
ar
X

iv
:c

s/
05

04
02

9v
4

 [c
s.

N
I]

 2
2

A
pr

 2
00

7
1

Fast Distributed Algorithms for Computing
Separable Functions

Damon Mosk-Aoyama and Devavrat Shah

Abstract

The problem of computing functions of values at the nodes in anetwork in a totally distributed manner,
where nodes do not have unique identities and make decisionsbased only on local information, has applications
in sensor, peer-to-peer, and ad-hoc networks. The task of computing separable functions, which can be written as
linear combinations of functions of individual variables,is studied in this context. Known iterative algorithms for
averaging can be used to compute the normalized values of such functions, but these algorithms do not extend in
general to the computation of the actual values of separablefunctions.

The main contribution of this paper is the design of a distributed randomized algorithm for computing separable
functions. The running time of the algorithm is shown to depend on the running time of a minimum computation
algorithm used as a subroutine. Using a randomized gossip mechanism for minimum computation as the subroutine
yields a complete totally distributed algorithm for computing separable functions. For a class of graphs with small
spectral gap, such as grid graphs, the time used by the algorithm to compute averages is of a smaller order than the
time required by a known iterative averaging scheme.

I. INTRODUCTION

The development of sensor, peer-to-peer, and ad hoc wireless networks has stimulated interest in distributed
algorithms for data aggregation, in which nodes in a networkcompute a function of local values at the individual
nodes. These networks typically do not have centralized agents that organize the computation and communication
among the nodes. Furthermore, the nodes in such a network maynot know the complete topology of the network, and
the topology may change over time as nodes are added and othernodes fail. In light of the preceding considerations,
distributed computation is of vital importance in these modern networks.

We consider the problem of computing separable functions ina distributed fashion in this paper. A separable
function can be expressed as the sum of the values of individual functions. Given a network in which each node
has a number, we seek a distributed protocol for computing the value of a separable function of the numbers at the
nodes. Each node has its own estimate of the value of the function, which evolves as the protocol proceeds. Our
goal is to minimize the amount of time required for all of these estimates to be close to the actual function value.

In this work, we are interested intotally distributedcomputations, in which nodes have a local view of the state
of the network. Specifically, an individual node does not have information about nodes in the network other than
its neighbors. To accurately estimate the value of a separable function that depends on the numbers at all of the
nodes, each node must obtain information about the other nodes in the network. This is accomplished through
communication between neighbors in the network. Over the course of the protocol, the global state of the network
effectively diffuses to each individual node via local communication among neighbors.

More concretely, we assume that each node in the network knows only its neighbors in the network topology,
and can contact any neighbor to initiate a communication. Onthe other hand, we assume that the nodes do not have
unique identities (i.e., a node has no unique identifier thatcan be attached to its messages to identify the source of
the messages). This constraint is natural in ad-hoc and mobile networks, where there is a lack of infrastructure (such
as IP addresses or static GPS locations), and it limits the ability of a distributed algorithm to recreate the topology
of the network at each node. In this sense, the constraint also provides a formal way to distinguish distributed
algorithms that are truly local from algorithms that operate by gathering enormous amounts of global information
at all the nodes.

The absence of identifiers for nodes makes it difficult, without global coordination, to simply transmit every
node’s value throughout the network so that each node can identify the values at all the nodes. As such, we develop

D. Mosk-Aoyama is with the department of Computer Science, Stanford University. D. Shah is with the department of Electrical Engineering
and Computer Science, MIT. Emails:{damonma@cs.stanford.edu,devavrat@mit.edu}

http://arxiv.org/abs/cs/0504029v4

2

an algorithm for computing separable functions that relieson anorder- and duplicate-insensitivestatistic [20] of a
set of numbers, the minimum. The algorithm is based on properties of exponential random variables, and reduces
the problem of computing the value of a separable function tothe problem of determining the minimum of a
collection of numbers, one for each node.

