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Abstract

The problem of computing functions of values at the nodes inetwork in a totally distributed manner,
where nodes do not have unique identities and make decibiasesd only on local information, has applications
in sensor, peer-to-peer, and ad-hoc networks. The taskropating separable functions, which can be written as
linear combinations of functions of individual variablés,studied in this context. Known iterative algorithms for
averaging can be used to compute the normalized values bffsmctions, but these algorithms do not extend in
general to the computation of the actual values of sepafabigtions.

The main contribution of this paper is the design of a disted randomized algorithm for computing separable
functions. The running time of the algorithm is shown to depen the running time of a minimum computation
algorithm used as a subroutine. Using a randomized gossihaném for minimum computation as the subroutine
yields a complete totally distributed algorithm for comipgtseparable functions. For a class of graphs with small
spectral gap, such as grid graphs, the time used by the #higotd compute averages is of a smaller order than the
time required by a known iterative averaging scheme.

. INTRODUCTION

The development of sensor, peer-to-peer, and ad hoc wdrelesvorks has stimulated interest in distributed
algorithms for data aggregation, in which nodes in a netvaankpute a function of local values at the individual
nodes. These networks typically do not have centralizeaitagbat organize the computation and communication
among the nodes. Furthermore, the nodes in such a networkat&now the complete topology of the network, and
the topology may change over time as nodes are added andhatthes fail. In light of the preceding considerations,
distributed computation is of vital importance in these emdnetworks.

We consider the problem of computing separable functiona distributed fashion in this paper. A separable
function can be expressed as the sum of the values of indiViductions. Given a network in which each node
has a number, we seek a distributed protocol for computiag/étiue of a separable function of the numbers at the
nodes. Each node has its own estimate of the value of theidmmathich evolves as the protocol proceeds. Our
goal is to minimize the amount of time required for all of thesstimates to be close to the actual function value.

In this work, we are interested iotally distributedcomputations, in which nodes have a local view of the state
of the network. Specifically, an individual node does notehavformation about nodes in the network other than
its neighbors. To accurately estimate the value of a sefgmfabction that depends on the numbers at all of the
nodes, each node must obtain information about the otheesodthe network. This is accomplished through
communication between neighbors in the network. Over thesmoof the protocol, the global state of the network
effectively diffuses to each individual node via local commitation among neighbors.

More concretely, we assume that each node in the network &mmly its neighbors in the network topology,
and can contact any neighbor to initiate a communicationti@rother hand, we assume that the nodes do not have
unique identities (i.e., a node has no unique identifier that be attached to its messages to identify the source of
the messages). This constraint is natural in ad-hoc andlenobiworks, where there is a lack of infrastructure (such
as IP addresses or static GPS locations), and it limits tiigyadsl§ a distributed algorithm to recreate the topology
of the network at each node. In this sense, the constraiot @isvides a formal way to distinguish distributed
algorithms that are truly local from algorithms that operhy gathering enormous amounts of global information
at all the nodes.

The absence of identifiers for nodes makes it difficult, withglobal coordination, to simply transmit every
node’s value throughout the network so that each node cantifigi¢he values at all the nodes. As such, we develop
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an algorithm for computing separable functions that reliesanorder- and duplicate-insensitiviatistic [20] of a
set of numbers, the minimum. The algorithm is based on ptiggeof exponential random variables, and reduces
the problem of computing the value of a separable functioth® problem of determining the minimum of a
collection of numbers, one for each node.

This reduction leads us to study the problenirdbrmation spreading@r information disseminatioin a network.

In this problem, each node starts with a message, and thesmodst spread the messages throughout the network
using local communication so that every node eventuallyavasy message. Because the minimum of a collection
of numbers is not affected by the order in which the numbegeap nor by the presence of duplicates of an
individual number, the minimum computation required by algorithm for computing separable functions can be
performed by any information spreading algorithm. Our gsialof the algorithm for computing separable functions
establishes an upper bound on its running time in terms ofuthring time of the information spreading algorithm

it uses as a subroutine.

In view of our goal of distributed computation, we analyzgassipalgorithm for information spreading. Gossip
algorithms are a useful tool for achieving fault-tolerantlascalable distributed computations in large networks.
In a gossip algorithm, each node repeatedly iniatiates aamiwation with a small number of neighbors in the
network, and exchanges information with those neighbors.

The gossip algorithm for information spreading that we gtisdrandomized, with the communication partner of
a node at any time determined by a simple probabilistic &hdige provide an upper bound on the running time
of the algorithm in terms of theonductancef a stochastic matrix that governs how nodes choose conuatimm
partners. By using the gossip algorithm to compute minim#énénalgorithm for computing separable functions, we
obtain an algorithm for computing separable functions vehpsrformance on certain graphs compares favorably
with that of known iterative distributed algorithms [5] foomputing averages in a network.

A. Related work

In this section, we present a brief summary of related workoAthms for computing the number of distinct
elements in a multiset or data stream [11], [2] can be adajmembmpute separable functions using information
spreading [7]. We are not aware, however, of a previous aisadf the amount of time required for these algorithms
to achieve a certain accuracy in the estimates of the fumetdue when the computation is totally distributed (i.e.,
when nodes do not have unique identities). These adaptedthlgs require the nodes in the network to make use
of a common hash function. In addition, the discretenesk@tbunting problem makes the resulting algorithms for
computing separable functions suitable only for functionghich the terms in the sum are integers. Our algorithm
is simpler than these algorithms, and can compute functidgtis non-integer terms.

