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Abstract— The distributed source coding problem is considered decoder. Thus the best the decoder can hope to achieve is to
when the sensors, or encoders, are under Byzantine attack; reconstruct the observations of the honest sensors. A simpl
that is, an unknown group of sensors have been reprogrammed o cedure s to ignore the statistical correlations amdreg t

by a malicious intruder to undermine the reconstruction at . S
the fusion center. Three different forms of the problem are observations and collect data from each sensor indiviguall

considered. The firstis a variable-rate setup, in which the dcoder The total sum rate of such an approach)i§ H(X;). One
adaptively chooses the rates at which the sensors transmit. expects however that this sum rate can be lowered if the
An explicit characterization of the variable-rate achieveble sum correlation structure is not ignored.

rates is given for any number of sensors and any groups of \yithout trajtors, Slepian-Wolf coding [1] can be used to
traitors. The converse is proved constructively by lettingthe -

traitors simulate a fake distribution and report the generated achieve a sum rate as low as
values as the true ones. This fake distribution is chosen sdat
the decoder cannot determine which sensors are traitors whe

maximizing the required rate to decode every value. Achievaility P— . :
is proved using a scheme in which the decoder receives Sma“However, standard Slepian-Wolf coding has no mechanism for

packets of information from a sensor until its message can be Nandling any deviations from the agreed-upon encoding-func

decoded, before moving on to the next sensor. The sensors usdions by the sensors. Even a random fault by a single sensor
randomization to choose from a set of coding functions, whit could have devastating consequences for the accuracy of the
makes it probabilistically impossible for the traitors to cause gqurce estimates produced at the decoder, to say nothing of

the decoder to make an error. Two forms of the fixed-rate . . .
problem are considered, one with deterministic coding and e a Byzantine attack on multiple sensors. In particular, bsea

with randomized coding. The achievable rate regions are gan Slepian-Wolf Qoding takes advantage of the correlationregno
for both these problems, and it is shown that lower rates can & sources, manipulating the codeword for one source can alter

H(X1 - X,). )

achieved with randomized coding. the accuracy of the decoder’s estimate for other sourceal It
Index Terms— Distributed Source Coding. Byzantine Attack. turn out that for most source distributions, the sum ratemiv
Sensor Fusion. Network Security. in (M) cannot be achieved if there is even a single traitor.

In this paper, we are interested in the lowest achievable sum
rate such that the decoder can reconstruct observatiote of t
honest sensors with arbitrarily small error probabilitysbme

E consider a modification to the distributed sourceases, we are also interested in the rate region. We note that

coding problem in which an unknown subset of sensogdthough the problem setup does not allow the detector to dis
are taken over by a malicious intruder and reprogrammdthguish traitors from the honest sensors, an efficient sehe
We assume there are sensors. Each time slot, sensars that guarantees the reconstruction of data from honesbrens
for i = 1,---,m observe random variableX; according is of both theoretical and practical interest. For examfue,
to the joint probability distributiorp(z; - - - z,,,). Each sensor a distributed inference problem in the presence of Byzantin
encodes its observation independently and transmits aagesssensors, a practical (though not necessarily optimal}isolis
to a common decoder, which attempts to reconstruct tk@attack the problem in two separate phases . In the firsephas
source values with small probability of error based on thogee decoder collects data from sensors over multiple access
messages. A subset of sensors taagors, while the rest are channels with rate constraints. Here we require that data fr
honest Unbeknownst to the honest sensors or the decoder, tigest sensors are perfectly reconstructed at the deceeier e
traitors have been reprogrammed to cooperate to obstract though the decoder does not know which piece of data is from
goal of the network, launching a so-called Byzantine attackn honest sensor. In the second step, the received datadis use
To counter this attack, the honest sensors and decoder nigststatistical inference. The example of distributed dttm
employ strategies so that the decoder can correctly rexmistin the presence of Byzantine sensors is considered in [2].
source values no matter what the traitors do. The decoder may also have other side information about the

It is obvious that observations made by the traitors af@ntent of the messages that allows the decoder to distihgui
irretrievable unless the traitors choose to deliver thertheo messages from the honest sensors.
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generals conspire to prevent loyal generals from formirzping detected. Thus we see a trade off between rate and
consensus. It was shown in [3] that consensus in the preseseeurity—in order to handle more traitors, one needs to be
of Byzantine attack is possible if and only if less than adhirwilling to accept a higher rate.
of the generals are traitors.

Countering Byzantine attacks in communication networks  Fixed-Rate Versus Variable-Rate Coding

has also been studied in the past by many authors. See thF . .
. A h standard source coding, an encoder is made up of a
earlier work of Perlman [5] and also more recent review.

i . . . single encoding function. We will show that this fixed-rate
[6], [7]. An information theoretic network coding approach : . ) .
. . : setup is suboptimal for this problem, in the sense that we
to Byzantine attack is presented in [8]. In [9], Awerbuch : ) . .
o : can achieve lower sum rates using variable-rate coding. By
et al suggest a method for mitigating Byzantine attacks on . : .
. ! : .. variable-rate we mean that the number of bits transmitted
routing in ad hoc networks. Their approach is most similar . . :
. S . er source value by a particular sensor will not be fixed.
to ours in the way they maintain a list of current knowledg “ L

Co nstead, the decoder chooses the rates at “run time” in the

about which links are trustworthy, constantly updated tas . o .
. . ; . : ollowing way. Each sensor has a finite number of encoding
on new information. Sensor fusion with Byzantine sensofs

L . tnctions, all of them fixed beforehand, but with poteniall
was studied in [10]. In that paper, the sensors, having dyrea,,. . S
. . . ifferent output alphabets. The coding session is then rapde
agreed upon a message, communicate it to the fusion ce

nier . . . i

) o of'a number of transactions. Each transaction begins wéh th
over a discrete memoryless channel. Quite similar reswdte w - : : . ; .

. . . . . ecoder deciding which sensor will transmit, and which sf it
shown in [11], in which a malicious intruder takes contro . . L

; . several encoding functions it will use. The sensor then @esc
of a set of links in the network. The authors show that tw] . . .
. e chosen encoding function and transmits the output lmack t

nodes can communicate at a nonzero rate as long as less

than half of the links between them are Byzantine. This F € decoder. Finally, the decoder uses the received metsage

different from the current paper in that the transmitteras hoose the next sensor and encoding function, beginning the

) . o . . next transaction, and so on. Thus a code is made up of a set of
its messages, instead of relaying information receivech fam

outside source, but some of the same approaches from [11] %rr]é:odmg functions for each sensor, a method for the decoder

. . . {0 choose sensors and encoding functions based on previousl
used in the current paper, particularly the use of randaimiza . . .
. ; received messages, and lastly a decoding function thas take
to fool traitors that have already transmitted.

all received messages and produces source estimates.
Note that the decoder has the ability to transmit some
B. Redefining Achievable Rate information back to the sensors, but this feedback is lidnite

The nature of Byzantine attack require three modificatiofide choice of encoding function. Since the number of enapdin
to the usual notion of achievable rate. The first, as mention&inctions need not grow with the block length, this représen
above, is that small probability of error is required only foZero rate feedback.
honest sources, even though the decoder may not know whicfi? variable-rate coding, since the rates are only decided
sources are honest. This requirement is reminiscent of [§pOn during the coding session, there is no notion ofran
in which the lieutenants need only perform the commandef§nensional achievable rate region. Instead, we only dscu
order if the commander is not a traitor, even though trehievable sum rates.
lieutenants might not be able to decide this with certainty.

The next modification is that there must be small probabilify. Traitor Capabilities

of error no matter what the traitors do. This is essentidly t ap, important consideration with Byzantine attack is the
definition of Byzantine attack. information to which the traitors have access. First, weiags

The final modification has to do with which sensors amgat the traitors have complete knowledge of the coding
allowed to be traitors. Let( be the set of honest sensors, angdcheme used by the decoder and honest sensors. Furthermore,
T={1,---,m}\H the set of traitors. Any code is associategye always assume that they can communicate with each
with a list of which sets of sensors it can handle as the sgher arbitrarily. For variable-rate coding, they may havgy
of traitors. A rate is then achieved if the code gets smaiinount of ability to eavesdrop on transmissions between
probability of error when the actual set of traitors is intfad  honest sensors and the decoder. We will show that this yabilit
the list. It will be more convenient to specify not the list oh35 no effect on achievable rates. We assume with fixed-rate
allowable sets of traitors, but rather the list of allowadts of coding that all sensors transmit simultaneously, so it dugs
honest sensors. We defin€’ C 2t to be this list. Thus make sense that traitors could eavesdrop on honest sensors’
small probability of error is required only wheii € 7. One  yransmissions before making their own, as that would véolat
special case is when the code can handle any group of at magisality. Thus we assume for fixed-rate coding that theotiai
t traitors. That is, cannot eavesdrop.