This reduction leads us to study the problem ofinformation spreadingor information disseminationin a network.
In this problem, each node starts with a message, and the nodes must spread the messages throughout the network
using local communication so that every node eventually hasevery message. Because the minimum of a collection
of numbers is not affected by the order in which the numbers appear, nor by the presence of duplicates of an
individual number, the minimum computation required by ouralgorithm for computing separable functions can be
performed by any information spreading algorithm. Our analysis of the algorithm for computing separable functions
establishes an upper bound on its running time in terms of therunning time of the information spreading algorithm
it uses as a subroutine.

In view of our goal of distributed computation, we analyze agossipalgorithm for information spreading. Gossip
algorithms are a useful tool for achieving fault-tolerant and scalable distributed computations in large networks.
In a gossip algorithm, each node repeatedly iniatiates communication with a small number of neighbors in the
network, and exchanges information with those neighbors.

The gossip algorithm for information spreading that we study is randomized, with the communication partner of
a node at any time determined by a simple probabilistic choice. We provide an upper bound on the running time
of the algorithm in terms of theconductanceof a stochastic matrix that governs how nodes choose communication
partners. By using the gossip algorithm to compute minima inthe algorithm for computing separable functions, we
obtain an algorithm for computing separable functions whose performance on certain graphs compares favorably
with that of known iterative distributed algorithms [5] forcomputing averages in a network.

A. Related work

In this section, we present a brief summary of related work. Algorithms for computing the number of distinct
elements in a multiset or data stream [11], [2] can be adaptedto compute separable functions using information
spreading [7]. We are not aware, however, of a previous analysis of the amount of time required for these algorithms
to achieve a certain accuracy in the estimates of the function value when the computation is totally distributed (i.e.,
when nodes do not have unique identities). These adapted algorithms require the nodes in the network to make use
of a common hash function. In addition, the discreteness of the counting problem makes the resulting algorithms for
computing separable functions suitable only for functionsin which the terms in the sum are integers. Our algorithm
is simpler than these algorithms, and can compute functionswith non-integer terms.

There has been a lot of work on the distributed computation ofaverages, a special case of the problem of
reaching agreement or consensus among processors via a distributed computation. Distributed algorithms for
reaching consensus under appropriate conditions have beenknown since the classical work of Tsitsiklis [25] and
Tsitsiklis, Bertsekas, and Athans [26] (see also the book byBertsekas and Tsitsiklis [4]). Averaging algorithms
compute the ratio of the sum of the input numbers ton, the number of nodes in the network, and not the exact
value of the sum. Thus, such algorithms cannot be extended ingeneral to compute arbitrary separable functions.
On the other hand, an algorithm for computing separable functions can be used to compute averages by separately
computing the sum of the input numbers, and the number of nodes in the graph (using one as the input at each
node).

Recently, Kempe, Dobra, and Gehrke showed the existence of arandomized iterative gossip algorithm for
averaging with the optimal averaging time [15]. This resultwas restricted to complete graphs. The algorithm
requires that the nodes begin the computation in an asymmetric initial state in order to compute separable functions, a
requirement that may not be convenient for large networks that do not have centralized agents for global coordination.
Furthermore, the algorithm suffers from the possibility ofoscillation throughout its execution.

In a more recent paper, Boyd, Ghosh, Prabhakar, and Shah presented a simpler iterative gossip algorithm for
averaging that addresses some of the limitations of the Kempe et al. algorithm [5]. Specifically, the algorithm and
analysis are applicable to arbitrary graph topologies. Boyd et al. showed a connection between the averaging time
of the algorithm and the mixing time (a property that is related to the conductance, but is not the same) of an
appropriate random walk on the graph representing the network. They also found an optimal averaging algorithm
as a solution to a semi-definite program.

3

For completeness, we contrast our results for the problem ofaveraging with known results. As we shall see,
iterative averaging, which has been a common approach in theprevious work, is an order slower than our algorithm
for many graphs, including ring and grid graphs. In this sense, our algorithm is quite different than (and has
advantages in comparison with) the known averaging algorithms.