There has been a lot of work on the distributed computatiomwafrages, a special case of the problem of
reaching agreement or consensus among processors viaridutest computation. Distributed algorithms for
reaching consensus under appropriate conditions have kremvn since the classical work of Tsitsiklis [25] and
Tsitsiklis, Bertsekas, and Athans [26] (see also the boolBbitsekas and Tsitsiklis [4]). Averaging algorithms
compute the ratio of the sum of the input numbers:fdahe number of nodes in the network, and not the exact
value of the sum. Thus, such algorithms cannot be extendegeéreral to compute arbitrary separable functions.
On the other hand, an algorithm for computing separabletimmg can be used to compute averages by separately
computing the sum of the input numbers, and the number of nadéhe graph (using one as the input at each
node).

Recently, Kempe, Dobra, and Gehrke showed the existence rahdomized iterative gossip algorithm for
averaging with the optimal averaging time [15]. This resuls restricted to complete graphs. The algorithm
requires that the nodes begin the computation in an asyrtnm@tial state in order to compute separable functions, a
requirement that may not be convenient for large networésdh not have centralized agents for global coordination.
Furthermore, the algorithm suffers from the possibilityostillation throughout its execution.

In a more recent paper, Boyd, Ghosh, Prabhakar, and Shaénpedsa simpler iterative gossip algorithm for
averaging that addresses some of the limitations of the I€eet@l. algorithm [5]. Specifically, the algorithm and
analysis are applicable to arbitrary graph topologies.dBelyal. showed a connection between the averaging time
of the algorithm and the mixing time (a property that is retato the conductance, but is not the same) of an
appropriate random walk on the graph representing the metWdey also found an optimal averaging algorithm
as a solution to a semi-definite program.



For completeness, we contrast our results for the problemvefaging with known results. As we shall see,
iterative averaging, which has been a common approach iprthaéous work, is an order slower than our algorithm
for many graphs, including ring and grid graphs. In this serewur algorithm is quite different than (and has
advantages in comparison with) the known averaging alyost

On the topic of information spreading, gossip algorithmsdizsseminating a message to all nodes in a complete
graph in which communication partners are chosen unifoahlandom have been studied for some time [12], [21],
[9]. Karp, Schindelhauer, Shenker, and Vocking preseatmash and pulbossip algorithm, in which communicating
nodes both send and receive messages, that disseminatessagmeo all» nodes in a graph i (logn) time
with high probability [14]. In this work, we have provided amalysis of the time required for a gossip algorithm
to disseminate: messages ta nodes for the more general setting of arbitrary graphs amdumiform random
choices of communication partners. For other related tgswe refer the reader to [22], [16], [17]. We take note
of the similar (independent) recent work of Ganesh, Masspahd Towsley [13], and Berger, Borgs, Chayes, and
Saberi [3], on the spread of epidemics in a network.

B. Organization

The rest of the paper is organized as follows. Sediibn Ilgntssthe distributed computation problems we study
and an overview of our results. In Sectibnl Ill, we develop amdlyze an algorithm for computing separable
functions in a distributed manner. Section IV contains aalysis of a simple randomized gossip algorithm for
information spreading, which can be used as a subroutinkeralgorithm for computing separable functions. In
Section VY, we discuss applications of our results to pddictypes of graphs, and compare our results to previous
results for computing averages. Finally, we present cammhs and future directions in Sectibn] VI.

Il. PRELIMINARIES AND RESULTS

We consider an arbitrary connected network, representednbyndirected graplx = (V, E), with |V| = n
nodes. For notational purposes, we assume that the nodésame numbered arbitrarily so th&t = {1,...,n}.

A node, however, does not have a unigue identity that can bd irs a computation. Two nodesand j can
communicate with each other if (and only if),j) € E.

To capture some of the resource constraints in the netwarlich we are interested, we imposéransmitter
gossipconstraint on node communication. Each node is allowed maob at most one other node at a given time
for communication. However, a node can be contacted by pheltiodes simultaneously.

Let 2V denote the power set of the vertex $ét(the set of all subsets df). For ann-dimensional vector
Ze€R" letxy,...,x, be the components af.

Definition 1: We say that a functiorf : R” x 2" — R is separableif there exist functionsf, . .., f, such that,
forall SCV,
F(@8) =) filz). (1)
i€S
Goal. Let F be the class of separable functiofifor which f;(z) > 1 for all x € R andi = 1,...,n. Given

a function f € F, and a vectorz containing initial valuese; for all the nodes, the nodes in the network are to
compute the valug (Z, V') by a distributed computation, using repeated communicdigtween nodes.

Note 1: Consider a functiory for which there exist functionsg, ..., g, satisfying, for allS C V, the condition
9(Z, S) = [L;cg 9i(x;) in lieu of (X). Then,g is logarithmic separablgi.e., f = log, g is separable. Our algorithm
for computing separable functions can be used to computduthetion f = log, g. The conditionf;(z) > 1
corresponds tg;(z) > b in this case. This lower bound df on f;(x) is arbitrary, although our algorithm does
require the termg;(x;) in the sum to be positive.

Before proceeding further, we list some practical situaiavhere the distributed computation of separable
functions arises naturally. By definition, the sum of a sehofbers is a separable function.

(1) SummationLet the value at each node kg = 1. Then, the sum of the values is the number of nodes in the

network.

(2) Averaging.According to Definitior{]L, the average of a set of numbers isanseparable function. However,

the nodes can estimate the separable funcigh, =z; andn separately, and use the ratio between these two
estimates as an estimate of the mean of the numbers.



Suppose the values at the nodes are measurements of a yjedntiterest. Then, the average provides an
unbiased maximum likelihood estimate of the measured gyakbr example, if the nodes are temperature
sensors, then the average of the sensed values at the nedesigjood estimate of the ambient temperature.

For more sophisticated applications of a distributed ayietpalgorithm, we refer the reader to [18] and [19].
Averaging is used for the distributed computation of the togigenvectors of a graph in [18], while in [19]
averaging is used in a throughput-optimal distributed daheg algorithm in a wireless network.

