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On optimal quantization rules for some problems in seqgaénti
decentralized detection

XuanLong Nguyen, Martin J. Wainwright and Michael I. Jordan

Abstract

We consider the design of systems for sequential decergdatietection, a problem that entails
several interdependent choices: the choice of a stoppileg(specifying the sample size), a global
decision function (a choice between two competing hypa@bgsind a set of quantization rules (the local
decisions on the basis of which the global decision is mad&)s paper addresses an open problem
of whether in the Bayesian formulation of sequential deedized detection, optimal local decision
functions can be found within the class of stationary rulfs.develop an asymptotic approximation to
the optimal cost of stationary quantization rules and exphis approximation to show that stationary
guantizers are not optimal in a broad class of settings. ¥éeainsider the class of blockwise stationary
quantizers, and show that asymptotically optimal quargiaee likelihood-based threshold rufes.

Keywords: decentralized detection; decision-making under comgsaiexperimental design; hypothesis
testing; quantizer design; sequential detection.

1 Introduction

Detection is a classical discrimination or hypothesisitgsproblem, in which observationsX;, Xo, ...}
are assumed to be drawn i.i.d. from the (multivariate) comal distributionP( - | H ) and the goal is to
infer the value of the random variabl¢, which takes values if0, 1}. In a typical engineering application,
the case{ H = 1} represents the presence of some target to be detected,asfiéfe= 0} represents its
absence. Placing this problem in a communication-theoetntext, adecentralized detectioproblem is

a hypothesis-testing problem in which the decision-makarat given access to the raw data points,

but instead must infef{ based only on the output of a setgpfantization rulesor local decision functions
say{U, = ¢,(X,)}, which map the raw data to quantized values. This basic enoldf decentralized
detection has been studied extensively for several dedadg$9, 6]; see the overview papers |20} 23,13, 5]
and references therein for more background. Of interestitndaper is the extension to an-online setting:
more specifically, thesequential decentralized detectipnoblem [19, 21| 1?] involves a data sequence,
{X1, X2,...}, and a corresponding sequence of summary statistiés,Us, ...}, determined by a se-
quence of local decision rulds);, ¢, ...}. The goal is to design both the local decision functions and t
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specify a global decision rule so as to prediftin a manner that optimally trades off accuracy and de-
lay. In short, the sequential decentralized detection Iprolis the communication-constrained extension
of classical formulation of sequential centralized derismaking problems (see, e.d.] [8/] 15] 10]) to the
decentralized setting.

In setting up a general framework for studying sequentiakd&alized problems, Veeravalli et al. [22]
defined five problems, denoted “Case A’ through “Case E,irdisished from one another by the amount of
information available to the local sensors. In applicatisanch as power-constrained sensor networks, one
cannot assume that the decision-maker and sensors can eacateuover a high-bandwidth channel, nor
that the sensors have unbounded memory. Most suited todhspgctive—and the focus of this paper—is
Case A, in which the local decisions are of the simplified ferniX,,); i.e., neither local memory nor feed-
back are assumed to be available. Noting that Case A is natatmteeto dynamic programming and hence
presumably intractable, Veeravalli et al. [22] suggesestricting the analysis to the classstéitionarylocal
decision functions; i.e., local decision functiops that are independent of. They conjectured that sta-
tionary decision functions might actually be optimal in 8edting of Case A (given the intuitive symmetry
and high degree of independence of the problem in this caseip though it is not possible to verify this
optimality via DP arguments. This conjecture has remairgehasince it was first posed by Veeravalli et
al. [22,21].

The main contribution of this paper is to resolve this quesby showing that stationary decision func-
tions are, in factnot optimal for decentralized problems of type A. Our argumeriddsed on an asymptotic
characterization of the optimal Bayesian risk as the cassample goes to zero. In this asymptotic regime,
the optimal cost can be expressed as a simple function ofspaiod Kullback-Leibler (KL) divergences.
This characterization allows us to construct counterexasno the stationarity conjecture, both in an exact
and an asymptotic setting. In the latter setting, we preaatass of problems in which there always exists
a range of prior probabilities for which stationary stragsg either deterministic or randomized, are subop-
timal. We note in passing that an intuition for the sourcehef $suboptimality is easily provided—it is due
to the asymmetry of the KL divergence.

It is well known that optimal quantizers when unrestricted aecessarily likelihood-based threshold
rules [19]. Our counterexamples and analysis imply thaintgdtthresholds are not generally stationary
(i.e., the threshold may differ from sample to sample). Vo adrovide a partial converse to this result:
specifically, if we restrict ourselves to stationary (ordievise stationary) quantizer designs, then there
exists an optimal design that is a deterministic threshold based on the likelihood ratio. We prove this
result by establishing a quasiconcavity result for the gstptically optimal cost function.

It is worth highlighting several limitations in our resultSor the suboptimality of stationary quantizers,
our analysis is applicable only to finite classes of deteistilmquantizers and their convex hull of random-
ized quantizers, and under the assumption that the likatilvatio of the two hypotheses are bounded from
both above and below. Such assumptions certainly hold fotrary discrete distributions with finite sup-
port. It remains an open problem to consider more generssetaof distributions. For the likelihood-ratio
characterization result, our proof works only for the (plogsinfinite) classes of deterministic quantizers
with arbitrary output alphabets, as well as for the classanfiomized quantizers with binary outputs. We
conjecture that the same result holds more generally fatoraized quantizers with arbitrary output alpha-
bets.

The remainder of this paper is organized as follows. We begiBection[2 with background on the
Bayesian formulation of sequential detection problems] Afald’s approximation. Sectidd 3 provides a
simple asymptotic approximation of the optimal cost thatlerties our main analysis in Sectiéh 4. In
Section[b, we establish the existence of optimal decisidgsrthat are likelihood-based threshold rules,



under the restriction to blockwise stationarity. We codelwvith a discussion in Sectign 6.

2 Background

This section provides background on the Bayesian fornaunladi sequential (centralized) detection prob-
lems. Of particular use in our subsequent analysis is Walsfsoximation of the cost of optimal sequential
test.

Let Py andP; represent the distribution df, when conditioned o H = 0} and{H = 1} respectively.
Assume thaf?, andP; are absolutely continuous with respect to one another. \WWefsr) and f*(z)
to denote the respective density functions with respecbinesdominating measure (e.g., Lebesgue for
continuous variables, or counting measure for discrehgedavariables).

Our focus is the Bayesian formulation of the sequentialaigte problem|([15], 211]; accordingly, we let
7! = P(H = 1) and7® = P(H = 0) denote the prior probabilities of the two hypotheses. XetXo, ...
be a sequence of conditionally i.i.d. realizationsX0f A sequential decision rule consists os@®pping
time NV defined with respect to the sigma fietdX1, ..., X ), and a decision function measurable with
respect tar(X1,..., X ). The cost function is the expectation of a weighted sum o$#meple sizeV and
the probability of incorrect decision—namely

J(N,7) :==E{cN +1I[y(Xy,...,Xn) # H]}, (1)

wherec > 0 is the incremental cost of each sample. The overall goal thémse the paif/V,~) so as to
minimize the expected loss](1).