On the topic of information spreading, gossip algorithms for disseminating a message to all nodes in a complete
graph in which communication partners are chosen uniformlyat random have been studied for some time [12], [21],
[9]. Karp, Schindelhauer, Shenker, and Vöcking presentedapush and pullgossip algorithm, in which communicating
nodes both send and receive messages, that disseminates a message to alln nodes in a graph inO(log n) time
with high probability [14]. In this work, we have provided ananalysis of the time required for a gossip algorithm
to disseminaten messages ton nodes for the more general setting of arbitrary graphs and non-uniform random
choices of communication partners. For other related results, we refer the reader to [22], [16], [17]. We take note
of the similar (independent) recent work of Ganesh, Massoulié, and Towsley [13], and Berger, Borgs, Chayes, and
Saberi [3], on the spread of epidemics in a network.

B. Organization

The rest of the paper is organized as follows. Section II presents the distributed computation problems we study
and an overview of our results. In Section III, we develop andanalyze an algorithm for computing separable
functions in a distributed manner. Section IV contains an analysis of a simple randomized gossip algorithm for
information spreading, which can be used as a subroutine in the algorithm for computing separable functions. In
Section V, we discuss applications of our results to particular types of graphs, and compare our results to previous
results for computing averages. Finally, we present conclusions and future directions in Section VI.

II. PRELIMINARIES AND RESULTS

We consider an arbitrary connected network, represented byan undirected graphG = (V,E), with |V | = n
nodes. For notational purposes, we assume that the nodes inV are numbered arbitrarily so thatV = {1, . . . , n}.
A node, however, does not have a unique identity that can be used in a computation. Two nodesi and j can
communicate with each other if (and only if)(i, j) ∈ E.

To capture some of the resource constraints in the networks in which we are interested, we impose atransmitter
gossipconstraint on node communication. Each node is allowed to contact at most one other node at a given time
for communication. However, a node can be contacted by multiple nodes simultaneously.

Let 2V denote the power set of the vertex setV (the set of all subsets ofV). For ann-dimensional vector
~x ∈ R

n, let x1, . . . , xn be the components of~x.
Definition 1: We say that a functionf : Rn× 2V → R is separableif there exist functionsf1, . . . , fn such that,

for all S ⊆ V ,
f(~x, S) =

∑

i∈S

fi(xi). (1)

Goal. Let F be the class of separable functionsf for which fi(x) ≥ 1 for all x ∈ R and i = 1, . . . , n. Given
a functionf ∈ F , and a vector~x containing initial valuesxi for all the nodes, the nodes in the network are to
compute the valuef(~x, V) by a distributed computation, using repeated communication between nodes.

Note 1: Consider a functiong for which there exist functionsg1, . . . , gn satisfying, for allS ⊆ V , the condition
g(~x, S) =

∏

i∈S gi(xi) in lieu of (1). Then,g is logarithmic separable, i.e., f = logb g is separable. Our algorithm
for computing separable functions can be used to compute thefunction f = logb g. The conditionfi(x) ≥ 1
corresponds togi(x) ≥ b in this case. This lower bound of1 on fi(x) is arbitrary, although our algorithm does
require the termsfi(xi) in the sum to be positive.

Before proceeding further, we list some practical situations where the distributed computation of separable
functions arises naturally. By definition, the sum of a set ofnumbers is a separable function.

(1) Summation.Let the value at each node bexi = 1. Then, the sum of the values is the number of nodes in the
network.

(2) Averaging.According to Definition 1, the average of a set of numbers is not a separable function. However,
the nodes can estimate the separable function

∑n
i=1 xi andn separately, and use the ratio between these two

estimates as an estimate of the mean of the numbers.

4

Suppose the values at the nodes are measurements of a quantity of interest. Then, the average provides an
unbiased maximum likelihood estimate of the measured quantity. For example, if the nodes are temperature
sensors, then the average of the sensed values at the nodes gives a good estimate of the ambient temperature.

