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Abstract—We study information-theoretic security for discrete
memorylessinterferenceand broadcastchannels with independent
confidential messages sent to two receivers. Confidential seages
are transmitted to their respective receivers with information-
theoretic secrecyThat is, each receiver is kept in total ignorance
with respect to the message intended for the other receiver.

The secrecy level is measured by the equivocation rate at the

eavesdropping receiver. In this paper, we present inner anduter
bounds on secrecy capacity regions for these two communiéah
systems. The derived outer bounds have an identical mutual
information expression that applies to both channel modelsThe
difference is in the input distributions over which the expression
is optimized. The inner bound rate regions are achieved by
random binningtechniques. For the broadcast channel, aouble-
binning coding scheme allows for both joint encoding and
preserving of confidentiality. Furthermore, we show that, br
a special case of the interference channel, referred to as ¢h
switchchannel, the two bound bounds meet. Finally, we describe
several transmission schemes for Gaussian interference ahnels
and derive their achievable rate regions while ensuring muial
information-theoretic secrecy. An encoding scheme in whic
transmitters dedicate some of their power to creatartificial noise
is proposed and shown to outperform both time-sharing and
simple multiplexed transmission of the confidential messazs.

I. INTRODUCTION

and determined the tradeoff between the transmission rate
and the secrecy level [1]. This result was generalized by
Csiszar and Korner who determined the capacity region of
the broadcast channel with confidential messages [2] intwhic
a message intended for one of the receivers is confidential.
Following the work of Wyner [1] and Csiszar and Korner
[2], the more recent information-theoretic research orusec
communication focuses at implementing security on the phys
ical layer. Based on independent efforts, the authors of [3]
and [4] described achievable secure rate regions and outer
bounds for a two-user discrete memoryless multiple access
channel with confidential messages. This model generalizes
the multiple access channel (MAC) [5, Sec. 14.3] by allowing
each user (or one of the users) to receive noisy channelsutpu
and, hence, to eavesdrop the confidential information sent
by the other user. In addition, the Gaussian MAC wiretap
channel has been analyzed in [6]-[10]. The relay channel
with confidential messages where the relay node acts as both
a helper and a wiretapper has been considered in [11]. The
relay-eavesdropper channel has been proposed in [12]. More
recently, the cognitive interference channel with conftién
messages has been addressed in [13]. The effects of fading
on secure wireless communication have been studied in [14]—

The broadcast nature of a wireless medium allows for tth&8l- . o )
transmitted signal to be received by all users within the com !N this paper, we study two distinct but related in
munication range. Hence, wireless communication sessiens Multi-terminal secure communication problems followirg t

very susceptible to eavesdropping. The information-tbgor

information-theoretic approach. We focus on discrete mem-

single user secure communication problem was first char&¢yless interferenceand broadcastchannels with indepen-
terized using theviretap channemodel proposed by Wyner dent confidential messages sent to two receivers. Confalenti

[1]. In this model, a single source-destination commuridcat

messages are transmitted to their respective receiverg whi

link is eavesdropped by a wiretapper via a degraded chanf81SUring mutuainformation-theoretic secrecyrhat is, each
The secrecy level is measured by the equivocation rate "§F€IVer is kept in total ignorance with respect to the mgssa
the wiretapper. Wyner showed that secure communicationifé€nded for the other receiver. We first derive outer bolards
possible without sharing a secret key between legitimatesys capacity regions for these two communication systems. &hes
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bounds have an identical mutual information expressio® Th
expression is optimized over different input distribugpne.,

for the interference channel, the two senders offer indégen
inputs to the channel and, for the broadcast channel, trdesen
jointly encodes both messages. We also derive achievatgle ra
regions for the two channel models. Here, we only consider
sending confidential messages and, hence, no common mes-
sage in the sense of Marton [19] is conveyed to the receivers
in the case of the broadcast channel. The inner bounds are
achieved usingandom binningtechniques. For the broadcast
channel, adouble-binningcoding scheme which allows for
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.. . . . T i 1 .
both joint precoding as in the classical broadcast channe,L-—rei'ls—"J'Etgr---\ Receiver 1

________________

[19], and preserving of confidentiality. Similarly, ensgi 1‘\_/\{1 _____ e_ n_C__/: X4 WW i

of confidential messages precludes partial decoding of the

H(W,|Y+)
message intended for the other receiver in the case of the Channel \\,ﬁi,,f,flﬁl
interference channel. Hence, rate-splitting encodingl use _ P(y1.YzlX1,x2) T )

. ! . . Transmitter 2 i > HW,|Yy) !
Carleial [20] and Han and Kobayashi [21] employed with ,--—--------- N ik st (A” 2
the classical interference channel is precluded. Instéea, | W enc [ Xe | e (I
encoders will use only stochastic encoders. We show that ="~ T Receiver2

for the special case of the interference channel, referred
to as theswitch channel, derived bounds meet. Finally, w&'9 %
describe several transmission schemes for general Gaussia
interference channels and derive their achievable ratensg channel uses while ensuring information-theoretic sgciie
while still ensuring information-theoretic secrecy. Arceding  channel is memoryless in the sense that

scheme in which transmitters dedicate some of their power to

createartificial noise is proposed and shown to outperform P(y1,yo|x1,x2) = Hp(yl iyl T2).

both time-sharing and simple multiplexed transmissionhef t o T

confidential messages. A stochastic encoder for transmitteis described by a matrix

The remainder of this paper is organized as follows. The n F - i
X ; . conditional probabilitiesf; (x;|w;), wherex; € X', w; €
tation and the channel model are given in $dc. Il. We state tgg P (i) ! Lo

Interference Channel with Confidential Messages.

main results in Se€Il. Outer bounds are derived in Set. IV. " and
Inner bounds associated with the achievable coding scheme Z fe(xe|we) =1
for the interference and broadcast channels with confidenti X €EX]
messages are established in 9ek. V. Finally, the results B&oding functions are mappings : Y, — W,. Secrecy
summarized in Se€_VI. levels at receivers and 2 are measured with respect to the
equivocation rates
Il. DEFINITIONS AND NOTATIONS 1

1

A. Notations R (W2Y) and ZH(WLY). @

Throughout the paper, a random variable is denoted with anan (M, My, n, Pe(”)) code for the interference channel
upper case letter (e.gX), its realization is denoted with theconsists of two encoding functiong,, f», two decoding
corresponding lower case letter (e.g), the finite alphabet functions, 1», and the corresponding maximum average
of the random variable is denoted with the correspondirgror probability
calligraphic letter (e.g.sX), and its probability distribution is (n) & (n)
denoted withPx (). For example, the random variabtewith P £ max{P"), P3)} (2)
probability distributionP(z) = Px () takes on values in the where, fort = 1,2,
finite alphabetY'. A boldface symbol denotes a sequence with
the following conventions Pe(?