Time modél. In a distributed computation, a time model determines whetiee communicate with each other.
We consider two time models, one synchronous and the otlyerchmonous, in this paper. The two models are
described as follows.

(1) Synchronous time modeTime is slotted commonly across all nodes in the network.riy time slot, each
node may contact one of its neighbors according to a randamicehhat is independent of the choices
made by the other nodes. The simultaneous communicatigrebatthe nodes satisfies the transmitter gossip
constraint.

(2) Asynchronous time modeEach node has a clock that ticks at the times of a fatBoisson process.
Equivalently, a common clock ticks according to a ratePoisson process at time&S;, k& > 1, where
{Cks1 — Cy} are i.i.d. exponential random variables of rateOn clock tickk, one of then nodes, sayy,
is chosen uniformly at random. We consider this global cltick to be a tick of the clock at nodg,. When
a node’s clock ticks, it contacts one of its neighbors at eamdin this model, time is discretized according
to clock ticks. On average, there aseclock ticks per one unit of absolute time.

In this paper, we measure the running times of algorithmsbsokte time, which is the number of time slots
in the synchronous model, and is (on average) the numbeiook d¢icks divided byn in the asynchronous model.
To obtain a precise relationship between clock ticks anelabs time in the asynchronous model, we appeal to
tail bounds on the probability that the sample mean of igxponential random variables is far from its expected
value. In particular, we make use of the following lemma, etthalso plays a role in the analysis of the accuracy
of our algorithm for computing separable functions.

Lemma 1:For anyk > 1, let Y, ..., Y, be ii.d. exponential random variables with rateLet R, = %Ele Y;.

Then, for anye € (0,1/2),
2
Pr(Rk—§‘2§> < 2exp <—%> (2)
Proof: By definition, E[Ry| = %Ele A=t = X~L The inequality in[(R) follows directly from Cramér’s
Theorem (see [8], pB0, 35) and properties of exponential random variables. [ |

A direct implication of Lemmall is the following corollary,hich bounds the probability that the absolute time
C}, at which clock tickk occurs is far from its expected value.

Corollary 1: For k > 1, E[C}] = k/n. Further, for any € (0,1/2),

2
Pr Ck—% 2% < 2exp —% 3)

Our algorithm for computing separable functions is randmdj and is not guaranteed to compute the exact
quantity f(Z,V) = Y., fi(x;) at each node in the network. To study the accuracy of the ithgos estimates,
we analyze the probability that the estimate f@ff, V') at every node is within &1 + ) multiplicative factor of
the true valuef(Z, V') after the algorithm has run for some period of time. In thissse the error in the estimates
of the algorithm is relative to the magnitude pfz, V).

To measure the amount of time required for an algorithm’smeges to achieve a specified accuracy with a
specified probability, we define the following quantity. For algorithmC that estimates (z, V'), let g;(t) be the
estimate off(Z,V) at node: at time ¢. Furthermore, for notational convenience, given- 0, let A:(¢) be the
following event.

Ai () ={:(t) € [(1 =) f(Z,V), (1 +e)f(Z,V)]}

Definition 2: For anye > 0 andé € (0, 1), the €, §)-computing time ofC, denotedl; (e, §), is

T:™(e,8) = sup sup inf {7’ Ve > 7, Pr (UL, Af(t)) < 5}.
feF zeRn



Intuitively, the significance of this definition of the, §)-computing time of an algorithng is that, if C runs for
an amount of time that is at leasf" (¢, §), then the probability that the estimates fif7, V) at the nodes are all
within a (1 £ ¢) factor of the actual value of the function is at least ¢.

As noted before, our algorithm for computing separable tions is based on a reduction to the problem of
information spreading, which is described as follows. Siggpthat, fori = 1,...,n, nodei has the one message
m;. The task of information spreading is to disseminatenalhessages to alt nodes via a sequence of local
communications between neighbors in the graph. In any eicginmunication between two nodes, each node
can transmit to its communication partner any of the mess#ya it currently holds. We assume that the data
transmitted in a communication must be a set of messagegharefore cannot be arbitrary information.

Consider an information spreading algoritipp which specifies how nodes communicate. For each ned&’,
let S;(t) denote the set of nodes that have the messageat time ¢t. While nodes can gain messages during
communication, we assume that they do not lose messagelats;tt;) C S;(t2) if t; < to. Analogous to the
(e,6)-computing time, we define a quantity that measures the atafuime required for an information spreading
algorithm to disseminate all the messagesto all the nodes in the network.

Definition 3: For § € (0, 1), the é-information-spreading time of the algorith, denotedl’y(6), is

T(8) = inf {t : Pr (U {Si(t) # V}) < d}.
In our analysis of the gossip algorithm for information gimg, we assume that when two nodes communicate,
each node can send all of its messages to the other in a siagimenication. This rather unrealistic assumption
of infinite link capacity is merely for convenience, as it provides apd@nanalytical characterization GTgmp(e, J)

in terms ofT;pr(é). Our algorithm for computing separable functions requaely links of unit capacity.

A. Our contribution

The main contribution of this paper is the design of a disted algorithm to compute separable functions of
node values in an arbitrary connected network. Our algorith randomized, and in particular uses exponential
random variables. This usage of exponential random vasaisl analogous to that in an algorithm by Caohéor
estimating the sizes of sets in a graph [6]. The basis for tgarighm is the following property of the exponential
distribution.

Property 1: Let W1,...,W,, be n independent random variables such that,ifer 1,...,n, the distribution of
W; is exponential with rate\;. Let W be the minimum ofit/;, ..., W,,. Then,W is distributed as an exponential
random variable of rate = )" | \;.

Proof: For an exponential random variablg with rate A, for anyz € R,

Pr(W > z) = exp(—Az).
Using this fact and the independence of the random varidblgsve computePr(WW > z) for anyz € R.,.