For more sophisticated applications of a distributed averaging algorithm, we refer the reader to [18] and [19].
Averaging is used for the distributed computation of the topk eigenvectors of a graph in [18], while in [19]
averaging is used in a throughput-optimal distributed scheduling algorithm in a wireless network.
Time model. In a distributed computation, a time model determines when nodes communicate with each other.
We consider two time models, one synchronous and the other asynchronous, in this paper. The two models are
described as follows.

(1) Synchronous time model:Time is slotted commonly across all nodes in the network. In any time slot, each
node may contact one of its neighbors according to a random choice that is independent of the choices
made by the other nodes. The simultaneous communication between the nodes satisfies the transmitter gossip
constraint.

(2) Asynchronous time model:Each node has a clock that ticks at the times of a rate1 Poisson process.
Equivalently, a common clock ticks according to a raten Poisson process at timesCk, k ≥ 1, where
{Ck+1 −Ck} are i.i.d. exponential random variables of raten. On clock tickk, one of then nodes, sayIk,
is chosen uniformly at random. We consider this global clocktick to be a tick of the clock at nodeIk. When
a node’s clock ticks, it contacts one of its neighbors at random. In this model, time is discretized according
to clock ticks. On average, there aren clock ticks per one unit of absolute time.

In this paper, we measure the running times of algorithms in absolute time, which is the number of time slots
in the synchronous model, and is (on average) the number of clock ticks divided byn in the asynchronous model.
To obtain a precise relationship between clock ticks and absolute time in the asynchronous model, we appeal to
tail bounds on the probability that the sample mean of i.i.d.exponential random variables is far from its expected
value. In particular, we make use of the following lemma, which also plays a role in the analysis of the accuracy
of our algorithm for computing separable functions.

Lemma 1:For anyk ≥ 1, let Y1, . . . , Yk be i.i.d. exponential random variables with rateλ. Let Rk = 1
k

∑k
i=1 Yi.

Then, for anyε ∈ (0, 1/2),

Pr

(∣

∣

∣

∣

Rk −
1

λ

∣

∣

∣

∣

≥
ε

λ

)

≤ 2 exp

(

−
ε2k

3

)

. (2)

Proof: By definition, E[Rk] =
1
k

∑k
i=1 λ

−1 = λ−1. The inequality in (2) follows directly from Cramér’s
Theorem (see [8], pp.30, 35) and properties of exponential random variables.

A direct implication of Lemma 1 is the following corollary, which bounds the probability that the absolute time
Ck at which clock tickk occurs is far from its expected value.

Corollary 1: For k ≥ 1, E[Ck] = k/n. Further, for anyε ∈ (0, 1/2),

Pr

(∣

∣

∣

∣

Ck −
k

n

∣

∣

∣

∣

≥
εk

n

)

≤ 2 exp

(

−
ε2k

3

)

. (3)

Our algorithm for computing separable functions is randomized, and is not guaranteed to compute the exact
quantityf(~x, V) =

∑n
i=1 fi(xi) at each node in the network. To study the accuracy of the algorithm’s estimates,

we analyze the probability that the estimate off(~x, V) at every node is within a(1 ± ε) multiplicative factor of
the true valuef(~x, V) after the algorithm has run for some period of time. In this sense, the error in the estimates
of the algorithm is relative to the magnitude off(~x, V).

To measure the amount of time required for an algorithm’s estimates to achieve a specified accuracy with a
specified probability, we define the following quantity. Foran algorithmC that estimatesf(~x, V), let ŷi(t) be the
estimate off(~x, V) at nodei at time t. Furthermore, for notational convenience, givenε > 0, let Aε

i (t) be the
following event.

Aε
i (t) = {ŷi(t) 6∈ [(1− ε)f(~x, V), (1 + ε)f(~x, V)]}

Definition 2: For anyε > 0 andδ ∈ (0, 1), the (ε, δ)-computing time ofC, denotedT cmp
C (ε, δ), is

T cmp
C (ε, δ) = sup

f∈F
sup
~x∈Rn

inf
{

τ : ∀t ≥ τ,Pr
(

∪n
i=1 A

ε
i (t)
)

≤ δ
}

.