It is well known that the optimal solution of the sequentiati$ion problem can be characterized recur-
sively using dynamic programming (DP) arguments [1] 2521 5Although useful in classical (centralized)
sequential detection, the DP approach is not always stfaigfard to apply todecentralizedversions of
sequential detection [21]. In the remainder of this se¢tom describe an asymptotic approximation of the
optimal sequential cost, originally due to Wald (¢f. [164alid asc — 0. To sketch out Wald’s approxima-
tion, we begin by noting the optimal stopping rule for thetdasction [1) takes the form

S1(X)
fOX3)

N =inf{n>1]|Ly(X1,...,Xp) ::anlog ¢ (a,b)}, 2)
i=1

for some real numbers < b. Given this stopping rule, the optimal decision functioms btize form

1 if Ly >0,
Ly) = - 3
(L) {0 Ly < a. 3

Consider the two types of error:

a = Po(y(Ln)# H) =Po(Ly =
B = Pi(v(Ln) # H) =Pi(Ly < a).

~—

As ¢ — 0, it can be shown that the optimal choicecfndb satisfiess — —o0,b — oo, and the corre-
spondinga, 5 satisfya + 5 — 0. Ignoring the overshoot of ; upon the optimal stopping tim& (i.e.,



instead assuming y attains precisely the valueor b) we can express, b, ENN and the cost functiod in
terms ofa and g as follows [24]:

b and b= b(a,f):=log 1-5 4)
l1-«a o

Eo[Ly]~ (1 —a)a+ab and Ei[Ly]=~ (1—B8)b+ Ba (5)

a~ a(a, ) = log

Now define the Kullback-Leibler divergences

SH(X) SH(Xy)
fO(X1) foX1)

With a slight abuse of notation, we shall also U3, 3) to denote a function if, 1] — R such that:

D! = E;[log 1=D(fYf%, and D°= —FEgflog

I=D(lfY. (6

D(a, p) ::alog% —l—(l—a)logi:g.

With the above approximations, the cost functibof the decision rule based on envelopeandb can be
written as

J = m'Ei(cN +1[Ly < a]) + 7°Eo(eN +I[Ly > b])

E{L EoL

= cr! IDIN + e —OD](;[ + a4+ 71, @)
D(a,1 — D(1-p5,«a

=~ CWO%‘FCTH%"‘T(OOZ"‘TH,@; (8)

where the third line follows from Wald’s equatian [24]. L@(a, ) denote the approximatiohl(8) dt
Let J* denote the cost of an optimal sequential test, i.e.,

J* = ing J. 9
A useful result due Chernoff [7] states that under certaguaption (to be elaborated in the next section),
J* has the following form:

7.‘.0 1

J = (ﬁ—kﬁ)clogc_l(l—i-o(l)). (10)

3 Characterization of optimal stationary quantizers

Turning now to the decentralized setting, the primary @mglke lies in the design of the quantization rules
¢, applied to dataX,,. WhenX,, is univariate, a deterministic quantization rudlg is a function that maps
X to the discrete spad¢ = {0,...,K — 1} for some natural numbek. For multivariateX,, with d
dimensions arising in the multiple sensor setting, a datéstic quantizer,, is defined as a mapping from
the d-dimensional product spacgtof = {0,..., K — 1}%. In the decentralized problem defined as Case
A by Veeravalli et al.[[22], the function,, is composed ofl separate quantizer functions, one each for each
dimension. A randomized quantizey, is obtained by placing a distribution over the space of deit@stic
quantizers.

Any fixed set of quantization rules, yields a sequence of compressed djta= ¢,,(X,,), to which the
classical theory can be applied. We are thus interestedaosthg quantization ruleg;, ¢-, . .. so that the
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error resulting from applying the optimal sequential teshe sequence of statistits, Us, . . . is minimized
over some space of quantization rules. For a given quantizgy we use

[ () = Pi(on(Xn) = u), for i=0,1,

to denote the distributions of the compressed data, conéiti on the hypothesis. In general, when random-
ized quantizers are allowed, the vectqgn(.), f(})n(.)) ranges over a convex set, denoteahv , whose
extreme points correspond to deterministic quantizeredas likelihood ratio threshold rules [18].

We say that a quantizer desigrstationaryif the rule¢,, is independent af; in this case, we simplify the
notation tof} and fJ. In addition, we define the KL divergencéx, := D(f}||f3) andD§ := D(f3|f,)-
Moreover, let/, andJ;; denote the analogues of the functiohén Eq. (7) andJ* in Eq. (9), respectively,
defined usingDé), fori =0, 1. In this scenario, the sequence of compressedldata . ,U,, ... are drawn

i.i.d. from eitherfg or f<z1>- Thus we can use the approximatidn](10) to characterize shmpatotically
optimal stationary quantizer design. This is stated folyrialthe lemma to follow.

We begin by stating the assumptions underlying the lemmiza Btven class of quantizefls, we assume
that the Kullback-Leibler divergences are uniformly boeddway from zero

D(f311£9) > 0, D(fJI|£}) > 0 forall ¢ € ® (11)
and moreover that the variance of the log likelihood ratiesteunded

sup Var 1 log(fé/fg) < 00, and sup Var so log(fé/f(g) < 0. (12)
pED ¢ peD ¢
Lemma 1. (a) Under assumption@ ) and (12), the optimal stationary cost takes the form
" 70 ! _
g3 :<D_g+D_;> cloge™ (1+7) (13)

where|ry| = o(1) asc — 0.
(b) If supyeq max{log(f/f9),log(f/f,;)} < M for some constant/, then(L3) holds with
SUPyeq [T = o(1) asc — 0.

Proof: (a) This part is immediate from a combination of Theoremsd Zof Chernoff[[7].

(b) We begin by bounding the error in the approximatian (8).definition of the stopping timév, we
have either (ip < Ly < b+ M or (ii) a — M < Ly < a. By standard arguments due to WeldI[24], it
is simple to obtain’a < 1 -3 < "*Ma, or equivalentlyb < b(e, ) = log =2 < b+ M. Similar
reasoning for case (ii) yields — M < a(«, ) = log % < a. Now, note that

E()LN = Oon[LN|LN > b] + (1 — Oz)Eo[LN|LN < a].

Conditioning on the event i € [b,b + M], we have|lLy — b(a, 5)| < M. Similarly, conditioning on the

eventLy € [a— M, a], we havelLy —b(a, 8)| < M. Thisyields|EqLy — (~D(a,1-))| < M. Similar

reasoning yield$E, Ly — D(1 — 3, )| < M. LetJy(a, b) denote the approximatiohl(8) df,. We obtain:
[T — Jy(a, B)| < 2¢M.

