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Abstract—We study information-theoretic security for discrete
memorylessinterferenceand broadcastchannels with independent
confidential messages sent to two receivers. Confidential messages
are transmitted to their respective receivers with information-
theoretic secrecy. That is, each receiver is kept in total ignorance
with respect to the message intended for the other receiver.
The secrecy level is measured by the equivocation rate at the
eavesdropping receiver. In this paper, we present inner andouter
bounds on secrecy capacity regions for these two communication
systems. The derived outer bounds have an identical mutual
information expression that applies to both channel models. The
difference is in the input distributions over which the expression
is optimized. The inner bound rate regions are achieved by
random binningtechniques. For the broadcast channel, adouble-
binning coding scheme allows for both joint encoding and
preserving of confidentiality. Furthermore, we show that, for
a special case of the interference channel, referred to as the
switchchannel, the two bound bounds meet. Finally, we describe
several transmission schemes for Gaussian interference channels
and derive their achievable rate regions while ensuring mutual
information-theoretic secrecy. An encoding scheme in which
transmitters dedicate some of their power to createartificial noise
is proposed and shown to outperform both time-sharing and
simple multiplexed transmission of the confidential messages.

I. I NTRODUCTION

The broadcast nature of a wireless medium allows for the
transmitted signal to be received by all users within the com-
munication range. Hence, wireless communication sessionsare
very susceptible to eavesdropping. The information-theoretic
single user secure communication problem was first charac-
terized using thewiretap channelmodel proposed by Wyner
[1]. In this model, a single source-destination communication
link is eavesdropped by a wiretapper via a degraded channel.
The secrecy level is measured by the equivocation rate at
the wiretapper. Wyner showed that secure communication is
possible without sharing a secret key between legitimate users,
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and determined the tradeoff between the transmission rate
and the secrecy level [1]. This result was generalized by
Csiszár and Körner who determined the capacity region of
the broadcast channel with confidential messages [2] in which
a message intended for one of the receivers is confidential.

Following the work of Wyner [1] and Csiszár and Körner
[2], the more recent information-theoretic research on secure
communication focuses at implementing security on the phys-
ical layer. Based on independent efforts, the authors of [3]
and [4] described achievable secure rate regions and outer
bounds for a two-user discrete memoryless multiple access
channel with confidential messages. This model generalizes
the multiple access channel (MAC) [5, Sec. 14.3] by allowing
each user (or one of the users) to receive noisy channel outputs
and, hence, to eavesdrop the confidential information sent
by the other user. In addition, the Gaussian MAC wiretap
channel has been analyzed in [6]–[10]. The relay channel
with confidential messages where the relay node acts as both
a helper and a wiretapper has been considered in [11]. The
relay-eavesdropper channel has been proposed in [12]. More
recently, the cognitive interference channel with confidential
messages has been addressed in [13]. The effects of fading
on secure wireless communication have been studied in [14]–
[18].

In this paper, we study two distinct but related in
multi-terminal secure communication problems following the
information-theoretic approach. We focus on discrete mem-
oryless interferenceand broadcast channels with indepen-
dent confidential messages sent to two receivers. Confidential
messages are transmitted to their respective receivers while
ensuring mutualinformation-theoretic secrecy. That is, each
receiver is kept in total ignorance with respect to the message
intended for the other receiver. We first derive outer boundson
capacity regions for these two communication systems. These
bounds have an identical mutual information expression. The
expression is optimized over different input distributions, i.e.,
for the interference channel, the two senders offer independent
inputs to the channel and, for the broadcast channel, the sender
jointly encodes both messages. We also derive achievable rate
regions for the two channel models. Here, we only consider
sending confidential messages and, hence, no common mes-
sage in the sense of Marton [19] is conveyed to the receivers
in the case of the broadcast channel. The inner bounds are
achieved usingrandom binningtechniques. For the broadcast
channel, adouble-binningcoding scheme which allows for
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both joint precoding as in the classical broadcast channel
[19], and preserving of confidentiality. Similarly, ensuring
of confidential messages precludes partial decoding of the
message intended for the other receiver in the case of the
interference channel. Hence, rate-splitting encoding used by
Carleial [20] and Han and Kobayashi [21] employed with
the classical interference channel is precluded. Instead,the
encoders will use only stochastic encoders. We show that
for the special case of the interference channel, referred
to as theswitch channel, derived bounds meet. Finally, we
describe several transmission schemes for general Gaussian
interference channels and derive their achievable rate regions
while still ensuring information-theoretic secrecy. An encoding
scheme in which transmitters dedicate some of their power to
createartificial noise is proposed and shown to outperform
both time-sharing and simple multiplexed transmission of the
confidential messages.

The remainder of this paper is organized as follows. The no-
tation and the channel model are given in Sec. II. We state the
main results in Sec. III. Outer bounds are derived in Sec. IV.
Inner bounds associated with the achievable coding scheme
for the interference and broadcast channels with confidential
messages are established in Sec. V. Finally, the results are
summarized in Sec. VI.

II. D EFINITIONS AND NOTATIONS

A. Notations

Throughout the paper, a random variable is denoted with an
upper case letter (e.g.,X), its realization is denoted with the
corresponding lower case letter (e.g.,x), the finite alphabet
of the random variable is denoted with the corresponding
calligraphic letter (e.g.,X ), and its probability distribution is
denoted withPX(x). For example, the random variableX with
probability distributionP (x) = PX(x) takes on values in the
finite alphabetX . A boldface symbol denotes a sequence with
the following conventions

X = [X1, . . . , Xn], Xi = [X1, . . . , Xi],

and X̃i = [Xi, . . . , Xn].

Finally, we useA(n)
ǫ (PX) to denote the set of (weakly) jointly

typical sequencesx with respect toP (x) (see [5] for more
details).

B. The Interference Channel with Confidential Messages

Consider a discrete memoryless interference channel with fi-
nite input alphabetsX1, X2, finite output alphabetsY1, Y2, and
the channel transition probability distributionP (y1, y2|x1, x2).
Two transmitters wish to send independent, confidential mes-
sages to their respective receivers. We refer to such a channel
as the interference channel with confidential messages(IC-
CM). This communication model is shown in Fig. 1. Symbols
(x1, x2) ∈ (X1 ×X2) are the channel inputs at transmitters1
and 2, and (y1, y2) ∈ (Y1 × Y2) are the channel outputs at
receivers1 and2, respectively.

Transmittert, t = 1, 2, intends to send an independent
messageWt ∈ {1, . . . ,Mt} to the desired receivert in n

Y1

encW2 X2

enc

Channel

p(y1,y2|x1,x2)

W1 W1dec

Transmitter 1
Receiver 1

H(W2|Y1)

Transmitter 2

X1

Y2
W2dec

Receiver 2

H(W1|Y2)

Fig. 1. Interference Channel with Confidential Messages.

channel uses while ensuring information-theoretic secrecy. The
channel is memoryless in the sense that

P (y1,y2|x1,x2) =

n
∏

i=1

P (y1,i, y2,i|x1,i, x2,i).

A stochastic encoder for transmittert is described by a matrix
of conditional probabilitiesft(xt|wt), wherext ∈ Xn

t , wt ∈
Wt, and

∑

xt∈Xn
t

ft(xt|wt) = 1.

Decoding functions are mappingsψt : Yt → Wt. Secrecy
levels at receivers1 and 2 are measured with respect to the
equivocation rates

1

n
H(W2|Y1) and

1

n
H(W1|Y2). (1)

An (M1,M2, n, P
(n)
e ) code for the interference channel

consists of two encoding functionsf1, f2, two decoding
functionsψ1, ψ2, and the corresponding maximum average
error probability

P (n)
e , max{P

(n)
e,1 , P

(n)
e,2 } (2)

where, fort = 1, 2,

P
(n)
e,t =

∑

w1,w2

1

M1M2
P
[

ψt(Yt) 6= wt|(w1, w2) sent
]

.