X =[Xy,...,X,], X' =[X1,...,X],

M, ]\/[ 7vZJt(th) wt|(w1,w2) Seni.

w1,w2

i A rate pair(R;, R») is said to beachievablefor the interfer-
and  X'=[X;,... Xy ence channel with confidential messages if, for apy> 0,

; (n)
Finally, we useA(" (Px) to denote the set of (weakly) jointly there exists g My, My, n, Pe™) code such that

typical sequences with respect toP(x) (see [5] for more M, >2"% fort=1,2 3)
details). and the reliability requirement

. . . (n)
B. The Interference Channel with Confidential Messages P <€ )

Consider a discrete memoryless interference channel with@nd the security constraints
nite input alphabe_tg’l, Ao, fmlt_(nT out_pu'F alp_habewl, Vs, and nRy — H(W1[Y2) < neo (5a)
the channel transition probability distributid?(y1 , ya|z1, 22).
Two transmitters wish to send independent, confidentiak mes nhy — H(W2|Y1) < neo (5b)
sages to their respective receivers. We refer to such a eharare satisfied. This definition corresponds to the so-calleak
as theinterference channel with confidential messagis secrecy-key rat§22]. A stronger measurement of the secrecy
CM). This communication model is shown in Fid. 1. Symbolkvel has been defined by Maurer and Wolf in terms of the
(x1,22) € (X1 x &) are the channel inputs at transmittérs absolute equivocation [22], where the authors have shoain th
and 2, and (y1,y2) € (4 x )Y2) are the channel outputs atthe former definition could be replaced by the latter without
receiversl and?2, respectively. any rate penalty for the wiretap channel.

Transmittert, ¢ = 1,2, intends to send an independent The capacity region of the IC-CM is the closure of the set
messagelV; € {1,...,M;} to the desired receiver in n  of all achievable rate pair&R;, R»), denoted byCic.
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Transmitter ,,--B-ef;-ei-v-ef jj"\\ Finally, we propose several transmission schemes for @Gauss
R N \(/1:/v-—>w1 ! interference channels and derive their achievable ratienmsg
| ~ | . . .
W, —] i Channel AR HOWY ) ! under information-theoretic secrecy.
| enc | X ( a Ie) e mmm e /
[ ! P(y1,yalX (CTTIITTTTI IS . : )
EW24 i e L > H(W1|Y2)\: A. Interference Channel with Confidential Messages
““““““ ’ Yo Ny ! Let U, Vi, and V, be auxiliary random variables. We
\\WﬁRiez:éi;/érié"‘/ consider the following two classes of joint distributions the
interference channel. Let;c_o be the class of distributions
Fig. 2. Broadcast Channel with Confidential Messages. P(u, V1,02, T1, T2, Y1, yg) that factor as
P(u)P(v1,va|u) P(z1|v1) P(z2|v2) P(y1, y2|z1, 22),  (7)
C. The Broadcast Channel andmc_; be the class of distributions that factor as

We also consider théroadcast channel with confidential
messagegBC-CM) in which secret messages from a single
transmitter are to be communicated to two receivers, asshow
in Fig.[2. A discrete memoryless BC-CM is described usi
finite setsX, V1, )», and a conditional probability distribution
P(y1,y2|z). Symbolsz: € X are channel inputs an@:, y2) €
(D1 x)») are channel outputs at receivérand2, respectively.
The transmitter intends to send an independent medsage
{1,..., M} & W, to the respective receivere {1, 2} in I(Va; Yo Vi, U) — I(Va; Y1V, U) ] (9b)
n channel uses while ensuring information-theoretic sgcrec o .

yer all distributionsP (u, v1, va, 21, 2, Y1, y2) IN TIc—0. FOr

as given b a) an b). The channel is memoryless in t )
g yIEk) and.{bb) y ﬂ1e interference channél’; x X, P(y1, y2|x1,x2), V1 X Va)

sense that : ) . . .
with confidential messages, the capacity region

P(u)P(vi|u) P(vz|u) P(z1|v1) P(22|v2) P(y1, y2| 71, T2).

(8)
Theorem 1:[outer bound for IC-CM] LetRo (mic—0) de-
te the union of all Ry, Rs) satisfying
I(‘/l7Y1|U)_I(‘/17Yv2|U)7 :| (ga)
I(Vo; Yo|U) = I(Va; 1 |U),

OSngmin[

OSRQSmin[

n

P(y1,y2/x) = Hp(yl,i7y2,i|$i)- Cic € Ro(mic-0).

i=1

Proof: We provide the proof of Theoreli 1 in SEcC] '
Theorem 2:[inner bound for IC-CM] LetR;¢(mic—1) de-
note the union of al( Ry, Ry) satisfying

A stochastic encoder is specified by a matrix of conditional
probabilities f (x|ws, we), wherex € X™, w, € W,, and

> S wn) = 1. 0< Ry < I(Vi;Yi|U) — I(Vi; Ya|Va, U) (10a)
xexr 0 < Ry < I(Vi; Ya|U) — I(Va; Y1 |2, U) (10b)
Note that f(x|wy,w2) is the probability that the pair of S )
messagetuw; , w») are encoded as the channel inguTThe de- OVer all distributionsP (u, v1, v2, 1,22, Y1, y2) In mc-1. Any
coding function at the receiveris a mappings, : Y, — W,. rate pair
The secrecy levels of confidential messad&s and W, (R1, R2) € Ric(mo-1)

are measured, respectively, at receivers 1 ("j‘lr)‘d 2 in termsiQfachievable for the interference channel with confidéntia
the equivocation rated](1). AM;, Mo, n, P."’) code for messages.

the broadcast channel consists of the encoding funcfion Proof: We provide the proof in SeE_VIA. m
decoding functions, ¢, and the maximum error probability To derive the achievable rate region for the IC-CM, we
Pen) in @), where, fort = 1,2, employ an auxiliary random variablé in the sense of Han-
) 1 Kobayashi [21]. For a give®/, we consider two independent
Pei' = Z MlMQP[¢t(Yt) # we|(wy,wa) sent.  (6)  ggochastic encoders, that is, the pre-coding auxiliargloam
w1,W2 variablesV; and V; will be independent for a gived/, as

A rate pair(R;, R,) is said to be achievable for the broadcagtiven by [8). To ensure information-theoretic secrecy, the
channel with confidential messages if, for any> 0, there achievable rate?; includes a penalty ternd(V1; Yz|Va, U),

exists a(My, Mo, n, p(i(”)) code which satisfie$3)3(5). which is a conditional mutual information of the receives 2’
The capacity region of the BC-CM is the closure of the s@@vesdropper channel while assuming the receiver 2 can first
of all achievable rate pair&R;, R2), denoted byCpc. decode its own information.
[1l. M AIN RESULTS B. Broadcast Channel with Confidential Messages

In this section, we state our main results. We first describeFor the broadcast channel, we focus on the class of distri-
the outer and inner bounds on the capacity regions of both RHIONS P(u, v1,v2, z,y1, y2) that factor as
terference and broadcast chgnnels with confidential messag P(u)P(v1, valu) P(z|vr, v2) Ply1, yo|2). (11)
We then show that the derived bounds meet for a special _
case of the interference channel, called the switch channék refer to this class aspc.
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Theorem 3:[outer bound for BC-CM] LeR (mp¢) denote which implies that

the union of all( Ry, Ry) satisfying I(Vi:YA|U) > I(Vi; Ya|U)
| (Vi a|U) = 1(V; Y2|U) } Hence the outer bound can be rewritten as the union of all
Ry < min ’ ! ! 12a
b= { I(Vi; Y1V, U) — I(V1; Y2 |V, U) (122) (R1, Ry) satisfying
| 1V Y2|U) = I(Va; Y|U), Ry < I(X:Y:) - I(X:Y- 16a
Ry < min | 0 IV I | a2 LS mas[(XGY) ~I(X;%)) (169)
Ry =0 (16b)

over all distributionsP (u, v1, ve, z,y1,y2) In Tc and auxil-

iary random variable#/, V3, andV, satisfying where [I6h) follows from [2, Theorem 3]. Next, by applying
Theorem[# and settings = U = const, we obtain the

U—=Vi—X and U=V X (13) identical rate region ad (IL6). This result implies that only

For the broadcast channélt, P(y:,y0|x), Y1 x )») with the “better” user can get the non-zero secrecy rate for the

confidential messages, the capacity region less noisy BC-CM. Note that, the single-antenna Gaussian
broadcast channel is a special case of the less noisy bistadca
Cgc € Ro(me). channel.