Note that the approximation error bound is independent dhus, it suffices to establish the asymptotic
behavior [(IB) for the quantitynf, s J4(c, 5), where the infimum is taken over pairs of realizable error
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probabilities(«, 3). Moreover, we only need to consider the asymptotic regime — 0, since the error
probabilitiesa and 8 vanish asc — 0. It is simple to see thab(1 — 3,a) = log(1/a)(1 + o(1)), and
D(1 —«,B) =log(1/B8)(1 + o(1)). Hence,inf, g J4(c, §) can be expressed as

infd 70 1 0
Lr’l{wa+7rﬁ+c7r DS, +c Dé

This infimum, taken over all positivey, 3), is achieved at* = chro andg* = Céril. Plugging the quanti-
tiesa* andS* into Eq. [14) yields[(113). Note that the asymptotic quaniity) in (13) is absolutely bounded
by o* 4+ p* — 0 uniformly for all quantizer, becauseDé andDg are uniformly bounded away from zero
due to the Lemma’s assumption.

It remains to show that error probabilitiés*, 3*) can be approximately realized by using a sufficiently
large thresholdb > 0 and small threshold < 0 while incurring an approximation cost of ordéX(c)
uniformly for all ¢. Indeed, let us choose thresholdsand?’ such thate=('+M) /2 < o* < e, and
e =M /9 < g% < e, Leta/ and 3’ be the corresponding errors associated with these twohiblss As
before, we also have’ ¢ (e='+M)/2 e~y and ' € (e*~M/2,e%). Clearly, |o* — /| < e (1 —
e~M/2) = O(a*) = O(c). Similarly, |3* — 8’| = O(c). By the mean value theorem,

[log(1/a) —log(1/a)| < o — |V +tM < 2¢M (1 — ™M /2) = O(1).

Similarly, log(1/5*) — log(1/8") = O(1). Hence, the approximation ¢&*, 5*) by the realizabld«’, )
incurs a cost at mosD(c). Furthermore, the constant in the asymptotic bound) is independent of
guantizerg € .

O

Remarks:

1. If & is afinite class of quantizers, or a convex hull of a finite €lafsquantizers, the assumption in part
b of Lemma holds. It also holds in the case of discrete igions and continuous distributions with
bounded support. However, it would be interesting to rdesxassumption so as to cover distributions
with unbounded support.

2. The preceding approximation of the optimal cost esdgnignores the overshoot of the likelihood
ratio L. While it is possible to analyze this overshoot to obtain arfimpproximation (cf..[11, 16,
10,[14]), we see that this is not needed for our purpose. Lefislzows that given a fixed prior
(7%, 71), among all stationary quantizer designsbing is optimal for sufficiently smalt if and only
if » minimizes what we shall call theequential cost coefficient

70 wt

Gy = — + —.
*T Dy D

3. As a consequence of Lemiina 7 to be proved in the sequel, ifowsider the clas® of all binary
randomized quantizers, then sequential cost coefficignis a quasiconcave function with respect to
(f9(), £;5(.))- (A function F is quasiconcave if and only if for any, the level se{ F(z) > n} is a
convex set; see Boyd and Vandenberghe [4] for further backgt). The minimum of a quasiconcave
function lies in the set of extreme points in its domain. Fa $etconv ®, these extreme points can
be realized by deterministic quantizers based on likelih@dios [20]. Consequently, we conclude
that for quantizers with binary outputs, the optimal costas decreased by considering randomized
quantizers. We conjecture that this statement also holgisngethe binary case.
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Section’b is devoted to a more detailed study of asymptbticgitimal stationary quantizers. In the
meantime, we turn to the question of whether stationary tigens are optimal in either finite-sample or
asymptotic settings.

4 Suboptimality of stationary designs

It was shown by Tsitsiklis[[19] that optimal quantizesg take the form of threshold rules based on the
likelihood ratio f*(X,,)/f°(X,,). Veeravalli et al.[[22, 21] asked whether these rules caaysve taken to
be stationary, a conjecture that has remained open. Indgbtgog, we resolve this question with a negative
answer in both the finite-sample and asymptotic settings.

4.1 Suboptimality in exact setting

We begin by providing a numerical counterexample for whittienary designs are suboptimal. Consider
a problem in whichX € X = {1, 2,3} and the conditional distributions take the form

@) =% too0 Tooos) andf @) =[5 3 3

Suppose that the prior probabilities are= 100 andn® = 100, and that the cost for each sample is 100
If we restrict to binary quantizers (.4, = {0, 1}), by the symmetric roles of the output alphabets there
are only three possible deterministic quantizers:

1. Design Apa(X,) =0 < X, = 1. As aresult, the corresponding distribution &gy is specified
by £, (un) = [5 5] andfj, (u) = [5 5.
2. Design B:¢p(X,) =

ng (w) = (15006 To000) andf(;B (u)=[2
3. Design Cipc(X,) =0 <— X,

S
8001 1999 2 1
f<z>c [ 0000 10000 @nd fi.(uw) = [3 §]-

Now consider the three stationary strategies, each of wiéas only one fixed design, A, B or C. For
any given stationary quantization rue we have a classical centralized sequential problem, faclwtine
optimal cost (achieved by a sequential probability ratsh)tean be computed using a dynamic-programming
procedure[[25,11]. Accordingly, for each stationary stygteve compute the optimal cost functiorfor 106
points on thep-axis by performing 300 updates of Bellman'’s equation 2]).[In all cases, the difference
in cost between the 299th and 300th updates is lesslibeh Let J4, Jp and.Jo denote the optimal cost
function for sequential tests using all As, all B's, and @lb, respectively. When evaluatedat = 0.08,
these computations yieldy, = 0.0567, Jg = 0.0532 andJc = 0.08.

Finally, we consider a non-stationary rule obtained by ypgl design A for only the first sample, and
applying design B for the remaining samples. Again usindrBah’s equation, we find that the cost for this
design is

Jo = min{min{z', 1 — 7}, ¢ + Jg(P(H = 1ju; = 0))P(u; = 0)+
JB(P(H = 1‘U1 = 1))P(u1 = 1)} = 0.052767,

which is better than any of the stationary strategies.



In this particular example, the cost of the non-stationary quantizer yields a slim improvem@r@@04)
over the best stationary rulés. This slim margin is due in part to the choice of a small pemgie cost
¢ = 0.01; however, larger values @fdo not yield counterexample when using the particular idistions
specified above. A more significant factor is that our notiestary rule differs from the optimal stationary
rule B only in its treatment of the first sample. This fact suggelséd bne might achieve better cost by
alternating between using design A and design B on the odareerd samples, respectively. Our analysis
of the asymptotic setting in the next section confirms thigiiion.