A rate pair(R1, R2) is said to beachievablefor the interfer-
ence channel with confidential messages if, for anyǫ0 > 0,
there exists a(M1,M2, n, P

(n)
e ) code such that

Mt ≥ 2nRt for t = 1, 2 (3)

and the reliability requirement

P (n)
e ≤ ǫ0 (4)

and the security constraints

nR1 −H(W1|Y2) ≤ nǫ0 (5a)

nR2 −H(W2|Y1) ≤ nǫ0 (5b)

are satisfied. This definition corresponds to the so-calledweak
secrecy-key rate[22]. A stronger measurement of the secrecy
level has been defined by Maurer and Wolf in terms of the
absolute equivocation [22], where the authors have shown that
the former definition could be replaced by the latter without
any rate penalty for the wiretap channel.

The capacity region of the IC-CM is the closure of the set
of all achievable rate pairs(R1, R2), denoted byCIC.
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Fig. 2. Broadcast Channel with Confidential Messages.

C. The Broadcast Channel

We also consider thebroadcast channel with confidential
messages(BC-CM) in which secret messages from a single
transmitter are to be communicated to two receivers, as shown
in Fig. 2. A discrete memoryless BC-CM is described using
finite setsX , Y1, Y2, and a conditional probability distribution
P (y1, y2|x). Symbolsx ∈ X are channel inputs and(y1, y2) ∈
(Y1×Y2) are channel outputs at receivers1 and2, respectively.
The transmitter intends to send an independent messageWt ∈
{1, . . . ,Mt} , Wt to the respective receivert ∈ {1, 2} in
n channel uses while ensuring information-theoretic secrecy
as given by (5a) and (5b). The channel is memoryless in the
sense that

P (y1,y2|x) =
n
∏

i=1

P (y1,i, y2,i|xi).

A stochastic encoder is specified by a matrix of conditional
probabilitiesf(x|w1, w2), wherex ∈ Xn, wt ∈ Wt, and

∑

x∈Xn

f(x|w1, w2) = 1.

Note that f(x|w1, w2) is the probability that the pair of
messages(w1, w2) are encoded as the channel inputx. The de-
coding function at the receivert is a mappingφt : Yt → Wt.

The secrecy levels of confidential messagesW2 and W1

are measured, respectively, at receivers 1 and 2 in terms of
the equivocation rates (1). An(M1,M2, n, P

(n)
e ) code for

the broadcast channel consists of the encoding functionf ,
decoding functionsφ1, φ2, and the maximum error probability
P

(n)
e in (2), where, fort = 1, 2,

P
(n)
e,t =

∑

w1,w2

1

M1M2
P
[

φt(Yt) 6= wt|(w1, w2) sent
]

. (6)

A rate pair(R1, R2) is said to be achievable for the broadcast
channel with confidential messages if, for anyǫ0 > 0, there
exists a(M1,M2, n, P

(n)
e ) code which satisfies (3)–(5).

The capacity region of the BC-CM is the closure of the set
of all achievable rate pairs(R1, R2), denoted byCBC.

III. M AIN RESULTS

In this section, we state our main results. We first describe
the outer and inner bounds on the capacity regions of both in-
terference and broadcast channels with confidential messages.
We then show that the derived bounds meet for a special
case of the interference channel, called the switch channel.

Finally, we propose several transmission schemes for Gaussian
interference channels and derive their achievable rate regions
under information-theoretic secrecy.

A. Interference Channel with Confidential Messages

Let U , V1, and V2 be auxiliary random variables. We
consider the following two classes of joint distributions for the
interference channel. LetπIC−O be the class of distributions
P (u, v1, v2, x1, x2, y1, y2) that factor as

P (u)P (v1, v2|u)P (x1|v1)P (x2|v2)P (y1, y2|x1, x2), (7)

andπIC−I be the class of distributions that factor as

P (u)P (v1|u)P (v2|u)P (x1|v1)P (x2|v2)P (y1, y2|x1, x2).
(8)

Theorem 1:[outer bound for IC-CM] LetRO(πIC−O) de-
note the union of all(R1, R2) satisfying

0 ≤ R1 ≤ min

[

I(V1;Y1|U)− I(V1;Y2|U),
I(V1;Y1|V2, U)− I(V1;Y2|V2, U)

]

(9a)

0 ≤ R2 ≤ min

[

I(V2;Y2|U)− I(V2;Y1|U),
I(V2;Y2|V1, U)− I(V2;Y1|V1, U)

]

(9b)

over all distributionsP (u, v1, v2, x1, x2, y1, y2) in πIC−O. For
the interference channel(X1 ×X2, P (y1, y2|x1, x2),Y1 ×Y2)
with confidential messages, the capacity region

CIC ⊆ RO(πIC−O).

Proof: We provide the proof of Theorem 1 in Sec. IV.
Theorem 2:[inner bound for IC-CM] LetRIC(πIC−I) de-

note the union of all(R1, R2) satisfying

0 ≤ R1 ≤ I(V1;Y1|U)− I(V1;Y2|V2, U) (10a)

0 ≤ R2 ≤ I(V2;Y2|U)− I(V2;Y1|V1, U) (10b)

over all distributionsP (u, v1, v2, x1, x2, y1, y2) in πIC−I. Any
rate pair

(R1, R2) ∈ RIC(πIC−I)

is achievable for the interference channel with confidential
messages.

Proof: We provide the proof in Sec. V-A.
To derive the achievable rate region for the IC-CM, we

employ an auxiliary random variableU in the sense of Han-
Kobayashi [21]. For a givenU , we consider two independent
stochastic encoders, that is, the pre-coding auxiliary random
variablesV1 and V2 will be independent for a givenU , as
given by (8). To ensure information-theoretic secrecy, the
achievable rateR1 includes a penalty termI(V1;Y2|V2, U),
which is a conditional mutual information of the receiver 2’s
eavesdropper channel while assuming the receiver 2 can first
decode its own information.

B. Broadcast Channel with Confidential Messages

For the broadcast channel, we focus on the class of distri-
butionsP (u, v1, v2, x, y1, y2) that factor as

P (u)P (v1, v2|u)P (x|v1, v2)P (y1, y2|x). (11)

We refer to this class asπBC.
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Theorem 3:[outer bound for BC-CM] LetRO(πBC) denote
the union of all(R1, R2) satisfying

R1 ≥ 0, R2 ≥ 0

R1 ≤ min

[

I(V1;Y1|U)− I(V1;Y2|U),
I(V1;Y1|V2, U)− I(V1;Y2|V2, U)

]

(12a)

R2 ≤ min

[

I(V2;Y2|U)− I(V2;Y1|U),
I(V2;Y2|V1, U)− I(V2;Y1|V1, U)

]

(12b)

over all distributionsP (u, v1, v2, x, y1, y2) in πBC and auxil-
iary random variablesU , V1, andV2 satisfying

U → V1 → X and U → V2 → X. (13)

For the broadcast channel(X , P (y1, y2|x),Y1 × Y2) with
confidential messages, the capacity region

CBC ⊆ RO(πBC).

Proof: We provide the proof of Theorem 3 in Sec. IV.
Remark 1:Outer bounds for the BC-CM and the IC-CM

have a same mutual information expressionRO(·), but, they
are optimized over different input distributionsπBC and
πIC−O, respectively.

Theorem 4:[inner bound for BC-CM] LetRBC(πBC) de-
note the union of all(R1, R2) satisfying

R1 ≥ 0, R2 ≥ 0

R1 ≤ I(V1;Y1|U)− I(V1;V2|U)− I(V1;Y2|V2, U) (14a)

R2 ≤ I(V2;Y2|U)− I(V1;V2|U)− I(V2;Y1|V1, U) (14b)

over all distributionsP (u, v1, v2, x, y1, y2) in πBC. Any rate
pair

(R1, R2) ∈ RBC(πBC)

is achievable for the broadcast channel with confidential
messages.