Pr(W >z) = Pr(ni{W;>z})

= ﬁPr(WZ— > 2)

i=1

= ﬁexp(—)\iz)
i=1

= exp (—zi&) .
i=1

This establishes the property stated above. [ |

Our algorithm uses an information spreading algorithm asil@autine, and as a result its running time is a
function of the running time of the information spreadingaithm it uses. The faster the information spreading
algorithm is, the better our algorithm performs. Specificahe following result provides an upper bound on the
(e, 6)-computing time of the algorithm.

1We thank Dahlia Malkhi for pointing this reference out to us.



Theorem 1:Given an information spreading algorith® with §-spreading timeZx'(§) for § € (0,1), there
exists an algorithm4 for computing separable functiornfse F such that, for any € (0,1) andoé € (0, 1),

T, 8) =0 (e72(1+1og 61 TR(6/2)) .

Motivated by our interest in decentralized algorithms, walgze a simple randomized gossip algorithm for
information spreading. When nodenitiates a communication, it contacts each ngdg ¢ with probability P;;.
With probability P;;, it does not contact another node. The n matrix P = [P;;] characterizes the algorithm; each
matrix P gives rise to an information spreading algoritlin We assume thaP is stochastic, and tha®;; = 0 if
i # jand(i,j) ¢ E, as nodes that are not neighbors in the graph cannot comataniith each other. Section
[VIdescribes the data transmitted between two nodes whegnciiramunicate.

We obtain an upper bound on tli@nformation-spreading time of this gossip algorithm innte of theconduc-
tanceof the matrix P, which is defined as follows.

Definition 4: For a stochastic matri®, the conductance aP, denoted®(P), is

O(P) = min 722‘65,3‘&5 b .
SCV, 0<|5|<n/2 |S|

In general, the above definition of conductance is not theesasrthe classical definition [24]. However, we restrict
our attention in this paper to doubly stochastic matrifedVhen P is doubly stochastic, these two definitions are
equivalent. Note that the definition of conductance impirest &(P) < 1.

Theorem 2:Consider any doubly stochastic matiX such that ifi # j and (i,j) ¢ E, thenP;; = 0. There
exists an information dissemination algorittihsuch that, for any € (0, 1),
T;pf(é) — O log nqj_;)g 5_1

Note 2: The results of Theorenis 1 ahd 2 hold for both the synchronndsaaynchronous time models. Recall
that the quantitied;""(c,8) and Ty '(5) are defined with respect to absolute time in both models.
A comparison. Theoremd 11 an@]2 imply that, given a doubly stochastic maftjxthe time required for our

algorithm to obtain g1+ <) approximation with probability at least— g is O (572(1+1°g5;2%‘)’%“‘%571)). When

the network sizex and the accuracy parameterand¢ are fixed, the running time scales in proportionl @b (P),

a factor that captures the dependence of the algorithm om#tgx P. Our algorithm can be used to compute the
average of a set of numbers. For iterative averaging algostsuch as the ones in [25] and [5], the convergence
time largely depends on the mixing time &% which is lower bounded b2(1/®(P)) (see [24], for example).
Thus, our algorithm is (up to kg n factor) no slower than the fastest iterative algorithm dase time-invariant

linear dynamics.

I1l. FUNCTION COMPUTATION

In this section, we describe our algorithm for computing ¥akiey = f(Z,V) = >""" , fi(z;) of the separable
function f, where f;(z;) > 1. For simplicity of notation, let); = f;(z;). Givenx;, each node can computg on
its own. Next, the nodes use the algorithm shown in Eig. 1ctviie refer to as COMP, to compute estimajes
of y =", v;. The quantityr is a parameter to be chosen later.

Algorithm COMP
0. Initially, for s =1,...,n, node: has the valugy;, > 1.
1. Each nodei generates: independent random numbe¥g;, ..., W}, where the distribution of each; is
exponential with ratey; (i.e., with meanl /y;).
2. Each node computes, fof = 1,...,r, an estimatéV; of the minimumi¥, = min?_, W{. This computation
can be done using an information spreading algorithm asritbestcbelow.

3. Each node computesy); = ZZ; 7 8s its estimate of ", v;.

Fig. 1. An algorithm for computing separable functions.

We describe how the minimum is computed as required byBifthe algorithm in Section IlI-A. The running
time of the algorithm COMP depends on the running time of tigerthm used to compute the minimum.



Now, we show that COMP effectively estimates the functioluga when the estimateﬁfg are all correct by
providing a lower bound on the conditional probability thae estimates produced by COMP are all within a
(1 £¢) factor of y.

Lemma 2:Letys,...,y, be real numbers (wit; > 1 fori=1,...,n), y=>" v, andW = (W1,..., W,),
where thelV, are as defined in the algorithm COMP. For any nedeet Wi = (W¢,..., W), and lety; be the
estimate ofy obtained by nodeé in COMP. For any < (0,1/2),

) _ 2
Pr <u?:1 (g —y| > 2ey} |Vie V, Wi= W) < 2exp <_%T> .

Proof: Observe that the estimageof y at nodei is a function ofr andW*. Under the hypothesis théit* = 17/
for all nodesi € V, all nodes produce the same estimgte: g; of y. This estimate igj = r (}_;_, Wg)_l, and

sogt = (i We)rt

Property[1 implies that each of therandom variable$V, ..., W,. has an exponential distribution with rage
From LemmdL, it follows that for any € (0,1/2),
1 NP 2
Pr<y_1—§‘>§‘Vi€V,W’:W> SQexp(—%). (4)

This inequality bounds the conditional probability of theeet{§—! & [(1—¢)y~!, (14¢)y~1]}, which is equivalent
to the event{y ¢ [(1+ &)y, (1 — &)~ 'y]}. Now, fore € (0,1/2),

(1—e)tel+e1+2], I+e)t €1 —¢,1—2¢/3]. (5)
Applying the inequalities in[{4) andl(5), we conclude that éc (0,1/2),
) _ 2
Pr (\;&—y\ > 2y |VieV, W' = W> < 2exp <—%> .
Noting that the event?_, {|g; —y| > 2y} is equivalent to the everflj —y| > 2cy} whenW? = W for all nodes
i completes the proof of Lemnia 2. [ |

A. Using information spreading to compute minima

We now elaborate on stéof the algorithm COMP. Each nodén the graph starts this step with a vector =
(Wi,...,W}), and the nodes seek the vectdt = (W1,...,W,), whereW, = min?_, W/. In the information
spreading problem, each noddas a message,;, and the nodes are to transmit messages across the links unti
every node has every message.