H=HESC 1, m): 8| >m—t). The_key factor, hovyever, is_the extent to which the traitors
have direct access to information about the sources. Weressu

Observe that achievable rates depend not just on the truetietmost general memoryless case, that the traitors haesscc
of traitors but also on the collectiof?’, because the decoder'sto the random variablé?, where W is i.i.d. distributed
willingness to accept more and more different groups efith (X;---X,,) according to the conditional distribution
traitors allows the true traitors to get away with more witho r(w|z; - - - ., ). A natural assumption would be thif always



includesX; for traitorss, but in fact this need not be the caseachievable sum rate is
An important special case is wheV& = (X1,---,X,,), i.e.
the traitors have perfect information. H(X1) 4+ H(Xp). (2)

We assume that the distribution & depends on who

the traitors are, and that the decoder may not know exacH1 other words, the decoder must use an independent source

what this distribution is. Thus each code is associated withcgole for each sensor, which requires receivirfg(X;) bits

. o from sensor; for all :.
function R that maps elements of# to sets of conditional Th hievable fixed . based on the Slepi
distributions ». The relationship betweem and R(H) is Wi lfe?:_: |e\ga|1 et|xe rate lzeglonsdare_ aj?. odn te Zplan—
analogous to the relationship betwekrand.7#. That is, given olf achievable rate region. For randomized fixed-rate g

JH, the code is willing to accept all distributionse R(H). the aghievablg region is such that for dlle 7, the rates
Therefore a code is designed based.#h and ®, and then associated with the sensors infall into the Slepian-Wolf

the achieved rate depends at run time Bnand r, where rate region on the corresponding random variables. Note tha

we assumeH € # andr € R(H). We therefore discuss for 2 = {{1,---,m}}, this is identical to the Slepian-Wolf
not achievable rateg but rather achievable rate functiond©9'°": Fort’ = -1, this region is such that for al,

R(H,r). In fact, this applies only to variable-rate codes. In* > H(X;), which corresponds to the sum rate i (2). The

the fixed-rate case, no run time rate decisions can be magi%t'erministic fixed-rate achieyable regi‘?? s a subsetfmfcblh
so achievable rates depend only o and R randomized fixed-rate, but with an additional constraiatest

in Section V).

E. Main Results F. Randomization

The main results of this paper give explicit character@ei  Randomization plays a key role in defeating Byzantine
of the achievable rates for three different setups. The, firgtacks. As we have discussed, allowing randomized engodin
which is discussed in the most depth, is the variable-ratethe fixed-rate situation expands the achievable regioadt
case, for which we characterize achievable sum rate fumtiodition, the variable-rate coding scheme that we proposesrel
The other two setups are for fixed-rate coding, divided intgeavily on randomization to achieve small probability aber
deterministic and randomized coding, for which we giMe In both fixed and variable-rate coding, randomization isduse
dimensional achievable rate regions. We show that randeamizs follows. Every time a sensor transmits, it randomly ckeos
coding yields a larger achievable rate region than detéstitn from a group of essentially identical encoding functionee T
coding, but we believe that in most cases randomized fixefldex of the chosen function is transmitted to the decoder
rate coding requires an unrealistic assumption. In additicalong with its output. Without this randomization, a traito
even randomized fixed-rate coding cannot achieve the sathgt transmits before an honest sensevould know exactly
sum rates as variable-rate coding. the messages that sensawill send. In particular, it would be

We give the exact solutions in Theorems 1 and 2, bable to find fake sequences for sensahat would produce
describe here the intuition behind them. For variable;ratéthose same messages. If the traitor tailors the messages it
the achievable rates are based on alternate distributionssends to the decoder to match one of those fake sequences,
(X1---Xm). Specifically, giveni¥/, the traitors can simulate when sensoi then transmits, it would appear to corroborate
any distributiong(xs|w) to produce a fraudulent version ofthis fake sequence, causing an error. By randomizing the
X7, then report this sequence as the truth. Suppose that theice of encoding function, the set of sequences producing
overall distributiong(z; - - - z,,) governing the combination the same message is not fixed, so a traitor can no longer
of the true value ofX7, with this fake value ofX} could know with certainty that a particular fake source sequence
be produced in several different ways, with several difierewill result in the same messages by sensoas the true
sets of traitors. In that case, the decoder cannot tell whiohe. This is not unlike Wyner’s wiretap channel [12], in
of these several possibilities is the truth, which means$ thahich information is kept from the wiretapper by introdugin
from its point of view, any sensor that is honest in onadditional randomness. See in particular Sedfionl V-D fer th
of these possibilities may in fact be honest. Since the eraroof that variable-rate randomness can defeat the tsaitor
requirement described [n_1}B stipulates that the decodestmthis manner.
produce a correct estimate for every honest sensor, it musthe rest of the paper is organized as follows. In Sedfibn I,
attempt to decode the source values associated with al th@® develop in detail the case that there are three sensors
potentially honest sensors. Thus the sum rate must be &t leasl one traitor, describing a coding scheme that achieves
the joint entropy, when distributed according &0 of the the optimum sum rate. In Sectiénllll, we formally give the
sources associated with all potentially honest sensors. Nariable-rate model and present the variable-rate resuilt.
supremum over all sucls is the achievable sum rate. Sectio TV, we discuss the variable-rate achievable rajone

For example, suppose?” = J7,,_,. That is, at most one and give an analytic formulation for the minimum achievable
sensor is honest. Then the traitors are able to create then rate for some special cases. In Secfioh VI, we give
distribution g(x1 - - - x,,) = p(x1)-- - p(x,,) NO matter what the fixed-rate models and present the fixed-rate result. In
group of m — 1 sensors are the traitors. Thus every sens8ections’V an@VII, we prove the variable-rate and fixed-rate
appears as if it could be the honest one, so the minimuesults respectively. Finally, in Section MlIll, we conciud



Il. THREE SENSOREXAMPLE matches[(B). Since Slepian-Wolf coding without traitors ca
A. Potential Traitor Techniques achieve a sum rate df{()_(lXQXg)_, we have paid a penalty
For simplicity and motivation, we first explore the threeE)f [(X3; X5| X») for the single tra|tor.. o
) X . We supposed that sensor 3 simulated the distribution
sensor case with one traitor. Thatis,= 3 and ; oo
p(zs|z2). It could have just as easily simulatedas|zy),
0 ={{1,2},{2,3},{1,3}}. or another sensor could have been the traitor. Hence, the

. . minimum achievable sum rate for aif € J# is at least
Suppose also that the traitor has access to perfect infammat

Consider first the simple case where thg can be decom- px & H(X1X2X3) + max{I(X1; X2| X3),

posed as I(Xq1; X3]X2), [(X2; X3 X1)}. (4)
X1 = (Y1, Y2, Y13, Yi23),
Xz = (Y2, Y2, Yo3, Yi23),
X3 = (Y3,Y13, Ya3, Y123)

In fact, this is exactly the minimum achievable sum rate, as
shown below.

whereYy, Ys, Y3, Yio, Y13, Ya3, Y103 are independent. SupposeB. Variable-Rate Coding Scheme

the traitor is sensor 3. It can generate a new, /indepenwe now give a variable-rate coding scheme that achieves
dent version ofYys, call it Yz3, and then formXy = = p« This scheme is somewhat different from the one we
(Y1, Y13, Y35, Yi23). We claim that if sensor 3 now behaves fopesent for the general case in Sectioh V, but it is much
the rest of the coding session as if this countetigjtwere the  gimpler, and it illustrates the basic idea. The procedutiebei

real value, then the decoder will not be able to determine the,qe up of a number of rounds. Communication from sensor
traitor’s identity. This is because botlX, X) and (X2, X3) ;i the first round will be based solely on the firsvalues of
look like they could be a true pair, since all informationtthay i, the second round on the secondalues ofX;. and so