In the following, we consider a sufficient condition under

Proof: We provide the proof of Theorefd 3 in Séc) I\ which bothRR; and R, can be strictly positive for the BC-CM.

Remark 1:Outer bounds for the BC-CM and the IC-CM
have a same mutual information expressig(-), but, they
are optimized over different input distributionsgc and
TIc—0, respectively.

Corollary 1: For a broadcast channel, if there exist a dis-
tribution P(u, v1,v2, 2, y1,y2) € mac for which

Theorem 4:[inner bound for BC-CM] LetRp¢(mpc) de- I(Vi;V1|U) > I(V1;Ys, Va|U) (17a)
note the union of al(R;, R») satisfying and I(Va; Ya|U) > I(Va; Y1, Vi|U), (17b)
Ry >0, Ro >0 then both receivers can achieve strictly positive rateslevhi

Ry < I(Vis VA|U) — I(Vi; Va|U) — I(Vi; Ya| Vo, U)  (14ad) ensuring information—;heoret_ic secrecy.
Proof: The result is obtained by applying Theorem 4 and
Ry < I(Va; Yao|U) = I(Vi; V2|U) — I(V2; Y1[Vi,U)  (14b)

by settingR; > 0 and Ry > 0. [ |
over all distributionsP(u, v1, v, z, y1,2) in mec. Any rate More recently, motivated by this work, the multiple-antann
pair Gaussian broadcast channel with confidential messages was
(Ry, R2) € Rpc(mpe) studied in [24]. It was shown that with multiple antennas at

transmitters, strictly positive rates to both receivers ¢
is achievable for the broadcast channel with confidentiathieved while ensuring information-theoretic secrecy.
messages.

Proof: We provide the proof in Se€_VB. m C. Switch Channel
We note that, for a broadcast channel, we can employin this subsection, we obtain the secrecy capacity region

joint encoding at the transmitter. Hence, the achievabtngp for a special case of the interference channel referred to as
scheme for the BC-CM is based on ttheuble-binningscheme  the switch channel (SC). As shown in Fig. 3, receivers in the
which combines theGel'fand-Pinsker binning23] and the SC cannot listen to both transmissions (from encodeasnd
random binning To preserve confidentiality, the achievabil2) at the same time. For example, each encoder may transmit
ity bounds onR; and R each include the penalty termat a different frequency, while each receiver may listeryonl
I(V1; V2|U). Without the confidentiality constraint, Marton'sto one frequency during each symbol timeWe assume that
inner bound [19] on the broadcast channel illustrates dmy t each receiver € {1,2} has a random switch; € {1,2},
the sum rate has the penalty terhgVy;V>|U). To ensure which chooses betweenandt independently at each symbol
information-theoretic secrecy, the proposed coding sehenime i with probabilities
pays “double” when jointly encoding at the transmitter.

Example 1:[less noisy broadcast channel] Consider a spe- P(Sii=t)=m ,
cial class of broadcast channels in which the chaihel Y; P(Sii=t)=1-7, i=1,...,n
is less noisythan the channek — Y3, i.e., wheref is the complement of. Therefore, receivet listens
I(ViYh) > I(V: Ya) (15) to its own informationz; ; from encodet whenevers, ; =t,

while it eavesdrops the signa} ; whensS, ; = t. By assuming
for everyV — X — (Y1, Y2) [2]. We first consider the outer that the switch state information is available at the rezgiv
bound of the less noisy BC-CM. Based on the Markov chaimge have that

in (I3) and the definition(15), we have P(yoslrs, @oi,504) = Pyosler)l(ses = 1)
I(‘/i,yllU = u) Z I(Vl,Y2|U = u) + P(yt,i|x2,i)1(st,i = 2)
I(Vy; iU = u) > 1(Va; Ya|U = u), = P(Yt,ilTs,,,i) (18)
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1:(t1) Ny A
X1 S W X y _[ Wi
i Y 1 1 1
R ! transmitter 1 receiver 1 @
W,
X Yo W) X Yr[
2 S transmitter 2 receiver 2 @
2: (‘Ez) N,
Fig. 3. Switch channel model Fig. 4. Gaussian interference channel with confidential sagss
where1(-) is the indicator function. We assume the channel input and output symbols to be from

The switch state informatiofiS, ;}i., is an i.i.d. process an alphabet of real numbers. Following the standard form GIC
known at receivet. Hence, we can considef; as a part of [20], the received symbols are
the channel output, i.e., we set

Yt,i £ {Zt,ia St,i} (19)

where z; ; represents the received signal value at recefver _ _
Under this setting, we have the following theorem on th&herea; anda, are normalized crossovehannel gains.X;

Yi=Xi4+aXe+ N (23a)
}/2 :Oé2X1+X2+N2 (23b)

secrecy capacity regiofigc of SC-CM. and X, are transmitted symbols from encodérand 2 with
Theorem 5:For the switch channel with confidential mesthe average power constraint
sages, the capacity regidisc is the union of all(Ry, R2) n 2
=S, E[X7
satisfying Y —<p, fort=1,2,
— n
0 < Ry < I(Vi;1|U) — I(Vi; Y|V, U) (20a) =
0< Ro < I(Va; Ya|U) — I(Va; V1| V4, U) (20b) and N; and N, correspond to two independent, zero-mean,
o ’ ’ ’ _ unit-variance, Gaussian noise variables. In the following
over all distributionsP(u, v1, vz, 21, Z2, Y1, y2) N Tic-1. focus on theweakinterference channel, i.e), < o} < 1 and
Proof: We provide the proof in the Appendix. B (< a? < 1. We describe three transmission schemes and their

~ Remark 2:In SC-CM, receivert listens to the desired achievable rate regions under the requirement of infoonati
information during time fractiorr,, and intercepts the otheripheoretic secrecy.

message during the time fractioh— ;). Whenm, = =1, 1) Time-Sharing: The transmission period is divided into
both receivers only listen to their own messages and thus S non-overlapping slots with time fractions, and po,