If all link capacities are infinite (i.e., in one time unit, @ade can send an arbitrary amount of information to
another node), then an information spreading algorifingan be used directly to compute the minimum vector
W. To see this, let the message at the nodei be the vectorV?, and then apply the information spreading
algorithm to disseminate the vectors. Once every node hay enessage (vector), each node can complitas
the component-wise minimum of all the vectors. This implieat the running time of the resulting algorithm for
computingW¥ is the same as that of the information spreading algorithm.

The assumption of infinite link capacities allows a node &nsmit an arbitrary number of vectol&" to
a neighbor in one time unit. A simple modification to the imfi@ation spreading algorithm, however, yields an
algorithm for computing the minimum vectdé¥ using links of capacity-. To this end, each nodemaintains a
single r-dimensional vector’(t) that evolves in time, starting with?(0) = W*.

Suppose that, in the information dissemination algorithoge; transmits the messages (vectorig):, ..., Wi
to nodei at timet. Then, in the minimum computation algorithmh sends tai the » quantitiesws, .. . , w,., where
wy = min¢_; W;*. The nodei setsw!(t) = min(w}(¢t~),wy) for £ =1,...,r, wheret~ andt* denote the times
immediately before and after, respectively, the commuigna At any timet¢, we will have w'(t) = W for all
nodesi ¢ V if, in the information spreading algorithm, every nodeas all the vector$V’!, ..., W" at the same
time t. In this way, we obtain an algorithm for computing the minimwvector' that uses links of capacity and
runs in the same amount of time as the information spreadgwithm.

An alternative to using links of capacity in the computation ofl’ is to make the time slot times larger,
and impose a unit capacity on all the links. Now, a node tratssthe numbersuvy, ..., w, to its communication



partner over a period af time slots, and as a result the running time of the algoritbmcbmputingl¥ becomes
greater than the running time of the information spreadiggrithm by a factor ofr. The preceding discussion,
combined with the fact that nodes only gain messages as armafion spreading algorithm executes, leads to the
following lemma.

Lemma 3:Suppose that the COMP algorithm is implemented using arrrrdton spreading algorithr® as
described above. L&l () denote the estimate ¥ at nodei at timet. For anys € (0,1), let t,,, = 7T (5).
Then, for any timet > ¢,,,, with probability at least — &, Wi(¢t) = W for all nodesi € V.

Note that the amount of data communicated between nodesgdtimé algorithm COMP depends on the values
of the exponential random variables generated by the n&iese the nodes compute minima of these variables,
we are interested in a probabilistic lower bound on the \&lokethese variables (for example, suppose that the
nodes transmit the valugsW,} when computing the minimuni, = 1/ max? ,{1/W}}). To this end, we use
the fact that eachiV, is an exponential random variable with rajeto obtain that, for any constamt> 1, the
probability that any of the minimum valué§ is less thanl/B (i.e., any of the inverse valuels' W/ is greater
than B) is at mostd/c, where B is proportional tocry/J.

B. Proof of Theorerhll

Now, we are ready to prove Theorérn 1. In particular, we wibghhat the COMP algorithm has the properties
claimed in Theorem]1. To this end, consider using an infownaspreading algorithnD with §-spreading time
TX'(8) for 6 € (0,1) as the subroutine in the COMP algorithm. For ahy (0,1), let 7,,, = rTx(6/2). By
Lemmal3, for any time > 7,,, the probability thati¥’? W for any nodei at time¢ is at mostd /2.

On the other hand, suppose tHat: = ¥ for all nodesi at timet > ,,,. For anye € (0,1), by choosing
r > 12e72log(4671) so thatr = ©(¢72(1 + log 1)), we obtain from Lemmal2 that

Pr (U, {5 € [(1 = 2)y, (1 +)yl} [Vie V, W =W)  <5/2. (6)

Recall thatZ 3, p(,6) is the smallest time- such that, under the algorithm COMP, at any time 7, all the
nodes have an estimate of the function vajuerithin a multiplicative factor of(1 + <) with probability at least
1 — 4. By a straightforward union bound of events ah (6), we aatfelthat, for any time > 7,

Pr(ULy {9 ¢ [(1—e)y, (1 +e)y]}) < 0.
For anye € (0,1) andé € (0,1), we now have, by the definition @k, §)-computing time,

cm
Taoup(E0) < Tm

= O(e?(1+1ogd TR (5/2)) .
This completes the proof of Theordrh 1.

IV. INFORMATION SPREADING

In this section, we analyze a randomized gossip algorithmnformation spreading. The method by which nodes
choose partners to contact when initiating a communicadimhthe data transmitted during the communication are
the same for both time models defined in Secfion Il. These taatiffer in the times at which nodes contact each
other: in the asynchronous model, only one node can startrencmication at any time, while in the synchronous
model all the nodes can communicate in each time slot.

The information spreading algorithm that we study is présgnin Fig.[2, which makes use of the following
notation. Let)/;(t) denote the set of messages nadeas at timet. Initially, ;(0) = {m;} for all i € V. For a
communication that occurs at timelet t— andt¢™ denote the times immediately before and after, respegtithed
communication occurs.

