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Abstract— The distributed source coding problem is considered
when the sensors, or encoders, are under Byzantine attack;
that is, an unknown group of sensors have been reprogrammed
by a malicious intruder to undermine the reconstruction at
the fusion center. Three different forms of the problem are
considered. The first is a variable-rate setup, in which the decoder
adaptively chooses the rates at which the sensors transmit.
An explicit characterization of the variable-rate achievable sum
rates is given for any number of sensors and any groups of
traitors. The converse is proved constructively by letting the
traitors simulate a fake distribution and report the generated
values as the true ones. This fake distribution is chosen so that
the decoder cannot determine which sensors are traitors while
maximizing the required rate to decode every value. Achievability
is proved using a scheme in which the decoder receives small
packets of information from a sensor until its message can be
decoded, before moving on to the next sensor. The sensors use
randomization to choose from a set of coding functions, which
makes it probabilistically impossible for the traitors to cause
the decoder to make an error. Two forms of the fixed-rate
problem are considered, one with deterministic coding and one
with randomized coding. The achievable rate regions are given
for both these problems, and it is shown that lower rates can be
achieved with randomized coding.

Index Terms— Distributed Source Coding. Byzantine Attack.
Sensor Fusion. Network Security.

I. I NTRODUCTION

W E consider a modification to the distributed source
coding problem in which an unknown subset of sensors

are taken over by a malicious intruder and reprogrammed.
We assume there arem sensors. Each time slot, sensorsi
for i = 1, · · · ,m observe random variablesXi according
to the joint probability distributionp(x1 · · ·xm). Each sensor
encodes its observation independently and transmits a message
to a common decoder, which attempts to reconstruct the
source values with small probability of error based on those
messages. A subset of sensors aretraitors, while the rest are
honest. Unbeknownst to the honest sensors or the decoder, the
traitors have been reprogrammed to cooperate to obstruct the
goal of the network, launching a so-called Byzantine attack.
To counter this attack, the honest sensors and decoder must
employ strategies so that the decoder can correctly reconstruct
source values no matter what the traitors do.

It is obvious that observations made by the traitors are
irretrievable unless the traitors choose to deliver them tothe
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decoder. Thus the best the decoder can hope to achieve is to
reconstruct the observations of the honest sensors. A simple
procedure is to ignore the statistical correlations among the
observations and collect data from each sensor individually.
The total sum rate of such an approach is

∑

iH(Xi). One
expects however that this sum rate can be lowered if the
correlation structure is not ignored.

Without traitors, Slepian-Wolf coding [1] can be used to
achieve a sum rate as low as

H(X1 · · ·Xm). (1)

However, standard Slepian-Wolf coding has no mechanism for
handling any deviations from the agreed-upon encoding func-
tions by the sensors. Even a random fault by a single sensor
could have devastating consequences for the accuracy of the
source estimates produced at the decoder, to say nothing of
a Byzantine attack on multiple sensors. In particular, because
Slepian-Wolf coding takes advantage of the correlation among
sources, manipulating the codeword for one source can alter
the accuracy of the decoder’s estimate for other sources. Itwill
turn out that for most source distributions, the sum rate given
in (1) cannot be achieved if there is even a single traitor.

In this paper, we are interested in the lowest achievable sum-
rate such that the decoder can reconstruct observations of the
honest sensors with arbitrarily small error probability. In some
cases, we are also interested in the rate region. We note that
although the problem setup does not allow the detector to dis-
tinguish traitors from the honest sensors, an efficient scheme
that guarantees the reconstruction of data from honest sensors
is of both theoretical and practical interest. For example,for
a distributed inference problem in the presence of Byzantine
sensors, a practical (though not necessarily optimal) solution is
to attack the problem in two separate phases . In the first phase,
the decoder collects data from sensors over multiple access
channels with rate constraints. Here we require that data from
honest sensors are perfectly reconstructed at the decoder even
though the decoder does not know which piece of data is from
an honest sensor. In the second step, the received data is used
for statistical inference. The example of distributed detection
in the presence of Byzantine sensors is considered in [2].
The decoder may also have other side information about the
content of the messages that allows the decoder to distinguish
messages from the honest sensors.

A. Related Work

The notion of Byzantine attack has its root in the Byzantine
generals problem [3], [4] in which a clique of traitorous
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generals conspire to prevent loyal generals from forming
consensus. It was shown in [3] that consensus in the presence
of Byzantine attack is possible if and only if less than a third
of the generals are traitors.

Countering Byzantine attacks in communication networks
has also been studied in the past by many authors. See the
earlier work of Perlman [5] and also more recent review
[6], [7]. An information theoretic network coding approach
to Byzantine attack is presented in [8]. In [9], Awerbuch
et al suggest a method for mitigating Byzantine attacks on
routing in ad hoc networks. Their approach is most similar
to ours in the way they maintain a list of current knowledge
about which links are trustworthy, constantly updated based
on new information. Sensor fusion with Byzantine sensors
was studied in [10]. In that paper, the sensors, having already
agreed upon a message, communicate it to the fusion center
over a discrete memoryless channel. Quite similar results were
shown in [11], in which a malicious intruder takes control
of a set of links in the network. The authors show that two
nodes can communicate at a nonzero rate as long as less
than half of the links between them are Byzantine. This is
different from the current paper in that the transmitter chooses
its messages, instead of relaying information received from an
outside source, but some of the same approaches from [11] are
used in the current paper, particularly the use of randomization
to fool traitors that have already transmitted.

B. Redefining Achievable Rate

The nature of Byzantine attack require three modifications
to the usual notion of achievable rate. The first, as mentioned
above, is that small probability of error is required only for
honest sources, even though the decoder may not know which
sources are honest. This requirement is reminiscent of [3],
in which the lieutenants need only perform the commander’s
order if the commander is not a traitor, even though the
lieutenants might not be able to decide this with certainty.

The next modification is that there must be small probability
of error no matter what the traitors do. This is essentially the
definition of Byzantine attack.

The final modification has to do with which sensors are
allowed to be traitors. LetH be the set of honest sensors, and
T = {1, · · · ,m}\H the set of traitors. Any code is associated
with a list of which sets of sensors it can handle as the set
of traitors. A rate is then achieved if the code gets small
probability of error when the actual set of traitors is in fact on
the list. It will be more convenient to specify not the list of
allowable sets of traitors, but rather the list of allowablesets of
honest sensors. We defineH ⊂ 2{1,··· ,m} to be this list. Thus
small probability of error is required only whenH ∈ H . One
special case is when the code can handle any group of at most
t traitors. That is,

H = Ht , {S ⊂ {1, · · · ,m} : |S| ≥ m− t}.

Observe that achievable rates depend not just on the true set
of traitors but also on the collectionH , because the decoder’s
willingness to accept more and more different groups of
traitors allows the true traitors to get away with more without

being detected. Thus we see a trade off between rate and
security—in order to handle more traitors, one needs to be
willing to accept a higher rate.

C. Fixed-Rate Versus Variable-Rate Coding

In standard source coding, an encoder is made up of a
single encoding function. We will show that this fixed-rate
setup is suboptimal for this problem, in the sense that we
can achieve lower sum rates using variable-rate coding. By
variable-rate we mean that the number of bits transmitted
per source value by a particular sensor will not be fixed.
Instead, the decoder chooses the rates at “run time” in the
following way. Each sensor has a finite number of encoding
functions, all of them fixed beforehand, but with potentially
different output alphabets. The coding session is then madeup
of a number of transactions. Each transaction begins with the
decoder deciding which sensor will transmit, and which of its
several encoding functions it will use. The sensor then executes
the chosen encoding function and transmits the output back to
the decoder. Finally, the decoder uses the received messageto
choose the next sensor and encoding function, beginning the
next transaction, and so on. Thus a code is made up of a set of
encoding functions for each sensor, a method for the decoder
to choose sensors and encoding functions based on previously
received messages, and lastly a decoding function that takes
all received messages and produces source estimates.

Note that the decoder has the ability to transmit some
information back to the sensors, but this feedback is limited to
the choice of encoding function. Since the number of encoding
functions need not grow with the block length, this represents
zero rate feedback.

In variable-rate coding, since the rates are only decided
upon during the coding session, there is no notion of anm-
dimensional achievable rate region. Instead, we only discuss
achievable sum rates.

D. Traitor Capabilities

An important consideration with Byzantine attack is the
information to which the traitors have access. First, we assume
that the traitors have complete knowledge of the coding
scheme used by the decoder and honest sensors. Furthermore,
we always assume that they can communicate with each
other arbitrarily. For variable-rate coding, they may haveany
amount of ability to eavesdrop on transmissions between
honest sensors and the decoder. We will show that this ability
has no effect on achievable rates. We assume with fixed-rate
coding that all sensors transmit simultaneously, so it doesnot
make sense that traitors could eavesdrop on honest sensors’
transmissions before making their own, as that would violate
causality. Thus we assume for fixed-rate coding that the traitors
cannot eavesdrop.

The key factor, however, is the extent to which the traitors
have direct access to information about the sources. We assume
the most general memoryless case, that the traitors have access
to the random variableW , where W is i.i.d. distributed
with (X1 · · ·Xm) according to the conditional distribution
r(w|x1 · · ·xm). A natural assumption would be thatW always
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includesXi for traitorsi, but in fact this need not be the case.
An important special case is whereW = (X1, · · · , Xm), i.e.
the traitors have perfect information.