4.2 Asymptotic suboptimality for both deterministic and randomized quantizers

We now prove that in a broad class of examples, there is a rafngor probabilities for which stationary
guantizer designs are suboptimal. Our result stems fronfotlmving observation: Lemmial 1 implies that
in order to achieve a small cost we need to choose a quantifer which the KL divergenceng =
D(f3|If}) andD} := D(f}||f3) are both as large as possible. Due to the asymmetry of the\lrgiince,
however, these maxima are not necessarily achieved by k sjogntizerp. This suggests that one could
improve upon stationary designs by applying different dgzans to different samples, as the following
lemma shows.

Lemma 2. Let ¢, and ¢, be any two quantizers. If the following inequalities hold
DY < D), andDj, > D}, (15)

then there exists a non-empty intervél, V') C (0, +o0) such that ag — 0,

[e=]

* * % . ™
J¢1 < J¢17¢2 < J¢2 if F < U
0
N . . s _ . T
‘]¢17¢2 < mm{']qblv J¢2} - @(Clogc 1) if =) S (U, V)
J¢1 > J¢17¢2 > J¢2 if F > V7

whereJq’g1 " denotes the optimal cost of a sequential test that altemmb&tween using; and ¢, on odd
and even samples respectively.

Proof: According to Lemmall, we have
7TO 7T1 1

Now consider the sequential test that applies quantizerand ¢ alternately to odd and even samples.
Furthermore, let this test consider two samples at atimte!;"g_lg2 andfdl)ld)2 denote the induced conditional

probability distributions, jointly on the odd-even paifsgoiantized variables. From the additivity of the KL

divergence and assumptidn [15), there holds:

0 1 _ 0 0 0

D(f¢1¢2||f¢1¢2) - D¢1 + D¢2 > 2D¢1 (173-)
1 0 _ 1 1 1

D(f¢1¢2||f¢1¢2) - D¢1 + D¢2 < 2D¢1' (17b)



Clearly, the cost of the proposed sequential test is an upperd forJ b1.bo” Furthermore, the gap between
this upper bound and the true optimal cost is no more thét). Hence as in the proof of Lemmia 1, as
¢ — 0, the optimal cosvy, ,, can be written as

270 27l >
- clogc™H(1 4 o(1)). (18)
0 0 1 1
<D¢>1 +D 2 D¢>1 + D¢2

From equationd (16) and ({18), simple calculations yieldcthen with

0 1 1 0 0 0 1 1 0 0
_ Dy, (Dg, — Dyg,)(Dg, + D) _ Dg,(Dg, — Dyg,)(Dg, + D)
- 1 1 1 0 0 - 1 1 1 0 0\
Dy, (Dg, + Dy, )(Dg, — D)) Dy, (Dg, + Dy, )(Dg, — Dg,)

(19)

O
Example: Let us return to the example provided in the previous sulisediote that the two quantizegsy
and¢p satisfy assumptioi (15), sinde(f9_||f}.) = 0.4045 < D(f3 [If},) = 0.45andD(f, ||f3.) =
2.4337 > D(fj,Allng) = 0.5108. Furthermore, both quantizers dominagesin terms of KL divergences:
D(f9.|1f}.) = 0.0438, D(f9_||f}.) = 0.0488. As a result, there exist a range of priors for which a
sequential test using stationary quantizer design (either s or ¢ for all samples) is not optimal.

Theorem 3. (a) Suppose thad is a finite collection of quantizers, and that there is no Brguantizery
that dominates all other quantizers dmin the sense that

DY > Dy and Dj > Dj  foral ¢ co. (20)

Then there exists a hon-empty range of prior probabilit@swhich no stationary design based on a quan-
tizer in @ is optimal.

(b) For any non-deterministi@ in the randomized classnv @, there exists a non-stationary quantizer
design that has strictly smaller sequential cost coefficiban that of a stationary design based orfor
any choice of prior probabilities.

Proof. (a) Since there are a finite number of quantizer®imand no quantizer dominates all others, the
interval (0, 00) is divided into at least two adjacent non-empty intervakssheof which corresponds to a
range of prior probability ratios” /x* for which a quantizer is strictly optimal (asymptoticallginong all
stationary designs. Let them b& , ¢) and (4, 02 ), for two quantizers, namely; andg,. In particular,j is
the value forr® /7! for which the sequential cost coefficients are equal—@z, = G 4,—which happens
only if assumption[(15) holds. Some calculations verifyttha

0 0 1 1
_ D¢1D¢2 (D¢2 B D¢1)
- 1 1 0 0\’
D¢1 D¢2 (D¢1 o D¢2)

(21)

By Lemmd2, a non-stationary design obtained by alterndt@tgseeny; and¢, has smaller sequential cost
than bothg; andgs for 7% /7! € (U, V'), whereU andV are given in equatioi (19). Since it can be verified
that§ as defined{21) belongs to the interyal, V), we conclude that for®/xt € (U, V) N (61, 62), this
non-stationary design has smaller cost than any statiatesign usings € o.

(b) Letp € conv® be a randomized quantizer (i.e., at each step choose witfzeranprobabilities
wy, ..., w; from quantizersgy,...,¢r € &, respectively, Whergfz1 w; = 1). Clearly, the density
induced by satisfy: f = S°F, w; f9 andf} = 321, w;f} . Due to strict convexity of the KL divergence
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functional with respect jointly to the two density argunge(], by Jensen’s inequality we havai:)0

Y w;iDY, andD} < 37, w;D} . SinceDY andD}, are bounded from above uniformly for g} € @,
it is possmle to approxmatewl, ...,wy) by rational numbers of the forrty; /N, g2 /N, ..., qx/N) for
some natural numbers, . .., g andN satlsfymgzzz1 ¢; = N such that

k
Dy < Y abh/N
=1

k
Dé < quDéz/N
i=1

Now consider the non-stationary quantizer that apphie$or ¢; steps, then, for ¢ steps and so on, up
to ¢y, for ¢ steps, yielding a total oV steps, and then repeats this sequence starting again dy step.
By construction, this non-stationary quantizer has a smalbst than that of quantizeérfor any choice of
prior. O

Remarks: (i) It is worth emphasizing the assumption that the clags finite is crucial in part a) of the the-
orem. We do not know if this result can be extended to the cagdich @ is infinite. (i) Part b) shows that
any stationary randomized quantizer is always dominatesbibye non-stationary one. Actually, a stronger
result can be proved at least for binary quantizers (sed8Rdor any given choice of prior probability, any
stationary randomized quantizer is dominated by a statyodeterministic quantizer. (iii) It is interesting
to contrast the Bayesian formulation of the problem of gzantdesign with the Neyman-Pearson formu-
lation. Our results on the suboptimality of stationary diran design in the Bayesian formulation repose
on the asymmetry of the Kullback-Leibler divergence, ad aglthe sensitivity of the optimal quantizers
on the prior probability. We note that Mei [12] (see p. 58) sidered the Neyman-Pearson formulation
of this problem. In this formulation, it can be shown that &irsequential tests for which the Type 1 and
Type 2 errors are bounded byand 3, respectively, then as + 5 — 0, the expected stopping tini& NV
under hypothesidf = 0 is asymptotically minimized by applying a stationary quzet ¢* that maxi-
mizesD(f£||f(;). Similarly, the expected stopping tinfiy V under hypothesidl = 1 is asymptotically
minimized by the stationary quantizet* that maximizesD(f}||f9) [12]. In this context, the example in
subsectio 4]1 provides a case in which the asymptoticailiynmal KL divergences)* and¢** are not the
same, due to the asymmetry, which suggests that there maxisba stationary quantizer that simultane-
ously minimizes botf&,; N andEgN.