As mentioned in SectidnIIJA, the nodes choose communiogiartners according to the probability distribution
defined by ann x n matrix P. The matrix P is non-negative and stochastic, and satisfigs= 0 for any pair
of nodes: # j such that(i,j) ¢ E. For each such matri, there is an instance of the information spreading
algorithm, which we refer to as SPREABJ.



Algorithm SPREAD(P)
When a node initiates a communication at time

1. Nodei chooses a node at random, and contacis The choice of the communication partneris made
independently of all other random choices, and the proitwltilat node: chooses any nodgis P;.
2. Nodesu and: exchange all of their messages, so that

M;(tT) = M,(tT) = M;(t7) U M, (t7).

Fig. 2. A gossip algorithm for information spreading.

We note that the data transmitted between two communicatinigs in SPREAD conform to thgush and pull
mechanismThat is, when nodeé contacts node: at time ¢, both nodes: andi exchange all of their information
with each other. We also note that the description in therdlgo assumes that the communication links in the
network have infinite capacity. As discussed in SecliorAlllhowever, an information spreading algorithm that
uses links of infinite capacity can be used to compute minisiagulinks of unit capacity.

This algorithm is simple, distributed, and satisfies th@graitter gossip constraint. We now present analysis of
the information spreading time of SPREADP) for doubly stochastic matriceB in the two time models. The goal
of the analysis is to prove Theorédrh 2. To this end, for amyV, let S;(¢t) C V denote the set of nodes that have
the messagen; after any communication events that occur at absolute tif@mmunication events occur on a
global clock tick in the asynchronous time model, and in etimie slot in the synchronous time model). At the
start of the algorithm,S;(0) = {}.

A. Asynchronous model

As described in Sectidnlll, in the asynchronous time modeigliobal clock ticks according to a Poisson process
of raten, and on a tick one of the nodes is chosen uniformly at random. This node initiates ranconication,
so the times at which the communication events occur coorespo the ticks of the clock. On any clock tick, at
most one pair of nodes can exchange messages by commugieédtineach other.

Let £ > 0 denote the index of a clock tick. Initiallyy = 0, and the corresponding absolute timeOisFor
simplicity of notation, we identify the time at which a clotikk occurs with its index, so tha§;(k) denotes the
set of nodes that have the messaggeat the end of clock tickc. The following lemma provides a bound on the
number of clock ticks required for every node to receive gvaessage.

Lemma 4:For anyé € (0, 1), define

K(0) =inf{k > 0: Pr(UL,{Si(k) # V}) < d}.

Then, )
K@) =0 lognqj—(]l;))gé

Proof: Fix any nodev € V. We study the evolution of the size of the s&f(k). For simplicity of notation,
we drop the subscript, and write S(k) to denoteS, (k).

Note that|S(k)| is monotonically non-decreasing over the course of therdlgo, with the initial condition
|S(0)| = 1. For the purpose of analysis, we divide the execution of therihm into two phases based on the size
of the setS(k). In the first phase|,S(k)| < n/2, and in the second pha$g(k)| > n/2.

Under the gossip algorithm, after clock tigékt- 1, we have eithefS(k+1)| = |S(k)| or |S(k+1)| = |S(k)|+1.
Further, the size increases if a node S(k) contacts a nodg ¢ S(k), as in this case will push the message
m, to j. For each such pair of nodésj, the probability that this occurs on clock tiék+ 1 is P;;/n. Since only
one node is active on each clock tick,

BISG+ 1 - |S®)| | sk > S L @
i€S(k),7¢S(k)
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When |S(k)| < n/2, it follows from (4) and the definition of the conductan®éP) of P that
S(k)| 2Ziesm).igsw) Fii

ElS(k+1D[ =[S | SK)] = . 1S(R)]
)] I 2ics,jgs Lis
- n  Scv,o0<|s|<n/2 |S]
_ 1S
= — f1>(P)
= |S(k)|®, (8)

whered — 20,

We seek an upper bound on the duration of the first phase. Scetid, let

exp (%k)
Z(k) = —~=.
[S(k)]
Define the stopping timé& = inf{k : |S(k)| > n/2}, andL A k = min(L, k). If [S(k)| > n/2, thenL A (k+1) =
LAk, and thusE[Z(L A (k+1)) | S(LAK)] = Z(L A\ E).
Now, suppose thatS(k)| < n/2, in which caseL A (k+ 1) = (L A k) + 1. The functiong(z) = 1/z is convex
for z > 0, which implies that, forz;, zo > 0,

9(22) > g(21) + ¢'(21) (22 — 21). ©)
Applying (@) with z; = |S(k + 1)| andz, = |S(k)| yields
1 1 1

SEFD] = TSR] ‘5(k+1),2(\5(k+1)! = |S(F)]).

Since|S(k 4+ 1)| < |S(k)| + 1 < 2|S(k)|, it follows that
1 < 1 _ 1
[S(k+ D]~ [S(k)] - 4[S(k))?
Combining [8) and[(10), we obtain that, |if (k)| < n/2, then

(IS +1D)] = [S(F)]). (10)

asl — z <exp(—z) for z > 0. This implies that

exp (%(L A (k + 1)))
BIZ(LA G+ 1) |SEAR] = B | — gy 'S(L/\k)

= exp (%(L A k)) exp (
< exp (%(L A k‘)) exp (

= Z(LAK),

| 1B

)E samE | SEAH)

)1
P\ T ) ST AR
and thereforeZ(L A k) is a supermartingale.
SinceZ (L A k) is a supermartingale, we have the inequalityZ (L A k)] < E[Z(L A0)] =1 for anyk > 0, as
Z(L N0) = Z(0) = 1. The fact that the sef (k) can contain at most the nodes in the graph implies that

exp é(L/\k:) F
Z(LNEK) = é&mn ) z%exp (%(LM)>,

| 1B




11

and so

E <nE[Z(LAK)] <n

exp (%(L A k‘))