5

Intuitively, the significance of this definition of the(ε, δ)-computing time of an algorithmC is that, if C runs for
an amount of time that is at leastT cmp

C (ε, δ), then the probability that the estimates off(~x, V) at the nodes are all
within a (1± ε) factor of the actual value of the function is at least1− δ.

As noted before, our algorithm for computing separable functions is based on a reduction to the problem of
information spreading, which is described as follows. Suppose that, fori = 1, . . . , n, nodei has the one message
mi. The task of information spreading is to disseminate alln messages to alln nodes via a sequence of local
communications between neighbors in the graph. In any single communication between two nodes, each node
can transmit to its communication partner any of the messages that it currently holds. We assume that the data
transmitted in a communication must be a set of messages, andtherefore cannot be arbitrary information.

Consider an information spreading algorithmD, which specifies how nodes communicate. For each nodei ∈ V ,
let Si(t) denote the set of nodes that have the messagemi at time t. While nodes can gain messages during
communication, we assume that they do not lose messages, so that Si(t1) ⊆ Si(t2) if t1 ≤ t2. Analogous to the
(ε, δ)-computing time, we define a quantity that measures the amount of time required for an information spreading
algorithm to disseminate all the messagesmi to all the nodes in the network.

Definition 3: For δ ∈ (0, 1), the δ-information-spreading time of the algorithmD, denotedT spr
D (δ), is

T spr
D (δ) = inf {t : Pr (∪n

i=1{Si(t) 6= V }) ≤ δ} .
In our analysis of the gossip algorithm for information spreading, we assume that when two nodes communicate,

each node can send all of its messages to the other in a single communication. This rather unrealistic assumption
of infinite link capacity is merely for convenience, as it provides a simpler analytical characterization ofT cmp

C (ε, δ)
in terms ofT spr

D (δ). Our algorithm for computing separable functions requiresonly links of unit capacity.

A. Our contribution

The main contribution of this paper is the design of a distributed algorithm to compute separable functions of
node values in an arbitrary connected network. Our algorithm is randomized, and in particular uses exponential
random variables. This usage of exponential random variables is analogous to that in an algorithm by Cohen1 for
estimating the sizes of sets in a graph [6]. The basis for our algorithm is the following property of the exponential
distribution.

Property 1: Let W1, . . . ,Wn be n independent random variables such that, fori = 1, . . . , n, the distribution of
Wi is exponential with rateλi. Let W̄ be the minimum ofW1, . . . ,Wn. Then,W̄ is distributed as an exponential
random variable of rateλ =

∑n
i=1 λi.

Proof: For an exponential random variableW with rateλ, for anyz ∈ R+,

Pr(W > z) = exp(−λz).

Using this fact and the independence of the random variablesWi, we computePr(W̄ > z) for any z ∈ R+.

Pr(W̄ > z) = Pr (∩n
i=1{Wi > z})

=

n
∏

i=1

Pr(Wi > z)

=

n
∏

i=1

exp(−λiz)

= exp

(

−z

n
∑

i=1

λi

)

.

This establishes the property stated above.
Our algorithm uses an information spreading algorithm as a subroutine, and as a result its running time is a

function of the running time of the information spreading algorithm it uses. The faster the information spreading
algorithm is, the better our algorithm performs. Specifically, the following result provides an upper bound on the
(ε, δ)-computing time of the algorithm.

1We thank Dahlia Malkhi for pointing this reference out to us.

6

Theorem 1:Given an information spreading algorithmD with δ-spreading timeT spr
D (δ) for δ ∈ (0, 1), there

exists an algorithmA for computing separable functionsf ∈ F such that, for anyε ∈ (0, 1) andδ ∈ (0, 1),

T cmp
A (ε, δ) = O

(

ε−2(1 + log δ−1)T spr
D (δ/2)

)

.
Motivated by our interest in decentralized algorithms, we analyze a simple randomized gossip algorithm for

information spreading. When nodei initiates a communication, it contacts each nodej 6= i with probability Pij .
With probabilityPii, it does not contact another node. Then×n matrixP = [Pij] characterizes the algorithm; each
matrix P gives rise to an information spreading algorithmP. We assume thatP is stochastic, and thatPij = 0 if
i 6= j and (i, j) /∈ E, as nodes that are not neighbors in the graph cannot communicate with each other. Section
IV describes the data transmitted between two nodes when they communicate.

