as we show below, the
eavesdropper’s mutual information only increases by a factor
of even when all the channel outputs are observed

(41)

(42)

where (41) follows from the fact that the codewords in the sets
are independently selected.

3We will use o (1) to refer to a function that approaches zero as n!1.
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It remains only to formally establish that for all
, we have that

(43)

which we now do.
Since there are there are codewords

in each codebook we have that

(44)

(45)

where (44) follows from the fact that the codewords in each
bin are selected uniformly, while (45) follows from the fact that
a typical codebook satisfies Fano’s inequality. Further-
more, following [25], we can show that for our codebook ,
all of whose codewords are equally likely to be transmitted, we
have that

(46)
The equivocation at the eavesdropper can then be lower-
bounded using (44)– (46)

(47)

(48)

(49)

(50)

where (47) follows from (45), where (48) follows from the
fact that is deterministic given , and where (49) and
(50) follow from (44) and (46), respectively, and the fact that

. Since , , and can be selected to be
arbitrarily small, provided is sufficiently large, we establish
(43).

C. Capacity for Reversely Degraded Channels

We observe that the upper and lower bounds in Proposition 1
and 2, respectively, coincide when the underlying channel is re-
versely degraded.

Proof of Theorem 1: By selecting for each
, in the achievable rate expression (9) in Proposi-

tion 2, we have that

is an achievable rate. For the reversely degraded channel, for
each , and , we have that either

or holds. In either
case, note that

holds, and hence the lower bound above coincides with (8) in
Proposition 1.

D. Gaussian Channel Capacity

We extend the secrecy capacity in Theorem 1 to Gaussian
parallel channels. Since the extension is based on standard tech-
niques, we will only sketch the key steps in the proof.

Proof of Corollary 1: Note that the channel of Definition
3 has the same capacity as another reversely degraded
broadcast channel in which the sequence obtained at receiver

on subchannel is

where denotes the ordering of the eaves-
dropper and legitimate receivers from strongest to weakest,
where and , and where the noises

are mutually
independent.

With the appropriate Fano’s inequality, the converse for The-
orem 1 extends to continuous alphabets. The achievability argu-
ment relies on weak typicality and also extends to the Gaussian
case. Furthermore, the power constraint can be incorporated in
the capacity expression, since the objective function is concave
in the input distribution (cf. Fact 2 in Appendix A), which gives

(51)

Next observe that

denotes the capacity of a Gaussian wiretap channel [13]. Ac-
cordingly, for each

(52)

Now if denotes an optimal power allocation in
(51), then via (52), we have that

whence (11) follows.

VI. PARALLEL CHANNELS AND INDEPENDENT MESSAGES

In this section, we establish the secrecy sum-capacity for the
case of independent messages by providing a proof of Theorem
2 and then specialize the result to the Gaussian case stated in
Corollary 2.

A. Capacity

Proof of Theorem 2: We establish, in order, the achiev-
ability and converse parts of the proof.
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To achieve capacity, on each subchannel , we send in-
formation only to the strongest receiver . It follows from
the result of the single-user wiretap channel [25] that a rate of

is achievable on the th
subchannel. Accordingly, a sum-rate of is achievable
with this scheme, which is the capacity (13).

We establish the converse in two steps. First we consider
a single receiver genie-aided channel whose secrecy capacity
upper-bounds the secrecy sum-capacity of the original channel.
Then we show that the secrecy capacity for this genie-aided
channel coincides with (13), thus completing the proof.

1) Construction of Genie-Aided Channel: Our genie-aided
channel has only one receiver which we call receiver 1. It ob-
serves the output of the strongest receiver , i.e., on sub-
channel , and hence its output is .

To verify that the secrecy capacity of the genie-aided channel
upper bounds it suffices to show the following.

Lemma 1: If a secrecy rate point is achiev-
able for the -receiver channel in Theorem 2 then a secrecy rate

is achievable on the genie-aided channel.
Proof: Let the messages corresponding to

be denoted as .
This implies that, for any and large enough, there
is a code of length such that for

, and such that

(53)

We now consider transmitting the message
to receiver 1 on the genie-aided channel,

using the same encoding scheme that achieves
on the original channel. By construction, receiver 1 on the
genie-aided channel can use the same decoder as receiver on
the original channel to decode message . So it remains to
verify that the secrecy condition is satisfied on the genie-aided
channel

where the last step follows by substituting (53). Since can
be arbitrarily small, if is sufficiently large, this establishes our
claim.

2) Sum-Capacity of the Genie-Aided Channel: It remains to
show that the secrecy-capacity of the genie-aided channel equals

. This however follows immediately via specialization of
Theorem 1 to the case of .