. 7, (2l
they share matches. Thus the decoder cannot know whichygf The principle advantage of the round structure is that th

. : ) et
sensors 1 or 3 is the traitor, and which Bf; or Y5 is the  jecoder may hold onto information that is carried over from
truth, so it must obtain estimates of them both. To constrygte round to the next.

estimates of all three variables, every piece exégpimust be
received only once, but the two versiokig; must be received
separately. Therefore the sum rate must be at least

In particular, the decoder maintains a collectivhC 7
representing the sets that could be the set of honest sensors
If a sensor is completely eliminated frorfi, that means it

H(X1X2X3) + H(Yas) = H(X1 X2 X3) + I(Xy; X5|X;).  has been identified as the traitor. We b_egin with= 27, and
3) thenremove a set from whenever we find that the messages

In fact, this last expression holds for general distribusias from the corresponding pair of sensors are not jointly tgpic
well, as we demonstrate next. With high probability, the two honest sensors report jgintl
Now take any distributiorp, again with sensor 3 as thetypical sequences, so we expect never to eliminate the hones
traitor. Sensors 1 and 2 will behave honestly, so they wibair from?". If the traitor employs the discussed above, for
report X; and X, correctly, as distributed according to theexample, we would expect sensors 1 and 3 to report atypical
marginal distributiorp(z1 z2). Since sensor 3 has access to théequences, so we will drofl,3} from 7. In essence, the
exact values ofY; and X», it may simulate the conditional vallue Qf“// .contains our current knowledge about what the
distribution p(z3|z), then take the resulting(s sequence traitor is doing.
and report it as the truth. Effectively, then, the three mnd  The procedure for a round is as follows. # contains
variables will be distributed according to the distributio ~ {{1,2},{1,3}}, do the following:
N 1) ReceivenH (X;) bits from sensor 1 and decod#.
q(w1223) = pa122)p(ws|r2). 2) ReceivenH (X,|X;) bits from sensor 2. If there is a
The decoder will be able to determine that sensors 1 and 2 are sequence X3 jointly typical with =7 that matches this
reporting jointly typical sequences, as are sensors 2 ahdt3, transmission, decode that sequenceolf not, receive
not sensors 1 and 3. Therefore, it can tell that either seheor nl(X1; X2) additional bits from sensor 2, decod§,
3 is the traitor, but not which one, so it must obtain estimate ~ and remove{1,2} from 7.
of the sources from all three sensors. Since the three ssream3) Do the same with sensor 3: Receinél (X3|X;) bits
are not jointly typical with respect to the source distribnt and decodery if possible. If not, receiveil(X1; X3)
p(z12213), standard Slepian-Wolf coding on three encoders — additional bits, decode, and remo{e, 3} from 7.
will not correctly decode them all. However, had we knowif ¥ is one of the other two subsets o# with two
the strategy of the traitor, we could do Slepian-Wolf codinglements, perform the same procedure but replace sensor 1
with respect to the distributiog. This will take a sum rate of with whichever sensor appears in both elements/inlf 7
H, (X1 XoX3) = H(X1 XoX3) + I(X1; X3]X2) tcor_‘ltains qut one element, then we have exactly identifieq th
raitor, so ignore the sensor that does not appear and simply
where H, is the entropy with respect t@ In fact we will not do Slepian-Wolf coding on the two remaining sensors.
do Slepian-Wolf coding with respect tobut rather something  Note that the only cases when the number of bits transmitted
slightly different that gives the same rate. Observe tha thexceeds:R* are when we receive a second message from one



of the sensors, which happens exactly when we eliminate &kepian-Wolf region. In this case, we do three simultaneous
element from?’. Assuming the source sequences of the tw8lepian-Wolf codes for each sensor, construct three ettgna
honest sensors are jointly typical, this can occur at mosetw each associated with one of the other sensors. For an honest
so we can always achieve a sum rateftf when averaged sensor, only one of the other sensors could be a traitor, so at
over enough rounds. least two of these estimates must be correct. Thus we need
only take the plurality of the three estimates to obtain the

C. Fixed-Rate Coding Scheme correct estimate.

In the procedure described above, the number of bits sent
by a sensor changes from round to round. We can no longer do
this with fixed-rate coding, so we need a different approach. Notation
Suppose sensor 3 is the traitor. It could perform a black hole
attack, in which case the estimates f&f* and X7 must be
based only on the messages from sensors 1 and 2. Thus
ratesR; and R, must fall into the Slepian-Wolf achievability
region for X; and X,. Similarly, if one of the other sensors
was the traitor, the other pairs of rates also must fall ihi t
corresponding Slepian-Wolf region. Putting these cooadi
together gives

IIl. VARIABLE-RATE MODEL AND RESULT

Let X; be the random variable revealed to sensdX; the
qlmabet of that variable, and a corresponding realization.
'A sequence of random variables revealed to sensmer n
timeslots is denoted*, and a realization of it € X7'. Let
M 2 {1,---,m}. For a set§ ¢ M, let Xs be the set of
random variableq X, },cs, and definexs and Xs similarly.
By 8¢ we meanM\S. Let T"*(Xs)[q] be the strongly typical
set with respect to the distributian or the source distribution

Ry > max{H(X1|X2), H(X:|X3)} p if unspecified. SimilarlyH,(Xs) is the entropy with respect
Ry > max{H(X,|X1), H(X5|X3)} to the distributiong, or p if unspecified.
R3 2 max{H(X3|X1),H(X3|X2)} (5)
Ri+ Ry > H(X1X2) B. Communication Protocol
Ri+ Rz > H(X1X3) The transmission protocol is composed bftransactions.
Ry + R3 > H(X2X3). In each transaction, the decoder selects a sensor to receive

. . , . information from and selects which df encoding functions
If the rates fall into this region, we can do three simultareo

Slepian-Wolf codes, one on each pair of sensors,

these codes using the method described in Sefidn I-F, {18+ .ansaction

traitor will be forced either to report the true messagegeport For each sensoi € M and encoding functionj e

afalsehmc::‘rshsage,.t\;]vhlctr;]wﬁh hlght.pro?abllllty will Ee detdCt;{Pl{--- ,K}, there is an associated rat; ;. On the /th
as such. Thus either the two estimates for each sensor nsaction, let; be the sensor angl the encoding function

be the same, in which case we know both are correct, or of)e:

. . ) . osen by the decoder, and let be the number of’
of the estimates will be demonstrably false, in which case U{l o Xl} such thatin — i El'hat is 1 is the numbeer
other is correct. ) ) l l- iy

Wi h hat th . . 5) g incl qof timesi; has transmitted prior to th&h transaction. Note
e now show that the region given t (5) does not inclu fiat i1, ji, hy are random variables, since they are chosen by

;sr:JTIrzi\)t(e.s)?s)l(ow ag;]* ASSltJr:ne W|thout IO_"?,E] Zf g;zneral_ltythe decoder based on messages it has received, which depend
at I(Xy; X»|.X;) achieves the maximum iril(4). Summing, e source values. Thigh encoding function for sensar
the last three conditions if(5) gives is given by

Ry + Ry + R3 > (H(XlXQ)+H(X1X3)—|—H(X2X3)) fi,j XY X Z % {1, ,K}hl — {1, ,QnRi”j} @)

= H(X1X2X3) + = (I(X1; X2|X3) + I(X1X2; X3)).  (6) where Z represents randomness generated at the sensor. Let
I, € {1,---,2"%uw.a} be the message received by the

If I(X1X2;X3) > I(Xy;X5]X3), @) is larger than[{4). decoder in thelth transaction. Ifi; is honest, thenl; =
Hence, there exist source distributions for which we canngy ;, (X[, pi,, Ji), where p;, € Z is the randomness from
achieve the same sum rates with even randomized fixed-ra¢msori, and J; € {1,---, K}" is the history of encoding
coding as with variable-rate coding. functions used by sensay so far. If 4; is a traitor, however,
If we are interested only in deterministic codes, the regiaghmay choosel; based onl¥™ and it may have any amount
given by [3) can no longer be achieved. In fact, we will provef access to previous transmissions- - -, I;_; and polling
in Sectior V1] that the achievable region reduces to theditiy  history i1,--- ,4,—1 and ji,---,5—1. But, it does not have
achievable region wher&; > H(X;) for all i whenm = 3, access to the randomness for any honest sensar. Note
though it is nontrivial forn > 3. For example, suppose = 4 again that the amount of traitor eavesdropping ability has n
and 2 = 7. In this case, the achievable region is similaeffect on achievable rates.
to that given by [(b), but with an additional sensor. That is, After the decoder receive, if [ < L it usesly,--- ,I; to
each of the 6 pairs of rates must fall into the correspondihoose the next sensér,; and its encoding function index

N =N =



Ji+1. After the Lth transaction, it decodes according to thbave access. That is, if they simulate the prafieg.|w) from
decoding function their received? and combine the result with the actual value
of zg, the combination is distributed according ¢oFor any

L
gZH{17~-~72nRil’jl}_):X:?x...xx:ln_ ¥ C A, define
= ame N U 2.