Proof: We provide the proof in Sec. V-B.
We note that, for a broadcast channel, we can employ

joint encoding at the transmitter. Hence, the achievable coding
scheme for the BC-CM is based on thedouble-binningscheme
which combines theGel’fand-Pinsker binning[23] and the
random binning. To preserve confidentiality, the achievabil-
ity bounds onR1 and R2 each include the penalty term
I(V1;V2|U). Without the confidentiality constraint, Marton’s
inner bound [19] on the broadcast channel illustrates only that
the sum rate has the penalty termI(V1;V2|U). To ensure
information-theoretic secrecy, the proposed coding scheme
pays “double” when jointly encoding at the transmitter.

Example 1: [less noisy broadcast channel] Consider a spe-
cial class of broadcast channels in which the channelX → Y1
is less noisythan the channelX → Y2, i.e.,

I(V ;Y1) ≥ I(V ;Y2) (15)

for everyV → X → (Y1, Y2) [2]. We first consider the outer
bound of the less noisy BC-CM. Based on the Markov chains
in (13) and the definition (15), we have

I(V1;Y1|U = u) ≥ I(V1;Y2|U = u)

I(V2;Y1|U = u) ≥ I(V2;Y2|U = u),

which implies that

I(V1;Y1|U) ≥ I(V1;Y2|U)

I(V2;Y1|U) ≥ I(V2;Y2|U).

Hence the outer bound can be rewritten as the union of all
(R1, R2) satisfying

R1 ≤ max
P (X)

[I(X ;Y1)− I(X ;Y2)] (16a)

R2 = 0 (16b)

where (16a) follows from [2, Theorem 3]. Next, by applying
Theorem 4 and settingV2 = U = const, we obtain the
identical rate region as (16). This result implies that only
the “better” user can get the non-zero secrecy rate for the
less noisy BC-CM. Note that, the single-antenna Gaussian
broadcast channel is a special case of the less noisy broadcast
channel.

In the following, we consider a sufficient condition under
which bothR1 andR2 can be strictly positive for the BC-CM.

Corollary 1: For a broadcast channel, if there exist a dis-
tribution P (u, v1, v2, x, y1, y2) ∈ πBC for which

I(V1;Y1|U) > I(V1;Y2, V2|U) (17a)

and I(V2;Y2|U) > I(V2;Y1, V1|U), (17b)

then both receivers can achieve strictly positive rates while
ensuring information-theoretic secrecy.

Proof: The result is obtained by applying Theorem 4 and
by settingR1 > 0 andR2 > 0.
More recently, motivated by this work, the multiple-antenna
Gaussian broadcast channel with confidential messages was
studied in [24]. It was shown that with multiple antennas at
transmitters, strictly positive rates to both receivers can be
achieved while ensuring information-theoretic secrecy.

C. Switch Channel

In this subsection, we obtain the secrecy capacity region
for a special case of the interference channel referred to as
the switch channel (SC). As shown in Fig. 3, receivers in the
SC cannot listen to both transmissions (from encoders1 and
2) at the same time. For example, each encoder may transmit
at a different frequency, while each receiver may listen only
to one frequency during each symbol timei. We assume that
each receivert ∈ {1, 2} has a random switchst ∈ {1, 2},
which chooses betweent and t̄ independently at each symbol
time i with probabilities

P (St,i = t) = τt

P (St,i = t̄) = 1− τt, i = 1, . . . , n

where t̄ is the complement oft. Therefore, receivert listens
to its own informationxt,i from encodert wheneverSt,i = t,
while it eavesdrops the signalxt̄,i whenSt,i = t̄. By assuming
that the switch state information is available at the receiver,
we have that

P (yt,i|x1,i, x2,i, st,i) = P (yt,i|x1,i)1(st,i = 1)

+ P (yt,i|x2,i)1(st,i = 2)

= P (yt,i|xst,i,i) (18)
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X1

X2

Y1

Y2
S2

1: (τ1)
S1

2: (1-τ1)

1: (1-τ2)

2: (τ2)

Fig. 3. Switch channel model

where1(·) is the indicator function.
The switch state information{St,i}ni=1 is an i.i.d. process

known at receivert. Hence, we can considerst,i as a part of
the channel output, i.e., we set

yt,i , {zt,i, st,i} (19)

wherezt,i represents the received signal value at receivert.
Under this setting, we have the following theorem on the
secrecy capacity regionCSC of SC-CM.

Theorem 5:For the switch channel with confidential mes-
sages, the capacity regionCSC is the union of all(R1, R2)
satisfying

0 ≤ R1 ≤ I(V1;Y1|U)− I(V1;Y2|V2, U) (20a)

0 ≤ R2 ≤ I(V2;Y2|U)− I(V2;Y1|V1, U) (20b)

over all distributionsP (u, v1, v2, x1, x2, y1, y2) in πIC−I.
Proof: We provide the proof in the Appendix.

Remark 2: In SC-CM, receivert listens to the desired
information during time fractionτt, and intercepts the other
message during the time fraction(1− τt). Whenτ1 = τ2 = 1,
both receivers only listen to their own messages and thus SC-
CM reduces to two independent parallel channels without the
secrecy constraints. Whenτ1 = 1 andτ2 = 0, receiver2 acts
as an eavesdropper only and bothY1 andY2 are independent
with respect to the messageW2. Hence, in this case, SC-CM
reduces to the wiretap channel [1].

Example 2: [noiseless memoryless switch channel] We as-
sume that the channel is discrete memoryless and that the
input-output relationship at each time instant satisfies

Yt,i =

{

X1,i, St,i = 1
X2,i, St,i = 2

for i = 1, . . . , n (21)

whereP (St,i = t) = τt andτ1 + τ2 ≥ 1. Theorem 5 implies
that the secrecy capacity region of this channel is:

{

(R1, R2) :
R1 ≤ (τ1 + τ2 − 1)H(X1)
R2 ≤ (τ1 + τ2 − 1)H(X2)

}

. (22)

We note that hereτ1 + τ2 − 1 equalsτ1 − (1 − τ2), the time
that user 1 sends without user 2 listening and also equalsτ2−
(1− τ1), the time that user 2 sends without user 1 listening.

D. Gaussian Interference Channel with Confidential Messages

We next consider a Gaussian interference channel (GIC)
with confidential messages (GIC-CM) where each node em-
ploys a single antenna as shown in Fig. 4. We have proposed
this problem originally in [25].

receiver 1

receiver 2transmitter 2

(W1)

transmitter 1
α1

α2

X1

X2

N1

N2

Y1

Y2(W2)

W1
^

W2

W1

W2
^

Fig. 4. Gaussian interference channel with confidential messages

We assume the channel input and output symbols to be from
an alphabet of real numbers. Following the standard form GIC
[20], the received symbols are

Y1 = X1 + α1X2 +N1 (23a)

Y2 = α2X1 +X2 +N2 (23b)

whereα1 andα2 are normalized crossoverchannel gains, X1

andX2 are transmitted symbols from encoders1 and2 with
the average power constraint

n
∑

i=1

E[X2
t,i]

n
≤ Pt, for t = 1, 2,

andN1 andN2 correspond to two independent, zero-mean,
unit-variance, Gaussian noise variables. In the following, we
focus on theweak interference channel, i.e.,0 ≤ α2

1 < 1 and
0 ≤ α2

2 < 1. We describe three transmission schemes and their
achievable rate regions under the requirement of information-
theoretic secrecy.