We assume that the distribution ofW depends on who
the traitors are, and that the decoder may not know exactly
what this distribution is. Thus each code is associated witha
function R that maps elements ofH to sets of conditional
distributions r. The relationship betweenr and R(H) is
analogous to the relationship betweenH andH . That is, given
H, the code is willing to accept all distributionsr ∈ R(H).
Therefore a code is designed based onH andR, and then
the achieved rate depends at run time onH and r, where
we assumeH ∈ H and r ∈ R(H). We therefore discuss
not achievable ratesR but rather achievable rate functions
R(H, r). In fact, this applies only to variable-rate codes. In
the fixed-rate case, no run time rate decisions can be made,
so achievable rates depend only onH andR.

E. Main Results

The main results of this paper give explicit characterizations
of the achievable rates for three different setups. The first,
which is discussed in the most depth, is the variable-rate
case, for which we characterize achievable sum rate functions.
The other two setups are for fixed-rate coding, divided into
deterministic and randomized coding, for which we givem-
dimensional achievable rate regions. We show that randomized
coding yields a larger achievable rate region than deterministic
coding, but we believe that in most cases randomized fixed-
rate coding requires an unrealistic assumption. In addition,
even randomized fixed-rate coding cannot achieve the same
sum rates as variable-rate coding.

We give the exact solutions in Theorems 1 and 2, but
describe here the intuition behind them. For variable-rate,
the achievable rates are based on alternate distributions on
(X1 · · ·Xm). Specifically, givenW , the traitors can simulate
any distributionq̄(xT |w) to produce a fraudulent version of
Xn

T , then report this sequence as the truth. Suppose that the
overall distributionq(x1 · · ·xm) governing the combination
of the true value ofXn

H with this fake value ofXn
T could

be produced in several different ways, with several different
sets of traitors. In that case, the decoder cannot tell which
of these several possibilities is the truth, which means that
from its point of view, any sensor that is honest in one
of these possibilities may in fact be honest. Since the error
requirement described in I-B stipulates that the decoder must
produce a correct estimate for every honest sensor, it must
attempt to decode the source values associated with all these
potentially honest sensors. Thus the sum rate must be at least
the joint entropy, when distributed according toq, of the
sources associated with all potentially honest sensors. The
supremum over all such̄qs is the achievable sum rate.

For example, supposeH = Hm−1. That is, at most one
sensor is honest. Then the traitors are able to create the
distribution q(x1 · · ·xm) = p(x1) · · · p(xm) no matter what
group of m − 1 sensors are the traitors. Thus every sensor
appears as if it could be the honest one, so the minimum

achievable sum rate is

H(X1) + · · ·+H(Xm). (2)

In other words, the decoder must use an independent source
code for each sensor, which requires receivingnH(Xi) bits
from sensori for all i.

The achievable fixed-rate regions are based on the Slepian-
Wolf achievable rate region. For randomized fixed-rate coding,
the achievable region is such that for allS ∈ H , the rates
associated with the sensors inS fall into the Slepian-Wolf
rate region on the corresponding random variables. Note that
for H = {{1, · · · ,m}}, this is identical to the Slepian-Wolf
region. ForH = Hm−1, this region is such that for alli,
Ri ≥ H(Xi), which corresponds to the sum rate in (2). The
deterministic fixed-rate achievable region is a subset of that of
randomized fixed-rate, but with an additional constraint stated
in Section VI.

F. Randomization

Randomization plays a key role in defeating Byzantine
attacks. As we have discussed, allowing randomized encoding
in the fixed-rate situation expands the achievable region. In ad-
dition, the variable-rate coding scheme that we propose relies
heavily on randomization to achieve small probability of error.
In both fixed and variable-rate coding, randomization is used
as follows. Every time a sensor transmits, it randomly chooses
from a group of essentially identical encoding functions. The
index of the chosen function is transmitted to the decoder
along with its output. Without this randomization, a traitor
that transmits before an honest sensori would know exactly
the messages that sensori will send. In particular, it would be
able to find fake sequences for sensori that would produce
those same messages. If the traitor tailors the messages it
sends to the decoder to match one of those fake sequences,
when sensori then transmits, it would appear to corroborate
this fake sequence, causing an error. By randomizing the
choice of encoding function, the set of sequences producing
the same message is not fixed, so a traitor can no longer
know with certainty that a particular fake source sequence
will result in the same messages by sensori as the true
one. This is not unlike Wyner’s wiretap channel [12], in
which information is kept from the wiretapper by introducing
additional randomness. See in particular Section V-D for the
proof that variable-rate randomness can defeat the traitors in
this manner.

The rest of the paper is organized as follows. In Section II,
we develop in detail the case that there are three sensors
and one traitor, describing a coding scheme that achieves
the optimum sum rate. In Section III, we formally give the
variable-rate model and present the variable-rate result.In
Section IV, we discuss the variable-rate achievable rate region
and give an analytic formulation for the minimum achievable
sum rate for some special cases. In Section VI, we give
the fixed-rate models and present the fixed-rate result. In
Sections V and VII, we prove the variable-rate and fixed-rate
results respectively. Finally, in Section VIII, we conclude.
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II. T HREE SENSOREXAMPLE

A. Potential Traitor Techniques

For simplicity and motivation, we first explore the three-
sensor case with one traitor. That is,m = 3 and

H = {{1, 2}, {2, 3}, {1, 3}}.

Suppose also that the traitor has access to perfect information.
Consider first the simple case where theXi can be decom-
posed as

X1 = (Y1, Y12, Y13, Y123),

X2 = (Y2, Y12, Y23, Y123),

X3 = (Y3, Y13, Y23, Y123)

whereY1, Y2, Y3, Y12, Y13, Y23, Y123 are independent. Suppose
the traitor is sensor 3. It can generate a new, indepen-
dent version ofY23, call it Y ′

23, and then formX ′
3 =

(Y1, Y13, Y
′
23, Y123). We claim that if sensor 3 now behaves for

the rest of the coding session as if this counterfeitX ′
3 were the

real value, then the decoder will not be able to determine the
traitor’s identity. This is because both(X1, X2) and(X2, X

′
3)

look like they could be a true pair, since all information that
they share matches. Thus the decoder cannot know which of
sensors 1 or 3 is the traitor, and which ofY23 or Y ′

23 is the
truth, so it must obtain estimates of them both. To construct
estimates of all three variables, every piece exceptY23 must be
received only once, but the two versionsY23 must be received
separately. Therefore the sum rate must be at least

H(X1X2X3) +H(Y23) = H(X1X2X3) + I(X2;X3|X1).
(3)

In fact, this last expression holds for general distributions as
well, as we demonstrate next.

Now take any distributionp, again with sensor 3 as the
traitor. Sensors 1 and 2 will behave honestly, so they will
report X1 and X2 correctly, as distributed according to the
marginal distributionp(x1x2). Since sensor 3 has access to the
exact values ofX1 andX2, it may simulate the conditional
distribution p(x3|x2), then take the resultingX3 sequence
and report it as the truth. Effectively, then, the three random
variables will be distributed according to the distribution

q(x1x2x3) , p(x1x2)p(x3|x2).

The decoder will be able to determine that sensors 1 and 2 are
reporting jointly typical sequences, as are sensors 2 and 3,but
not sensors 1 and 3. Therefore, it can tell that either sensor1 or
3 is the traitor, but not which one, so it must obtain estimates
of the sources from all three sensors. Since the three streams
are not jointly typical with respect to the source distribution
p(x1x2x3), standard Slepian-Wolf coding on three encoders
will not correctly decode them all. However, had we known
the strategy of the traitor, we could do Slepian-Wolf coding
with respect to the distributionq. This will take a sum rate of

Hq(X1X2X3) = H(X1X2X3) + I(X1;X3|X2)

whereHq is the entropy with respect toq. In fact we will not
do Slepian-Wolf coding with respect toq but rather something
slightly different that gives the same rate. Observe that this

matches (3). Since Slepian-Wolf coding without traitors can
achieve a sum rate ofH(X1X2X3), we have paid a penalty
of I(X1;X3|X2) for the single traitor.

We supposed that sensor 3 simulated the distribution
p(x3|x2). It could have just as easily simulatedp(x3|x1),
or another sensor could have been the traitor. Hence, the
minimum achievable sum rate for allH ∈ H is at least

R∗ , H(X1X2X3) + max{I(X1;X2|X3),

I(X1;X3|X2), I(X2;X3|X1)}. (4)

In fact, this is exactly the minimum achievable sum rate, as
shown below.

B. Variable-Rate Coding Scheme

We now give a variable-rate coding scheme that achieves
R∗. This scheme is somewhat different from the one we
present for the general case in Section V, but it is much
simpler, and it illustrates the basic idea. The procedure will be
made up of a number of rounds. Communication from sensor
i in the first round will be based solely on the firstn values of
Xi, in the second round on the secondn values ofXi, and so
on. The principle advantage of the round structure is that the
decoder may hold onto information that is carried over from
one round to the next.

In particular, the decoder maintains a collectionV ⊂ H

representing the sets that could be the set of honest sensors.
If a sensor is completely eliminated fromV , that means it
has been identified as the traitor. We begin withV = H , and
then remove a set fromV whenever we find that the messages
from the corresponding pair of sensors are not jointly typical.
With high probability, the two honest sensors report jointly
typical sequences, so we expect never to eliminate the honest
pair fromV . If the traitor employs theq discussed above, for
example, we would expect sensors 1 and 3 to report atypical
sequences, so we will drop{1, 3} from V . In essence, the
value of V contains our current knowledge about what the
traitor is doing.

The procedure for a round is as follows. IfV contains
{{1, 2}, {1, 3}}, do the following:

1) ReceivenH(X1) bits from sensor 1 and decodexn
1 .

2) ReceivenH(X2|X1) bits from sensor 2. If there is a
sequence inXn

2 jointly typical with xn
1 that matches this

transmission, decode that sequence toxn
2 . If not, receive

nI(X1;X2) additional bits from sensor 2, decodexn
2 ,

and remove{1, 2} from V .
3) Do the same with sensor 3: ReceivenH(X3|X1) bits

and decodexn
3 if possible. If not, receivenI(X1;X3)

additional bits, decode, and remove{1, 3} from V .