It is worth remarking that this genie-aided upper bound
continues to hold even if the eavesdropper’s channel is not
ordered with respect to the legitimate receivers. In general,
following Proposition 1, the upper bound can be tightened by

considering, for all , the worst joint distribution
among all joint distributions with the same

marginal distribution as and , yielding

(54)

B. Gaussian Channels

Proof of Corollary 2: The achievability of rate (14) follows
by using independent Gaussian wiretap codebooks on each sub-
channel and only transmitting to the strongest receiver on each
subchannel. For the converse, we need to show that Gaussian in-
puts are optimal in (13), which follows from the same reasoning
used for the common message case in Section V-D.

VII. FADING CHANNELS AND A COMMON MESSAGE

In this section, we establish the upper and lower bounds on
the common message secrecy-capacity for fast fading channels.
In particular, we provide proofs for Theorem 3 and Corollary 3.

A. Capacity Bounds

Proof of Theorem 3: We establish, in order, the upper and
lower capacity bounds in (15).

To obtain our upper bound, suppose that we only need to
transmit the message to receiver . An upper bound on the se-
crecy capacity for this single-user channel is obtained by spe-
cializing Proposition 3 (see Section IV-D) to the case of
user. Accordingly, we have

(55)
Since is arbitrary, we tighten the upper bound (55) by mini-
mizing over , yielding (16b).

Next, we establish the lower bound (16a) by considering
the following probabilistic extension of the parallel broad-
cast channel [14]. At each time, only one of the subchannels
operates. Subchannel is selected with a probability ,
independent of the selection at all other times. Also, suppose
that there is a total power constraint on the input.

In this case, a straightforward extension of Proposition 2 pro-
vides the following achievable rate:

(56)

where are auxiliary random variables
and the maximum is over the product distribution

and the stochastic mappings
that satisfy .

To simplify the exposition, we focus on the case of
receivers. The extension to receivers is analogous and
straightforward.
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Fig. 5. Decomposition of the system with K = 2 receivers into four states, as a function of their channel gains relative to a threshold T . The darkly and lightly
shaded circles, respectively, indicate that a channel gain is, respectively, below and above the threshold.

To start, we fix a threshold and decompose the system
into four states as shown in Fig. 5. The transmission takes place
over a block of length , and we classify ac-
cording to

(57)

The resulting channel is a probabilistic parallel channel with
probabilities of the four channels are then given by

In turn, with in (56) the achievable
rate expression is

(58)

Finally, optimizing (61) over the threshold, we obtain (16a)
as follows (for the case ):

(59)

(60)

(61)

(62)

where in (64) is obtained via

For receivers, we use the straightforward general-
ization of this scheme to a construction with states, where
each state specifies the subset of receivers that are above the
threshold .

An alternative proof based on discretizing the fading coeffi-
cients along the lines of [10] is developed in Appendix B.

It is worth remarking that our code construction more gener-
ally suggests a concatenated coding approach for this channel,
with an outer erasure code and an inner wiretap code. With this
structure, incoming information bits are mapped into a code-
word of a erasure code over a sufficiently large
alphabet. Each resulting symbol then forms the message for
its corresponding state. Each receiver obtains symbols in
states where its channel gain is above the threshold and can re-
cover the information symbols. Details of this architecture are
developed in [12].

B. High SNR Regime

Proof of Corollary 3: Since the channel gains of all the le-
gitimate receivers are distributed as , we use a generic
variable to denote the channel gain of any given user.

For the upper bound (17a), it suffices to note that

For the lower bound (17b), first recall that

Since, as established in Appendix C,

(63)

satisfies the conditions for the dominated convergence theorem
[1], we obtain

(64)

(65)

where is the Euler-Gamma constant ( ).
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VIII. FADING CHANNELS AND INDEPENDENT MESSAGES

In this section, we establish our results for fading channels
with independent messages.

A. Capacity Bounds

In what follows, we establish the upper and lower bounds in
(19).

Proof of Upper Bound in Proposition 3: Our upper bound
is based on introducing a single-user genie-aided channel, as in
Section VI-A, whose achievable rate we upper-bound. The re-
sult is closely related to an upper bound provided in [11] for the
ergodic fading channel with large coherence periods. However,
in the interest of completeness, we now provide the full deriva-
tion.

To start, consider the following channel with one receiver and
one eavesdropper:

(66)

Using reasoning along the lines of the analysis in Section VI-A,
we deduce that the secrecy sum-capacity of the channel (5)
is upper-bounded by the secrecy capacity of the genie-aided
channel (66), and thus it remains only to show that an upper
bound on the secrecy capacity of this channel is (20a). Further-
more, the joint distribution of the noise variables
is selected so that if we have the Markov
chain ; otherwise, we have the Markov
chain .