Becausexp(®(L A k)/4) 1 exp(®PL/4) ask — oo, the monotone convergence theorem implies that

o (2] <

Applying Markov’s inequality, we obtain that, fdf, = 4(In 2 + 2Inn + In(1/6))/®,

OL\ _ 2n?
Pr(L> k) = Pr (exp (T) > %)

]
o
For the second phase of the algorithm, whe&(k)| > n/2, we study the evolution of the size of the set of nodes
that do not have the messag8(k)|. This quantity will decrease as the message spreads fromsniad (k) to
nodes inS(k)¢. For simplicity, let us consider restarting the processnfrcock tick 0 after L (i.e., when more
than half the nodes in the graph have the message), so thaaweed(0)¢| < n/2.
In clock tick £ + 1, a nodej € S(k)¢ will receive the message if it contacts a node S(k) and pulls the
message from. As such,

E

(11)

c c c Pz
E[|S(k)| = [S(k+ 1) | S(k)] = > 7]
JES(k)"ig S (k)e
and thus

¢ c c Z'SkciSch'i
E[|S(k+1)° | S(k)] < [S(k)|— JE();f() J

, s . Pj;
= |S(k)"| <1 . Zaes;lk‘)S (/i)S(yk) j )
< ISGyl(1- ). (12)

We note that this inequality holds even whigf{k)¢| = 0, and as a result it is valid for all clock ticks in the
second phase. Repeated applicatior[of (12) yields

E[|S(R)] = E[E[S(k) IIS( )H
< (i-8) s

(-9)s

()

For ko = In(n?/8)/2® = (2Inn+1n(1/6))/®, we haveE|[|S(k2)¢|] < §/(2n). Markov’s inequality now implies
the following upper bound on the probability that not all bétnodes have the message at the end of clock tick
ko in the second phase.

IN

Pr(|S(ko)| > 0) = Pr(|S(ka)°| > 1)

E[|S (k)]
)
o

IN

IN

(13)
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Combining the analysis of the two phases, we obtain thak'fer k1 +k2 = O((log n+log 671 /@), Pr(S, (k') #
V) < 4/n. Applying the union bound over all the nodes in the graph, r@edlling thatd = ®(P)/n, we conclude
that

, logn +log 6!
K@) < kK = O<nw>
This completes the proof of Lemnia 4. |
To extend the bound in Lemnid 4 to absolute time, observe thatli@ry [1 implies that the probability that
k= K(§/3) +27In(3/5) = O(n(logn + log6—1)/®(P)) clock ticks do not occur in absolute tinfe/3)x/n =
O((logn +log6~1)/®(P)) is at most26/3. Applying the union bound now yieIdE’S?jREAD(P)(é) = O((log n +
log6—1)/®(P)), thus establishing the upper bound in Theofém 2 for the dsgnous time model.

B. Synchronous model

In the synchronous time model, in each time slot every nodeacts a neighbor to exchange messages. Thus,
n communication events may occur simultaneously. Recatl dbaolute time is measured in rounds or time slots
in the synchronous model.

The analysis of the randomized gossip algorithm for infdfamaspreading in the synchronous model is similar
to the analysis for the asynchronous model. However, we adddional analytical arguments to reach analogous
conclusions due to the technical challenges presented Hfyprawsimultaneous transmissions.

In this section, we sketch a proof of the time bound in The&bWEgREAD(P)(é) = O((logn+logé=1)/®(P)),
for the synchronous time model. Since the proof follows ailsinstructure as the proof of Lemnia 4, we only
point out the significant differences.

As before, we fix a node € V, and study the evolution of the size of the $&t) = S, (¢). Again, we divide
the execution of the algorithm into two phases based on thkitgan of S(¢): in the first phaseS(t)| < n/2, and
in the second phasg(t)| > n/2. In the first phase, we analyze the increasedt)|, while in the second we
study the decrease ifb(¢)¢|. For the purpose of analysis, in the first phase we ignore fieeteof the increase
in |S(t)| due to thepull aspect of protocol: that is, when nodeontacts nodg, we assume (for the purpose of
analysis) that sends the messages it hasjfdout thatj does not send any messages.t€learly, an upper bound
obtained on the time required for every node to receive energsage under this restriction is also an upper bound
for the actual algorithm.

Consider a time slot + 1 in the first phase. Foj ¢ S(t), let X; be an indicator random variable that lisif
node; receives the message, via a push from some nodec S(¢) in time slott + 1, and isO otherwise. The
probability thatj does not receiven, via a push is the probability that no node S(¢) contactsj, and so

EX;[5@)] = 1-Pr(X; =0]5())
= 1= Jla-ry
ieS(t)
> 1- H exp(—Pij)
ieS(t)
= 1l—exp ( Z Pij) . (14)
ieS(t)

The Taylor series expansion etp(—z) aboutz = 0 implies that, if0 < z < 1, then
exp(—2) <1—24+22/2<1—2+2/2=1-2/2. (15)
For a doubly stochastic matrik, we have0 <}, ¢ P;; < 1, and so we can combink_(14) and](15) to obtain

1
EIX; |5®)] 25 3 Py
i€S(t)
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By linearity of expectation,
E[ISE+ DI =[SOl S®)] = 'Z E[X; | 5(#)]

€S (1) 7S ()
1S(t)| 2Ziesw).jesw) Fis

2 1S(t)]
When|S(t)| < n/2, we have
o(P)
E(IS(t+ 1) = 1S®] | S(0)) = |S0)| =5~ (16)

Inequality [16) is analogous to inequalify (8) for the adymous time model, witlb(P)/2 in the place of.
We now proceed as in the proof of Lemia 4 for the asynchronademNote thatS(¢ + 1)| < 2|S(¢)| here in
the synchronous model because of the restriction in theysisab only consider the push aspect of the protocol in
the first phase, as each nodedft) can push a message to at most one other node in a single tim&sjeating
the analysis from the asynchronous model leads to the csinaluhat the first phase of the algorithm ends in

0 (%) time with probability at least — §/2n.