Note that we impose no restriction whatsoever on the size 8€Y r'eR(8)
of the total number of transactions. Thus, a code could That is, for some distributiog € Q(%), for everyS e 7,

have arbitrary complexity in terms of the number of messages, . i oiors weres¢, they would have access tofor some

passed between the sensors and the decoder. However,,in T .
our below definition of achievability, we require that the, - R(8). Thus any distribution i (/) makes it look to the

S decoder like any € ¥ could be the set of honest sensors, so
communication rate from sensors to decoder always exceeds . A . .
; any sensor inl(7) = Ug. S is potentially honest.

that from decoder to sensors. Therefore while the number. ) €7 . . .

. Theorem 1:A rate function R(J, r) is achievable if and
of messages may be very large, the amount of feedback is .

S only if, for all (7, r),
dinimishingly small.

R(H,r) > R*(H,r) & sup Hy(Xury)-
C. Variable-Rate Problem Statement and Main Result yA Qa0 (8)

Let X c M be the set of honest sensors. Define th&ee SectiofivV for the proof.

probability of error
P2 pr (X_r?{ ” X_r?{) IV.. PROPE.RTIES OF THEVARIABLE-RATE REGION

A . It might at first appear tha{(9) does not agree with (4).
where (X7',--- ,X2) = g(I1,--- ,I.). The probability of We discuss several ways in whidfl (8) afd (9) can be made
error will in general depend on the actions of the traitorsnore manageable, particularly in the case of perfect traito
Note again that we only require small probability of error oinformation, and show that the two are in fact identical. Let
the source estimates corresponding to the honest sensors.R* be the minimum rate achievable over &l ¢ 2# and

We define a rate functioR(3(,r) defined for} € 2# and r € R(H). Thus by [8), we can write
r € R(H) to bea-achievablef there exists a code such that,

i ; ; ; R = sup R*(H,r) = sup H,(Xyy))-
for all pairs (,r) and any choice of actions by the traitors, See A reR(30) (I, 7) Yo, gea(¥) o(Xu(r))
P. <q, )
L This is the quantity that appears il (4). Note also that for
Pr (Z Ri, i, < R(H, r)) >1—-« perfect traitor information,
=1
Qs = {a(zn) : q(zs) = p(zs)} (10)

andlog K < anR; ; for all 7, j. This last condition requires, as
discussed above, that the feedback rate from the decoder bBBiS means thaQs . N Q(¥) = Q(¥ U {J(}). Therefore[(B)
to the sensors is arbitrarily small compared to the forwate.r becomes

A rate function2(}, r) is achievableif for all a > 0, there R*(H,r) = sup Hy (X))
is a sequence af-achievable rate function§R, (3, )}, Y CHHEY, (V)
such that . , The following lemma simplifies calculation of expressioris o
Jim R (3¢,r) = R(H, 7). the formsup, oy Hy(Xu(r))-
Note that we do not require uniform convergence. Lemma 1:Suppose the tra_iitors have perfect information.
The following definitions allow us to state our mairfOF any” C J, the expression
variable-rate result. For ari{ € . andr € R(H), let sup  Hy(Xy () (11)
Fwlzs) 2 S plaselwsr(wlescse). 1)

is maximized by a; satisfying [(I0) for all§ € ¥ such that,

c€Xgce .
_W . ) ) ) . for some set of function§os}scv,
The extent to whichiV provides information abouK . is
irrelevant to the traitors, since all that really mattersthe q(z1 - xm) = H os(xs). (12)
traitors is generating information that appears to agre@ wi v

Se . . .
Xy as reported by the honest sensors. Thus it will usually be Proof: By @)! we need to maximiz8, (Xy ) subject
more convenient to work with rather than-. For anys € . 10 the constraints that for each € 7" and allzs € X,

andr’ € R(8), let q(zs) = p(zs). This amounts to maximizing the Lagrangian
Qg0 2 {p(xg) 3 # (wlrs)q(xsew) - vq(xng)}. A=— > gleup))logalzup))
Ty () EX(y)

w

If 8¢ were the traitors an&l” were distributed according td, + Z Z As (ws)(Q(fCS) - P(iﬂS))-
Qg Is the set of distributiong to which the traitors would 8€V x5€Xs



Note that for anys C U(?), {{1,2,3},{3,4,5},{5,6,1}}. This ¥ is irreducible in the
q(xs) sense that there is no subseét that still satisfiesU(7”) =
ER e =1 {1,---,6}, but there is no simple distributiane Q(7*) made
Aru) up of marginals ofp that satisfies Lemmal 1, so it must be
Thus, differentiating with respect i{zy () gives, assuming found numerically. Still, Lemma&l1 simplifies the calculatio

the log is a natural logarithm, considerably.
OA
da(wucr)) logg(au(n) =1+ 3, Aa(rs). V. PROOF OFTHEOREMII]
Aru) Sev

A. Converse

We first show the converse. FiX € 2 andr € R(H).

q(zr(y)) = exp <_1+Z /\5(565)) = [ Xy (p)e H os(zs) Take any¥” C 2, and any distribution € Qg¢ - N Q(7).

Sy Sy Sinceq € Qg¢,, there is somej(xr|w) such thatX4 and

Xq are distributed according @ Since alsgy € Qg , for all

8 € ¥ and some’ € R(8), if the traitors simulate thig and
. q(zy(y) act honestly with these fabricated source values, the @gcod

- | X (pyel will not be able to determine which of the sets i is the

satisfies [I2), so it are such that{10) is satisfied for a”actual set of honest sensors. Thus, the decoder must perfect
S, qwil ’maximize Hy(Xu() decode the sources from all sensor&lif¥'), so if R(H,r) is a
1 q .

Supposen = 3 and # = JA. If ¥ = {{1,2},{2,3}}, preciselya-achievable rate function(3(, ) > Hy (X (y))-
then G(x1x023) = p(riz2)p(zs|z2) is in Q(¥) and by
Lemmall maximized7,(X; X2 X3) over allg € Q(¥). Thus B. Achievability Preliminaries

Setting this to 0 gives

for some set of function§os}sc. Therefore setting

q(xl T

sup H,(X1X2X3) = Hi(X1X2X3) Now we prove achie_vability. To do so, we will first need
a€Q(¥) the theory of types. Giveg™ € Y=, let t(y™) be the type
= H(X1 X2X3) + I(X1; X3]|X2). of y™. Given a typet with denominatom, let A?(Y") be the
. . . set of all sequences ™ with type¢. If ¢ is a joint y, 2
By similar reasoning, cons_lderlrrg - {{1’2_}’{1’3}} and type with denominatom, then let A7 (Y|z") be the set of
v ={{1,3},{2,3}} results in[(%#). Note th_at i1 - Y, then_ sequences” € Y" such that(y"z") have joint typet, with
Q(71) > Q(72), so 73 need not be considered in evaluating,e' conyention that this set is empty if the typez6fis not
(@). Thus we have ignored larger subsets.#f, since the the marginal oft.
value they give would be no greater than the others. We will also need the following definitions. Given a distri-

We can generalize to any collectiow’ of the form bution ¢ on an alphabey, define then-ball of distributions
(481,85}, {S1,83}, - , {81,8%}}, in which case q phabey, i

n
sup = H(XS1X32) + H(X83|XS1) +-o+ H(X3k|X51) Bn(q) = {q/(‘%) HVw € % : |q(x) a ql(‘r)| = @}
q€Q(?)
Employing this, we can rewritéX(9) fo’ = % and certain Note that the typical set can be written
values oft. Fort = 1, it becomes THX) = {z" : t(=") € Be(p)}.