We show that for any sequence of length , rate codes,
as in Definition 8, the upper bound (20a) holds. Recall that the
encoding function has the form

(67)

and for every , and sufficiently large , we have, via Fano’s
inequality and the secrecy condition

(68)

(69)

An upper bound on the rate is as follows:

(70)

(71)

(72)

(73)

where (70) follows by substituting (68) and (69), (71) follows
from the Markov chain ,
where (72) follows from the fact that the channel is memoryless.

From the capacity of the Gaussian wiretap channel [13], we
have that

(74)

with equality if is conditionally Gaussian given
. Since a Gaussian distribution depends only on

its mean and variance and is independent of (cf.
(67)), we can write without loss of generality4 that

(75)

for some sequence of functions that satisfy the average
power constraint . With this substi-
tution, we have from (73) that

(76)

It turns out, as we show below, that the right-hand side in (79)
is maximized, for each , by a function that only depends
on via . The upper bound expression in (20a)
then follows, since from (79)

(77)

(78)

where (77) follows from the fact
is concave in for a fixed and , so Jensen’s in-
equality can be applied and where (78) follows by defining

. Note that the power constraint
naturally follows from the definition of .

It remains to establish the existence of as we now do. In
particular, for any sequence of functions , we define
according to

and show below that each term in the summation in (76) only
increases if we replace by

(79)

4An analogous approach is taken in [3, Sec IV, Proposition 3] for establishing
the capacity of fading channels with side information at the transmitter.
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(80)

(81)

(82)

where (80) follows from Jensen’s inequality. This completes the
proof.

Proof of Lower Bound in Proposition 3: The lower bound
(20b) is achieved by a scheme that, at each time, transmits only
to the receiver with the best instantaneous channel gain.

In detail, we first quantize each receiver’s channel gain into
levels (if any user’s

channel gain exceeds , then this slot is ignored for transmis-
sion). Since the channel gains of the receivers are indepen-
dent, there are a total of different super-states. These
are denoted as . Each of the super-states denotes
one subchannel.

Our scheme transmits an independent message on each of the
parallel channels. Let denote the

gain of the strongest receiver on channel . We use a Gaussian
codebook with power on channel . The achievable rate
on channel is

where the second equality follows from our choice of
. The overall achievable sum-rate is

(83)

(84)

(85)

where (84) follows by using the fact that
and rewriting the summation over these

indices, and where (85) follows from the fact that if for some
we have

then we can simply replace by zero to increase the value.
When we fix and take we show in Appendix D that
the summation converges to

(86)

Since the integral above is finite, the second term vanishes as
, hence

(87)

is an achievable rate, whence (20b) follows.

B. Scaling Law

We now establish (22).
Proof of Theorem 4: Letting denote the power

allocation that maximizes in (20a), we obtain

(88)

(89)

(90)

(91)

where (89) follows from substituting the bounds in Proposition
3, where (90) follows from the fact that

is increasing in for , and where
(91) follows from the fact that

, since we assumed the channel coefficients to be i.i.d., and
from the following “helper” lemma.

Lemma 2: If are i.i.d. unit-mean expo-
nentials, then for we have

(92)

Proof of Lemma 2: First, we use the following fact.
Fact 1 ([6]): Let be i.i.d. expo-

nentially distributed random variables with mean , and let
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and , respectively, denote the largest
and second-largest of these random variables. Then the joint
distribution of satisfies

(93)

where is an exponentially distributed random variable with
mean that is independent of .

Proceeding, we have

(94)

(95)

(96)

(97)

(98)

where (96) follows from the identity for ,
where (97) follows from the independence of and , and
where (98) from the fact that . Since

, we obtain

which establishes (92).

IX. CONCLUDING REMARKS

In this paper, a generalization of the wiretap channel to the
case of parallel and fading channels with multiple receivers was
considered. For parallel channels, we established the common-
message secrecy capacity for the reversely degraded product
broadcast channel and provided upper and lower bounds for
general product broadcast channels. For independent messages
over parallel channels, we determined the secrecy sum-capacity,
again for the reversely degraded case. We also extended both re-
sults to Gaussian parallel channels.

For fading channels, we analyzed a fast-fading model in
which the transmitter knows the instantaneous channels of all
the legitimate receivers but not of the eavesdropper, but the
eavesdropper has full information about all channels of all
receivers. Interestingly, the common-message secrecy capacity
does not decay to zero as the number of legitimate receiver
grows. For the case of independent messages, we showed that
an opportunistic architecture achieves the secrecy sum-capacity
in the limit of large number of receivers.

In terms of future work, there are a number of interesting
directions to pursue.