1) Time-Sharing:The transmission period is divided into
two non-overlapping slots with time fractionsρ1 and ρ2,
where ρ1 ≥ 0, ρ2 ≥ 0, and ρ1 + ρ2 = 1. Transmittert
sends confidential messageWt in slot t with time fraction
ρt, t = 1, 2. We refer to this technique as the time-sharing
scheme. We note that, in each slot, the channel reduces to a
Gaussian wiretap channel [26]. LetR[T]

GIC denote the set of
(R1, R2) satisfying

0 ≤ R1 ≤
ρ1
2

[

log

(

1 +
P1

ρ1

)

− log

(

1 + α2
2

P1

ρ1

)]

0 ≤ R2 ≤
ρ2
2

[

log

(

1 +
P2

ρ2

)

− log

(

1 + α2
1

P2

ρ2

)]

over all time fractions(ρ1, ρ2) pairs. Following [26], we can
show that any rate pair

(R1, R2) ∈ R
[T]
GIC

is achievable for GIC-CM.
2) Multiplexed Transmission:In the multiplexed transmis-

sion scheme, we allow communication links to share the same
degrees of freedom. Since we require information-theoretic
secrecy for confidential messages, no partial decoding of the
other transmitter’s message is allowed at a receiver. Hence,
the interference results in an increase of the noise floor. Let

0 ≤ βt ≤ 1, t = 1, 2.



6 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. X, NO. X, XXX 2008

By independently choosing

Vt = Xt ∼ N [0, βtPt], t = 1, 2

and lettingU serve as a convex combination operator, Theo-
rem 2 implies that any rate pair

(R1, R2) ∈ R
[M]
GIC

is achievable for GIC-CM, whereR[M]
GIC denotes the convex

hull of the set of(R1, R2) satisfying

R1 ≥ 0, R2 ≥ 0

R1 ≤
1

2
log

(

1 +
β1P1

1 + α2
1β2P2

)

−
1

2
log(1 + α2

2β1P1)

R2 ≤
1

2
log

(

1 +
β2P2

1 + α2
2β1P1

)

−
1

2
log(1 + α2

1β2P2)

over all power-control parametersβ1 andβ2.
3) Artificial Noise: We next describe a scheme which

allows one of the transmitters (e.g., transmitter2) to generate
artificial noise. This strategy involves splitting of the trans-
mission power of transmitter2 into two partsP2,M andP2,A,
where

P2,M = (1 − λ)β2P2,

P2,A = λβ2P2, and 0 ≤ λ ≤ 1,

so that transmitter2 encodes the confidential message with
powerP2,M and generates artificial noise with powerP2,A.
The artificial noise can spoil the received signal of receiver
2 and, hence, protect the confidential message of transmitter
1. In this sense, this scheme allowstransmitter cooperation
without exchanging confidential messages. LetU serve as a
convex combination operator,

X1 = V1 and X2 = V2 +A2 (26)

where V1, V2, and A2 are independent Gaussian random
variables:

V1 ∼ N [0, β1P1],

V2 ∼ N [0, P2,M ],

and A2 ∼ N [0, P2,A].

HereA2 denotes the artificial noise which cannot be predicted
and subtracted by either receiver. Since

Y1 = X1 + α1X2 +N1

= V1 + α1(V2 +A2) +N1

and

Y2 = α2X1 +X2 +N1

= α2V1 + (V2 +A2) +N2,

we have

I(V1;Y1) = I(V1; V1 + α1(V2 +A2) +N1)

= h(V1 + α1(V2 +A2) +N1)

− h(α1(V2 +A2) +N1)

=
1

2
log

(

1 +
β1P1

1 + α2
1β2P2

)

and

I(V1;Y2|V2) = I(V1; α2V1 + V2 +A2 +N2|V2)

= h(α2V1 +A2 +N2)− h(A2 +N2)

=
1

2
log

(

1 +
α2
2β1P1

1 + λβ2P2

)

.

Similarly, we can calculate

I(V2;Y2) =
1

2
log

[

1 +
(1 − λ)β2P2

1 + α2
2β1P1 + λβ2P2

]

and

I(V2;Y1|V1) =
1

2
log

[

1 +
(1− λ)α2

1β2P2

1 + λα2
1β2P2

]

.

Applying Theorem 2, we can prove that any rate pair

(R1, R2) ∈ R
[A]
GIC

is achievable for GIC-CM, whereR[A]
GIC denotes the convex

hull of the set of(R1, R2) satisfying

0 ≤ R1 ≤
1

2
log

(

1 +
β1P1

1 + α2
1β2P2

)

−
1

2
log

(

1 +
α2
2β1P1

1 + λβ2P2

)

(27a)

0 ≤ R2 ≤
1

2
log

[

1 +
(1− λ)β2P2

1 + α2
2β1P1 + λβ2P2

]

−
1

2
log

[

1 +
(1− λ)α2

1β2P2

1 + λα2
1β2P2

]

(27b)

over all power-control parameter pair(β1, β2) and the power-
splitting parameterλ. Furthermore, the achievable region can
be increased by reversing the roles of transmitters1 and2.

Remark 3:We note that secure communication in a Gaus-
sian channel with two senders and two receivers was also
considered in [9], [10] for the Gaussian MAC with a wire-
tapper (GMAC-WT). In this setting, both messages are to be
conveyed to one of the receivers and none to the other receiver.
Although the two problem formulations differ, the absence of
rate splitting in the interference channel results in that the two
proposed encoding schemes have a closer relationship than
the schemes suggested for the classical MAC and interference
channels. In fact, the encoding scheme proposed in [9], [10]
for the GMAC-WT, referred to ascooperative jamming, and
our encoding scheme which createsartificial noise in (26) are
the same.

Example 3: In Fig. 5, we compare the achievable regions:

R
[T]
GIC, R

[M]
GIC, andR[A]

GIC

by numerical calculation, for

P1 = P2 = 10 andα1 = α2 = 0.2

in Fig. 5.a and

P1 = P2 = 100 andα1 = α2 = 0.2

in Fig. 5.b. Both numerical results illustrate that the artificial
noise strategy allows for communication over larger rates,
when compared to the time-sharing and multiplexed transmis-
sion schemes.
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Fig. 5. Achievability regions for the GIC-CM (α1 = α2 = 0.2).

IV. OUTER BOUND

In this section we prove Theorems 1 and 3. In the following,
we derive the upper bound forR1. The upper bound forR2

follows by symmetry.
The basis for the outer bound derivation is the reliable

transmission requirement and the security constraint. Based on
Fano’s inequality [5], the reliable transmission requirement (4)
implies that

H(W1|Y1) ≤ ǫ0 log(M1 − 1) + h(ǫ0) , nδ1. (28a)

H(W2|Y2) ≤ ǫ0 log(M2 − 1) + h(ǫ0) , nδ2. (28b)

whereh(x) is the binary entropy function. On the other hand,
the security constraint (5a) implies that

nR1 = H(W1) ≤ H(W1|Y2) + nǫ0. (29)

In fact, the bound (9) onR1 is based on the following two
different upper bounds on the equivocationH(W1|Y2).

A. First Bound

The first upper bound is derived by applying the techniques
in [2]. By using Fano’s inequality (28a), we obtain the
following bound on the equivocation

H(W1|Y2) ≤ H(W1|Y2)−H(W1|Y1) + nδ1. (30)

Let

Ui = (Yi−1
1 , Ỹi+1

2 ). (31)

Since(Ui, Y2,i) = (Yi−1
1 , Ỹi

2) = (Ui−1, Y1,i−1), we have

H(W1|Ui, Y2,i)−H(W1|Ui−1, Y1,i−1) = 0

and we can rewrite (30) as follows

H(W1|Y2) ≤ H(W1|Y2)−H(W1|Y1)

+

n
∑

i=2

[

H(W1|Ui, Y2,i)

−H(W1|Ui−1, Y1,i−1)
]

+ nδ1. (32)

Note that

Y1 = (Un, Y1,n) and Y2 = (U1, Y2,1).