4.3 Asymptotic suboptimality in multiple sensor setting

Our analysis thus far has established that with a singleosgresr time stepd = 1), applying multiple
guantizers to different samples can reduce the sequental &s pointed out by one of the referees, it is
natural to ask whether the same phenomenon persists inga@taultiple sensorsgi(> 1). In this section,
we show that the phenomenon does indeed carry over, morgisaiic by providing an example in which
stationary strategies are still sub-optimal in comparigonon-stationary ones. The key insight is that we
have only a fixed number of dimensions, whereas as 0 we are allowed to take more samples, and each
sample can act as an extra dimension, providing more fléxilidr non-stationary strategies.

Suppose that the observation vecky at timen is d-dimensional, with each component corresponding
to a sensor in a typical decentralized setting. Supposeahbatbservations from each sensor are assumed
to be independent and identically distributed accordinigpéoconditional distributions defined in our earlier

10



example (see Sectign 4.1). Of interest are the optimalmhénestic binary quantizer designs for dlkensors.
Although there are three possible choiges ¢ and¢¢ for each sensor, the quantiz&r is dominated by

the other two, so each sensor should choose ejtheand¢p. Suppose that among these sensors, a subset
of sizek choosep 4, and whereas the remaininf— & sensors chooseég for 0 < k < d. We thus have

d + 1 possible stationary designs to consider. For dadihe sequential cost coefficient corresponding to
the associated stationary design takes the form

0 1
T T
Gy :

= + . (22)
0 0 1 1
kDg, +(d—k)Dgy, kDy + (d— k:)D¢B

Now consider the following non-stationary design: the feesisor alternates between decision rdlgs
and¢p, while the remainingl — 1 sensors simply apply the stationary design basegdgror this design,
the associated sequential cost coefficient is given by

270 27l

G:= + . (23)
0 0 1 1
DY +(@d—1)DY D} +(2d—1)D}
Consider the intervall, V'), where the interval has endpoints
1 1 1o 0 o 1 1 o 0 o 0
D}, =D} DS +(2d—1)DY D§_ D} —-Dj DS +(2d-1)D} D} +(d—1)D§,

= <V = .
0 0 1 1 1 0 0 1 1 1 1
D¢A — D¢>B de + (2d — 1)D¢B D¢>B de — D¢B D¢A + (2d — 1)D¢B D¢A + (d— 1)D¢B

Straightforward calculations yield that for any prior likeod 7°/7! € (U, V), the minimal cost over
stationary designsin,—, . 4 G, is strictly larger than the sequential c@stof the non-stationary design,
previously defined in equatioh (23).

5 On asymptotically optimal blockwise stationary designs

Despite the possible loss in optimality, it is useful to ddas some form of stationarity in order to re-
duce computational complexity of the optimization and dieci process. In this section, we consider
the class ofblockwise stationarydesigns, meaning that there exists some natural numbsuach that
o1 = ¢1,PT120 = ¢o, and so on. For each, let Cr denote the class of all blockwise stationary de-
signs with periodl’. We assume throughout the analysis that each decisiomjule = 1,...,T) satisfies
conditions [(111) and[[(12). Thus, dsincreases, we have a hierarchy of increasingly rich quantiasses
that will be seen to yield progressively better approxinagito the optimal solution.

For a fixed prior(7°, 7!) andT > 0, let (¢1, ..., ¢r) denote a quantizer design diy. As before, the
cost.J; of an asymptotically optimal sequential test using thisgizar design is of orderlog c~! with the
sequential cost coefficient

B T70 + Trt
- 0 0 1 1 -
D¢1+...—|—D¢T D¢1+"'+DT

Gy (24)

G4 is a function of the vector of probabilities introduced by tiuantizer( fg(.), f;(.)). We are interested
in the properties of a quantization rupethat minimizes];;.

It is well known that there exist optimal quantizers#en unrestricted- that can be expressed as
threshold rules based on the log likelihood ratio (LLR) [1@ur counterexamples in the previous sections
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imply that the thresholds need not be stationary (i.e. litestold may differ from sample to sample). In the
remainder of this section, we addresses a partial converastissue: specifically, if we restrict ourselves
to stationary (or blockwise stationary) quantizer desighsn there exists an optimal design consisting of
LLR-based threshold rules.

It turns out that the analysis for the caSe> 1 can be reduced to an analysis that is closely related to our
earlier analysis fofl' = 1. Indeed, consider the sequential cost coefficient for the stepn = 1, where
the rules for the other time steps are held fixed. Fiiom (24)ave h

Tr0 Trt

Gy = + :
=Dy s DL v

for non-negative constantg ands;. As we will show, our earlier analysis of the sequential costfficient,
in which s = s1 = 0, carries through to the case in which these values are nmon-Zénis allows us to
provide (in Theorerhl9) a characterization of the optimatkWise stationary quantizer.

Definition 4. The quantizer design functiah: X — U/ is said to be dikelihood ratio threshold ruld there
are thresholdsly = —oo < d; < ... < dg = +o0, and a permutatiorfuy, ..., ux) of (0,1,..., K — 1)
such that forl = 1,..., K, with Py-probability 1, we have:

o(X) = if diy < f1(X)/fOX) < d,
Whenf1(X)/f%(X) = d_1, setg(X) = w1 or ¢(X) = w, with Py-probability 17

Previous work on the extremal properties of likelihooda#tsed quantizers guarantees that the Kullback-
Leibler divergence is maximized by a LLR-based quantiz&}.[In our case, however, the sequential cost
coefficientG; involves a pair of KL divergenceng andDé, which are related to one another in a non-
trivial manner. Hence, establishing asymptotic optingadit LLR-based rules for this cost function does not
follow from existing results, but rather requires furthaderstanding of the interplay between these two KL
divergences.