If V is one of the other two subsets ofH with two
elements, perform the same procedure but replace sensor 1
with whichever sensor appears in both elements inV . If V

contains just one element, then we have exactly identified the
traitor, so ignore the sensor that does not appear and simply
do Slepian-Wolf coding on the two remaining sensors.

Note that the only cases when the number of bits transmitted
exceedsnR∗ are when we receive a second message from one
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of the sensors, which happens exactly when we eliminate an
element fromV . Assuming the source sequences of the two
honest sensors are jointly typical, this can occur at most twice,
so we can always achieve a sum rate ofR∗ when averaged
over enough rounds.

C. Fixed-Rate Coding Scheme

In the procedure described above, the number of bits sent
by a sensor changes from round to round. We can no longer do
this with fixed-rate coding, so we need a different approach.
Suppose sensor 3 is the traitor. It could perform a black hole
attack, in which case the estimates forXn

1 andXn
2 must be

based only on the messages from sensors 1 and 2. Thus, the
ratesR1 andR2 must fall into the Slepian-Wolf achievability
region forX1 andX2. Similarly, if one of the other sensors
was the traitor, the other pairs of rates also must fall into the
corresponding Slepian-Wolf region. Putting these conditions
together gives

R1 ≥ max{H(X1|X2), H(X1|X3)}

R2 ≥ max{H(X2|X1), H(X2|X3)}

R3 ≥ max{H(X3|X1), H(X3|X2)}

R1 +R2 ≥ H(X1X2)

R1 +R3 ≥ H(X1X3)

R2 +R3 ≥ H(X2X3).

(5)

If the rates fall into this region, we can do three simultaneous
Slepian-Wolf codes, one on each pair of sensors, thereby
constructing two estimates for each sensor. If we randomize
these codes using the method described in Section I-F, the
traitor will be forced either to report the true message, or report
a false message, which with high probability will be detected
as such. Thus either the two estimates for each sensor will
be the same, in which case we know both are correct, or one
of the estimates will be demonstrably false, in which case the
other is correct.

We now show that the region given by (5) does not include
sum rates as low asR∗. Assume without loss of generality
that I(X1;X2|X3) achieves the maximum in (4). Summing
the last three conditions in (5) gives

R1 +R2 +R3 ≥
1

2

(

H(X1X2) +H(X1X3) +H(X2X3)
)

= H(X1X2X3) +
1

2

(

I(X1;X2|X3) + I(X1X2;X3)
)

. (6)

If I(X1X2;X3) > I(X1;X2|X3), (6) is larger than (4).
Hence, there exist source distributions for which we cannot
achieve the same sum rates with even randomized fixed-rate
coding as with variable-rate coding.

If we are interested only in deterministic codes, the region
given by (5) can no longer be achieved. In fact, we will prove
in Section VII that the achievable region reduces to the trivially
achievable region whereRi ≥ H(Xi) for all i whenm = 3,
though it is nontrivial form > 3. For example, supposem = 4
and H = H1. In this case, the achievable region is similar
to that given by (5), but with an additional sensor. That is,
each of the 6 pairs of rates must fall into the corresponding

Slepian-Wolf region. In this case, we do three simultaneous
Slepian-Wolf codes for each sensor, construct three estimates,
each associated with one of the other sensors. For an honest
sensor, only one of the other sensors could be a traitor, so at
least two of these estimates must be correct. Thus we need
only take the plurality of the three estimates to obtain the
correct estimate.

III. VARIABLE -RATE MODEL AND RESULT

A. Notation

Let Xi be the random variable revealed to sensori, Xi the
alphabet of that variable, andxi a corresponding realization.
A sequence of random variables revealed to sensori over n
timeslots is denotedXn

i , and a realization of itxn
i ∈ Xn

i . Let
M , {1, · · · ,m}. For a setS ⊂ M, let XS be the set of
random variables{Xi}i∈S, and definexS andXS similarly.
By Sc we meanM\S. Let T n

ǫ (XS)[q] be the strongly typical
set with respect to the distributionq, or the source distribution
p if unspecified. Similarly,Hq(XS) is the entropy with respect
to the distributionq, or p if unspecified.

B. Communication Protocol

The transmission protocol is composed ofL transactions.
In each transaction, the decoder selects a sensor to receive
information from and selects which ofK encoding functions
it should use. The sensor then responds by executing that
encoding function and transmitting its output back to the
decoder, which then uses the new information to begin the
next transaction.

For each sensori ∈ M and encoding functionj ∈
{1, · · · ,K}, there is an associated rateRi,j . On the lth
transaction, letil be the sensor andjl the encoding function
chosen by the decoder, and lethl be the number ofl′ ∈
{1, · · · , l − 1} such thatil′ = il. That is,hl is the number
of times il has transmitted prior to thelth transaction. Note
that il, jl, hl are random variables, since they are chosen by
the decoder based on messages it has received, which depend
on the source values. Thejth encoding function for sensori
is given by

fi,j : X
n
i × Z× {1, · · · ,K}hl → {1, · · · , 2nRi,j} (7)

whereZ represents randomness generated at the sensor. Let
Il ∈ {1, · · · , 2nRil,jl } be the message received by the
decoder in thelth transaction. Ifil is honest, thenIl =
fil,jl(X

n
il
, ρil , Jl), where ρil ∈ Z is the randomness from

sensoril and Jl ∈ {1, · · · ,K}hl is the history of encoding
functions used by sensoril so far. If il is a traitor, however,
it may chooseIl based onWn and it may have any amount
of access to previous transmissionsI1, · · · , Il−1 and polling
history i1, · · · , il−1 and j1, · · · , jl−1. But, it does not have
access to the randomnessρi for any honest sensori. Note
again that the amount of traitor eavesdropping ability has no
effect on achievable rates.

After the decoder receivesIl, if l < L it usesI1, · · · , Il to
choose the next sensoril+1 and its encoding function index
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jl+1. After the Lth transaction, it decodes according to the
decoding function

g :

L
∏

l=1

{1, · · · , 2nRil,jl } → Xn
1 × · · · × Xn

m.

Note that we impose no restriction whatsoever on the size
of the total number of transactionsL. Thus, a code could
have arbitrary complexity in terms of the number of messages
passed between the sensors and the decoder. However, in
our below definition of achievability, we require that the
communication rate from sensors to decoder always exceeds
that from decoder to sensors. Therefore while the number
of messages may be very large, the amount of feedback is
dinimishingly small.

C. Variable-Rate Problem Statement and Main Result

Let H ⊂ M be the set of honest sensors. Define the
probability of error

Pe , Pr
(

Xn
H 6= X̂n

H

)

where (X̂n
1 , · · · , X̂

n
m) = g(I1, · · · , IL). The probability of

error will in general depend on the actions of the traitors.
Note again that we only require small probability of error on
the source estimates corresponding to the honest sensors.

We define a rate functionR(H, r) defined forH ∈ H and
r ∈ R(H) to beα-achievableif there exists a code such that,
for all pairs (H, r) and any choice of actions by the traitors,
Pe ≤ α,

Pr

( L
∑

l=1

Ril,jl ≤ R(H, r)

)

≥ 1− α

andlogK ≤ αnRi,j for all i, j. This last condition requires, as
discussed above, that the feedback rate from the decoder back
to the sensors is arbitrarily small compared to the forward rate.
A rate functionR(H, r) is achievableif for all α > 0, there
is a sequence ofα-achievable rate functions{R′

k(H, r)}∞k=1

such that
lim
k→∞

R′
k(H, r) = R(H, r).

Note that we do not require uniform convergence.
The following definitions allow us to state our main

variable-rate result. For anyH ∈ H andr ∈ R(H), let

r̃(w|xH) ,
∑

xHc∈XHc

p(xHc |xH)r(w|xHxHc).

The extent to whichW provides information aboutXHc is
irrelevant to the traitors, since all that really matters tothe
traitors is generating information that appears to agree with
XH as reported by the honest sensors. Thus it will usually be
more convenient to work with̃r rather thanr. For anyS ∈ H

andr′ ∈ R(S), let

QS,r′ ,

{

p(xS)
∑

w

r̃′(w|xS)q̄(xSc |w) : ∀q̄(xSc |w)

}

.

If Sc were the traitors andW were distributed according tor′,
QS,r′ is the set of distributionsq to which the traitors would

have access. That is, if they simulate the properq̄(xSc |w) from
their receivedW and combine the result with the actual value
of xS, the combination is distributed according toq. For any
V ⊂ H , define

Q(V ) ,
⋂

S∈V

⋃

r′∈R(S)

QS,r′ .

That is, for some distributionq ∈ Q(V ), for everyS ∈ V ,
if the traitors wereSc, they would have access toq for some
r′ ∈ R(S). Thus any distribution inQ(V ) makes it look to the
decoder like anyS ∈ V could be the set of honest sensors, so
any sensor inU(V ) ,

⋃

S∈V
S is potentially honest.

Theorem 1:A rate functionR(H, r) is achievable if and
only if, for all (H, r),

R(H, r) ≥ R∗(H, r) , sup
V ⊂H , q∈QH,r∩Q(V )

Hq(XU(V )).

(8)
See Section V for the proof.

IV. PROPERTIES OF THEVARIABLE -RATE REGION

It might at first appear that (9) does not agree with (4).
We discuss several ways in which (8) and (9) can be made
more manageable, particularly in the case of perfect traitor
information, and show that the two are in fact identical. Let
R∗ be the minimum rate achievable over allH ∈ H and
r ∈ R(H). Thus by (8), we can write

R∗ = sup
H∈H ,r∈R(H)

R∗(H, r) = sup
V ⊂H , q∈Q(V )

Hq(XU(V )).