Hence, the bound (32) can be expressed as follows

H(W1|Y2)

≤ H(W1|U1, Y2,1)−H(W1|Un, Y1,n)

+

n
∑

i=2

H(W1|Ui, Y2,i)−
n−1
∑

i=1

H(W1|Ui, Y1,i) + nδ1

=

n
∑

i=1

[H(W1|Ui, Y2,i)−H(W1|Ui, Y1,i)] + nδ1

=

n
∑

i=1

[I(W1;Y1,i|Ui)− I(W1;Y2,i|Ui)] + nδ1 . (33)

Inequalities (29) and (33) imply that

nR1 − n(δ1 + ǫ0) ≤
n
∑

i=1

[I(W1;Y1,i|Ui)− I(W1;Y2,i|Ui)].

Now, for δ , δ1 + ǫ0, we have

R1 ≤
1

n

n
∑

i=1

[I(W1;Y1,i|Ui)− I(W1;Y2,i|Ui)] + δ. (34)

Following [5, Chapter 14], we introduce a random variableQ
uniformly distributed over{1, 2, . . . , n} and independent of
(W1,W2,X1,X2,Y1,Y2). Now we can boundR1 as follows

R1 ≤
1

n

n
∑

i=1

[I(W1;Y1,i|Ui, Q = i)

− I(W1;Y2,i|Ui, Q = i)] + δ

=

n
∑

i=1

P (Q = i)[I(W1;Y1,Q|UQ, Q = i)

− I(W1;Y2,Q|Y
Q−1
1 , ỸQ+1

2 , Q = i)] + δ

= I(W1;Y1,Q|UQ, Q)− I(W1;Y2,Q|UQ, Q) + δ. (35)
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Let

U , (UQ, Q), X1 , X1,Q, X2 , X2,Q,

Y1 , Y1,Q, Y2 , Y2,Q,

V1 , (W1, U), V2 , (W2, U). (36)

Note that, under the setting (36), the conditional distribution of
P (y1, y2|x1, x2) coincides with the original channel transition
probability. We can rewrite (35) as

R1 ≤ I(V1;Y1|U)− I(V1;Y2|U) + δ. (37)

Remark 4:Note that we employ only Fano’s inequality
(28a) to derive the first bound onR1.

B. Second Bound

The basic idea of the second bound can be described as
follows. We assume that a genie gives receiver1 messageW2,
while receiver2 attempts to evaluate the equivocation withW2

as side information.
Now, the equivocation can be upper bounded by

H(W1|Y2) ≤ H(W1,W2|Y2)

= H(W1|Y2,W2) +H(W2|Y2). (38)

By applying (28a) and (28b), we have

H(W1|Y1) ≤ nδ1 and H(W2|Y2) ≤ nδ2. (39)

SinceH(W1|Y1,W2) ≤ H(W1|Y1), we can further bound
(38) as follows

H(W1|Y2) ≤ H(W1|Y2,W2) + nδ2

≤ H(W1|Y2,W2)−H(W1|Y1,W2)

+ n(δ1 + δ2). (40)

Let δ′ = δ1 + δ2 + ǫ0. Following the same approach as in
(30)–(36), we obtain

R1 ≤ I(V1;Y1|V2, U)− I(V1;Y2|V2, U) + δ′. (41)

Remark 5: In order to get the second bound onR1, we
employ the requirement that not only receiver1 can decode
the messageW1 successfully, but also receiver2 can decode
the messageW2 successfully in (39) and (40) and, hence, we
use Fano’s inequalities (28a) and (28b).

C. Outer Bound and Discussion

Combining the two upper bounds (37) with (41) and assum-
ing thatδ andδ′ converge to0, we have

R1 ≤ min

[

I(V1;Y1|U)− I(V1;Y2|U),
I(V1;Y1|V2, U)− I(V1;Y2|V2, U)

]

. (42)

Similarly, we can boundR2 as

R2 ≤ min

[

I(V2;Y2|U)− I(V2;Y1|U),
I(V2;Y2|V1, U)− I(V2;Y1|V1, U)

]

. (43)

Note that from (31) and (36) it follows that the joint distribu-
tion P (u, v1, v2, x1, x2, y1, y2) factors as (7) for the interfer-
ence channel. For the broadcast channel, we replace(X1, X2)

byX , XQ. Now, the joint distributionP (u, v1, v2, x, y1, y2)
factors as (11).

To consider the sum rate we let

∆1 = I(V1;Y1|U)− I(V1;Y2|U)

∆2 = I(V2;Y2|U)− I(V2;Y1|U)

Θ1 = I(V1;Y1|V2, U)− I(V1;Y2|V2, U)

Θ2 = I(V2;Y2|V1, U)− I(V2;Y1|V1, U).

The bounds (42) and (43) imply the the following bounds
on the sum rate:

R1 +R2 ≤ ∆1 +∆2, (44)

R1 +R2 ≤ Θ1 +Θ2 (45)

R1 +R2 ≤ min[∆1 +Θ2, ∆2 +Θ1] (46)

where the bounds (44) and (45) are using either the first
bounding approach (see Sec. IV-A) or the second bounding
approach (see Sec. IV-B) only, and the bound (46) are based
on both approaches. The following lemma illustrates that the
combination sum rate bound (46) is indeed tighter than bounds
(44) and (45).

Lemma 1:

min[∆1 +Θ2, ∆2 +Θ1] ≤ ∆1 +∆2 = Θ1 +Θ2.

Proof: We provide the proof in the Appendix.
It is interesting to further analyze the outer bound by

comparing bounds (37) and (41). By assuming thatδ and δ′

converge to0, the difference between these two bounds is

R1,∆ , ∆1 −Θ1

= I(V1;V2|Y2, U)− I(V1;V2|Y1, U)

= I(W1;W2|Y2, U)− I(W1;W2|Y1, U). (47)

We observe that, in general, the difference between bounds
(37) and (41) is non-zero.

V. I NNER BOUND

A. Interference Channel with Confidential Messages

In this subsection we derive the achievable rate region for
the interference channel. We prove that the regionRIC(πIC−I)
is achievable. The coding structure for the IC-CM is illustrated
in Fig. 6. We employ an auxiliary random variableU in the
sense of Han-Kobayashi [21] and two equivocation codebooks
(stochastic encoders), one for each messageW1 and W2.
Encodert mapsvt into a channel inputxt. More precisely,
the random code generation is as follows.

Fix P (u), P (v1|u) andP (v2|u), and

P (x1, x2|v1, v2) = P (x1|v1)P (x2|v2)

and let

R′
1 , I(V1;Y2|V2, U)− ǫ1 (48)

R′
2 , I(V2;Y1|V1, U)− ǫ1 (49)

whereǫ1 > 0 andǫ1 is small for sufficiently largen.
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Fig. 6. Code construction for IC-CM

• [codebook generation] Randomly generate a typical se-
quenceu with probability

P (u) =
n
∏

i=1

P (ui),

and assume that both transmitters and receivers know the
time-sharing sequenceu.
For transmittert, t = 1, 2, generateQt = 2n(Rt+R′

t)

independent sequencesvt each with probability

P (vt|u) =
n
∏

i=1

P (vt,i|ui)

and labeled as

vt(wt, kt), wt ∈ {1, . . . ,Mt}, kt ∈ {1, . . . ,M ′
t} (50)

whereMt = 2nRt and M ′
t = 2nR

′
t . Without loss of

generality,Mt, M ′
t , andQt are assumed to be integers.