The following lemma concerns certain “unnormalized” vatsaof the Kullback-Leibler (KL) diver-
gence. Given vectors = (ag,a;) andb = (by, b1), we define functionsD® and D! mapping fromR% to
the real line as follows:

D%a,b) = aglog 20 + bg log b (25a)
aq b1

DY(a,b) = ajlog il + by log b—l (25b)
ao bo

These functions are related to the standard (normalizedylikérgence via the relationéo(a, 1—a)=
D(ag,a1), andD(a,1 — a) = D(ay, ap).
Lemma 5. For any positive scalars., by, c1, ag, by, cg Such thatg—é < Ig—é < 4. at least onef the two

co
following conditions must hold:

D%a,b+c¢) > D°b,c+a) and D'(a,b+c)> D°b,c+a), or (26a)
D°%c,a+b) > D°b,c+a) and D'(c,a+b)> D°b,c+a). (26b)

2This last requirement of the definition is termed tamonicallikelihood ratio quantizer by Tsitsikli§ [18]. Although ercould
consider performing additional randomization when theeetis, our later results (in particular, Lemia 7) estabfigt in this
case, randomization will not further decrease the optiroat ;.
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This lemma implies that under certain conditions on the rmdeof the probability ratios, one can
increaseboth KL divergences by re-quantizing. This insight is used in fibldowing lemma to establish
that the optimal quantizep behaves almost like a likelihood ratio rule. To state thelltgsecall that the
essential supremui the infimum of the set of aly such thatf(x) < » for Py-almost allz in the domain,
for a measurable functiofi.

Lemma 6. If ¢ is an asymptotically optimal quantizer, then for all pafis, us) € U, u; # ug, there holds:

PO x5O e p L))

fo(u1) €SS

z:(x)=u2 fO(x) 7 m:¢(:v)zu2 fO(w)

Note that a likelihood ratio rule guarantees somethingiggeo. ForPy-almost allz such that)(x) = uy,
fL(z)/f%(z) takes a value either to the left or to the right, but not to sities, of the interval specified
above.

LemmdY stated below essentially guarantees quasiconad\it, for the case of binary quantizers. To
state the result, Ief : [0, 1]> — R be given by

€0 + C1
D(ao,al)+d0 D(a1,ao)—|—d1'

F(CL(), CLl) = (27)

Lemma 7. For any non-negative constantg, ci, dy, d, the functionF’ defined in(27) is quasiconcave.

We provide a proof of this result in the Appendix. An immediabnsequence of Lemraa 7 is that
LLR-based quantizers exist for the class of randomized tigeas with binary outputs.

Corollary 8. Restricting to the class of (blockwise) stationary binawantizers, there exists an asymptoti-
cally optimal quantizer that is a (deterministic) likelihood ratio threshold rule.

Proof: Let ¢ is a (randomized) binary quantizer. The sequential codficmmt can be written as/;, =
F(£3(0), £;(0)). The set of((£3(0), f;(0)} for all ¢ is a convex set whose extreme points can be realized
by deterministic likelihood ratio threshold rules (Prop2 8f [18]). Since the minimum of a quasiconcave
function must lie at one such extreme polint [4], the corglisrimmediate as a consequence of Lenitna 7.
O
It turns out that the same statement can also be proved femdigistic quantizers with arbitrary output
alphabets:

Theorem 9. Restricting to the class of (blockwise) stationary and deteistic decision rules, then there
exists an asymptotically optimal quantizgthat is a likelihood ratio threshold rule.

We present the full proof of this theorem in the Appendix. Treof exploits both LemmAa]6 and
LemmdT.

6 Discussion

In this paper, we have studied the problem of sequentialndedzed detection. For quantizers with neither
local memory nor feedback (Case A in the taxonomy of Veeliaghhl. [22]), we have established that
stationary designs need not be optimal in general. Moresw@have shown that in the asymptotic setting
(i.e., when the cost per sample goes to zero), there is a@lgeeblems for which there exists a range of
prior probabilities over which stationary strategies areaptimal.
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1—-5b

(bl — bo)/bl 1-— b() aq
Figure 1: lllustration of the domaim.

There are a number of open questions raised by the analy#issipaper. First, our analysis has es-
tablished only that the best stationary rule chosen fromitefget of deterministic quantizers need not be
optimal. Is there a corresponding example with an infinitenber of deterministic stationary quantizer de-
signs for which none is optimal? Second, Corolldry 8 estabb the optimality of likelihood ratio rules for
randomized decision rules that produce binary outputss fptoof was based on the quasiconcavity of the
function G4 that specifies the asymptotic sequential cost coefficiarthi$ functionG, also quasiconcave
for quantizers other than binary ones? Such quasiconcaxityyd extend the validity of Theorei 9 for the
general class of randomized quantizers.
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Proof of Lemmal5

By renormalizing, we can assume w.l.0.g. that- b1 + ¢; = ag + by + ¢g = 1. Also w.l.0.g, assume
thatb; > bg. Thus,c; > ¢g anda; < ag. Replacinge; =1 — ay — by andeg = 1 — ag — by, the inequality
Cl/Co > bl/bo is equivalent tar; < aobl/bo — (bl — bo)/bo

We fix values o, and consider varying € A, whereA denotes the domain fdr, a;) governed by
the following equality and inequality constrain< a1 <1 —b1; 0 < ag < 1 —bg; a1 < ag and

a; < aobl/bo — (bl — bo)/bo (28)

Note that the third constraini{ < ag) is redundant due to the other three constraints. In péaticu
constraint[(2B) corresponds to a line passing thralgh — b)/b1,0) and(1 — by, 1 — b1) in the (ag, a1)
coordinates. As a resuly is the interior of the triangle defined by this line and twoestlines given by
a1 = 0andag = 1 — by (see Figurell).

Since bothD%(a, 1 —a) andD'(a, 1 —a) correspond to KL divergences, they are convex functioni wit
respect tdap, a1). In addition, the derivatives with respectdg are a(ll‘_“o) < 0 andlog % < 0,

. . ) a1(l—ay . ao(l-a1) .
respectively. Hence, both functions can be (strictly) lwmthfrom below by increasing; while keepingag
unchanged, i.e., by replacing by a} so that(ag, a}) lies on the line given by (28), which is equivalent to
the constraint; /co = b1 /by. Letd] = 1 — by — af; thend| /¢y = b1/by. Our argument has established
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inequalities (a) and (b) in the following chain of inequiakt

a ! /
D'(a,b+c) (>) a} log 4y (b1 + c})log bt (29a)
ag bo + co
! /
b
O log ™ 4 log D 4 by log X (29b)
a Co bo
(©) ay + ¢, by
> (d) +¢))log —4—2L + by log — 29
> (a) +c)) Oga0+c0+ 10gbo (29c¢)
= DYa+e¢b), (29d)

inequality (c) follows from an application of the log-surmeguality [9]. A similar conclusion holds for
D%a, b+ c).

Proof of Lemmal@
Suppose the opposite is true, that there exist two$gtS, with positivelPp-measure such that X ) =

ug forany X € S; U S5, and

1S )  f1(S2)

< < . 30

7(50) < Pl < F(Sa) ¢
By reassigningS; or S, to the quantileu;, we are guaranteed to have a new quanti¥esuch thatD?, >
Dg* and Dé, > D!, thanks to Lemma&l5. As a result! has a smaller sequential cog, which is a
contradiction.

Proof of Lemmal7

The proof of this lemma is conceptually straightforwardt the algebra is involved. To simplify the
notation, we replace, by x, a1 by y, the functionD(ag,a1) by f(x,y), and the functionD (a1, ag) by
g(x,y). Finally, we assume thaly = d; = 0; the proof will reveal that this case is sufficient to eststbli
the more general result with arbitrary non-negative sealgandd; .