We obtain an upper bound on theδ-information-spreading time of this gossip algorithm in terms of theconduc-
tanceof the matrixP , which is defined as follows.

Definition 4: For a stochastic matrixP , the conductance ofP , denotedΦ(P), is

Φ(P) = min
S⊂V, 0<|S|≤n/2

∑

i∈S,j /∈S Pij

|S|
.

In general, the above definition of conductance is not the same as the classical definition [24]. However, we restrict
our attention in this paper to doubly stochastic matricesP . WhenP is doubly stochastic, these two definitions are
equivalent. Note that the definition of conductance impliesthatΦ(P) ≤ 1.

Theorem 2:Consider any doubly stochastic matrixP such that ifi 6= j and (i, j) /∈ E, thenPij = 0. There
exists an information dissemination algorithmP such that, for anyδ ∈ (0, 1),

T spr
P (δ) = O

(

log n+ log δ−1

Φ(P)

)

.

Note 2: The results of Theorems 1 and 2 hold for both the synchronous and asynchronous time models. Recall
that the quantitiesT cmp

C (ε, δ) andT spr
D (δ) are defined with respect to absolute time in both models.

A comparison. Theorems 1 and 2 imply that, given a doubly stochastic matrixP , the time required for our
algorithm to obtain a(1± ε) approximation with probability at least1− δ is O

(

ε−2(1+log δ−1)(log n+log δ−1)
Φ(P)

)

. When

the network sizen and the accuracy parametersε andδ are fixed, the running time scales in proportion to1/Φ(P),
a factor that captures the dependence of the algorithm on thematrix P . Our algorithm can be used to compute the
average of a set of numbers. For iterative averaging algorithms such as the ones in [25] and [5], the convergence
time largely depends on the mixing time ofP , which is lower bounded byΩ(1/Φ(P)) (see [24], for example).
Thus, our algorithm is (up to alog n factor) no slower than the fastest iterative algorithm based on time-invariant
linear dynamics.

III. F UNCTION COMPUTATION

In this section, we describe our algorithm for computing thevaluey = f(~x, V) =
∑n

i=1 fi(xi) of the separable
function f , wherefi(xi) ≥ 1. For simplicity of notation, letyi = fi(xi). Givenxi, each node can computeyi on
its own. Next, the nodes use the algorithm shown in Fig. 1, which we refer to as COMP, to compute estimatesŷi
of y =

∑n
i=1 yi. The quantityr is a parameter to be chosen later.

Algorithm COMP
0. Initially, for i = 1, . . . , n, nodei has the valueyi ≥ 1.
1. Each nodei generatesr independent random numbersW i

1, . . . ,W
i
r , where the distribution of eachW i

ℓ is
exponential with rateyi (i.e., with mean1/yi).

2. Each nodei computes, forℓ = 1, . . . , r, an estimateŴ i
ℓ of the minimumW̄ℓ = minni=1W

i
ℓ . This computation

can be done using an information spreading algorithm as described below.
3. Each nodei computeŝyi = r

P

r
ℓ=1

Ŵ i
ℓ

as its estimate of
∑n

i=1 yi.

Fig. 1. An algorithm for computing separable functions.

We describe how the minimum is computed as required by step2 of the algorithm in Section III-A. The running
time of the algorithm COMP depends on the running time of the algorithm used to compute the minimum.

7

Now, we show that COMP effectively estimates the function value y when the estimateŝW i
ℓ are all correct by

providing a lower bound on the conditional probability thatthe estimates produced by COMP are all within a
(1± ε) factor of y.