Let
Ct ,

{

vt(wt, kt), for all (wt, kt)
}

be the codebook of Transmittert. Itswt-th sub-codebook
(bin)

Ct(wt) , {vt(wt, kt), for kt = 1, . . . ,M ′
t

}

follows the partitioning in (50).
• [encoding] To send a message pair

(w1, w2) ∈ W1 ×W2,

each transmitter employs a stochastic encoder. Encoder
t randomly chooses an elementvt(wt, kt) from the sub-
codebookCt(wt). Transmitters generate the channel input
sequences based on respective mappingsP (x1|v1) and
P (x2|v2).

• [decoding] Given a typical sequenceu, letA(n)
ǫ (PVt,Yt|U )

denote the set of jointly typical sequencesvt andyt with
respect toP (vt, yt|u) [5]. Decodert chooseswt so that

(vt(wt, kt),yt) ∈ A(n)
ǫ (PVt,Yt|U )

when suchwt exists and and is unique; otherwise, an
error is declared.

1) Error Probability Analysis:To bound the probability of
error, we define the event

Et(wt, kt) , {(vt(wt, kt),yt|u) ∈ A(n)
ǫ (PVt,Yt|U )}.

Without loss of generality, we can assume that transmitter
1 sends the messagew1 = 1 associated with the codeword
v1(1, 1), and define the corresponding event

K1 , {v1(1, 1) sent}.

The union bound on the error probability of receiver1 is as
follows

P
(n)
e,1 ≤ P

{

⋂

k1

Ec
1(1, k1)

∣

∣

∣
K1

}

+
∑

w1 6=1, k1

P{E1(w1, k1)|K1}

≤ P{Ec
1(1, 1)|K1}+

∑

w1 6=1, k1

P{E1(w1, k1)|K1}

whereEc
1(1, k1) denotes the event

{(v1(1, k1),y1) /∈ A(n)
ǫ (PV1,Y1|U )}.

Following the joint asymptotic equipartition property (AEP)
[5], we have

P{Ec
1(1, 1)|K1} ≤ ǫ,

and, forw1 6= 1,

P{E1(w1, k1)|K1} ≤ 2−n[I(V1;Y1|U)−ǫ].

Hence, we can bound the probability of error as

P
(n)
e,1 ≤ ǫ+Q12

−n[I(V1;Y1|U)−ǫ]

= ǫ+ 2n(R1+R′
1) 2−n[I(V1;Y1|U)−ǫ]

So, if
R1 + R′

1 < I(V1;Y1|U),

then for anyǫ0 > 0, P (n)
e,1 ≤ ǫ0 for sufficiently largen.

Similarly, for receiver2, if

R2 + R′
2 < I(V2;Y2|U),

thenP (n)
e,2 ≤ ǫ0 for sufficiently largen. Hence,P (n)

e ≤ ǫ0 as
long as the rate pair(R1, R2) ∈ RIC(πIC−I).

2) Equivocation Calculation:To show that (5a) holds, we
consider the following equivocation lower bound

H(W1|Y2) ≥ H(W1|Y2,V2,U) (51)

where inequality (51) is due to the fact that conditioning
reduces entropy. By applying the entropy chain rule [5], (51)
can be expanded as follows

H(W1|Y2)

≥ H(W1,Y2|V2,U)−H(Y2|V2,U)

= H(W1,V1,Y2|V2,U)

−H(V1|Y2,V2,U,W1)−H(Y2|V2,U)

= H(W1,V1|V2,U)−H(V1|Y2,V2,U,W1)

−H(Y2|V2,U) +H(Y2|V1,V2,U,W1). (52)

Based on functional dependence graphs [27] and the random
code construction, we can show that the following is a Markov
chain

W1 → (V1,V2,U) → Y2

which yields

I(W1;Y2|V1,V2,U) = 0. (53)
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Hence, by using (52) and (53), we obtain

H(W1|Y2) ≥ H(W1,V1|V2,U)−H(V1|Y2,V2,U,W1)

−H(Y2|V2,U) +H(Y2|V1,V2,U)

= H(W1,V1|V2,U)−H(V1|Y2,V2,U,W1)

− I(V1;Y2|V2,U)

≥ H(V1|V2,U)−H(V1|Y2,V2,U,W1)

− I(V1;Y2|V2,U). (54)

We consider the first term in (54). Note that givenU = u,
V1 andV2 are independent andV1 hasQ1 possible values
with equal probability. Hence,

H(V1|U,V2) = H(V1|U)

= logQ1

= n(R1 +R′
1). (55)

We next show thatH(V1|Y2,V2,U,W1) ≤ nǫ2, where
ǫ2 is small for sufficiently largen. In order to calculate
the conditional entropyH(V1|Y2,V2,U,W1), we consider
the following situation. We fixW1 = w1, and assume that
transmitter1 transmits a codewordv1(w1, k1) ∈ C1(w1), for
1 ≤ k1 ≤ M ′

1, and that receiver2 knows the sequences
V2 = v2 and U = u. Given indexW1 = w1, receiver
2 decodes the codewordv1(w1, k1) based on the received
sequencey2. Letλ(w1) denote the average probability of error
of decoding the indexk1 at receiver2. Based on joint typicality
[5, Chapter 8], we have the following lemma.

Lemma 2:λ(w1) ≤ ǫ0 for sufficiently largen.
Proof: We provide the proof in the Appendix.

Fano’s inequality implies that

1

n
H(V1|Y2,V2,U,W1 = w1) ≤

1

n
[1 + λ(w1) logM

′
1]

≤
1

n
+ ǫ0I(V1;Y2|U)

, ǫ2 (56)

where the second inequality follows from Lemma 2 and (48).
Consequently,

1

n
H(V1|Y2,V2,U,W1)

=
1

n

∑

w1∈W1

P (W1 = w1)H(V1|Y2,V2,U,W1 = w1)

≤ ǫ2. (57)

Finally, the third term in (54) can be bounded based on the
following lemma.

Lemma 3:

I(V1;Y2|V2,U) ≤ nI(V1;Y2|V2, U) + nǫ3 (58)

whereǫ3 is small for sufficiently largen.
Proof: We provide the proof in the Appendix.

By using (55), (57), and (58), we can rewrite (54) as

1

n
H(W1|Y2) ≥ R1 +R′

1 − I(V1;Y2|V2, U)− ǫ2 − ǫ3.

joint 

encoder

(W1,W2)

x

mapping

p(x | v1,v2)

v2

v1

U

Fig. 7. Code construction for BC-CM

By the definition ofR′
1 (48), we have

R1 −
1

n
H(W1|Y2,X2,W2) ≤ ǫ4 (59)

whereǫ4 , ǫ1+ ǫ2+ ǫ3, and, thus, the security condition (5a)
is satisfied. Following the same approach, we can prove that
(5b) is satisfied.

B. Broadcast Channel with Confidential Messages

We next prove Theorem 4 based on thedouble-binning
scheme which combines theGel’fand-Pinsker binning[23]
and therandom binning. In this subsection we redefine the
parametersR1, R2, R′

1, R′
2, Q1, Q2, M1, andM2. The coding

structure for the BC-CM is shown in Fig. 7. We employ
a joint encoder to generate two equivocation codewordsv1

andv2, one for each messageW1 andW2. The equivocation
codewords are mapped into the channel inputx. The details
of random code generation are as follows.

We fix P (u), P (v1|u) andP (v2|u), as well asP (x|v1, v2).
Let 0 ≤ α ≤ 1,

R′
1 , I(V1;Y2|V2, U)− ǫ′1

R′
2 , I(V2;Y1|V1, U)− ǫ′1 (60)

and

R† , I(V1;V2|U) + ǫ′1 (61)

whereǫ′1 > 0 andǫ′1 is small for sufficiently largen.