We havef(z,y) = zlog(z/y) + (1 — x)log[(1 — 2)/(1 — y)] andg(z,y) = ylog(y/x) + (1 —
y)log[(1 —y)/(1 — x)]. Note that bothf andg are convex functions and are non-negative in their domains,
and moreover that we havé(z,y) = c¢o/f(x,y) + c1/g(x,y). In order to establish the quasiconcavity of
F, it suffices to show that for anfe, ) in the domain ofF", for any vectorh = [hg hy] € R? such that
TV F(z,y) = 0, there holds

RIV2F(z,y) h <0 (31)

(see Boyd and Vandenberghe [4]). Here we adopt the standéation of V F’ for the gradient vector of",
and V2 F for its Hessian matrix. We also uge to denote the partial derivative with respect to variahle
F,, to denote the partial derivative with respectitandy, and so on.

We haveVF = — %V _ aVd Thys, it suffices to prove relation {31) for vectors of thenfo

f? 9°
n= (o) ()]
Itis convenient to writdh = covg + civ1, Wherevy = [— £,/ f?  f./ 2] andvy = [~g,/9® 9./9%]T.

The Hessian matriX’2F' can be written a&%F = ¢y Hy + coH,, where

1 |: f:mf_2fg? fmyf_2fmfy :|

Bo==5| fof =20ty fpf —2f2
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and )
Hy = — 1 9zz9 — 295 Gaxy9 — 2gm9y

B3| Gey9 — 2929y 9yy9 — 29,

Now observe that
hTVZFh = (CQ’UQ + Clvl)T(CQHQ + ClHl)(Covo + clvl),

which can be simplified to
WI'V2Fh = 3ol Hovg + vl Hivp + cEer (208 Hovy + vl Hyvg) + coc? (208 Hivp + ol Howy).

This function is a polynomial iy andcy, which are restricted to be non-negative scalars (at lezestod
which is assumed to be non-zero). Therefore, it sufficesduogpthat all the coefficients of this polynomial
(with respect taxy andc;) are strictly negative. In particular, we shall show that

(I) ngovo <0,and
(i) QUgHovl + 'Ung'U(] <0,.

where in both cases equality occurs only i y, which is outside of the domain df. The strict negativity
of the other two coefficients follows from entirely analogarguments.
First, some straightforward algebra shows that inequéitig equivalent to the relation

foao + Fyyfo = 2fufyfoy-
But note thatf is a convex function, s@, fy, > f:?y. Hence, we have

(a) ®)
fxwf5+fyyf§ 2 2\/fmmfyy|fxfy| 2 2fmfyfmy>

thereby proving (i). (In this argument, inequality (a) tslls from the fact that:®> + > > 2ab, whereas
inequality (b) follows from the strict convexity gf. Equality occurs only ift = y.)
Regarding (ii), some further algebra reduces it to the iaétyu

Gi+Go—G3 >0, (32)
where

G = Q(fygyfxx + fmgwfyy - (fygm + fmgy)fmy)a
Gy = f;gmc + fg?gyy - Qfxfygmya

Gs = g(fygx_fxgy)z-

At this point in the proof, we need to exploit specific infortina about the functiong and g, which
are defined in terms of KL divergences. To simplify notatias letu = z/y andv = (1 — z)/(1 — y).
Computing derivatives, we have

fo(z,y) = log(z/y) —log((1 —z)/(1 —y)) = log(u/v),

(
fylwy) = A—2)/QA-y)—z/y=v—u,
ge(z,y) = (1—-y)/(1—z)—y/v=1/v—1/u,
gy(z,y) = log(y/x) —log((1 —y)/(1—x)) = log(v/u),
1 1 1—y +y 1
Vif(r,y) = | 0@ ¥ 0 and Vig(zy) =| 097 @ w9
Tz OyZ T2 TI-m)  yi-p)

16



Noting thatf, = —gy; gzy = —faa; fzy = —gyy, We See that equatioh (32) is equivalent to

2(facgmfyy + fygmgyy) - fg?gyy + f;gmm > %(fygac - fzgy)2- (33)

To simplify the algebra further, we shall make use of the irsgity (log t)? < (¢t — 1/t)2, which is valid
for anyt. This implies that

foge = (0= w)(1/v = 1/u) < fagy = —(0g(u/v))* = 2 = —g2 <0,

Thus,— 29,y > fy929yys and%(fygw — frgy)? < %fygm(fygw — fz9y)- As a result, [[38) would follow if
we can show that

2
2(fmgxfyy + fyg:vgyy) + fygmgyy + fy29x:v > ;fygzv(fygm - fmgy)-

For allz # y, we may divide both sides by f, (z,y)g.(x,y) > 0. Consequently, it suffices to show that:

—Qfxfyy/fy - fygmc/gac - 3gyy > (fmgy - gwfy)a

QN

or, equivalently,

21og(u/v)<ui1 + 1fv>+<1f:ﬂ +§> - y(13_y) > 3(% —(1og%)2>,

or, equivalently,

(u—v)(u+v—1) (u—v)2(u+v—4uw) _ 2((u—v)? Uy
> = — ).
2log(u/v) (u—1)(1—-w) + wu—1)(1-v) g uv (log 1)) (34)
Due to the symmetry, it suffices to prove34) fox y. In particular, we shall use the following inequality
for logarithm mean [13], which holds far # v:

3 < logu — logwv < 1
2y/uv + (u +v)/2 u—v (uwv(u +v)/2)1/3"

We shall replacé% in (34) by appropriate upper and lower bounds. In additioe,shall also bound
g(x,y) from below, using the following argument. When< y, we haveu < 1 < v, and

_ y 11—y 3y(y — z) (1-y)(z—y)
g(z,y) = ylog;+(1_y)log1—x > 2/TT+ @+ 9)/2 (1—2)1 —y)(1 — (z +9)/2)]7/3
3(1 — v)(1 — w) (@-n-v

(w—v)2vVu+5)  (u—v)(v(v+1)/2)13

Let us denote this lower bound lgyu, v).
Having got rid of the logarithm termg, (34) will hold if we canove the following:

6(u—v)*(u+v—1) (u—v)z(u+v—4uv)> 2 <(u—v)2 9(u — v)? )
uv 2V + (u+v)/2)2 )’

(2\/W+(u—|—fu)/2)(u—1)(1—1))+ wo(u—1)(1—-v) = q(u,v) a
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or equivalently,

< 6(u+v—1) +(u+v—4uv)>< 3 B 1 >
v+ (u + 0)/2) o Wit 5 (- @+ D27

1 9
>~ )

which is equivalent to

(u+ v — 2v/uv) (v +v) /2 + 3y/uv + 4uv)  3(v(v +1)/2)Y% — 2y/u+ (u +1)/2)

(2w + (u +v)/2)uv (v —u)(2vu+ (u+1)/2)(v(v + 1)/2)1/3
- (u~+ v —2y/uv)((u+v)/2 + 5y/uv) (36)
2 @y + (ut 0)2)

and also equivalent to

(4 v)/2 + 2v/u0)((u + v)/2 + 3v/uw + 4uw)[3(v(v +1)/2)Y3 — 2vu + (u +1)/2)]
> (2vu 4 (u+1)/2)(v(v 4+ 1)/2)3 ((u +v)/2 + 5y/av) (v — u). (37)

It can be checked by tedious but straightforward calculasitrequality [(3V) holds for any < 1 < v,
and equality holds when =1 = v, i.e.,z = y.