CM reduces to two independent parallel channels without thg,ere p1 > 0, po > 0, and p; + p» = 1. Transmittert
secrecy constraints. Whef = 1 andr; = 0, receiver2 acts gends confidential messag; in slot ¢ with time fraction

as an eavesdropper only and behand_YQ are independent ,, 4 — 1 2. We refer to this technique as the time-sharing
with respect to the messagg,. Hence, in this case, SC-CMgcheme. We note that, in each slot, the channel reduces to a

reduces to the wiretap channel [1]. _ Gaussian wiretap channel [26]. L&[GTI]C denote the set of
Example 2:[noiseless memoryless switch channel] We 3R, R,) satisfying

sume that the channel is discrete memoryless and that the

N . ; = o p p
input-output relationship at each time instant satisfies 0< R < % [bg (1 n _1) log (1 +a%_1)}
v, { X1, Sti=1 for i—1 (21) P P1
ti = ’ T or +1=1,...,n P P
Xoiy S =2 0< Ry < % [log (1+—2) — log (14—04%—2)}
where P(S;; = t) = 7 and7y + 72 > 1. Theoren{b implies P2 Pz
that the secrecy capacity region of this channel is: over all time fractiong p1, p2) pairs. Following [26], we can

show that any rate pair

(e RECTITNIR | e

We note that herey; + » — 1 equalsm — (1 — 72), the time | .
that user 1 sends without user 2 listening and also eqyals IS ach|evqble for GlC'CM' . . )
(1 - 1), the time that user 2 sends without user 1 listening., 2) Multiplexed Transmissiontn the multiplexed transmis-

sion scheme, we allow communication links to share the same
D. Gaussian Interference Channel with Confidential Messagglzegrees of free(_jom._Smce we require mf_ormatlon-_thetmretl
secrecy for confidential messages, no partial decodingeof th

‘We next consider a Gaussian interference channel (GlGher transmitter's message is allowed at a receiver. Hence
with confidential messages (GIC-CM) where each node ey interference results in an increase of the noise flodr. Le
ploys a single antenna as shown in fiy. 4. We have proposed

this problem originally in [25]. 0<p <1, t=1,2.

(R1, Ry) € RUJ,
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By independently choosing and

Vi =X ~NI[0,8:P], t=1,2 I(V1;Y3|Va) (Vi aoVi + Vo + Ay + No|Va)

=1
and lettingU serve as a convex combination operator, Theo- = h(agVi + Az + Na) — h(Az + N2)
1

rem[2 implies that any rate pair ~ Lo (1 n o361 Py )
2 1+ 3Py )’
(R17 Rg) € R[Cl?.vll]c .. PP
¥ Similarly, we can calculate
is achievable for GIC-CM, WherR[GI]C denotes the convex 1 (1= \)B2P
hull of the set of(R, Ry) satisfying I(Vy; Yz) = 5 log {1+ Ty j;’ﬂ P}
Q50147 21472
R >0, Ry>0 and
1 B1 Py 1 9 2
Ri<Zlog 14— ) — Zlog(l P 1 (1= Aaifaly
tT2 Og( +1+a?ﬁsz) 3 logll +azfP) I(Vz;lﬁlm—ilog{um .
1 ﬂQPQ 1 2 . .
Ry < =1 1+ ———— | — = log(1 P,
2 < 5 log ( + g a%ﬁlPl) 5 og(l+ aif2Ps) Applying Theoreni 2, we can prove that any rate pair

(A]
over all power-control parametefs and .. (1, R2) € Rgic

3) Artificial Noise: We next describe a scheme whichg ochievable for GIC-CM, Wher@@C denotes the convex

allows one of the transmitters (e.g., transmito generate i of the set of(R,, R») satisfying
artificial noise. This strategy involves splitting of thearis- ’
mission power of transmittet into two partsP; p; and P 4, 0< Ry < llog <1 i B1 Py >
where ) 1+ a2B:P
1 a2B, P
Py = (1= N)B2P, — 5 log (1 + %) (27a)
2472
P2,A:)\BQP23 and OS/\SL 1 (1_/\)[32P2
. ) . . <Ry <=
so that transmitteR encodes the confidential message with 0< < 2 log {1 * 1+ a2B P+ )\ﬂgPJ
power P, 5y and generates artificial noise with powgs 4. 1 (1= XNa2B2Py
The artificial noise can spoil the received signal of reaeive —glog |14+ —F—5-—— (27b)
2 1+ )\alﬁng

2 and, hence, protect the confidential message of transmitter )
1. In this sense, this scheme allowsnsmitter cooperation ©Ver all power-control parameter pdjs;, 52) and the power-

without exchanging confidential messages. Ueserve as a splitting parametep. Furthermore, the achievable region can

convex combination operator, be increased by reversing the roles of tran_smi.tle:a@d 2.
Remark 3:We note that secure communication in a Gaus-
Xi1=V: and Xy, =V + A (26) sian channel with two senders and two receivers was also

rﬁonsidered in [9], [10] for the Gaussian MAC with a wire-

where Vi, V,, and A, are independent Gaussian rando . )
tapper (GMAC-WT). In this setting, both messages are to be

variables: ) )
conveyed to one of the receivers and none to the other receive
Vi ~ N0, B1 Py, Although the two problem formulations differ, the absenée o
Vo ~ N0, P2 p], rate splitting in the interference channel results in thattivo
and Ay ~ N0, Py l. proposed encoding schemes have a closer relationship than

the schemes suggested for the classical MAC and interferenc
Here A, denotes the artificial noise which cannot be predicteshannels. In fact, the encoding scheme proposed in [9], [10]

and subtracted by either receiver. Since for the GMAC-WT, referred to asooperative jammingand
- our encoding scheme which createtficial noisein (28) are
N=X+aXs+M the same.
=Vi+ai(Va+ Az) + Ny Example 3:1In Fig.[3, we compare the achievable regions:
T M A
and Ric: R andReje
Yy = axXh + Xo + V) by numerical calculation, for

= Vi + (Vo + 42) + Mo, P =P, =10anda; = ay = 0.2

we have

I(Vi; Y1) =1(Vi; Vi 4+ aq (Vo + Ag) + Ny)

:h(Vl—l-oq(VQ—l-Ag)—i—Nl) . . . . L
— h(an(Va + As) + N1) in F|g.|5.b. Both numerical results |[Ius'[_rate that the fanital
noise strategy allows for communication over larger rates,
- llog (1 + &) when compared to the time-sharing and multiplexed transmis
2 1+ affoPs sion schemes.

in Fig.[H.a and
P :Pg:l()()andozl =ay =0.2
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1.8 3 ‘
! ! ! ! ! ! ! ! ———time-sharing
; ; ——-multiplexed transmission
25— e ———————————— — artificial noise ,

0.4

——-time-sharing | | |
0.2 ——-multiplexed transmission [~~~ R
—— artificial noise | | Y

0 T I T 1 0
0 0.2 0.4 0.6 0.8 1
Rl Rl
a.Pp=P,=10 a. Py = P> =100
Fig. 5. Achievability regions for the GIC-CMa; = a2 = 0.2).
IV. OUTER BOUND Note that

In this section we prove Theorefs 1 &id 3. In the following,
we derive the upper bound fdk,. The upper bound foR,
follows by symmetry. Hence, the bound (B2) can be expressed as follows

The basis for the outer bound derivation is the reliable
transmission requirement and the security constrainte@as H(W1Y2)

Y, =(U,Yin) and Y, = (U,Y2:1).