(9)
This is the quantity that appears in (4). Note also that for
perfect traitor information,

QS,r′ = {q(xM) : q(xS) = p(xS)}. (10)

This means thatQH,r ∩ Q(V ) = Q(V ∪ {H}). Therefore (8)
becomes

R∗(H, r) = sup
V ⊂H :H∈V , q∈Q(V )

Hq(XU(V )).

The following lemma simplifies calculation of expressions of
the formsupq∈Q(V ) Hq(XU(V )).

Lemma 1:Suppose the traitors have perfect information.
For anyV ⊂ H , the expression

sup
q∈Q(V )

Hq(XU(V )) (11)

is maximized by aq satisfying (10) for allS ∈ V such that,
for some set of functions{σS}S∈V ,

q(x1 · · ·xm) =
∏

S∈V

σS(xS). (12)

Proof: By (10), we need to maximizeHq(XU(V )) subject
to the constraints that for eachS ∈ V and all xS ∈ XS,
q(xS) = p(xS). This amounts to maximizing the Lagrangian

Λ = −
∑

xU(V )∈XU(V )

q(xU(V )) log q(xU(V ))

+
∑

S∈V

∑

xS∈XS

λS(xS)
(

q(xS)− p(xS)
)

.
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Note that for anyS ⊂ U(V ),

∂q(xS)

∂q(xU(V ))
= 1.

Thus, differentiating with respect toq(xU(V )) gives, assuming
the log is a natural logarithm,

∂Λ

∂q(xU(V ))
=− log q(xU(V ))− 1 +

∑

S∈V

λS(xS).

Setting this to 0 gives

q(xU(V )) = exp

(

−1+
∑

S∈V

λS(xS)

)

= |XU(V )c |
∏

S∈V

σS(xS)

for some set of functions{σS}S∈V . Therefore setting

q(x1 · · ·xm) =
q(xU(V ))

|XU(V )c |

satisfies (12), so ifσS are such that (10) is satisfied for all
S ∈ V , q will maximize Hq(XU(V )).

Supposem = 3 and H = H1. If V = {{1, 2}, {2, 3}},
then q̃(x1x2x3) = p(x1x2)p(x3|x2) is in Q(V ) and by
Lemma 1 maximizesHq(X1X2X3) over all q ∈ Q(V ). Thus

sup
q∈Q(V )

Hq(X1X2X3) = Hq̃(X1X2X3)

= H(X1X2X3) + I(X1;X3|X2).

By similar reasoning, consideringV = {{1, 2}, {1, 3}} and
V = {{1, 3}, {2, 3}} results in (4). Note that ifV1 ⊂ V2, then
Q(V1) ⊃ Q(V2), so V2 need not be considered in evaluating
(8). Thus we have ignored larger subsets ofH1, since the
value they give would be no greater than the others.

We can generalize to any collectionV of the form
{{S1, S2}, {S1, S3}, · · · , {S1, Sk}}, in which case

sup
q∈Q(V )

= H(XS1XS2) +H(XS3 |XS1) + · · ·+H(XSk
|XS1).

Employing this, we can rewrite (9) forH = Ht and certain
values oft. For t = 1, it becomes

R∗ = H(X1 · · ·Xm) + max
i,i′∈M

I(Xi;Xi′ |X{i,i′}c).

Again, relative to the Slepian-Wolf result, we always pay a
conditional mutual information penalty for a single traitor. For
t = 2,

R∗ = H(X1 · · ·Xm)

+ max

{

max
S,S′⊂M:|S|=|S′|=2

I(XS;XS′ |X(S∪S′)c),

max
i,i′,i′′∈M

I(Xi;Xi′ ;Xi′′ |X{i,i′,i′′}c)

}

whereI(X ;Y ;Z|W ) = H(X |W ) +H(Y |W ) +H(Z|W )−
H(XY Z|W ). For t = m− 1, R∗ is given by (2). There is a
similar formulation fort = m− 2, though it is more difficult
to write down for arbitrarym.

With all these expressions made up of nothing but entropies
and mutual informations, it might seem hopeful that (11)
can be reduced to such an analytic expression for allV .
However, this is not the case. For example, considerV =

{{1, 2, 3}, {3, 4, 5}, {5, 6, 1}}. This V is irreducible in the
sense that there is no subsetV ′ that still satisfiesU(V ′) =
{1, · · · , 6}, but there is no simple distributionq ∈ Q(V ) made
up of marginals ofp that satisfies Lemma 1, so it must be
found numerically. Still, Lemma 1 simplifies the calculation
considerably.

V. PROOF OFTHEOREM 1

A. Converse

We first show the converse. FixH ∈ H and r ∈ R(H).
Take anyV ⊂ H , and any distributionq ∈ QH,r ∩ Q(V ).
Since q ∈ QH,r, there is somēq(xT |w) such thatXH and
XT are distributed according toq. Since alsoq ∈ QS,r′ for all
S ∈ V and somer′ ∈ R(S), if the traitors simulate this̄q and
act honestly with these fabricated source values, the decoder
will not be able to determine which of the sets inV is the
actual set of honest sensors. Thus, the decoder must perfectly
decode the sources from all sensors inU(V ), so ifR(H, r) is a
preciselyα-achievable rate function,R(H, r) ≥ Hq(XU(V )).

B. Achievability Preliminaries

Now we prove achievability. To do so, we will first need
the theory of types. Givenyn ∈ Yn, let t(yn) be the type
of yn. Given a typet with denominatorn, let Λn

t (Y ) be the
set of all sequences inYn with type t. If t is a joint y, z
type with denominatorn, then letΛn

t (Y |zn) be the set of
sequencesyn ∈ Yn such that(ynzn) have joint typet, with
the convention that this set is empty if the type ofzn is not
the marginal oft.

We will also need the following definitions. Given a distri-
bution q on an alphabetY, define theη-ball of distributions

Bη(q) ,

{

q′(Y) : ∀x ∈ Y : |q(x) − q′(x)| ≤
η

|Y|

}

.

Note that the typical set can be written

T n
ǫ (X) = {xn : t(xn) ∈ Bǫ(p)}.

We define slightly modified versions of the sets of distributions
from Section III-C as follows:

Q̆
η
s,r′ ,

⋃

q∈Qs,r′

Bη(q),

Q̆η(V ) ,
⋂

S∈V

⋃

r′∈R(S)

Q̆
η
S,r′ .

Finally, we will need the following lemma.
Lemma 2:Given an arbitraryn length distributionqn(xn)

and a typet with denominatorn onX, let qi(x) be the marginal
distribution of qn at time i and q̄(x) = 1

n

∑n
i=1 qi(x). If Xn

is distributed according toqn andPr(Xn ∈ Λn
t (X)) ≥ 2−nζ,

thenD(t‖q̄) ≤ ζ.
Proof: Fix an integerñ. For ĩ = 1, · · · , ñ, let Xn(̃i)

be independently generated fromqn. Let Γ be the set of
types tn on supersymbols inXn with denominatorñ such
that tn(xn) = 0 if xn 6∈ Λn

t (X). Note that

|Γ| ≤ (ñ+ 1)|X|n .
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If Xnñ = (Xn(1), · · · , Xn(ñ)), then

Pr
(

Xnñ ∈
⋃

tn∈Γ

Λñ
tn(X

n)
)

= Pr(Xn(̃i) ∈ Λn
t (X), ∀ĩ)

≥ 2−nñζ .

But

Pr
(

Xnñ ∈
⋃

tn∈Tn

Λñ
tn(X

n)
)

=
∑

tn∈Γ

Pr(Xnñ ∈ Λñ
tn(X

n)

≤
∑

tn∈Γ

2−ñD(tn‖qn)

≤ (ñ+ 1)|X|n2−ñmintn∈Γ D(tn‖qn).

For anytn ∈ Γ, letting ti be the marginal type at timei gives
1
n

∑n
i=1 ti = t. Therefore

ζ +
1

nñ
|X|n log(ñ+ 1) ≥ min

tn∈Γ

1

n
D(tn‖qn)

≥ min
tn∈Γ

1

n

n
∑

i=1

D(ti‖qi) (13)

≥ D(t‖q̄) (14)

where (13) holds by [13, Lemma 4.3] and (14) by convexity
of the Kullback-Leibler distance in both arguments. Letting ñ
grow proves the lemma.

The achievability proof proceeds as follows. Section V-C
describes our proposed coding scheme for the case that traitors
cannot eavesdrop. In Section V-D, we demonstrate that this
coding scheme achieves small probability of error when the
traitors have perfect information. Section V-E shows that
the coding scheme achieves the rate functionR∗(H, r). In
Section V-F, we extend the proof to include the case that
the traitors have imperfect information. Finally, SectionV-G
gives a modification to the coding scheme that can handle
eavesdropping traitors.

C. Coding Scheme Procedure

1) Random Code Structure:Fix ǫ > 0. The codebook for
sensori is composed ofCJi separate encoding functions,
whereJi =

⌈

log |Xi|
ǫ

⌉

andC is an integer to be defined later.
In particular, fori = 1, · · · ,m andc = 1, · · · , C, let

f̃i,c,1 : Xn
i → {1, · · · , 2n(ǫ+ν)},

f̃i,c,j : X
n
i → {1, · · · , 2nǫ}, j = 2, · · · , Ji

with ν to defined later. We put tildes on these functions to
distinguish them from thefs defined in (7). Thef̃s that
we define here are functions we use as pieces of the overall
encoding functionsf . Each one is constructed by a uniform
random binning procedure. For a giveni andc, one can think
of {f̃i,c,j}j as a subcodebook that associates eachxn

i ∈ Xn
i

with a long sequence of bits split into blocks of lengthn(ǫ+ν)
or nǫ. Define composite functions

F̃i,c,j(x
n
i ) = (f̃i,c,1(x

n
i ), · · · , f̃i,c,j(x

n
i )).