Proof of Theorem[9
Suppose that is not a likelihood ratio rule. Then there exist positi¥g-probability disjoint sets
S1, 53,53 such that for anyX; € 51, Xo € S, X3 € S5,

o(X1) = d(X3) =w (38a)
P(X2) = ug # u (38b)
fUX) (X)) fH(Xs)

X)) < (%) S O(Xy) (38¢)

Define the probability of the quantiles as:

FO(ur) = Po(¢(X)
FH(ur) = Py((X)

Similarly, for the sets5;, S, and.Ss, we define

1), and fO(ug) = Po(p(X) =
1), and fl(ug) =Py ((X) =

=u
=u

ag = f°(S1), bo=f(S2) and co= fO(Ss),
a1 = f'(S1), bi=f'(S2), and ¢ = f'(Ss).

Finally, letpg, p1, g0 andg; denote the probability measures of the “residuals”:

po = fOu2) — bo, pr = fH(u) — by,
0 = f(w)—ao—co, a1 = fl(u)—a—er.
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Note that we havél— < 2(1) < 5(1) In addition, the set$; and S; were chosen so the& < 3(1) < i(l)

+b uz)
From LemmadBb, there hold;‘)élJr—bl fo u2) ¢ (gé, 5;) We may assume without loss of generality that

pith a1 p1+b1 bl pl p1+b1 i
bothe < ao- Then, = < g, so - < . Overall, we are guaranteed to have the ordering

+b a1 by ¢
ZE<P1 1<1<1<1

39
po Po+bo T an by <o (39)

Our strategy will be to modify the quantizeronly for thoseX for which ¢(X) takes the values; or
us9, such that the resulting quantizer is defined by a LLR-bdsexthold, and has a smaller (or equal) value
of the corresponding cosit;;. For simplicity in notation, we usgl to denote the set with measures under
Py andP; equal toag anday; the setsB, C, P and Q are defined in an analogous manner. We begin by
observing that we have eithgf < L= < bl or bl < e < & Thus, in our subsequent manipulation
of sets, we always bundl@ with either. A orC accordlngly Wlthout changing the ordering of the probapili
ratios. Without loss of generality, then, we may disregae ¢orresponding residual set corresponding to
@ in the analysis to follow.

In the remainder of the proof, we shall show that either ontheffollowing two modifications of the

quantizerg will improve (decrease) the sequential cd§t

() Assign.A, B andC to the same quantization leve], and leaveP to the leveku,, or
(i) AssignP, A andB to the same level,, and leave: to the levelu, .

It is clear that this modified quantizer design respectsik@ithood ratio rule for the quantization indices
uq andusy. By repeated application of this modification for every spelir, we are guaranteed to arrive at a
likelihood ratio quantizer that is optimal, thereby conijplg the proof.

Letay, by, ¢f), py, be normalized versions afy, by, co, po, respectively (i.e.q; = ao/(po + ao + bo + o),
and so on). Similarly, let}, ], c},p} be normalized versions afy, by, c1,p1, respectively. With this
notation, we have the relations

Dg = Z fO Z;‘1‘(290—1-50)10%?(1]12(1)+(a0+co)logzgiz?
UFAUL U2
, / A , , / /
= Ao+ (f(w) + fo(“2))<(po + bp) log X o 1 bg + (ag + cp) log Zg 12)
= A0+(f0(ul)+f0( 2))D°(p' +V,d + ),
Dé = Z 1 (u)log EZ;+(p1+b1)10gz;12(1)—i—(al—i-cl)logzzi;l)
uFu,u2
= A+ (fM(w) + M) D' (' + b d + &),
where we define
._ 0 SO (u) 0 0 FO%ur) + fOus)
Ay = u;,g%;wf (u) log ) + (f(ur) + f (w))logf Tay) + 7 (u2) >0,
._ 1 fH(w) 1 Y(uy) + fH(u2)
A = u;,g%;wf (u) log o + (Y (ur) + f(uz)) log F(an) 1 () >0
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due to the non-negativity of the KL divergences.
Note that from[(3P) we have

/ / / ! / /
+b a c

R e R R
Py Pot+by T oag c

in addition to the normalization constraints thgtt- aj, + b + ¢ = p +a} + b + ¢} = 1. It follows that
pitby _ pital bt
potbo " Potaotlotco e . .

Let us consider varying the values @&f, b}, while fixing all other variables and ensuring that all the
above constraints hold. Thea, + b, is constant, and botW®(p’ + V', a’ + ) and D (p' + ¥/, a’ + )
increase a#) decreases ang increases. In other words, if we defiag = g, by = b, anda] andb] such
that

" /! / /
ﬂ_bl _l-p—q

;T o T 7 7
ay by L —py—c
then we have

Do(p/—l—b/,a/—i—c/) < Do(p’—i—b”,a”—i—c/) anle(p/—i—b/,a/—i-C/) < Dl(p/—i-b//,p//—i—cl). (40)

Now note that vecto(b(, b;) in R? is a convex combination db), 0) and(af + b, a; + b7). It follows
that (pj, + b, p) + bY) is a convex combination dpy, p}) and(p; + aff + by, p| + af + b)) = (py + af +
by, vy + ai +by).

By (40), we obtain:

70 mt

Ao+ (fur) + 1) DO + Vo &) Ar+ (f (wr) + £ () DY+ Vsl + &)

70 7l

A + (fo(ul) + fo(UQ))[)O(p’ + 0" + C') + Ap + (fl(ul) + fl(u2 )Dl(p/ + b a" + c/)
770 771

Ao+ (Fo(un) + FO(u2)) Dy + o 2 00)  Ar + (F(ur) + FL(u2)) Do, + 0y + BF)

Applying the quasiconcavity result in Lemrh 7:

Gy =

v

70 mt

Ao+ (FO0u) + o)) D(y 7)) | Ar+ (F(un) + i (u2)) D, )

70

Ao + (fO(u1) + fO(u2)) D(pg + ag + by, Py + ay + by)
1

Gy > min{

_|_

s
Ar+ (fY(w) + [ (u2))D(p + @) + by, pfy + aly + bfy) }

But the two arguments of the minimum are the sequential aedticient corresponding to the two possible
modifications ofp. Hence, the proof is complete.
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