Fano’s inequality [5], the reliable transmission requiesn(4) < HWh|U1,Ya1) — HWh|Up, Y1)
implies that n n—1
H(W1|Y1) S €0 IOg(Ml — 1) =+ h(Eo) é n51. (283) + ZQ H(W1|U“ }/271) o Zl H(W1|U“ Yl’i) + 7151
H(ngYg) < € lOg(]\/fg — 1) + h(eo) £ nos. (28b) n
=Y [HW|U;, Ya,:) — HWA|Ui, Ya)] + ndy

whereh(x) is the binary entropy function. On the other hand,
the security constraini (ba) implies that

an = H(Wl) S H(W1|Y2) “+ neg. (29)

i=1

=Y [I(Wi; Y14|U;) — I(Wh; Yau[U3)] +ndy . (33)
=1

In fact, the bound[{9) o, is based on the following two Inequalities an 3) implv that
different upper bounds on the equivocatiii{iV;|Y3). q [(2P) and (33) imply

_ < . AU — . AU
A. First Bound nRi —n(d1 + o) < ;[I (W3 Y1,4|Us) = T(Wh; Yo |U;)]

The first upper bound is derived by applying the techniques R
in [2]. By using Fano's inequality[28a), we obtain thd\OW ford = di + ¢, we have
following bound on the equivocation

1 n
R <= I(W: Y|U) — IWh; Yo 5 |UD 4+ 6. (34
H(Wa[Ya) < HOWi[Ya) — H(Wi Y0 -nbs.  (30) 1_nZ[< 13 Y1, |Us) — I(Wh; Yo, U;))] (34)

Let Following [5, Chapter 14], we introduce a random varia@jle
U = (YL, i), (31) uniformly distributed over{1,2,...,n} and independent of
¢ L2 (W, Wy, X1, X5,Y1,Ys). Now we can boundg; as follows
Since (U;, Ya,;) = (Y71, Y%) = (Ui_1,Y1,i1), we have

1< :
HW1|U;, Y2 3) = HWi|Ui—1,Y1,-1) =0 Ry < n Z[I(Wl;ylaiwi’ Q=1)
i=1

and we can rewritd (30) as follows — I(Wy; You|Ui, Q = i)+ 6

+ ) [HW|U;, Yay) -
; _I(Wl;Y?,Q|Y? 1’Y2Q+1’Q:i)]+6

— HWh|Ui—1,Y1,i-1)] + ndr. (32) =1(W1;Y10|Uq, Q) — I(W1;Y20|Uq, Q) +46. (35)
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Let by X £ X¢. Now, the joint distributionP (u, v1, va, 2, y1, y2)
factors as[(11).

a a a

U=Uq @), Xi1=Xiq X2=Xag, To consider the sum rate we let
Nio e ¥ifhae, Ay = I(Vi: A |U) — (Vi Ya|U
Vi (,U), V£ (WD), (36) e

(
: . o Ay =1(Va; Y2|U) — I(Vas 1|U)
Note that, under the settinig {36), the conditional distrduof (

O, =I1V;;Y1|Vo,U) — I(V1; Ya| Vo, U
P(y1, 92|21, 22) coincides with the original channel transition ! 1V V2,U) = 1(Vi; 2]V, U)
probability. We can rewritd (35) as Oz = I(Va; 2| V4, U) — I(Vo; Y4|VA, U).
Ry < I(Vi; i |U) — I(Va; Ya|U) + 6. (37) The bounds[{42) and_(#3) imply the the following bounds
B on the sum rate:
Remark 4:Note that we employ only Fano’s inequality

([283) to derive the first bound oR;. Ri+ Ry < Ay + Ay, (44)
Ri+ Ry <01+ 6, (45)

B. Second Bound Ri + Ry < min[A; 4 02, Ay + O] (46)

The basic idea of the second bound can be describedv\ﬂ,§ere the bounds(#4) an@{45) are using either the first
follows. We assume that a genie gives receiveressagéVs, bounding approach (see SEC_IV-A) or the second bounding
while receiver2 attempts to evaluate the equivocation with approach (see SeC.T¥-B) only, and the bound (46) are based
as side mforma_tlon. _ on both approaches. The following lemma illustrates that th

Now, the equivocation can be upper bounded by combination sum rate bourld{46) is indeed tighter than bsund

H(W1|Y2) < H(Wy, Ws|Ya2) @32) and [@5).
= HW1|Y2, Ws) + H(W>|Y2). (38) Lemma 1:
By applying [28h) and(28b), we have min[A; + s, Ay + 01] < Ay + Ay = O + Oy,
H(Wi[Y1) <néy and H(W2|Y2) < néds. (39) Proof: We provide the proof in the Appendix. -

_ It is interesting to further analyze the outer bound by
Since H(W1|Y1,Ws) < H(W1[Y1), we can further bound comparing bound{87) anf{41). By assuming thaind &'

(38) as follows converge ta), the difference between these two bounds is
H(W1|Y2) < HWi|Y2, Wa) 4+ ndo Rian®2A -0
< HW1[Yz, Wo) - H(WA[Y1, We) = IV ValYa,U) — (Vi Val¥a, U)
+1(01 + 02). (40) = I(Wy; Wy |Ya, U) — I(Wy; WalV1,U).  (47)
Let &' = 61 + * <o Following the same approach as iRy, opeerve that, in general, the difference between bounds
(0)-(38), we obtain (32) and [(411) is non-zero.
Ry < I(VisYa|Ve,U) = I(Vi; Y2V, U) + 4", (41)

Remark 5:In order to get the second bound dty, we V. INNERBOUND

employ the requirement that not only receidecan decode A. Interference Channel with Confidential Messages
the messagél; successfully, but also receivercan decode
the messagél, successfully in[(39) and_(#0) and, hence,
use Fano’s inequalitie§ (28a) ard (P8h).

In this subsection we derive the achievable rate region for
Wthe interference channel. We prove that the reden(mc—1)
is achievable. The coding structure for the IC-CM is illastd
in Fig.[d. We employ an auxiliary random variallgin the

C. Outer Bound and Discussion sense of Han-Kobayashi [21] and two equivocation codebooks
Combining the two upper bounds{37) wifi{41) and assurstochastic encoders), one for each messtge and W>.
ing thatd andd’ converge ta), we have Encodert mapsv; into a channel inpuk;. More precisely,
IV Vi) — I(Vi: YalU) the random code generation is as follows.
< 1341 - 13 Y2(U), Fix P(u), P(v1|u) and P(vs|u), and
Rl—mm{ I(Vi: Y1V, U) — 1(Vi: Yal Vo, U) } (42) o Ploaf) and (el

Similarly, we can bound?, as P(z1, w2fv1,v2) = Plaa]v1) P(w2[v2)

[ IV YalU) = IV YU, } and let
Ry < min { ' : . (4
[Vl U) = 1V, ) Ry 2 I(Vi: Vo[V, U) - (48)
Note that from[(3lL) and(36) it follows that the joint distib R 2 [(Va:i|Vi, U) — 1 (49)

tion P(u,vy,ve, 1, 72,y1,y2) factors as[{7) for the interfer-
ence channel. For the broadcast channel, we repglE¢ce X») wheree; > 0 ande; is small for sufficiently largen.
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| v I
W, —»enc 1}—» mapping 1 J-—» x;
\ A )
oy \
W, —-»enc 2 |—v>| mapping 2 H—» x,
i 2 )

______________________

Fig. 6. Code construction for IC-CM

o [codebook generation] Randomly generate a typical se-

quenceu with probability
P(u) = [ [ P(w),
1=1

and assume that both transmitters and receivers know
time-sharing sequenag.