We can think ofF̃i,c,j(x
n
i ) as an index of one of2n(jǫ+ν)

random bins.

2) Round Method:We propose a coding scheme made up
of N rounds, with each round composed ofm phases. In the
ith phase, transactions are made entirely with sensori. We
denotexn

i (I) as theIth block of n source values, but for
convenience, we will not include the indexI when it is clear
from context. As in the three-sensor example, all transactions
in the Ith round are based only onXn

M(I). Thus the total
block length isNn.

The procedure for each round is identical except for the
variableV (I) maintained by the decoder. This represents the
collection of sets that could be the set of honest sensors based
on information the decoder has received as of the beginning
of round I. The decoder begins by settingV (1) = H and
then pares it down at the end of each round based on new
information.

3) Encoding and Decoding Rules:In the ith phase, ifi ∈
U(V (I)), the decoder makes a number of transactions with
sensori and produces an estimatêXn

i of Xn
i . The estimate

X̂n
i is of course a random variable, so as usual the lower case

x̂n
i refers to a realization of this variable. Ifi 6∈ U(V (I)), then

the decoder has determined that sensori cannot be honest, so
it does not communicate with it and setsx̂n

i to a null value.
For i ∈ U(V (I)), at the beginning of phasei, sensori

randomly selects ac ∈ {1, · · · , C}. In the first transaction,
sensori transmits(c, f̃i,c,1(Xn

i )). As the phase continues, in
the jth transaction, sensori transmitsf̃i,c,j(Xn

i ).
After each transaction, the decoder decides whether to ask

for another transaction based on the following rubric. For any
s ⊂ M and x̂n

s ∈ Xn
s , let

Tj(x̂
n
s ) , {xn

i : Ht(x̂n
s x

n
i
)(Xi|Xs) ≤ jǫ}.

Note that

|Tj(x̂
n
s )| ≤ (n+ 1)|Xi×Xs|2njǫ.

Let si , {1, · · · , i} ∩ U(V ) and x̂n
si−1

be the previously
decoded source sequences in this round. Afterj transactions,
the decoder will choose to do another transaction if there are
no sequences inTj(x̂si−1 ) matching the received value of
F̃i,c,j . If there is at least one such sequence, letx̂n

i be one
such sequence. If there are several, the decoder chooses from
among them arbitrarily.

4) Round Conclusion:At the end of roundI, the decoder
producesV (I + 1) by setting

V (I +1) =

{

S ∈ V (I) : t(x̂n
U(V (I))) ∈

⋃

r′∈R(S)

Q̆
η
S,r′

}

(15)

for η to be defined such thatη ≥ ǫ andη → 0 as ǫ → 0.

D. Error Probability

Define the following error events:

E1(I, i) , {X̂n
i (I) 6= Xn

i (I)},

E2(I) , {H 6∈ V (I)},

E3(I) , {t(X̂n
U(V )(I)) 6∈ Q̆

η
H,r}\

⋃

i∈H

E1(I, i).



9

The total probability of error is

Pe = Pr

(

n
⋃

I=1

⋃

i∈H

E1(I, i)

)

.

For any sequence of eventsA0,A1, · · · ,AN with AI ⊂ AI+1

andPr(A0) = 0,

Pr(AN ) = 1−
N
∏

I=1

Pr(Ac
I)

Pr(Ac
I−1)

= 1−
N
∏

I=1

(1− Pr(AI |A
c
I−1))

≤
N
∑

I=1

Pr(AI |A
c
I−1).

Set AI = E2(I + 1) ∪
⋃

i∈H
E1(1, i) ∪ · · · ∪ E1(I, i). This

satisfies the conditions, and sincêXn
M(I − 1) → V (I) →

X̂n
M(I) is a Markov chain,

Pr(AI |A
c
I−1) = Pr

(

E2(I + 1) ∪
⋃

i∈H

E1(I, i)
∣

∣

∣E
c
2(I)

)

.

Therefore

Pe ≤
N
∑

I=1

Pr
(

E2(I + 1) ∪
⋃

i∈H

E1(I, i)
∣

∣

∣E
c
2(I)

)

.

If H ∈ V (I) and t(X̂n
U(V )(I)) ∈ Q̆

η
H,r, thenH ∈ V (I + 1).

Thus

E2(I + 1)\Ec
2(I) ⊂ {t(X̂n

U(V )(I)) 6∈ Q̆
η
H,r}\E

c
2(I)

⊂
(

E3(I) ∪
⋃

i∈H

E1(I, i)
)

\Ec
2(I)

so

Pe ≤
N
∑

I=1

Pr
(

E3(I) ∪
⋃

i∈H

E1(I, i)
∣

∣

∣E
c
2(I)

)

≤
N
∑

I=1

Pr(E3(I)|E
c
2(I)) +

N
∑

I=1

∑

i∈H

Pr(E1(I, i)|E
c
2(I)).

(16)

We will show that for anyI,

Pr(E3(I)|E
c
2(I)) ≤

α

2N
. (17)

If the traitors receive perfect source information, then

E3(I) ⊂ {X̂n
H(I) 6∈ T n

ǫ (XH)} ∩ {X̂n
i (I) = Xn

i (I), ∀i ∈ H}

⊂ {Xn
H(I) 6∈ T n

ǫ (XH)}

meaning (17) holds for sufficiently largen. Thus (17) is only
nontrivial if the traitors receive imperfect source information.
This case is dealt with in Section V-F.

Now considerPr(E1(I, i)|E
c
2(I)) for honesti. Conditioning

on Ec
2(I) ensures thati ∈ U(V (I)) for honesti, so X̂n

i (I)
will be non-null. The only remaining way to make an error
on Xn

i is if there is some transactionj for which there is a
sequencex′n

i ∈ Tj(X̂
n
si−1

) such thatx′n
i 6= X ′n

i andF̃i,c,j has
the same value forXn

i andx′n
i . However,si−1 may contain

traitors. Indeed, it may be made entirely of traitors. Thus,we
have to take into account that̂Xn

si−1
may be chosen to ensure

the existence of such an erroneousx′n
i .

Let

k1(x
n
i , x̂

n
si−1

) , |{c : ∃j, x′n
i ∈ Tj(x̂

n
si−1

)\{xn
i } :

Fi,c,j(x
′n
i ) = Fi,c,j(x

n
i )}|.

That is,k1 is the number of subcodebooks that if chosen could
cause an error. Recall that sensori chooses the subcodebook
randomly from the uniform distribution. Thus, givenxn

i and
x̂n
si−1

, the probability of an error resulting from a bad choice
of subcodebook isk1(xn

i , x̂
n
si−1

)/C. Furthermore,k1 is based
strictly on the codebook, we can think ofk1 as a random
variable based on the codebook choice. Averaging over all
possible codebooks,

Pr(E1(I, i)|E
c
2(I)) ≤ E

∑

xn
i
∈Xn

i

p(xn
i ) max

x̂n
si−1

∈Xn
si−1

k1(x
n
i , x̂

n
si−1

)

C

where the expectation is taken over all codebooks.
Let C be the set of all codebooks. We define a subsetC1,

and show that the probability of error can be easily bounded
for any codebook inC\C1, and the probability of a codebook
being chosen inC1 is small. In particular, letC1 be the set of
codebooks for which, for anyxn

i ∈ Xn
i and x̂n

si−1
∈ Xn

si−1
,

k1(x
n
i , x̂

n
si−1

) > B, for an integerB ≤ C to be defined later.
Then

Pr(E1(I, i)|E
c
2(I)) ≤ Pr(C\C1)

∑

xn
i
∈Xn

i

p(xn
i ) max

x̂n
si−1

∈Xn
si−1

B

C

+ Pr(C1)
∑

xn
i
∈Xn

i

p(xn
i ) max

x̂n
si−1

∈Xn
si−1

C

C

≤
B

C
+ Pr(C1). (18)

Since each subcodebook is generated identically,k1 is a
binomial random variable withC trials and probability of
success

P , Pr
(

∃j, x′n
i ∈ Tj(x̂

n
si−1

)\{xn
i } : Fi,c,j(x

′n
i ) = Fi,c,j(x

n
i )
)

≤
∑

j

∑

x′n
i

∈Tj(x̂n
si−1

)\{xn
i
}

Pr
(

Fi,c,j(x
′n
i ) = Fi,c,j(x

n
i )
)

≤ Ji

∣

∣

∣Tj(x̂
n
si−1

)
∣

∣

∣ 2−n(jǫ+ν)

≤ Ji(n+ 1)|Xi×Xsi−1
|2−nν ≤ 2n(ǫ−ν)

for sufficiently largen. For a binomial random variableX
with meanX̄ and anyκ, we can use the Chernoff bound to
write

Pr(X ≥ κ) ≤

(

eX̄

κ

)κ

. (19)

Therefore

Pr(k1(x
n
i , x̂

n
si−1

) > B) ≤

(

eCP

B + 1

)B+1

≤ 2nB(ǫ−ν)
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if ν > ǫ andn is sufficiently large. Thus

Pr(C1) = Pr(∃xn
i , x̂

n
si−1

: k1(x
n
i , x̂

n
si−1

) > B)

≤
∑

xn
i

∑

x̂n
si−1

Pr(k(xn
i , x̂

n
si−1

) > B)

≤
∑

xn
i

∑

x̂n
si−1

2nB(ǫ−ν)

= 2n(log |Xi|+log |Xsi−1
|+B(ǫ−ν). (20)

Combining (16) with (17), (18), and (20) gives

Pe ≤
α

2
+

N
∑

I=1

∑

i∈H

(

B

C
+ 2n(log |Xi|+log |Xsi−1

|+B(ǫ−ν)

)

≤
α

2
+Nm

(

B

C
+ 2n(log |XM|+B(ǫ−ν))

)

which is less thanα for sufficiently largen if

B >
log |XM|

ν − ǫ

and

C ≥
3NmB

α
>

3Nm log |XM|

α(ν − ǫ)
.