R* = H(X1-Xm) + e I Xor| Xiinye). We define slightly modified versions of the sets of distribng

Again, relative to the Slepian-Wolf result, we always pay Hom Sectiorl I as follows:

conditional mutual information penalty for a single traitBor qQn 2 U B, (q),
t=2, 7 q€Qy
R* = H(X; - Xp,) e U 9L,
SEV reR(8)
+ max max I(XS;XS’|X(SUS’)C)a

Finally, we will need the following lemma.

Lemma 2:Given an arbitraryn length distributiong™ (x™)
i e T(Xi; Xir; X | X giiriorye) and a type with denominator on X, letg;(x) be the marginal
distribution of g™ at timei andg(z) = 37" | ¢;(x). If X"
where[(X; Y Z|W) = H(X|W) T+ H.(Y|W) + H(Z|W) . is distributed according tg" and(Pi(X" eszl(Xg) )2 277m¢,
H(XYZ|W). Fort =m — 1, R* is given by [2). There is a then D(¢]|q) < C.

similar formulation fort = m — 2, though it is more difficult =

o w_rite down for arbitra_ryn. ) be independently generated frogt. Let I" be the set of
With all these expressions made up of nothing but entropigs, < ;n o, supersymbols if" with denominatori such

and mutual informations, it might seem hopgful thiat] (11[ att™(z") = 0 if 2" ¢ A?(X). Note that
can be reduced to such an analytic expression forvall
However, this is not the case. For example, consiflee= T < (n+ 1),

8,8/ CM:|8|=|8'|=2

Proof: Fix an integern. Fori = 1,---,7, let X"(:)



If Xn% = (X"(1),---,X"(n)), then 2) Round MethodWe propose a coding scheme made up
B B B - of N rounds, with each round composedrafphases. In the
Pr (X"n € U Afn (X")) =Pr(X"(1) € A} (X), Vi) ith phase, transactions are made entirely with senste
trel ) denotez?(I) as thelth block of n source values, but for
> 27", convenience, we will not include the indéxwhen it is clear
from context. As in the three-sensor example, all transasti
in the Ith round are based only oA} (I). Thus the total
n A ryny) n A (yn block length isNn.

Pr (X < tnLGJTn A (X )) t"zel“ Pr(x™ € A (X7) The procedure for each round is identical except for the
< Z o= AD(t" lq") variable”’(I) maintained by the decoder. This represents the
= collection of sets that could be the set of honest sensoexibas

on information the decoder has received as of the beginning

of round I. The decoder begins by settiig(1) = » and

For anyt" € T, letting ¢; be the marginal type at timegives then pares it down at the end of each round based on new

But

trel’
< (7 4 1)IX["g=Aminener D" g™,

LS~ t; = t. Therefore information.
3) Encoding and Decoding Rulek the ith phase, ifi €
C+ épqnlog(ﬁ +1) > th% lD(t"Hq") U(¥ (1)), the decoder makes a number of transactions with
nn rel'n

sensori and produces an estimafé of X*. The estimate

X is of course a random variable, so as usual the lower case

z* refers to a realization of this variable.il®Z U(¥ (1)), then

the decoder has determined that serisceinnot be honest, so

it does not communicate with it and sei$ to a null value.

where [IB) holds by [13, Lemma 4.3] arid{14) by convexity For i € U(¥(I)), at the beginning of phasg sensori

of the Kullback-Leibler distance in both arguments. Legtin randomly selects & € {1,---,C}. In the first transaction,

grow proves the lemma. B sensor transmits(c, f; .1(X!")). As the phase continues, in
The achievability proof proceeds as follows. Secfion]v-the jth transaction, sensartransmitsf; . ;(X").

describes our proposed coding scheme for the case thatsrait After each transaction, the decoder decides whether to ask

cannot eavesdrop. In Sectibn V-D, we demonstrate that tfiig another transaction based on the following rubric. For a

coding scheme achieves small probability of error when theC M andz? € X7, let

traitors have perfect information. Sectign_V-E shows that o A _

the coding scheme achieves the rate functidr(3(,r). In T5(@3) = {af : Hiapay) (Xl X) < Jeb

Section[V-F, we extend the proof to include the case thﬁtote that

the traitors have imperfect information. Finally, Sect/giG|

gives a modification to the coding scheme that can handle

n

1
> min — N s
2 i 2 Plida) (9

> D(t||q) (14)

IT5(&0)] < (n 4 1)/*exXel2mae,

eavesdropping traitors. Let s; £ {1,---,i} NU(¥) and 27, be the previously
decoded source sequences in this round. Afteansactions,
C. Coding Scheme Procedure the decoder will choose to do another transaction if theee ar

1) Random Code Structur&ix e > 0. The codebook for N0 Sequences iff;(z,,_,) maiching the received value of

sensori is composed ofC.J; separate encoding functions,FivCﬁ" If there |s|?'t[hleast one SUChI ster:]qugnceaﬂ?tbhe one .
whereJ; = —IOge‘x” and C is an integer to be defined later.>HC" Seduence. ere are several, the decoder chooses fro

: , among them arbitrarily.

In particular, fori =1,--- ,m ande =1,---,C, let 4) Round ConclusionAt the end of round’, the decoder

fiea : X0 — {1, 27ty producesy (I + 1) by setting

fuog :XE AL, 25, g= 2 V(I+1)= {8 e V() Hiyyay € U
with v to defined later. We put tildes on these functions to rER(S
distinguish them from thefs defined in [{7). Thefs that
we define here are functions we use as pieces of the ove
encoding functionsf. Each one is constructed by a uniform
random binning procedure. For a giveandc, one can think p_ Error Probability
of {fi.;}; as a subcodebook that associates egthe X
with a long sequence of bits split into blocks of lengfte+v/)

..} as)
)

]fgnn to be defined such that> ¢ andn — 0 ase — 0.

Define the following error events:

or ne. Define composne~ functions ) e(I,i) 2 {Xin(l) £ XMI)},
Fiej (@) = (fiea (@), -, fics(@i)). (1) 2 {H ¢ v (1)},
We can think of F; . ;(z') as an index of one o"(<+v) Es(1) 2 {t(Xi (D) € 9%, 1\ | €1(1,4).

random bins. ieH



The total probability of error is

= Pr <O U 81(1,¢)> :

I=1ieH
For any sequence of evedy, A, --- , An with Ay C Aryy
andPr(Ay) =0,
N N
Pr(Af)
P =1-J]—L =1-JJa-P ¢
) = 1= 5 IH:1( r(Ar}A 1))
N
<) Pr(AflASy).
I=1

SetA; = (1 + 1) UUeqc €1(1,4) U+~ U &1(1,i). This
satisfies the conditions, and singgl (I — 1) — (1) —
X} (I) is a Markov chain,
Pr(ArAG ) = Pr (€1 + 1)U | & (i ‘e ().
i€

Therefore

P. < ZNjPr (82(I+ nuJ Sl(I,i)‘Eg(I)).
iceH

If 3¢ € ¥(I) and (X7, (I)) € QY ., thend € ¥/ (I + 1),
Thus

Eo(I + D\ES(I) C {t(X{i (5 (T)) & Q. 1\ES(T)

c (s u | &alr,0)\es(1)

i€H
SO
N
P < ZPr( u & 85(1))
I=1 i€H
N
<Y Pr(es(D)]es +ZZPr (1,7)[E5(D)).
I=1 I=1icH

(16)
We will show that for any/,

Pr(&s(D)IE5 (D)) < 7 (17)
If the traitors receive perfect source information, then

&s(I) C {X5(1) & T (Xs0)} N {XP (1) = X'(1), Vi € 3}
C { X5 () € T (X50)}

meaning[(1l7) holds for sufficiently large Thus [1T) is only
nontrivial if the traitors receive imperfect source infation.
This case is dealt with in Sectign V-F.

Now considePr(&1(7,4)|E5(I)) for honest. Conditioning
on &5(I) ensures that € U(¥ (1)) for honesti, so X!*(I)

Let

k(e @y, ) £ e 3, € Ty(ah_)\{a}'} -
Fiej(2i") = Fie (@)}

That is,k; is the number of subcodebooks that if chosen could
cause an error. Recall that sengarthooses the subcodebook
randomly from the uniform distribution. Thus, giver¥ and
2y, the probability of an error resulting from a bad choice
of subcodebook i%; (z}, 27, )/C. Furthermorek; is based
strictly on the codebook, we can think &f as a random
variable based on the codebook choice. Averaging over all

possible codebooks,

ki(a}, 27 )
x exn i—1 i—1

where the expectation is taken over all codebooks.