As one example, our formulation for the fading channel as-
sumes that the fading coefficients of the legitimate receivers are
revealed to the sender in a causal fashion. Implicitly, we are as-
suming the availability of an insecure, but authenticated feed-
back link between the receiver(s) and the sender that is used to

provide CSI to the transmitter. The availability of this (digital)
feedback link is reminiscent of the secret key generation proto-
cols pioneered by Maurer [18]. Indeed, this feedback link can
be used in a variety of ways rather than just providing CSI as is
assumed here and exploring connections to the key-generation
approach of Maurer may be fruitful.

Throughout this paper, we focused on Wyner’s notion of per-
fect secrecy, which corresponds to requiring the block-length-
normalized mutual information between the message and the
output of the eavesdropper’s channel to approach zero with in-
creasing block length. As we mentioned at the outset, this is a
significantly weaker notion of security than Shannon’s, which
requires that the mutual information be zero regardless of the
block length. In work lying between these extremes, Maurer
and Wolf [19] have observed that for the discrete memoryless
wiretap channel, the secrecy notion of Wyner can be strength-
ened in the following sense—the unnormalized mutual informa-
tion between the message and the output of the eavesdropper’s
channel can be driven to zero with the block length without sac-
rificing further rate. It remains to be seen if analogous results
can be obtained for the Gaussian wiretap channel and the fading
channels considered in this work.

The protocols investigated in this paper relied on time diver-
sity (for the common message) and multiuser diversity (for in-
dependent messages) to enable secure communication. In sit-
uations where such forms of diversity is not available, it is of
interest to develop a formulation for secure transmission, anal-
ogous to the outage formulation for slow-fading channels. Sec-
ondly, the impact of multiple antennas on secure transmission
is far from being clear at this stage. While multiple antennas
can theoretically provide significant gains in throughput in the
conventional systems, a theoretical analysis for the case of con-
fidential messages is naturally of great interest.

Finally, this paper has focused on architectural questions
and associated separation theorems, using random coding
arguments. As such, many of our constructions rely implicitly
or explicitly on the existence of good “standard” scalar wiretap
codes for discrete and Gaussian channels. The development of
practical and flexible families of secure, capacity-achieving,
low-complexity scalar wiretap codes has only begun, and
remains a rich area for further research [22].

APPENDIX A
CONCAVITY OF CONDITIONAL MUTUAL INFORMATION

We establish the following.

Fact 2: For any random variables , , and the quantity
is concave in .

Proof: Let be a binary-valued random variable that de-
termines the induced distribution on , i.e.,

Hence, we have the Markov chain

(99)
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To establish the concavity of in it suffices
to show that

which follows from the following chain of inequalities:

(100)

(101)

where (100) is a consequence of the chain rule for mutual in-
formation, and (101) follows from (99), whence

.

APPENDIX B
ALTERNATIVE DERIVATION OF LOWER BOUND IN THEOREM 3

Following [10], we discretize the continuous-valued coeffi-
cients and thus create parallel subchannels, one for each quan-
tized state. The number of parallel subchannels increases as the
quantization becomes finer. In what follows, we only quantize
the magnitude of the fading coefficients. The receiver can al-
ways rotate the phase, so it plays no part.

We quantize the channel gains into one of the values

(Any slot where the channel gain of any receiver exceeds is
simply skipped). Receiver is in state at time

if . When in state , the receiver’s
channel gain is pessimistically discretized to . Since there
are independent receivers, there are a total of pos-
sible super-states, which we number as . Denote
the quantized gain of receiver in by the double subscript

. Let denote the probability of state . Also let
be the probability that a receiver is in state , i.e.,

. In super-state , the channel
of receiver and the eavesdropper are

By selecting and , the argument in
the summation in (56) (with the eavesdropper output )
is

Substituting into (56), we have that we can achieve rate

(102)

(103)

(104)

where the second equality follows from rewriting the summa-
tion over the states of each individual user. By taking
(with fixed), and invoking the dominated convergence the-
orem (Appendix C), (104) converges to

(105)

To establish in (16a), it remains to show that for suffi-
ciently large, the second integral above is arbitrarily small. This
follows since

and hence we have that, for any and for sufficiently
large

(106)

APPENDIX C
UPPER BOUND ON

Claim 1: Suppose that . For all , the
function

(107)

defined in (63) is bounded according to , where
.

Proof: First suppose that . In this case

When , we have
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(108)

where (108) follows from the fact that the function is
convex, so by Jensen’s inequality .

Since , and since , the dominated
convergence applies to .

APPENDIX D
CONVERGENCE CLAIM IN SECTION VIII-A

For each fixed, we need to show that

(109)

In turn, defining, for

(110)

we have that

(111)

and the convergence claim (109) follows since

(112)

(113)

where the order of limit and integration can be interchanged
since in (110) satisfies the dominated convergence The-
orem (cf. Appendix C).
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