E. Code Rate

The discussion above placed a lower bound onC. However,
for sufficiently largen, we can make1

n
logC ≤ ǫ, meaning it

takes no more thanǫ rate to transmit the subcodebook index
c. Therefore the rate for phasei is at most(j+1)ǫ+ν, where
j is the number of transactions in phasei. Transactionj must
be the earliest one witĥxn

i ∈ Tj(x̂si−1 ), otherwise it would
have been decoded earlier. Thusj is the smallest integer for
which

Ht(x̂n
si−1

x̂n
i
)(Xi|Xsi−1) ≤ jǫ

meaning
jǫ ≤ Ht(x̂n

si−1
x̂n
i
)(Xi|Xsi−1) + ǫ.

By (15), for all s ∈ V (I + 1), t(x̂n
U(V (I))) ∈

⋃

r′∈R(s) Q̆
η
s,r′ ,

meaning

t(x̂U(V (I))) ∈
⋂

s∈V (I+1)

⋃

r′∈R(s)

Q̆
η
s,r′ = Q̆η(V (I + 1)). (21)

Combining this with (17), with probability at least1 − α,
t(x̂U(V (I))) ∈ Q̆

η
H,r ∩ Q̆η(V (I + 1)). Therefore with high

probability the rate for all of roundI is at most
∑

i∈U(V (I))

(

Ht(x̂n
si−1

x̂n
i
)(Xi|Xsi−1) + 2ǫ+ ν

)

≤ Ht(x̂U(V (I)))

(

XU(V )

)

+m(2ǫ+ ν)

≤ sup
q∈Q̆

η

H,r
∩Q̆η(V (I+1))

Hq

(

XU(V )

)

+m(2ǫ+ ν)

≤ sup
q∈Q̆

η

H,r
∩Q̆η(V (I+1))

Hq

(

XU(V (I+1))

)

+ log
∣

∣XU(V (I))\U(V (I+1))

∣

∣+m(2ǫ+ ν)

≤ sup
V ⊂H , q∈Q̆

η

H,r
∩Q̆η(V )

Hq(XU(V ))

+ log
∣

∣XU(V (I))\U(V (I+1))

∣

∣+m(2ǫ+ ν). (22)

WheneverU(V (I))\U(V (I + 1)) 6= ∅, at least one sensor is
eliminated. Therefore the second term in (22) will be nonzero
in all but at mostm rounds. Moreover, although we have
needed to boundν from below, we can still choose it such
that ν → 0 as ǫ → 0. Thus if N is large enough, the rate
averaged over all rounds is no more than

Rǫ(H, r) , sup
V ⊂H , q∈Q̆

η

H,r
∩Q̆η(V )

Hq(XU(V )) + ǫ̇

where ǫ̇ → 0 as ǫ → 0. This is a preciselyα-achievable rate
function. By continuity of entropy,

lim
ǫ→0

Rǫ(H, r) = sup
V ⊂H , q∈QH,r∩Q(V )

Hq(XU(V )) = R∗(H, r)

soR∗(H, r) is achievable.

F. Imperfect Traitor Information

We now consider the case that the traitors have access
to imperfect information about the sources. The additional
required piece of analysis is to prove (17). That is

Pr(t(X̂n
U(V (I))(I)) 6∈ Q̆

η
H,r, x̂H = XH|H ∈ V (I)) ≤

α

2N
.

We will in fact prove the slightly stronger statement

Pr(t(Xn
H∩U(V (I))(I)X̂

n
T∩U(V (I))(I)) 6∈ Q̆

η
H,r|H ∈ V (I))

≤
α

2N
. (23)

Since we condition onH ∈ V (I), we can assumeH ⊂
U(V (I)). For notational convenience, letY = XH(I) and
Z = XT∩U(V (I))(I), so (23) becomes

Pr(t(Y nẐn) 6∈ Q̆
η
H,r|H ∈ V (I)) ≤

α

2N
.

Based on their received value ofWn, the traitors choose a
value of c and then a series of messages for each traitor in
U(V (I)). The number of messages each traitor actually gets to
send depends on how long it takes for the decoder to construct
a source estimate. Letj = {ji}i∈T∩U(V (I)) be a vector
representing the number of transactions that take place with
each traitor inU(V (I)). There areJT ,

∏

i∈T∩U(V (I)) Ji
different possible values ofj. We can think of any series
of values of c and messages as a bin (i.e. a subsetZn);
that is, all sequences that map to the same messages in the
subcodebooks denoted by the values ofc. Let R(j) be the
rate at which the traitors transmit givenj. Thus if we letBR

be the set of all bins in the codebook constructed at rateR,
the traitors are equivalent to a group of potentially random
functionsgj : Wn → BR(j).

Consider a jointy, z type t. In order for (Y nẑn) to have
type t for a givenj, we needR(j) ≥ Ht(Z|Y ) + ν. Thus

Pr((Y nẑn) ∈ Λn
t (Y Z)) ≤ Pr(∃j : R(j) ≥ Ht(Z|Y ) + ν,

zn ∈ gj(W
n) ∩ Λn

t (Z|Y n)).

Let δ , ǫ
4N ,

δt,j , Pr((Y n,Wn) ∈ T n
ǫ (YW ),

∃zn ∈ gj(W
n) ∩ Λn

t (Z|Y n))
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and

P ,

{

t : max
j:R(j)≥Ht(Z|Y )+ν

δt,j ≥
δ

(n+ 1)|Y×Z|JT

}

.

We will show thatP ⊂ Q̆
η
H,r, so that

Pr(t(Y nẑn) 6∈ Q̆H,r|H ∈ V (I))

≤ Pr(t(Y nẑn) 6∈ P|H ∈ V (I))

≤ Pr
(

∃t ∈ Pc, j : R(j) ≥ Ht(Z|Y ) + ν,

zn ∈ gj(W
n) ∩ Λn

t (Z|Y n)
∣

∣H ∈ V (I)
)

≤ Pr((Y n,Wn) 6∈ T n
ǫ (YW )) +

∑

t∈Pc

∑

j:R(j)≥Ht(Z|Y )+ν

δt,j

≤ δ + (n+ 1)|Y×Z|JT
δ

(n+ 1)|Y×Z|JT
= 2δ =

α

2N

for sufficiently largen.
Fix t ∈ P. There is somej with R(j) ≥ Ht(Z|Y ) + ν

and δt,j ≥ δ
(n+1)|Y×Z|JT

. Any randomgj is a probabilistic
combination of a number of deterministic functions, so if this
lower bound onδt,j holds for a randomgj, it must also hold
for some deterministicgj. Therefore we do not lose generality
to assume from now on thatgj is deterministic. We also drop
the j subscript for convenience. Our method of proof will be
to demonstrate that such a functionsg can only exist if there
is also ah : Wn → Zn with almost the same properties.
That is, if the traitors can fabricate a counterfeit bin madeup
of source sequences, they can fabricate a single counterfeit
source sequence contained in this bin that works nearly as
well.

Define the following sets:

An
ǫ (Y |wn) , {yn ∈ T n

ǫ (Y |wn) :

∃zn ∈ g(wn) ∩ Λn
t (Z|yn)},

An
ǫ (W ) ,

{

wn ∈ T n
ǫ (W ) :

Pr(Y n ∈ An
ǫ (Y |wn)|Wn = wn) ≥

δ

2(n+ 1)|Y×Z|JT

}

.

Applying the definitions ofP andδt,j gives

δ

(n+ 1)|Y×Z|JT
≤ Pr((Y nWn) ∈ T n

ǫ (YW ) : ∃zn ∈ g(Wn) ∩ Λn
t (Z|Y n))

=
∑

wn∈Tn
ǫ (W )

p(wn) Pr(Y n ∈ An
ǫ (Y |wn)|Wn = wn)

≤ Pr(Wn ∈ An
ǫ (W )) +

δ

2(n+ 1)|Y×Z|JT

meaningPr(Wn ∈ An
ǫ (W )) ≥ δ

2(n+1)|Y×Z|JT
. Fix wn ∈

An
ǫ (W ). SinceAn

ǫ (Y |wn) ⊂ T n
ǫ (Y |wn),

|An
ǫ (Y |wn)| ≥

δ

2(n+ 1)|Y×Z|JT
2n(H(Y |W )−ǫ).

Note also that

|An
ǫ (Y |wn)| ≤

∑

yn∈Tn
ǫ (Y |wn)

|g(wn) ∩ Λn
t (Z|yn)|

=
∑

zn∈g(wn)

|Λn
t (Y |zn) ∩ T n

ǫ (Y |wn)|.