Let C be the set of all codebooks. We define a suliset
and show that the probability of error can be easily bounded
for any codebook ir¢\C;, and the probability of a codebook
being chosen ir®; is small. In particular, 1e€; be the set of
codebooks for which, for anyy € X7 andzy, , € Xy |,
ki(x}, 27, ) > B, for an integerB < C to be defined later.
Then

N . B
PHEL IS SPHEC) 3 plal), max
+ Pr(€) Z p(z]')  max ¢
"an exy  C
zeX? i i1
B
<2 4 Pi(e). (18)

C

Since each subcodebook is generated identicallyis a
binomial random variable withC' trials and probability of
success

P £ Pr(3j,a" € Ty(ay,_, )\Mal'}: Fiey(@") = Ficj(a}))

<> X Pr(Fesel) = Fuesal))

ioareTy(@n \{a}}

i(&5 )27
< Ji(n + D)X Xsialg=nr < gnlev)

< Jz n(je+v)

for sufficiently largen. For a binomial random variablé&l
with meanX and anyk, we can use the Chernoff bound to
write

. _ e . X K
will be non-null. The only remaining way to make an error Pr(X > k) < (e_) . (19)

on X! is if there is some transactionfor which there is a

sequence;” € T} (X;_f]) such that/* # X" andF} . ; has
the same value foX* and«/*. However,s;_; may contain
traitors. Indeed, it may be made entirely of traitors. Thus,

K

Therefore

i XF 1 CP B+1
have to take into account that{ = may be chosen to ensure Pr(k (27,37 ) > B) < ( e ) < 9nB(e—)

the existence of such an erroneatfs.

B+1
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if v > e andn is sufficiently large. Thus Wheneverll(¥ (1))\U(¥ (I + 1)) # 0, at least one sensor is
eliminated. Therefore the second term[inl(22) will be noazer

Pr(Cy) = Pr(3ay, 73, :kl(x“ si0) > B) in all but at mostm rounds. Moreover, although we have
< Z Z Pr(k(x}, 25, ) > B) needed to bound from below, we can still choose it such
e an thatr — 0 ase — 0. Thus if N is large enough, the rate
< Z Z onB(e—v) averaged over all rounds is no more than
i Re(g{v T) £ st . Hq(XU(‘I/)) +e€
— gnllog |%X;|+log X, [+B(e—v) (20) VCH, qeQ] NA(Y)
o . . whereé — 0 ase — 0. This is a preciselyy-achievable rate
Combining {16) with [(II7),[(18), and_(20) gives function. By continuity of entropy,
E n(log |X;|+log |Xs,_ [+B(e—v) lim R (H,r) = sup H, (X = R*"(H,r
Fe< 2 1231 zﬂ:{ < +2 ' ) €0 6r) VCH, ¢€Qs¢,-NAY) o(Zuen) 3e.r)
1€
<% Nm B + 9o [Xac [+ Ble—»)) so R*(H,r) is achievable.
-2 C
which is less thany for sufficiently largen if F. Imperfect Traitor Information
log | Xav| We now consider the case that the traitors have access
B> e to imperfect information about the sources. The additional
and required piece of analysis is to prote17). That is
3NmB _ 3Nmlog|X a
o> 3NmB  3Nmlog|Xn| Pr(H (Xl (1 (1)) & Dl 3e = Xl € ¥(1) < o
« a(v—ce) 2N
We will in fact prove the slightly stronger statement
E. Code Rate R y
The discussion above placed a lower boundbiHowever, — Pr{E(X5eour (1) (DX (1) & D¢, r|j'f e 7(I))
for sufficiently largen, we can make}; log C' < ¢, meaning it <. (23)
takes no more than rate to transmit the subcodebook index N 2N

c. Therefore the rate for phasés at most(j +1)e+v, where Since we condition orf{ € ¥ (I), we can assumé{ C
Jj is the number of transactions in phasdransactionjy must U(¥ (I)). For notational convenience, 18 = X4:(I) and
be the earliest one with}' € T}(Zs, ,), otherwise it would Z = Xy (1)) (1), so [28) becomes

have been decoded earlier. Thuss the smallest integer for R 5 o

which Pr(t(Y"2") ¢ @ |H € V(1)) < o=

, 2N
Ht(f?i,li?)(X”XSH) s Je Based on their received value @f", the traitors choose a

meaning value of ¢ and then a series of messages for each ftraitor in
Je < Hygn 50y (X4| X, ) +e U(¥(I)). The number of messages each traitor actually gets to
e . send depends on how long it takes for the decoder to construct
By (@35), for all s € V(I + 1), {2y (1)) € Urens) L @ source estimate. L&t = {ji}icrnu(r(r) be a vector
meaning representing the number of transactions that take plade wit

- _ each traitor inU(¥ (I)). There areJy £ [Lierru ) i
Heueray) € GWQH) g( )QS o 7I+1). 2 different possible values of. We can think of any series

o : - of values ofc¢ and messages as a bin (i.e. a subzgj;
Combining this with [(1I7), with probability at least — o, that is, all sequences that map to the same messages in the
HEuer (1)) € Q. NV + 1)). Therefore with high sypcodebooks denoted by the valuescolet R(j) be the
probability the rate for all of round is at most rate at which the traitors transmit givgnThus if we letB

Z Hygr  amy(XilXoo )+ 26 + V) be the_set of all bin; in the codebook constructgd at Rjte

fim1t the traitors are equivalent to a group of potentially random
functionsg; : W* — Bp)-
Consider a jointy, z type t. In order for (Y™ 2™) to have

eW(¥ (1))
< Ht(iu('-t/(z)) (XU(V)) + m(2€ + I/

< sup Hy (Xy(y)) + m(2e+v) typet for a givenj, we needR(j) > H(Z|Y) + v. Thus
q€Qy, N7 (¥ (I+1))
< s Hy (Xugv(r41)) Pr((Y"z2") e A(YZ)) <Pr(3j: R(j) > H(Z|Y) + v,
q€Qy. .NAn (¥ (I+1)) &g (W) NAZ(ZIY™)).
+1og [Xuenpuer e | +m(2e+v) Lets & <,
< sup  He(Xyer))
VCH, qeQY N0 () S = Pr((Y",W™) € TMYW),

+ log | Xuer (pnuer 1) | + m2e +v).  (22) 32" € gy(W")NAY(Z|Y™))



1
and Settingka (2™, w™) 2 [AZ(Y|2") N T(Y |w™)],

5
P L {t- max 0y > —} J n(H(Y W) —e)
FRO=H(ZY )40 T (n+ 1)IXELy 2, a2 Z 2+ DA,

. Zn eg(wn)
We will show that? c Qg’{,r, so that > gn(H(Y|W)=20)

Pr(t(Y"2") & Qgc..|H € ¥ (1))

(24)

for sufficiently largen. We will show that there is actually

< Pr(t(Y"2") ¢ PIH € V(1)) a singlez™ € g(w™) such thatky (2", w™) represents a large
<Pr(3tePj:R() = H(Z|Y)+v, portion of the above sum, s& itself is almost as good as the

2 e g (W™) NAX(Z|Y™)|H € ¥(I)) entire bin. Then setting(w™) = 2" will give us the properties

. . we need. Note that
SP((Y" WY ETIYW) + Y D> Gy
tEPe j:R()>H, (Z]Y) v PORICERT E D SN WA
) «a Znezn yn €T (Y|wn)

9x2ly.,_  ~ 95— __ y

<0+ (n+ D)=L T DT, 20 = o5 < gUHY[W)+H(ZIV)+9)  (25)

for sufficiently largen.

Fix t € P. There is somg with R(j) > H(Z|Y) + v
and drj > orpyiseery, - Any randomg; is a probabilistic ko (2", w™) < |TP(Y [w™)] < 2nH W)+
combination of a number of deterministic functions, so iéth
lower bound on; ; holds for a randon;, it must also hold S© if we leti(z")
for some deterministig;. Therefore we do not lose generality
to assume from now on thaj is deterministic. We also drop B
the j subscript for convenience. Our method of proof will be < nHEIW)=(ED =D - (26)
to demonstrate ihat su<7:lh a functiopgan only exist if there theni(=") > 0. Furthermore, ifls (7, w™) > 0, thenl(:") <
is also ah : W* — Z" with almost the same properties. H(y|W o e
That is, if the traitors can fabricate a counterfeit bin mage L2 [==—] Let M(l) = [{z" € 2" : I(z") = I}|. Then
of source sequences, they can fabricate a single coumter?eqm @) for some,

SOLfIrce sequence contained in this bin that works nearly as on(H(Y|W)+H.(Z]Y)+e) > Z ko (2", w™)
well.