• [codebook generation] We generate randomly a typical
sequenceu with probability

P (u) =

n
∏

i=1

P (ui)

and assume that both the transmitter and the receivers
know the sequenceu.
We generateQt = 2n(Rt+R′

t+R†) independent sequences
vt each with probability

P (vt|u) =
n
∏

i=1

P (vt,i|ui)

and label them

vt(wt, st, kt), wt ∈ {1, . . . ,Mt}, st ∈ {1, . . . , Jt},

andkt ∈ {1, . . . , Gt}. (62)

whereMt = 2nRt , Jt = 2nR
′
t , andGt = 2nR

†

. Without
loss of generalityQt, Mt, Jt, andGt are considered to
be integers. Let

Ct ,
{

vt(wt, st, kt), for all (wt, st, kt)
}
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sub-bin (Mt,1) 

sub-bin (Mt,Jt) 

Fig. 8. Double binning

denote the transmittert codebook. Based on the labeling
in (62), the codebookCt is partitioned intoMt bins, and
thewt-th bin is

Ct(wt) , {vt(wt, st, kt), for st ∈ {1, . . . , Jt}

andkt ∈ {1, . . . , Gt

}

.

Furthermore, each binCt(wt) is divided intoJt sub-bins,
and the(wt, st)-th sub-bin is

Ct(wt, st) ,
{

vt(wt, st, kt), for kt ∈ {1, . . . , Gt}
}

.

The double binning structure forvt sequences is shown
in Fig. 8.

• [encoding] To send the message pair(w1, w2) ∈ W1 ×
W2, the transmitter employs a stochastic encoder. We ran-
domly choose a sub-binCt(wt, st) from the binCt(wt),
for t = 1, 2. Next, we select a pair(k1, k2) so that

(

v1(w1, s1, k1),v2(w2, s2, k2)
)

∈ A(n)
ǫ (PV1,V2|U ),

whereA(n)
ǫ (PV1,V2|U ) denotes, for a given typical se-

quenceu, the set of jointly typical sequencesv1 andv2

with respect toP (v1, v2|u). If there are more than one
such pairs, then we randomly select one. We generate
the channel input sequencex according to the mapping
P (x|v1, v2).

• [decoding] For a given typical sequenceu, let
A

(n)
ǫ (PVt,Yt|U ) denote the set of jointly typical sequences

vt andyt with respect toP (vt, yt|u). Decodert chooses
wt so that(vt(wt, st, kt),yt) ∈ A

(n)
ǫ (PVt,Yt|U ) if such

wt exists and is unique; otherwise, an error is declared.

1) Error Probability Analysis: Without loss of generality,
we assume that the message pair is(w1 = 1, w2 = 1) and
thats1 = s2 = 1. First, we consider the error eventT that the
encoder can not find an appropriate jointly typical pair, i.e.,

T , {
(

v1(1, 1, k1),v2(1, 1, k2)
)

/∈ A(n)
ǫ (PV1,V2|U ),

for st = 1, . . . , Jt, kt = 1, . . . , Gt, and t = 1, 2}.

The definition ofR† in (61) implies that

R† > I(V1;V2|U). (63)

Hence, following the approach of [28], we have that

P{T } ≤ δ3 (64)

whereδ3 > 0 andδ3 is small for sufficiently largen. In other
words, the encoding is successful with probability close to1
as long asn is large.

In the following, we assume that(v1(1, 1, 1), v2(1, 1, 1)) is
sent and define the event

K2 , {(v1(1, 1, 1),v2(1, 1, 1)) ∈ A(n)
ǫ (PV1,V2|U )}.

Now, the error probability at receiver1 is bounded as follows

P
(n)
e,1 ≤ P{T }+ (1− P{T })

[

P

{

⋂

s1,k1

Ec
1(1, s1, k1)

∣

∣

∣
K2

}

+
∑

w1 6=1

∑

s1,k1

P{E1(w1, s1, k1)|K2}

]

≤ P{T }+ P{Ec
1(1, 1, 1)|K2}

+
∑

w1 6=1

∑

s1,k1

P{E1(w1, s1, k1)|K2}

where

Et(wt, st, kt) = {(vt(wt, st, kt),yt) ∈ A(n)
ǫ (PVt,Yt|U )}.

Joint typicality [5, Chapter 14] implies that

P{Ec
1(1, 1, 1)|K2} ≤ ǫ,

P{E1(w1, s1, k1)|K2} ≤ 2−n[I(V1;Y1|U)−ǫ] for w1 6= 1.

Hence, we can bound the probability of error as

P
(n)
e,1 ≤ δ3 + ǫ+Q12

−n[I(V1;Y1|U)−ǫ]

= δ3 + ǫ+ 2n(R1+R′
1+R†) 2−n[I(V1;Y1|U)−ǫ] (65)

So, if

R1 +R′
1 +R† < I(V1;Y1|U), (66)

then for anyǫ0 > 0, P (n)
e,1 ≤ ǫ0 for sufficiently largen.

Similarly, for receiver2, if

R2 +R′
2 +R† < I(V2;Y2|U), (67)

thenP (n)
e,2 ≤ ǫ0 for sufficiently largen. Hence, (2), (60), (61),

(66), and (67) imply thatP (n)
e ≤ ǫ0 as long as the rate pair

(R1, R2) ∈ RBC(πBC).
2) Equivocation Calculation:We next prove that the se-

crecy requirement (5a) holds for BC-CM. Following the same
approach as (51)–(54), we have

H(W1|Y2) ≥ H(V1|V2,U)−H(V1|Y2,V2,U,W1)

− I(V1;Y2|V2,U). (68)

Consider the first term in (68)

H(V1|U,V2) = H(V1|U)− I(V1;V2|U).

Note that givenU = u, V1 attainsQ1 possible values with
equal probability. Hence, we haveH(V1|U) = logQ1. Using
the same approach as in Lemma 3, we can obtain

I(V1;V2|U) ≤ nI(V1;V2|U) + nǫ′2. (69)
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Hence, by the definition ofR† in (61), we have

H(V1|U,V2) = logQ1 − I(V1;V2|U)

≥ n(R1 +R′
1 +R†)− nI(V1;V2|U)− nǫ′2

≥ n(R1 +R′
1 − ǫ′2). (70)

Following joint typicality [5], (57) implies

H(V1|Y2,V2,U,W1) ≤ nǫ′3

whereǫ′3 is small for sufficiently largen. Applying Lemma 3,
the third term in (68) can be bounded as

I(V1;Y2|V2,U) ≤ nI(V1;Y2|V2, U) + nǫ′4

= n(R′
1 + ǫ′1 + ǫ′4) (71)

whereǫ′4 is small for sufficiently largen and the equality (71)
follows from the definition (60). Hence, by using (69), (70),
and (71), we can rewrite (68) as

1

n
H(W1|Y2) ≥ R1 − ǫ′5

whereǫ′5 , ǫ′1 + ǫ′2 + ǫ′3 + ǫ′4, and thus the security condition
(5a) is satisfied. Following the same approach, we can prove
that (5b) also holds.

VI. CONCLUSION

We derived the outer and the inner bounds on the capacity
of the interference and broadcast channels with confidential
messages. The obtained results offer insights into the two
communication problems. The difference in the outer bound
reflects the fact that the joint encoding at the transmitter can
only be performed in the BC-CM whereas in the IC-CM,
encoders offer independent channel inputs. The achievability
proof suggests the code construction appropriate for these
channel. We presented a special case of IC-CM for which the
two bounds meet to describe the capacity region. We proposed
and compared several transmission schemes for Gaussian
interference channels under information-theoretic secrecy. In
particular, the encoding scheme in which transmitters dedicate
some of their power to create artificial noise was shown to out-
perform both time-sharing and simultaneous transmission of
messages sent with the optimal power. However, constructing
practical wiretap codes that can achieve the derived rates is
a challenging problem. Code constructions for a binary-input
Gaussian wiretap channel have recently been proposed in [29].