Settingk2(zn, wn) , |Λn
t (Y |zn) ∩ T n

ǫ (Y |wn)|,

∑

zn∈g(wn)

k2(z
n, wn) ≥

δ

2(n+ 1)|Y×Z|JT
2n(H(Y |W )−ǫ)

≥ 2n(H(Y |W )−2ǫ) (24)

for sufficiently largen. We will show that there is actually
a singlez̃n ∈ g(wn) such thatk2(z̃n, wn) represents a large
portion of the above sum, sõzn itself is almost as good as the
entire bin. Then settingh(wn) = z̃n will give us the properties
we need. Note that

∑

zn∈Zn

k2(z
n, wn) =

∑

yn∈Tn
ǫ (Y |wn)

|Λn
t (Z|yn)|

≤ 2n(H(Y |W )+Ht(Z|Y )+ǫ). (25)

Certainly

k2(z
n, wn) ≤ |T n

ǫ (Y |wn)| ≤ 2n(H(Y |W )+ǫ)

so if we let l(zn) be the integer such that

2n(H(Y |W )−l(zn)ǫ) < k2(z
n, wn)

≤ 2n(H(Y |W )−(l(zn)−1)ǫ). (26)

thenl(zn) ≥ 0. Furthermore, ifk2(zn, wn) > 0, thenl(zn) ≤
L , ⌈H(Y |W )

ǫ
⌉. Let M(l) = |{zn ∈ Zn : l(zn) = l}|. Then

from (25), for somel,

2n(H(Y |W )+Ht(Z|Y )+ǫ) ≥
∑

zn∈Zn

k2(z
n, wn)

≥
∑

zn∈Zn:l(zn)=l

k2(z
n, wn)

≥ M(l)2n(H(Y |W )−lǫ)

giving
M(l) ≤ 2n(Ht(Z|Y )+(l+1)ǫ).

For any binb ∈ BR(j), let M̃(l, b) , |{zn ∈ b : l(zn) = l}|.
SinceR(j) ≥ Ht(Z|Y ) + ν, M̃(l, b) is a binomial random
variable withM(l) trials and probability of success at most
2−n(Ht(Z|Y )+ν). Thus

EM̃(l, b) ≤ 2n(Ht(Z|Y )+(l+1)ǫ)2−n(Ht(Z|Y )+ν)

= 2n((l+1)ǫ−ν).

Let C2 be the set of codebooks such that for any group of
sensors, subcodebooks, typet, transactionsj, sequencewn ∈
Wn, bin b and integerl, eitherM̃(l, b) ≥ 2nǫ if (l+1)ǫ−ν ≤ 0
or M̃(l, b) ≥ 2n((l+2)ǫ−ν) if (l + 1)ǫ − ν > 0. We will show
that the probability ofC2 is small, so we may disregard it.
Again using (19), if(l + 1)ǫ− ν ≤ 0,

Pr(M̃(l, b) ≥ 2nǫ) ≤
( e

2n(−lǫ+ν)

)2nǫ

≤ 2−2nǫ

and if (l + 1)ǫ− ν > 0,

Pr(M̃(l, b) ≥ 2n((l+2)ǫ−ν)) ≤
( e

2nǫ

)2n((l+2)ǫ−ν)

≤ 2−2n((l+2)ǫ−ν)
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both for sufficiently largen. Therefore

Pr(C2) ≤ 2mCm(n+ 1)|XM|J1 · · · Jm|W|n2n(|XM|+ν)

·





∑

0≤l≤ ν
ǫ
−1

2−2nǫ

+
∑

ν
ǫ
−1<l≤L

2−2n((l+2)ǫ−ν)





which vanishes asn grows.
We assume from now on that the codebook is not inC2,

meaning in particular that̃M(l, g(wn)) ≤ 2nǫ for (l+1)ǫ−ν ≤
0 and M̃(l, g(wn)) ≤ 2n((l+2)ǫ−ν) for (l + 1)ǫ − ν > 0.
Applying these and (26) to (24) and letting̃l be an integer
defined later,

2−n2ǫ ≤ 2−nH(Y |W )
∑

zn∈g(wn)

k2(z
n, wn)

≤
L
∑

l=0

M̃(l, g(wn))2−n(l−1)ǫ

=
∑

0≤l<l̃

M̃(l, g(wn))2−n(l−1)ǫ

+
∑

l̃≤l≤ ν
ǫ
−1

M̃(l, g(wn))2−n(l−1)ǫ

+
∑

ν
ǫ
−1<l≤L

M̃(l, g(wn))2−n(l−1)ǫ

≤
∑

0≤l<l̃

M̃(l, g(wn))2nǫ +
∑

l̃≤l≤ ν
ǫ
−1

2nǫ2−n(l̃−1)ǫ

+
∑

ν
ǫ
−1<l≤L

2n((l+2)ǫ−ν)2−n(l−1)ǫ

≤
∑

0≤l<l̃

M̃(l, g(wn))2nǫ + L2n(−l̃+2)ǫ + L2n(3ǫ−ν).

Therefore
∑

0≤l<l̃

M̃(l, g(wn)) ≥ 2−n3ǫ
(

1− L2n(−l̃+4)ǫ − L2n(5ǫ−ν)
)

.

Setting l̃ = 5 and ν > 5ǫ ensures that the right hand side
is positive for sufficiently largen, so there is at least one
zn ∈ g(wn) with |T n

ǫ (Y |wn) ∩ Λn
t (Y |zn)| ≥ 2n(H(Y |W )−4ǫ).

Now we defineh : Wn → Zn such thath(wn) is such azn

for wn ∈ An
ǫ (W ) andh(wn) is arbitrary forwn 6∈ An

ǫ (W ).
If we let Z̃n = h(Wn),

Pr((Y nZ̃n) ∈ Λn
t (Y Z))

≥
∑

wn∈An
ǫ (W )

p(wn) Pr(Y n ∈ Λn
t (Y |h(wn))|Wn = wn)

≥
∑

wn∈An
ǫ (W )

p(wn)

· Pr(Y n ∈ T n
ǫ (Y |wn) ∩ Λn

t (Y |h(wn))|Wn = wn)

≥ Pr(Wn ∈ An
ǫ (W ))2−n(H(Y |W )+ǫ)2n(H(Y |W )−4ǫ)

≥
δ

2(n+ 1)|Y×Z|
2−n5ǫ.

The variables(Y nWnZ̃n) are distributed according to

qn(ynwnzn) =

(

n
∏

i=1

p(yi)r(wi|yi)

)

1{zn = h(wn)}.

Let qi(ywz) be the marginal distribution ofqn(ynwnzn) at
time i. It factors as

qi(ywz) = p(y)r(w|y)qi(z|w).

Let q̄(yz) , 1
n

∑

i qi(yz) and q̄(z|w) , 1
n

∑n
i=1 qi(z|w).

Then
q̄(yz) = p(y)

∑

w

r(w|y)q̄(z|w)

so by Lemma 2,

D

(

t
∥

∥

∥p(y)
∑

w

r(w|y)q̄(z|w)

)

≤ −
1

n
log

(

δ

2(n+ 1)|Y×Z|

)

+ 5ǫ.

Thereforet ∈ Q̆
η
H,r for sufficiently largen and someη such

that η → 0 as ǫ → 0.

G. Eavesdropping Traitors

We consider now the case that the traitors are able to
overhear communication between the honest sensors and the
decoder. If the traitors have perfect information, then hearing
the messages sent by honest sensors will not give them any
additional information, so the above coding scheme still works
identically. If the traitors have imperfect information, we need
to slightly modify the coding scheme, but the achievable rates
are the same.

The important observation is that eavesdropping traitors
only have access to messages sent in the past. Thus, by
permuting the order in which sensors are polled in each
round, the effect of the eavesdropping can be eliminated.
In a given round, letH′ be the set of honest sensors that
transmit before any traitor. Since the additional information
gain from eavesdropping will be no more than the values of
Xn

H′ , the rate for this round, if no sensors are eliminated
(i.e. U(V (I + 1)) = U(V (I))), will be no more than the
rate without eavesdropping when the traitors have access to
W ′n = (Wn, Xn

H′). The goal of permuting the transmission
order is to find an ordering in which all the traitors transmit
before any of the honest sensors, since then the achieved rate,
if no sensors are eliminated, will be the same as with no
eavesdropping. It is possible to determine when such an order
occurs because it will be the order that produces the smallest
rate.

More specifically, we will alter the transmission order from
round to round in the following way. We always choose an
ordering such that for someS ∈ V , the sensorsSc transmit
beforeS. We cycle through all such orderings until for each
S, there has been one round with a corresponding ordering in
which no sensors were eliminated. We then choose oneS that
never produced a rate larger than the smallest rate encountered
so far. We perform rounds in a order corresponding toS from
then on. If the rate ever changes and is no longer the minimum
rate encountered so far, we choose a different minimizing
S. The minimum rate will always be no greater than the
achievable rate without eavesdropping, so after enough rounds,
we achieve the same average rate.
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VI. F IXED-RATE CODING

Consider anm-tuple of rates(R1, · · · , Rm), encoding func-
tions fi : Xn

i → {1, · · · , 2nRi} for i ∈ M, and decoding
function

g :

m
∏

i=1

{1, · · · , 2nRi} → Xn
1 × · · · × Xn

m.

Let Ii ∈ {1, · · · , 2nRi} be the message transmitted by sensor
i. If sensori is honest,Ii = fi(X

n
i ). If it is a traitor, it may

chooseIi arbitrarily, based onWn. Define the probability of
errorPe , Pr

(

Xn
H 6= X̂n

H

)

whereX̂n
M = g(I1, · · · , Im).

We say anm-tuple(R1, · · · , Rm) is deterministic-fixed-rate
achievableif for any ǫ > 0 and sufficiently largen, there
exist coding functionsfi and g such that, for any choice of
actions by the traitors,Pe ≤ ǫ. Let Rdfr ⊂ R

m be the set of
deterministic-fixed-rate achievablem-tuples.

For randomized fixed-rate coding, the encoding functions
become

fi : X
n
i × Z → {1, · · · , 2nRi}

whereZ is the alphabet for the randomness. If sensori is
honest,Ii = fi(X

n
i , ρi), whereρi ∈ Z is the randomness

produced at sensori. Define anm-tuple to berandomized-
fixed-rate achievablein the same way as above, andRrfr ⊂ R

m

to be the set of randomized-fixed-rate achievable rate vectors.
For anyS ⊂ M, let SW(XS) be the Slepian-Wolf rate region

on the random variablesXS. That is,

SW(XS) ,

{

RS : ∀S′ ⊂ S :
∑

i∈S′

Ri ≥ H(XS′ |XS\S′)

}

.