Certainly

be the integer such that

n(H(Y\W)fl( ")e) < kQ(Zn7wn)

Znezn
Define the following sets: > Z ko (2", w™)
= 2 )
ANV |w") & {y" € T |u") €)=
3 € g(w™) 1 AN(Z]y™)], > M(Z)zn(H(YIW)—le)

arw) 2 {w" e W) giving
M() < on(Hi(Z|Y)+(1+1)e)
Pr(Y" e AM(Y|w")|W" =w") > —— 1 N

( (Y]w™)] ) 2(n + 1)I‘axz|JT} For any binb € Br), let M(1,b) 2 |{z" € b: I(z") = 1}].

Applying the definitions ofP andd, ; gives Since R(j) > Hy(Z|Y) + v, M(l,b) is a binomial random
s variable with M () trials and probability of success at most
—— 9-n(H(ZIV)+) Thus
(n + 1)' XZ'IJT
<Pr((Y"W™) e TMYW) : 32" € g(W™) N AZ(Z[Y™)) EM (1,b) < 2nH(ZIV)+(+1)e)g—n(H(Z]Y)+v)
= > p")Pr(Y" € AMY|[w")|W" = uw") = gn(lHh)e=s),
wneTr(W)

Let Gy be the set of codebooks such that for any group of

< Pr(W" e AM(W)) + # sensors, subcodebooks, typdransactiong, sequencev™ €
2(n + 1)1¥x21Jy W, binb and integef, eitherM (I,b) > 2™ if (I4+1)e—v <0
meaningPr(W" € A™(W)) > m Fix w" ¢ orM(l,b) > 2"<<_l_+2>ffu> if (I+1)e—v > 0. We will show
An(W). Since A™ (Y |w™) C T™(Y |w™), that the probability of®, is small, so we may disregard it.
5 o Again using [(IP), if(l + 1)e —v <0,
AL (V") > S -, ) e N
2(7’L )W ‘JT PI’(M(l,b) > 2716) (W) < 2—2

Note also that
n n " n n and if ({4 1)e—v >0,
Al < S g™ APzl 1)

nen n n((14+2)e—v)
yreTr(YV|wn) 2

n n n " Pr(M([’b) > 2n((l+2)e—z/) (
= > MY AT )],
2”

zneg(wm)

| AN

)

on((I+2)e—v)

IN
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both for sufficiently largen. Therefore Let ¢;(ywz) be the marginal distribution of”(y"w"2") at

time . It factors as
Pr(Cy) < 2mC™(n + 1)1*l gy .. g, (W2 (Xl +v)

qi(ywz) = p(y)r(wly)gi(z|w).

I
_gne _gn((42)e—v) B _
Yoo+ Y 2 Let gyz) 2 15, ai(yz) and glzlw) 2 L7 gi(zlw).

0<i<z -1 Y —-1<i<L Then
which vanishes as grows. a(yz) = p(y) Zr(w|y)(¥(2|w)
We assume from now on that the codebook is no€jn w

meaning in particular that/ (1, g(w™)) < 2" for (I+1)e—v < so by LemmdR,
0 and M (I, g(w™)) < 2MU+2)e=v) for (1 + 1)e — v > 0.

Applying these and[(26) t 4) and lettiigbe an integer _
ettt o B | . D<th<y>Zr<w|y>q<z|w>>

9—n2e < 2an(Y\W) Z kQ(Zn, wn) 1 5
zneglun) < loe (2(n + 1)%%) +oe
< Z M 1, g(w —n(l—1)e Thereforet € Q" ,. for sufficiently largen and somey such
thatn — 0 ase - O
_ Z M l g —n(l—1)e
o<i<i G. Eavesdropping Traitors
4 Z M(l7g(wn))2fn(l71)e We consider now Fhe case that the traitors are able to
Sl overhear communication between the honegt sensors and the
T R decoder. If the traitors have perfect information, thenrimga
+ Z M(l, g(w™))2 - m{=1e the messages sent by honest sensors will not give them any
§—1<1§L additional information, so the above coding scheme stillkso
< Z M1, g(w"))2m + Z gneg—n(i—1)e iden_tically. If th.e traitors have imperfectinformatiqnewneed
ot i to slightly modify the coding scheme, but the achievablegat
- T are the same.
+ Z n((iH2)e=v)g=n(i=1)e The important observation is that eavesdropping traitors
Z-1<I<L only have access to messages sent in the past. Thus, by
< Z M 1, g(w 2ne+L2n( [+2)e 4 pon(3e—v). permuting the order in which sensors are poIIed.in. each
oziei round,_the effect of the eavesdropping can be eliminated.
- In a given round, letH’ be the set of honest sensors that
Therefore ) transmit before any traitor. Since the additional inforioat
Z M(l, g(w™)) > 27 "3 (1 — Ln(H e _ L2”(5€*”>) . gain from eavesdropping will be no more than the values of
o<i<i X7, the rate for this round, if no sensors are eliminated

L . (e. W (I 4+ 1)) = WY())), will be no more than the
Settingl = 5 and v > 5¢ ensures that the right hand sidg e without eavesdropping when the traitors have access to
is positive for sufficiently largen, so there is at least oneyym _ (W™, Xz.,). The goal of permuting the transmission
2" € g(w") V.V'th T2 (Y ") AR (Y]2")] > 2n (T =), order is to find an ordering in which all the traitors transmit
Now we defineh : W* — 2" such thath(w") is such a="  pogore any of the honest sensors, since then the achiewed rat
for w™ € AZ(W) andh(w") is arbitrary forw" ¢ Ag(W). if no sensors are eliminated, will be the same as with no

If we let 2" = n(W"), eavesdropping. It is possible to determine when such arr orde

Pr((y"Z") €AY Z)) occurs because it will be the order that produces the smhalles
= Z p(w) Pr(Y™ € AP (Y [h(w™)|W" = w") More specifically, we will alter the transmission order from
wreAr (W) round to round in the following way. We always choose an
> Z p(w™) ordering such that for som& € ¥, the sensor$c transmit
wre A (W) beforeS. We cycle through all such orderings until for each
Pr(Y™ € TM(Y |w™) 0 AMY |h(w™)|[W™ = w™) 8, there has been one round with a corresponding ordering in
S A?(W))2_n(H(y|W)+E)2n(H(y‘W)_4€) which no sensors were eliminated. We then chooseSotthat
never produced a rate larger than the smallest rate engednte
#2—7156. so far. We perform rounds in a order corresponding foom
= 2(n+ 1)l¥xZ then on. If the rate ever changes and is no longer the minimum
The Variab|es(YnW”Z”) are distributed according to rate encountered so far, we choose a different minimizing

8. The minimum rate will always be no greater than the

n(yrw") = Hp y)r(wily:) | 1{z" = h(w™)}. achievable rate without eavesdropping, so after enougitsu
we achieve the same average rate.
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VI. FIXED-RATE CODING r € R(82) such thatH,(Xs,ns,|W) = 0 but Rs,ns, €&

Consider ann-tuple of rateg Ry, - - - , R, ), encoding func- SW(Xs,ns,). Consider the case thal = 8, andr is such
tions f; : X7 — {1,---,27%} for i € M, and decoding thatH, (81 NH|W) = 0. Thus the traitors always have access

function 0 Xg, g
m For all 8 € 7, let D(Xg) be the subset off*(Xs)
g: H{l’ c 2B 0 e X such that all sequences it are decoded correctly 8¢ are
=1 the traitors and no matter what messages they send. Thus
Let I; € {1,---,2"%i} be the message transmitted by sensﬂ;e probability thatX € D(Xs) is large. LetD(Xs, noc)

e the marginal intersection dP(Xs,) and D(X4¢). That
is, it is the set of sequencesg ., such that there ex-
ists xgl\:}c and 5575{\31 with (xgm%xgl\%) € D(Xs,) and
(T8, AgcTac\s,) € D(Xgc). Note that with high probability
achievableif for any ¢ > 0 and sufficiently largen, there XS;L”?C € D(Xs,nsc). SupposeXg, 4 € D(Xs,nsc) and

exist coding functionsf; and g such that, for any choice of (A)ismiHX}c\sé) € P(Xg{), so by the definition ofD-,
actions by the traitorsP, < e. Let Rgx € R™ be the set of Xsm:}c/ = Xg,ngc- Since Rsinac ¢ SW(Xs,ngc), there is
deterministic-fixed-rate achievabie-tuples. somexg; 4 € D(Xs,n3c) mapping to the same codewords