For transmitter¢, t = 1,2, generateQ, = 2n(Ft+R)
independent sequences each with probability

P(vi|u) = H P(vyilu;)
i=1

and labeled as
Vt(’wt,kt), Wt S {1, e ,Mt}, kt S {1, N ,Mt/} (50)

where M; = 2"+ and M/ = 2"f:. Without loss of
generality,M;, M/, and@, are assumed to be integers.
Let

Ct é {vt(wt, kt), for all (U)t, kt)}

be the codebook of Transmittéerlts w;-th sub-codebook
(bin)

Ct(wt) é {vt(wt,kt), fOI’ kt = 1, .. ,Mt/}

follows the partitioning in[{(50).
[encoding] To send a message pair

(wl,wg) € W x WQ,

The union bound on the error probability of receiders as
> P{Ei(wi,k)|K1}

follows
w1 #L, k1

< P{E{(L)| K} + Y P{Ei(wy,k)|K1}
w1 #1, k1

P <p

N B k) |E
k1

where E5(1, k1) denotes the event

{(vi(1, k1), y1) ¢ A" (P, vy o) }-

Following the joint asymptotic equipartition property (RE
[5], we have

the P{ES(1,1)|K:} <e,

and, forw, # 1,
P{E\ (w1, k)|K,} < 27 "HVi¥iU)—e]
Hence, we can bound the probability of error as
pe(ﬁ) <e+ Q12_n[I(V1?Y1|U)_€]
— ¢ 1 on(Ri+RY) 9—n[I(VisY1|U)—d]
So, if
Ry +R/1 < I(Vl;YllU)7

then for anyey > 0, Pe(ﬁ) < ¢y for sufficiently largen.
Similarly, for receiver2, if

Ry + Ry < I(Vo; Ya|U),

then Pe(_’é) < ¢ for sufficiently largen. Hence,P\™ < ¢, as
long as the rate paifR;, Ry) € Ric(mc_1).

2) Equivocation Calculation:To show that[(5a) holds, we
consider the following equivocation lower bound

H(Wh|Y2) > HW;1|Y2, Vo, U) (51)

each transmitter employs a stochastic encoder. Encoder
¢ randomly chooses an element(w;, k) from the sub- where inequality [(51) is due to the fact that conditioning
codeboolC, (w;). Transmitters generate the channel inpdduces entropy. By applying the entropy chain rule [5]) (51

sequences based on respective mappifigs,|v;) and ¢an be expanded as follows

P(SCQ |U2).

[decoding] Given a typical sequenaelet AE")(PVtm‘U)
denote the set of jointly typical sequenaegsandy, with
respect toP (v, y:|u) [5]. Decodert choosesw; so that

(vi(we, k), ye) € Agn)(PVt,Yt\U)

when suchw, exists and and is unique; otherwise, an
error is declared.

1) Error Probability Analysis: To bound the probability of
error, we define the event

Ey(wy, k) 2 {(vi(we, ke), yelu) € A™(Py, v, 10)}-

Without loss of generality, we can assume that transmitter
1 sends the message; = 1 associated with the codeword
v1(1,1), and define the corresponding event

K = {vi(1,1) sent.

H

(W1]Y?2)
> H(W1,Y2|Va,U) — H(Y2| V3, U)
= H(W1,V1,Y3| Vs, U)
— H(V1|Y2, Vo, U W;) — H(Y2| Ve, U)
= H(W1,V1|Vy,U) — H(V1|Y2, Vo, U W)
— H(Y2|V2,U) + H(Y2|V1, Vo, U W) (52)

Based on functional dependence graphs [27] and the random

code construction, we can show that the following is a Markov
chain

W1 — (V17V2,U) — Y2

which yields

I(Wl;Y2|V17V27U) = 0. (53)
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(W4, Wy) Vi

Hence, by using[(32) an@ (b3), we obtain RN >
joint mapping
H(W1[Y2) > H(W1,V1|V2,U) — H(V1[Y2, V2, U, W) encoder X
P(X|Vv1,v2)
— H(Y>|V3,U) + H(Y[V1, Vs, U) O o
= H(W1,V1|Vy,U) — H(V1[Y2, Vo, U, W)
ig. 7. Cod ion f -
o I(Vl;Y2|V2,U) Fig. 7. Code construction for BC-CM
> H(V1|V2,U) = H(V1[Y2, V2, U, W)
—I(V1; Y|V, U). (54) By the definition of R} (48), we have
We consider the first term il (b4). Note that givEh= u, Ry — lH(W1|Y2,X2, Ws) < e4 (59)
V1 and 'V, are independent an¥'; has@; possible values n
with equal probability. Hence, wheree, £ ¢; + e + €3, and, thus, the security conditidn{5a)
is satisfied. Following the same approach, we can prove that
H(V1|U,V2) = H(V1]U) GD) is satisfied.
=log @1
=n(Ry + RY). (55) B. Broadcast Channel with Confidential Messages

We next show thatf (V1|Ys2, Vo, U, W1) < nes, where \éVe nexth.prhove TE.eorerﬁlké ll,)faSZdPQn ktdelétl)le-.bingglg
e> is small for sufficiently largen. In order to calculate scheme which combines th@el'fand-Pinsker binning23]

the conditional entropyH (V1 |Ya, Vs, U, W,), we consider and therandom binning In this subsection we redefine the
) 9 9 ’ / / i
the following situation. We fixW; = w;, and assume that parametersy, Ry, R, Ry, @1, Q2, Mi, andM». The coding

transmitterl transmits a codeworst; (w:, k1) € Cy (wy), for  Structure for the BC-CM is shown in Figl] 7. We employ
1 < ki < M/, and that receive knows the sequencesa joint encoder to generate two equivocation codewords
Vg_: vz_andliJ — w. Given index W, — w,, receiver andvs, one for each messad&; andW,. The equivocation
2 decodes the codeword, (w;, k) based on the receivedcodewords are mapped into the channel inpuThe details

sequencg,. Let \(w; ) denote the average probability of erron ran:;j_om code generatiodn are as fOHOWSI'I
of decoding the indek, at receiver. Based on joint typicality V& fiX P(u), P(vi]u) and P(vs|u), as well asP(z|vi, vz).

[5, Chapter 8], we have the following lemma. Letd<a <1,
Lemma 2:\(w) < ¢ for sufficiently largen. R 2 I(V1; Ya|Vo,U) — €,
Proof: Wi ide th fin the A dix. [ |
’ro_o e provide the proof in the Appendix Ry 2 I(Va: Yi|V3,U) — €, (60)
Fano’s inequality implies that
1 1 and
_ — < Z !
nH(V1|Y2,V2,U, Wy =w;) < n[l—i-/\(wl)long] R £ [(Vi;Vo|U) + €} (61)
1
< — +el(Vi;Y2|U) wheree! > 0 andé, is small for sufficiently largen.
L e, (56) o [codebook generation] We generate randomly a typical

sequencer with probability
where the second inequality follows from Lemija 2 and (48).