Let

R∗
rfr , {(R1, · · · , Rm) : ∀S ∈ H : RS ∈ SW(XS)},

R∗
dfr , {(R1, · · · , Rm) ∈ R∗

rfr : ∀S1, S2 ∈ H :

if ∃r ∈ R(S2) : Hr(XS1∩S2 |W ) = 0,

thenRS1∩S2 ∈ SW(XS1∩S2)}

The following theorem gives the rate regions explicitly.
Theorem 2:The fixed-rate achievable regions are given by

Rdfr = R∗
dfr and Rrfr = R∗

rfr .

VII. PROOF OFTHEOREM 2

A. Converse for Randomized Coding

Assume(R1, · · · , Rm) is randomized-fixed-rate achievable.
Fix S ∈ H . SupposeSc are the traitors and perform a black
hole attack. ThuŝXn

S must be based entirely on{fi(Xn
i )}i∈S,

and sincePr(XS 6= X̂S) can be made arbitrarily small, by the
converse of the Slepian-Wolf theorem, which holds even if the
encoders may use randomness,RS ∈ SW(XS).

B. Converse for Deterministic Coding

Assume (R1, · · · , Rm) is deterministic-fixed-rate achiev-
able. The converse for randomized coding holds equally well
here, so(R1, · · · , Rm) ∈ R∗

rfr . We prove by contradiction
that (R1, · · · , Rm) ∈ R∗

dfr as well. Suppose(R1, · · · , Rm) ∈
R∗

rfr\R
∗
dfr, meaning that for someS1, S2 ∈ H , there exists

r ∈ R(S2) such thatHr(XS1∩S2 |W ) = 0 but RS1∩S2 6∈
SW(XS1∩S2). Consider the case thatH = S1 and r is such
thatHr(S1∩H|W ) = 0. Thus the traitors always have access
to Xn

S1∩H.
For all S ∈ H , let D(XS) be the subset ofT n

ǫ (XS)
such that all sequences inD are decoded correctly ifSc are
the traitors and no matter what messages they send. Thus
the probability thatXn

S ∈ D(XS) is large. LetD(XS1∩H)
be the marginal intersection ofD(XS1) and D(XH). That
is, it is the set of sequencesxn

S1∩H such that there ex-
ists xn

S1\H
and xn

H\S1
with (xn

S1∩Hxn
S1\H

) ∈ D(XS1) and
(xn

S1∩HxH\S1
) ∈ D(XH). Note that with high probability

Xn
S1∩H ∈ D(XS1∩H). SupposeXn

S1∩H ∈ D(XS1∩H) and
(Xn

S1∩HXn
H\S1

) ∈ D(XH), so by the definition ofD,

X̂n
S1∩H = Xn

S1∩H. SinceRS1∩H 6∈ SW(XS1∩H), there is
somex′n

S1∩H ∈ D(XS1∩H) mapping to the same codewords
as XS1∩H such thatx′n

S1∩H 6= Xn
S1∩H. Because the traitors

have access toXS1∩H, they can constructx′n
S1∩H, and also

find x′n
S1\H

such that(x′n
S1∩Hx′n

S1\H
) ∈ D(XS1). If the traitors

reportx′n
S1\H

, then we have a contradiction, since this situation
is identical to that of the traitors beingSc1, in which case, by
the definition ofD, X̂n

S1∩H = x′n
S1∩H.

C. Achievability for Deterministic Coding

Fix (R1, · · · , Rm) ∈ R∗
dfr. Our achievability scheme will

be a simple extension of the random binning proof of the
Slepian-Wolf theorem given in [14]. Each encoding function
fi : X

n
i → {1, · · · , 2nRi} is constructed by means of a random

binning procedure. Decoding is then performed as follows. For
eachS ∈ H , if there is at least onexn

S ∈ T n
ǫ (XS) matching

all received codewords fromS, let x̂n
i,S be one such sequence

for all i ∈ s. If there is no such sequence, leavex̂n
i,S null.

Note that we produce a separate estimatex̂n
i,S of Xn

i for all
S ∋ i. Let x̂n

i equal one non-null̂xn
i,S.

We now consider the probability of error. With high prob-
ability, x̂n

i,H = Xn
i for honesti. Thus all we need to show

is that for all otherS ∈ H with i ∈ S, x̂i,S is null or also
equal toXn

i . Fix S ∈ H . If there is somer ∈ R(S) with
Hr(XH∩S|W ) = 0, then by the definition ofR∗

dfr, RH∩S ∈
SW(XH∩S). Thus with high probability the only sequence
xn
H∩S ∈ T n

ǫ (XH∩S) matching all received codewords will be
Xn

H∩S, so x̂n
i,S = Xn

i for all i ∈ H ∩ S.
Now consider the case thatHr(XH∩S|W ) > 0 for all

r ∈ R(S). For convenience, letY = XH∩S and Z = XT .
Let RY =

∑

i∈H∩S
Ri and RZ =

∑

i∈T
Ri. SinceRS ∈

SW(XS), RY + RZ ≥ H(Y Z) + η for someη. Let bY (yn)
be the set of sequences inYn that map to the same codewords
as yn, and letbZ ⊂ Zn be the set of sequences mapping to
the codewords sent by the traitors. ThenY may be decoded
incorrectly only if there is somey′n ∈ bY (Y

n) and some
zn ∈ bZ such thaty′n 6= Y n and (y′nzn) ∈ T n

ǫ (Y Z). For
somewn ∈ Wn,

Pr(∃y′n ∈ bY (Y
n)\{Y n}, zn ∈ bZ :

(y′nzn) ∈ T n
ǫ (Y Z)|Wn = wn)

≤ Pr(Y n 6∈ T n
ǫ (Y |wn)|Wn = wn) +

∑

yn∈Tn
ǫ (Y |wn)

p(yn|wn)
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· 1{∃y′n ∈ bY (y
n)\{yn}, zn ∈ bZ : (y′nzn) ∈ T n

ǫ (Y Z)}

≤ ǫ+ 2−n(H(Y |W )−ǫ)
∑

zn∈bZ∩Tn
ǫ (Z)

k3(z
n, wn) (27)

where

k3(z
n, wn) , |{yn ∈ T n

ǫ (Y |wn) :

∃y′n ∈ bY (y
n) ∩ T n

ǫ (Y |zn)\{yn}}|.

On average, the number of typicalyn put into a bin is at
most2n(H(Y )−RY +ǫ), so we can use (19) to assume with high
probability than no more than2n(H(Y )−RY +2ǫ) are put into
any bin. Note that

∑

zn∈Tn
ǫ (Z)

k3(z
n, wn)

≤
∑

zn∈Tn
ǫ (Z)

∑

yn∈Tn
ǫ (Y |wn)

|bY (y
n) ∩ T n

ǫ (Y |zn)\{yn}|

=
∑

yn∈Tn
ǫ (Y |wn)

∑

y′n∈bY (yn)∩Tn
ǫ (Y |zn)\{yn}

|T n
ǫ (Z|y′n)|

≤ 2n(H(Y |W )+ǫ)2n(H(Y )−RY +2ǫ)2n(H(Z|Y )+ǫ)

= 2n(H(Y Z)+H(Y |W )−RY +4ǫ).

The averagek3 sum over typicalzn in a given bin is thus

2n(H(Y Z)+H(Y |W )−RY −RZ+4ǫ) ≤ 2n(H(Y |W )+4ǫ−η).

We can use an argument similar to that in Section V-F,
partitioningT n

ǫ (Z) into different l values, to show that with
high probability, sinceH(Y |W ) > 0, for all bins bZ ,

∑

zn∈Tn
ǫ (Z)∩bZ

k3(z
n, wn) ≤ 2n(H(Y |W )+5ǫ−η).

Applying this to (27) gives

Pr(∃y′n ∈ bY (Y
n)\{yn}, zn ∈ bZ :

(y′nzn) ∈ T n
ǫ (Y Z)|Wn = wn) ≤ ǫ + 2n(6ǫ−η).

Letting η > 6ǫ ensures that the probability of error is always
small no matter what binbZ the traitors choose.

D. Achievability for Randomized Coding

We perform essentially the same coding procedure as with
deterministic coding, expect we also apply randomness in a
similar fashion as with variable-rate coding. The only differ-
ence from the deterministic coding scheme is that each sensor
has a set ofC identically created subcodebooks, from which
it randomly chooses one, then sends the chosen subcodebook
index along with the codeword. Decoding is the same as
for deterministic coding. An argument similar to that in
Section V-D can be used to show small probability of error.

VIII. C ONCLUSION

We gave an explicit characterization of the region of achiev-
able rates for a Byzantine attack on distributed source coding
with variable-rate codes, deterministic fixed-rate codes,and
randomized fixed-rate codes. We saw that a different set of
rates were achievable for the three cases, and gave converse

proofs and rate achieving coding schemes for each. Variable-
rate achievability was shown using an algorithm in which
sensors use randomness to make it unlikely that the traitors
can fool the coding process.

Much more work could be done in the area of Byzantine
network source coding. Multiterminal rate distortion [15], [16]
could be studied, or other topologies, such as side information.
However, perhaps the biggest drawback in this paper is that,as
we discussed in the introduction, because the traitors cannot in
general be identified, it is difficult to imagine applications that
do not require some post processing of the source estimates,
for example to estimate some underlying process. Thus it
would make sense to solve the coding and estimation problems
simultaneously, such as in the the CEO problem [17].
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