For randomized fixed-rate coding, the encoding functiof§ Xsinsc Such thateg’ 4 # X, 4. Because the traitors
become have access tds,nsc, they can constructglmﬂ, and also

FiiXPx 2 s {1, 2R find g} 5c such thatls] g2\ 4c) € D(Xs, ). If the traitors
_ . reportzg’, 4, then we have a contradiction, since this situation
where Z is the alphabet for the randomness. If sensas s identical to that of the traitors beirgf, in which case, by
honest,I; = fi(X]",pi), wherep; € Z is the randomness the definition ofD, Xg e
produced at sensar Define anm-tuple to berandomized- !
fixed-rate achievablia the same way as above, aRg: C R™ . - s .
to be the set of randomized-fixed-rate achievable rate mactoc' Achievability for Deterministic Coding

For any$ C M, let SW(Xs) be the Slepian-Wolf rate region  FiX (B1,---, fm) € Rge. Our achievability scheme will
on the random variable&s. That is, be a simple extension of the random binning proof of the

Slepian-Wolf theorem given in [14]. Each encoding function
SW(Xs) £ {Rs V8 C 8§ Z R; > H(XS’|XS\S/)}. fi: X — {1,---, 2"} is constructed by means of a random
ics/ binning procedure. Decoding is then performed as folloves. F

each$§ € 47, if there is at least one? € T*(Xs) matching

i. If sensori is honest,l; = f;(X[). If it is a traitor, it may
choosel; arbitrarily, based oW ™. Define the probability of
error P, 2 Pr (X7, # X3) where X3 = g(I1, -+, In).

We say ann-tuple (R, - - - , R,,) is deterministic-fixed-rate

_ m
=Tg Ny

Let :
all received codewords from, let 2}’ be one such sequence
Ry 2 {(Ry,+ ,Ry) :¥8 € # : Rs € SW(X5s)}, for all i € s. If there is no such sequence, leaig; null.
Rig 2 {(Ry,-- , Rpn) € Ry 1 V81,85 € A - Note that we produce a separate estimgte of X for all

. 8§ > i. Let 2} equal one non-nulk] .

if 3r € R(S2) « Hr(Xs,ns, W) =0, We now consider the probabilif)S/ of error. With high prob-
then Rs,ns, € SW(Xs,ns,)} ability, @, = X7 for honesti. Thus all we need to show
is that for all other§ € 2 with ¢ € §, ;s is null or also
al toX. Fix § € . If there is somer € R(8) with
X3ns|W) = 0, then by the definition ofR};,, Ryns €

The following theorem gives the rate regions explicitly.
Theorem 2:The fixed-rate achievable regions are given b%qlé

Rar = Rge  and Ry = Rypy. SW(X3cns). Thus with high probability the only sequence
hens € T7(Xscns) matching all received codewords will be
VIl. PROOF OFTHEOREMIZ] Xfinsr S02)g = X[ forall i € HNS.

A. Converse for Randomized Coding Nol\évgconFsider the case thlalli{;(X?gW) TjZO forXaII

: . . _ . For convenience, let¥’ = an = )

Assume(Ry, - - , R;,) is randomized-fixed-rate ach|evable7|:ef R( ): ) R. and R, — Z.}m?%- Since R Te

Fix 8§ € /. Supposes© are the traitors and perform a bIaCkSW(XZ) Ry f%‘;g ZH(YZ)Z—F ; forzsegmé;q Let by(sy")
hole a}ttack. Thus(s must be based entlrgly Q[Tﬁ(X?)}ies, be the set of sequencesyft that map to the same codewords
and sincePr(Xs # Xg) can be made arbitrarily small, by theas ", and leth, C 2" be the set of sequences mapping to

converse of the Slepian-Wolf theorem, which holds evendf tl}he codewords sent by the traitors. ThEnmay be decoded
encoders may use randomness, € SW(.Xs). incorrectly only if there is someg’™ € by (Y™) and some

z" € bz such thaty™ # Y™ and (y'"2") € T/*(Y Z). For
B. Converse for Deterministic Coding somew™ € Wn,
Assume (Ry,--- ,Ry) is detgrministic_:—fixed—rate achiev- Pr(3y™ € by (Y")\{Y™}, 2" € by :
able. The converse for randomized coding holds equally well mon o n n
here, so(Ry,---,R,,) € Rf. We prove by contradiction (y™2") e THY Z2) W™ = w™)
that (Ry, -+, Rn) € Rgy as well. SUPPOS€R.,--- ,Ry) € < Pr(Y" ¢ T'(YV|w™)|W" =w™)+ > p(y"|w")
& \R%;, meaning that for somé&,,8, € 2, there exists yreTn (Y |wn)
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3" e by (yM)\{y "} 2" € by (y72") € TH(Y Z)}

< e HOIW=0 S n gy (27)
2neby T (Z)

proofs and rate achieving coding schemes for each. Variable
rate achievability was shown using an algorithm in which
sensors use randomness to make it unlikely that the traitors
can fool the coding process.

Much more work could be done in the area of Byzantine
network source coding. Multiterminal rate distortion [1H]6]
could be studied, or other topologies, such as side infoomat
However, perhaps the biggest drawback in this paper isadkat,
we discussed in the introduction, because the traitorsatann

eneral be identified, it is difficult to imagine applicatiothat

0 not require some post processing of the source estimates,
for example to estimate some underlying process. Thus it
would make sense to solve the coding and estimation problems
simultaneously, such as in the the CEO problem [17].

where
ks(z",w™) £ {y" € T (Y w") :

Gy € by (y") NTE (V") {y" -

On average, the number of typical' put into a bin is at
most2(H(Y)—Rv+e) 5o we can usé€ (19) to assume with hig
probability than no more thap™(#(Y)—Ev+2¢) gre put into
any bin. Note that

>

zneTr(Z)

< 2>

< by (y"
€T (Z) yn €T (Y |w™)

D D

yneTr (Ywn) y'meby (ym)NT2 (Y |z")\{y"}
< 2n(H(Y|W)+6)2n(H(Y)—Ry+26)2n(H(Z|Y)+e)

ks(2™,w")
INTAVENG

mn m
T,

3
— on(H(Y Z)+H(Y W)=~ Ry +4e) 3l

(4]
(5]

The averagéis sum over typicak™ in a given bin is thus
2n(H(YZ)+H(Y|W)7Ry7Rz+4€) < 2n(H(Y|W)+4efn).

We can use an argument similar to that in Secftion] V-F
partitioning 7" (Z) into different! values, to show that with
high probability, since” (Y'|W) > 0, for all binsb,

6]
(7]

Z kg(zn’wn) < 2n(H(Y|W)+56777). 8]
2 €T (Z)Nby
Applying this to [2T) gives .
Pr(3y™ € by (Y™")\{y"},2" € bz :
[10]

(y"2") € TMY Z)|[W™ = w") < e 4 270,

Letting n > 6e ensures that the probability of error is alwayﬁl]
small no matter what bih; the traitors choose.

D. Achievability for Randomized Coding 12
We perform essentially the same coding procedure as vvﬁﬁ]
deterministic coding, expect we also apply randomness in1a]
similar fashion as with variable-rate coding. The only eliff
ence from the deterministic coding scheme is that each BENgg,
has a set of” identically created subcodebooks, from which
it randomly chooses one, then sends the chosen subcodedéd
index along with the codeword. Decoding is the same as
for deterministic coding. An argument similar to that in17]
Section V-D can be used to show small probability of error.

VIII. CONCLUSION

We gave an explicit characterization of the region of achiev
able rates for a Byzantine attack on distributed sourcengpdi
with variable-rate codes, deterministic fixed-rate codes]
randomized fixed-rate codes. We saw that a different set of
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