Consequently, P(u) = Hp(ui)
1 i=1
EH(V”YQ’VQ’U’ W1) and assume that both the transmitter and the receivers
1 _ _ know the sequenca.
T n ;\} PWy = w)H(V3|Y2, V2, U, W1 = w) We generate), = 2n(F«+Ei+R") independent sequences
w1 1 . o
< e (57) v, each with probability
Finally, the third term in[{54) can be bounded based on the P(vifu) = H P(vgilui)
following lemma. =1
Lemma 3: and label them
I(V1;Y3|Vy, U) < nI(Vi;Ya|Va,U) +nes  (58) vi(we, s, ki), we €4{1,..., M}, sp € {1,..., Ji},
: . andk; € {1,...,G¢}. (62)
wherees is small for sufficiently largea.
Proof: We provide the proof in the Appendix. [ where M, = 2n%¢ | J, = 27Ei and G, = 2"E'. Without
By using [B5), [(BF7), and(38), we can rewrife[(54) as loss of generality,, M;, J;, andG, are considered to

be integers. Let

1
—H(Wi|Yy) > R R, — I(V1:Ys|Vo,U) — €5 — €5.
n MiY2) 2 By + By — (Vi 12|12, U) — 2 — &5 Cr = {vi(wy, s, ke), for all (wy, se, ki) }
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vi(1.1.1) ;
}sub_bin 1) Hence, following the approach of [28], we have that
| “(1.1.0) P{T} < d3 (64)
bin 1
v¢(1 J¢1) _ whereds > 0 andds is small for sufficiently large:. In other
sub-bin (1.Jy) words, the encoding is successful with probability closd to
Vt(1 Jt Gy as long as is large.
: In the following, we assume that,(1,1,1),v2(1,1,1)) is
IR sent and define the event
b-bin (M;,1) n
o } " K> 2 {(vi(1,1,1),va(1,1,1)) € A (Py, v, )}
bin M (M J ; Now, the error probability at receivédris bounded as follows
Vi 1
o }sub—bin (Mg, Jy)
V(M. G) P < P{T} + (1 - P{T})|P{ () E5(Ls1. k1) ‘Kg
s1,k
Fig. 8. Double binning o
+ Z Z P{El(w1,817/€1)|K2}]
w1 #1 s1,k
denote the transmittercodebook. Based on the labeling < P{T}1+ Pl{éc(l 1,1)| Ko}
in (62), the codebook; is partitioned into)M; bins, and - L
the w;-th bin is + ) Y P{Ei(wr, 51, k)|Ko}
w1#1 s1,k1

Ct(wt) e {Vt(wt,st,kt), for St € {1, .. .,Jt}
andk; € {1,...,G:}.

where
Ey(we, s¢,ke) = {(vi(we, se, ki), y1) € A™ (Py, v, 10)}-
Joint typicality [5, Chapter 14] implies that
P{ET(1,1,1)[ K2} <,
P{E\(wy, 51,k )| Ko} <2 "HViNU)=el for 4 £ 1.

Furthermore, each bi6 (w,) is divided into.J, sub-bins,
and the(wy, s;)-th sub-bin is

Ct(wt,st) é {vt(wt,st,kt), for kt S {1, .. .,Gt}}.

The double binning structure for, sequences is shown

in Fig. 3. Hence, we can bound the probability of error as
« [encoding] To §end the message p@ﬁ.,UJQ) e W x e(q) < Gy + e+ Q2 A=
W, the transmitter employs a stochastic encoder. We ran- (Rat R ARY) oI (ViiYa |U)—e]
domly choose a sub-bifi; (w;, s;) from the binC;(w;), = 83 + e 4 2nifitih A (1))
for t = 1,2. Next, we select a paifk:, k2) so that So. if
(vi(wi, s1,k1), Va(wa, s2,ks)) € AU (Py, vy0), R+ R, + Rt < I(Vi; 1 |U), (66)

where A" (Py, v,/) denotes, for a given typical se-then for anye, > 0, P < « for sufficiently largen.
quenceu, the set of jointly typical sequences andvs  Similarly, for receiver?, if
with respect toP(vq, v2|u). If there are more than one ,

Ry + R, + R < I(Va; Ya|U), (67)

such pairs, then we randomly select one. We generate

the channel input sequenseaccording to the mapping thenP( < ¢, for sufficiently largen. Hence, [(2),[[60) [(81),

T|v1, v . n .
. [d(ec|0(lj|né% For a given typical sequence, let (©5). and [r) imply thaIPe( : < «o as long as the rate pair
éRlaRZ ) € Rpc(7mBe).

(n) . .
Ac”(Py, v; ) denote the set of jointly typical sequence 2) Equivocation Calculation:We next prove that the se-

Ve andy, with respect toP (v, yt|u)' Decodert chooses crecy requirement(%a) holds for BC-CM. Following the same

wye SO that(vt(wt,st,kt) yt) S A ) (Pvt Yt\U) if such h 1 4 h
w; exists and is unique; otherwise, an error is declareélpproac ad (31E(p4), we have

1) Error Probability Analysis: Without loss of generality, 2 (W1|Y2) = H(V1|V2, U) — H(V1[Y2, V2, U, W)
we assume that the message paifdis = 1,w2 = 1) and —I(V1;Y2|Vo, U). (68)
thats; = s, = 1. First, we consider the error evenhtthat the . . .
encoder can not find an appropriate jointly typical pair, i.e Consider the first term i {68)

H(V1|U,V2) = H(V1|U) — I(V1; V2|U).

T £ {(Vl(L 1, kl)’ V2(17 1, kQ)) §é Agn) (PV1.,V2|U)’
for sy, =1,....J;, ke =1,...,Gy, andt =1,2}.  Note that givenU = u, V, attainsQ; possible values with
equal probability. Hence, we havé(V|U) = log ;. Using
The definition of RT in (&) implies that the same approach as in Lemfja 3, we can obtain

R' > I(Vi; Va|U). (63) I(V1; Vo [U) < nl(Vy; Va|U) + néb. (69)
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Hence, by the definition oR' in (1), we have (72) and [(7B) imply that
H(V1i[U,Vy) = logQ; — I(V1; V,|U) Ap+ Ay = —I(Va: Vi |Vi, U) + I(Va; Ya| Vi, U)
> n(Ry + R} + RY) — nI(Vi; Va|U) — né} — I(V1; Yo |Va,U) + I(Vy; Y1 |Va, U)
>n(Ry + R) — €,). (70) =0, + 0O;. (74)
Following joint typicality [5], (5T) implies Note that
H(Vi[Y2, V2, U, W) < ney 2(A1 + Ay) = 2(01 4 0,)

. . . =(A1+06 Ay +©
wheree, is small for sufficiently large:. Applying LemméB, (A1 +02) + (A2 +61)

the third term in[(6B) can be bounded as Hence,
I(V1; Y3 Vo, U) <nl(Vy;Ys|Va,U) + neil min[A; + O3, Ao+ 01] < Ay + Ay =07 + Os.
=n(Ry + €| +€)) (71) We have the derived results. m

wheree), is small for sufficiently large: and the equality[(41)
follows from the definition[(60). Hence, by usinE[GQE(?O)(V2 w), let AE")(PV vuva.0) denote the set of jointly typical

and [Z1), we can rewrit¢ [68) as sequences; andys with respect toP(vy,ya|ve,u). For a
lH(W1|Y2) >Ry — ¢ given W, = w;, decoder2 choosesk; so that
- >