APPENDIX

Proof: (Lemma 1) By the definition of∆1, we have

∆1 = I(V1;Y1|U)− I(V1;Y2|U)

= I(V1, V2;Y1|U)− I(V2;Y1|V1, U)

− I(V1, V2;Y2|U) + I(V2;Y2|V1, U). (72)

Similarly,

∆2 = I(V2;Y2|U)− I(V2;Y1|U)

= I(V1, V2;Y2|U)− I(V1;Y2|V2, U)

− I(V1, V2;Y2|U) + I(V1;Y1|V2, U). (73)

(72) and (73) imply that

∆1 +∆2 = −I(V2;Y1|V1, U) + I(V2;Y2|V1, U)

− I(V1;Y2|V2, U) + I(V1;Y1|V2, U)

= Θ2 +Θ1. (74)

Note that

2(∆1 +∆2) = 2(Θ1 +Θ2)

= (∆1 +Θ2) + (∆2 +Θ1)

Hence,

min[∆1 +Θ2, ∆2 +Θ1] ≤ ∆1 +∆2 = Θ1 +Θ2.

We have the derived results.

Proof: (Lemma 2) For a given typical sequence pair
(v2,u), let A(n)

ǫ (PV1,Y2|V2,U ) denote the set of jointly typical
sequencesv1 and y2 with respect toP (v1, y2|v2, u). For a
givenW1 = w1, decoder2 choosesk1 so that

(v1(w1, k1),y2) ∈ A(n)
ǫ (PV1,Y2|V2,U )

if suchk1 exists and is unique; otherwise, an error is declared.
Define the event

Ê(k1) = {(v1(w1, k1),y2) ∈ A(n)
ǫ (PV1,Y2|V2,U )}.

Without loss of generality, we assume thatv1(w1, k1 = 1)
was sent, and define the event

K̂1 =
{

v1(w1, 1) sent
}

.

Hence

λ(w1) ≤ P{Êc(k1 = 1)|K̂1}+
∑

k1 6=1

P{Ê(k1)|K̂1}

whereÊc(k1 = 1) denotes the event

{(v1(w1, 1),y2) /∈ A(n)
ǫ (PV1,Y2|V2,U )}.

Following the joint AEP [5], we have

P{Êc(k1 = 1)|K̂1} ≤ ǫ,

and, fork1 6= 1,

P{Ê(k1)|K̂1} ≤ 2−n[I(V1;Y2|V2,U)−ǫ].

Now, we can bound the probability of error as

λ(w1) ≤ ǫ +M ′
12

−n[I(V1;Y2|V2,U)−ǫ]

≤ ǫ + 2nR
′
1 2−n[I(V1;Y2|V2,U)−ǫ].

Note thatR′
1 = I(V1;Y2|V2, U) − ǫ1. Hence, by choosing

ǫ1 > ǫ, we have

λ(w1) ≤ ǫ0

whereǫ0 is small for sufficiently largen.

Proof: (Lemma 3) Let A(n)
ǫ (PU,V1,V2,Y2) denote the

set of typical sequences(u,v1,v2,y2) with respect to
P (u, v1, v2, y2), and

µ(u,v1,v2,y2) =

{

1, (u,v1,v2,y2) /∈ A
(n)
ǫ (PU,V1,V2,Y2)

0, otherwise
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be the corresponding indicator function.
We expandI(V1;Y2|V2,U) as

I(V1;Y2|V2,U) ≤ I(V1, µ;Y2|V2,U)

= I(V1;Y2|V2,U, µ) + I(µ;Y2|V2,U)

=
1

∑

j=0

P (µ = j)I(V1;Y2|V2,U, µ = j)

+ I(µ;Y2|V2,U) (75)

Note that

P (µ = 1)I(V1;Y2|V2,U, µ = 1)

≤ nP
[

(u,v1,v2,y2) /∈ A(n)
ǫ (PU,V1,V2,Y2)

]

log |Y2|

≤ nǫ log |Y2| , (76)

and

I(µ;Y2|V2,U) ≤ H(µ) ≤ 1. (77)

We only consider the termP (µ = 0)I(V1;Y2|V2,U, µ = 0).
Following the sequence joint typicality properties [5], wehave

P (µ = 0)I(V1;Y2|V2,U, µ = 0)

≤ I(V1;Y2|V2,U, µ = 0)

=
∑

(u,v1,v2,y2)∈A
(n)
ǫ

P (u,v1,v2,y2)[logP (v1,y2|v2,u)

− logP (y2|v2,u)− logP (v1|v2,u)]

≤ n[H(Y2|V2, U) +H(V1|V2, U)

−H(V1, Y2|V2, U) + 3ǫ]

= nI(V1;Y2|V2, U) + 3ǫ. (78)

Combining (75), (76), (77), and (78), we have the desired
result

I(V1;Y2|V2U) ≤ nI(V1;Y2|V2, U)

+ n
(

ǫ log |Y2|+ 3ǫ+
1

n

)

= nI(V1;Y2|V2, U) + nǫ3

where

ǫ3 , ǫ log |Y2|+ 3ǫ+
1

n
.

Proof: (Theorem 5)Since the switch channel is a special
case of the interference channel, we focus on the outer bound
(9) and the inner bound (10) and prove that

RO(πIC−O) = RIC(πIC−I)

for the SC-CM case.
We note that the distributionπIC−I implies that, for a given

U , auxiliary random variablesV1 andV2 are independent, but
this may not hold for the distributionπIC−O. Hence, we need
to first show that the condition

I(V1;V2|U) = 0 (79)

holds in the outer bound for SC-CM. Furthermore, if

I(V1;V2|Y2, U) = 0 (80)

also holds in the outer bound for SC-CM, then we have

I(V1;Y2|V2, U) = I(V1;Y2|U) + I(V1;V2|Y2, U)

− I(V1;V2|U)

= I(V1;Y2|U),

I(V2;Y2|V1, U) = I(V2;Y2|U) + I(V1;V2|Y2, U)

− I(V1;V2|U)

= I(V2;Y2|U), (81)

that is, the outer bound (9) meets the inner bound (10).
Now, we prove that conditions (79) and (80) holds in the

outer bound for SC-CM. By definitions (31) and (36), we need
to show that

I(W1;W2|Ui) = 0 (82)

I(W1;W2|Ui, Y2,i) = 0 (83)

whereUi = {Yi−1
1 , Ỹi+1

2 }. We first prove the equality (82).
Following the switch output definition (19), we have

{Yi−1
1 , Ỹi+1

2 } = {Zi−1
1 , Z̃i+1

2 ,Si−1
1 , S̃i+1

2 } (84)

and hence,

I(W1;W2|Ui) (85)

= I(W1;W2|Z
i−1
1 , Z̃i+1

2 ,Si−1
1 , S̃i+1

2 )

=
∑

s
i−1
1

∑

s̃
i+1
2

P (Si−1
1 = si−1

1 , S̃i+1
2 = s̃i+1

2 )

I(W1;W2|Z
i−1
1 , Z̃i+1

2 , si−1
1 , s̃i+1

2 )

=
∑

s
i−1
1

∑

s̃
i+1
2

[

i−1
∏

j=1

P (S1,j = s1,j)

n
∏

k=i+1

P (S2,k = s2,k)

]

I(W1;W2|Z
i−1
1 , Z̃i+1

2 , si−1
1 , s̃i+1

2 ). (86)

Now, for a givenst,i, the switch channel model (18) implies
that zt,i only depend on the channel inputxst,i,i. By using
functional dependence graphs [27], we can easily verify that

I(W1;W2|Z
i−1
1 , Z̃i+1

2 , si−1
1 , s̃i+1

2 ) = 0

for fixed switch state informationsi−1
1 and s̃i+1

2 . Hence, (86)
implies thatI(W1;W2|Ui) = 0. Following the same approach,
we can prove the equality (83). Therefore, we have the desired
result.
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