The analysis of the second phase is the same as that preemtieel asynchronous time model, widhreplaced

by ®. As a summary, we obtain that it takes at m&(% time for the algorithm to spread all the
messages to all the nodes with probability at ldast. This completes the proof of Theorém 2 for the synchronous

time model.

V. APPLICATIONS

We study here the application of our preceding results tersdwtypes of graphs. In particular, we consider
complete graphs, constant-degree expander graphs, ahdrgphs. We use grid graphs as an example to compare
the performance of our algorithm for computing separablections with that of a known iterative averaging
algorithm.

For each of the three classes of graphs mentioned above,eniatarested in thé-information-spreading time
Tg‘;READ(P)(é), where P is a doubly stochastic matrix that assigns equal probgliditeach of the neighbors of
any node. Specifically, the probabilify;; that a node contacts a nodg # i when: becomes active i$/A, where
A is the maximum degree of the graph, aRd= 1—d;/A, whered; is the degree of. Recall from Theorernl1 that
the information dissemination algorithm SPREAP)(can be used as a subroutine in an algorithm for computing

separable functions, with the running time of the resultéfgprithm being a function dTSE’jREAD(P)(é).

A. Complete graph

On a complete graph, the transition matixhas P;; = 0 for i = 1,...,n, andP;; = 1/(n — 1) for j # i.
This regular structure allows us to directly evaluate theduwtance of?, which is ®(P) ~ 1/2. This implies that
the €, §)-computing time of the algorithm for computing separahiedtions based on SPREABY is O(s~2(1 +
log 6~ 1)(logn + log 6=1)). Thus, for a constant € (0,1) andd = 1/n, the computation time scales @log?n).

B. Expander graph

Expander graphs have been used for numerous applicatiodsexalicit constructions are known for constant-
degree expanders [23]. We consider here an undirected gnaphich the maximum degree of any verteX, is
a constant. Suppose that the edge expansion of the graph is

o IERsS)]
scv, 0<|S|<n/2 | S|

where F'(S, S¢) is the set of edges in the c(f, S¢), anda > 0 is a constant. The transition matrix satisfies
P;; =1/A for all i # j such that(i, j) € E, from which we obtain®(P) > «/A. Whena and A are constants,

this leads to a similar conclusion as in the case of the camgeph: for any constante (0,1) andd = 1/n,
the computation time i©(log® n).

)
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C. Grid

We now consider al-dimensional grid graph on nodes, where: = n'/¢ is an integer. Each node in the grid
can be represented asdadimensional vector = (a;), wherea; € {1,...,c} for 1 < i < d. There is one node
for each distinct vector of this type, and so the total nunifemodes in the graph is? = (n'/%)4 = n. For any
two nodesa andb, there is an edgéu, b) in the graph if and only if, for someée {1,...,d}, |a; — b;| = 1, and
a; = b; for all j # i.

In [1], it is shown that the isoperimetric number of this ggchph is

n O G (1) e (L)
ch,ﬁﬁg\gn/z |S] =6 c = nl/d )

By the definition of the edge set, the maximum degree of a notieei graph i2d. This means thab;; = 1/(2d) for
all i # j such that(s, j) € E, and it follows that®(P) = Q (). Hence, for any € (0,1) andé € (0,1), the €,
§)-computing time of the algorithm for computing separabiedtions isO(c~2(1+log 6 1) (log n+log 6 —')dn'/?).

D. Comparison with lterative Averaging

We briefly contrast the performance of our algorithm for commmy separable functions with that of the iterative
averaging algorithms in [25] [5]. As noted earlier, the dagpence of the performance of our algorithm is in
proportion tol/®(P), which is a lower bound for the iterative algorithms basedasstochastic matrix.

In particular, when our algorithm is used to compute the ayerof a set of numbers (by estimating the sum of
the numbers and the number of nodes in the graph) dianensional grid graph, it follows from the analysis in
Section V-C that the amount of time required to ensure thienagt is within a(1 + ¢) factor of the average with
probability at leastl — § is O(e=2(1 + log 6~!)(log n + log 6~ 1)dn'/¢) for any e € (0,1) ands € (0,1). So, for
a constant € (0,1) andé = 1/n, the computation time scales &§dn'/%1og?n) with the size of the graph.
The algorithm in [5] require$2(n?/?logn) time for this computation. Hence, the running time of ouroaiiiym
is (for fixed d, and up to logarithmic factors) theguare rootof the runnning time of the iterative algorithm! This
relationship holds on other graphs for which the spectrgliggproportional to the square of the conductance.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel algorithm for computiyasable functions in a totally distributed manner.
The algorithm is based on properties of exponential randanables, and the fact that the minimum of a collection
of numbers is an order- and duplicate-insensitive statisti

Operationally, our algorithm makes use of an informatioreading mechanism as a subroutine. This led us
to the analysis of a randomized gossip mechanism for infdomaspreading. We obtained an upper bound on
the information spreading time of this algorithm in termstlbé& conductance of a matrix that characterizes the
algorithm.

In addition to computing separable functions, our algamnittmproves the computation time for the canonical
task of averaging. For example, on graphs such as paths, @mgl grids, the performance of our algorithm is of
a smaller order than that of a known iterative algorithm.

We believe that our algorithm will lead to the following ttyadistributed computations: (1) an approximation
algorithm for convex minimization with linear constrainend (2) a “packet marking” mechanism in the Internet.
These areas, in which summation is a key subroutine, willopé&s of our future research.
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