(n)
wheree, 2 ¢/ + ¢, + ¢, + €,, and thus the security condition (1w, k). y2) € AT (P v 0)
(3) is satisfied. Following the same approach, we can prd'f,éqch ky exists and is unique; otherwise, an error is declared.
that [5B) also holds. Define the event
E(ky) = {(vi(w1, k1), y2) € A" (Py, vapa0)}-
. . Without loss of generality, we assume that(wi, k1 = 1)
We derived the outer and the inner bounds on the capa ¥%s sent, and define the event
of the interference and broadcast channels with confidentia .
messages. The obtained results offer insights into the two K, = {Vl(w1,1) sem}.
communication problems. The difference in the outer bourl‘-?jence
reflects the fact that the joint encoding at the transmitgar ¢ . . . .
only be performed in the BC-CM whereas in the IC-CM,  A(wi) < P{E“(k;1 = 1)|K1} + Z P{E(k1)|K1}
encoders offer independent channel inputs. The achigtyabil k1#1
proof suggests the code construction appropriate for th%ﬁereﬁ?c
channel. We presented a special case of IC-CM for which the
two bounds meet to describe the capacity region. We proposed {(vi(wi,1),y2) ¢ AE") (Pv, va|va,0)}-
and compared several transmission schemes for Gaus?—%ﬂowing the joint AEP [5], we have
interference channels under information-theoretic sscrim A ' R
particular, the encoding scheme in which transmittersciedi P{E(ky1 =1)|K1} <,
some of their power to create artificial noise was shown te oua{nd forky # 1
perform both time-sharing and simultaneous transmission 0 ! '
messages sent with the optimal power. However, constmictin P{E(k)| Ky} < 27 (VisY2[Va,U)—e]
practical wiretap codes that can achieve the derived ratesNi
a challenging problem. Code constructions for a binaryfnp
Gaussian wiretap channel have recently been proposed]in [29 Mw) < e+ M2 I (ViY2|Va,U) =]

<e+ 2nR’1 2fn[I(V1;Y2|V2-,U)*5].

Proof: (Lemma [2) For a given typical sequence pair

VI. CONCLUSION

(k1 = 1) denotes the event

ow, we can bound the probability of error as

APPENDIX )
Note that R} = I(V;;Y5|Va,U) — €. Hence, by choosing

Proof: (Lemma [d) By the definition ofA;, we have €1 > ¢, we have

Ay =I(Vi;1|U) — 1(V1;Y2|U)

)\(wl) S €0
=10V, Vs |U) — I(Va; Y1 |V4, U , .
(1, Vs 11U) V11, U) wheree, is small for sufficiently largea. [ |
— IV, Vs Ya|U) + I (Va; Ya|V1,U).  (72)
Similarly, Proof: (Lemma [3) Let AE")(PUthz,yz) denote the
set of typical sequencesu,vi,va,y2) Wwith respect to

Ag = I(Va; Yo|U) — I(Va; Y1|U) P(u,v1,v2,y2), and
=1

Vi, Va: YalU) — I(Vi: Va|Va, U .
(Vi, Vas 12 |U) = I(V1; Vo[ V2, U) (v va,ys) = 4 b (w,vi,va2,y2) & A" (Puy, va v)
— I(V1,Va; Ya|U) + I(V1; Y|V, U). (73) SR 0, otherwise
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be the corresponding indicator function. also holds in the outer bound for SC-CM, then we have
We expandl/(V;Y:|Vz,U) as
Pand (Vi Y2 V2. U) H(Vis ol U) = 1(Vi: YalU) + 1(Vi: Va2, 1)
I(V1;Y2|V2,U) < I(Vi, 4;Y2[Va, U) — I(Vi; WB|U)
=1(V1;Y2 |V, U, i) + (113 Y2| V2, U) — I(Vi: Ya|U),
1
. _ I(Va; Ya Vi, U) = I(Va; Ya|U) + I(Vi; Va|Ya, U
=3 Pl = DIV Ya|V2, U= j) (VoialVa, U) = MV U) = 1V Ve, O)
= — I(V1;12|U)
+ I(p; 2|V, U) (75) = I1(Va; Y2|U), (81)
Note that that is, the outer bound](9) meets the inner bolind (10).
Now, we prove that conditiong (I79) and [80) holds in the
P(p=1)I1(V1;Y2|Vy, U, p=1) outer bound for SC-CM. By definitions{31) aid136), we need
<nP[(u,vi,va,y2) ¢ A" (Puvivay,)] log | Vsl to show that
< nelog | Vsl (76) I(Wi: WalUi) = 0 (82)
and I(Wl; W2|Ui, }/271) =0 (83)
I(; Y|V, U) < H(p) < 1. (77) whereU; = {Yi™1 Yit'}. We first prove the equalitf (82).

We only consider the terf? (i = 0)1(V: Ys|Va, U, 11 = 0). Following the switch output definitiod (19), we have

Following the sequence joint typicality properties [5], have {(Yimt yitty = {zi~', zit! si-! Sithy (84)
P(pu=0)I(V1;Y2|V2, U un=0) and hence,
< (Vi Ya| Ve, U, p = 0) I(Wy; Wa|U;) (85)
= Z P(u, vy, va,y2)[log P(vi,y2|va,u) _ I(Wl;W2|Z§_1,Z§+1,Si_l,géﬂ)
(u,vi,va,ys)eA™ i-1 i1 &l itl
= PSS =s],Sy =85
—log P(y2|v2,u) — log P(v1|v2,u)] ;; ' ' ’ ’
1 2
< n|lH((Yy|V5,U H(V, |V, U i—1 i i—1 ~i
< nlH(Y2|V2,U) + H(W1|V2,U) I(Wy; Wa|Zi7Y, Zit st gt
_H(V17Y2|V25U)+36] i—1 n
= nI(V1; Ya|Va,U) + 3e. (78) => > [H P(Si;=s1;) [[ P(Sek=s2u)
Combining [75), [[76),[[A7), and_(78), we have the desired sThetUst o e
result T(Wy; Wo|Z3 Z5 s 851, (86)
I(V1; Y| VoU) < nl(Vi;Ya Vo, U) Now, for a givens, ;, the switch channel modd[{L8) implies
1 that 2, ; only depend on the channel input, , ;. By using
+ ”(6 log [Va| + 3¢ + 5) functional dependence graphs [27], we can easily verify tha
=nl(Vy;Y2|Va,U) + nes LWy Wao|ZE7Y, ZE si=1 51y = 0
where for fixed switch state informationi ! ands:*'. Hence, [(8b)
€3 2 elog|Va| + 3¢ + l implies that/ (W7 ; W»|U;) = 0. Following the same approach,
n we can prove the equality (B3). Therefore, we have the disire
B result. ]
Proof: (Theorem[3) Since the switch channel is a special
case of the interference channel, we focus on the outer bound ACKNOWLEDGMENT

@) and the inner bound{JL0) and prove that The authors would like to thank Professor Shlomo Shamai
Ro(mc—0) = Ric(mco-1) (Shitz) of the Technion, Gerhard Kramer, Bell Labs, Alcatel
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We note that the distribution;_; implies that, for a given
U, auxiliary random variable®; andV; are independent, but
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