Lemma 2:Let y1, . . . , yn be real numbers (withyi ≥ 1 for i = 1, . . . , n), y =
∑n

i=1 yi, andW̄ = (W̄1, . . . , W̄r),
where theW̄ℓ are as defined in the algorithm COMP. For any nodei, let Ŵ i = (Ŵ i

1, . . . , Ŵ
i
r), and letŷi be the

estimate ofy obtained by nodei in COMP. For anyε ∈ (0, 1/2),

Pr
(

∪n
i=1 {|ŷi − y| > 2εy} | ∀i ∈ V, Ŵ i = W̄

)

≤ 2 exp

(

−
ε2r

3

)

.

Proof: Observe that the estimatêyi of y at nodei is a function ofr andŴ i. Under the hypothesis that̂W i = W̄

for all nodesi ∈ V , all nodes produce the same estimateŷ = ŷi of y. This estimate iŝy = r
(
∑r

ℓ=1 W̄ℓ

)−1
, and

so ŷ−1 =
(
∑r

ℓ=1 W̄ℓ

)

r−1.
Property 1 implies that each of then random variables̄W1, . . . , W̄r has an exponential distribution with ratey.

From Lemma 1, it follows that for anyε ∈ (0, 1/2),

Pr

(∣

∣

∣

∣

ŷ−1 −
1

y

∣

∣

∣

∣

>
ε

y

∣

∣

∣
∀i ∈ V, Ŵ i = W̄

)

≤ 2 exp

(

−
ε2r

3

)

. (4)

This inequality bounds the conditional probability of the event{ŷ−1 6∈ [(1−ε)y−1, (1+ε)y−1]}, which is equivalent
to the event{ŷ 6∈ [(1 + ε)−1y, (1 − ε)−1y]}. Now, for ε ∈ (0, 1/2),

(1− ε)−1 ∈ [1 + ε, 1 + 2ε] , (1 + ε)−1 ∈ [1− ε, 1− 2ε/3] . (5)

Applying the inequalities in (4) and (5), we conclude that for ε ∈ (0, 1/2),

Pr
(

|ŷ − y| > 2εy | ∀i ∈ V, Ŵ i = W̄
)

≤ 2 exp

(

−
ε2r

3

)

.

Noting that the event∪n
i=1{|ŷi− y| > 2εy} is equivalent to the event{|ŷ− y| > 2εy} whenŴ i = W̄ for all nodes

i completes the proof of Lemma 2.

A. Using information spreading to compute minima

We now elaborate on step2 of the algorithm COMP. Each nodei in the graph starts this step with a vectorW i =
(W i

1, . . . ,W
i
r), and the nodes seek the vectorW̄ = (W̄1, . . . , W̄r), whereW̄ℓ = minni=1W

i
ℓ . In the information

spreading problem, each nodei has a messagemi, and the nodes are to transmit messages across the links until
every node has every message.

If all link capacities are infinite (i.e., in one time unit, a node can send an arbitrary amount of information to
another node), then an information spreading algorithmD can be used directly to compute the minimum vector
W̄ . To see this, let the messagemi at the nodei be the vectorW i, and then apply the information spreading
algorithm to disseminate the vectors. Once every node has every message (vector), each node can computeW̄ as
the component-wise minimum of all the vectors. This impliesthat the running time of the resulting algorithm for
computingW̄ is the same as that of the information spreading algorithm.

The assumption of infinite link capacities allows a node to transmit an arbitrary number of vectorsW i to
a neighbor in one time unit. A simple modification to the information spreading algorithm, however, yields an
algorithm for computing the minimum vector̄W using links of capacityr. To this end, each nodei maintains a
singler-dimensional vectorwi(t) that evolves in time, starting withwi(0) = W i.

Suppose that, in the information dissemination algorithm,nodej transmits the messages (vectors)W i1 , . . . ,W ic

to nodei at time t. Then, in the minimum computation algorithm,j sends toi the r quantitiesw1, . . . , wr, where
wℓ = mincu=1W

iu
ℓ . The nodei setswi

ℓ(t
+) = min(wi

ℓ(t
−), wℓ) for ℓ = 1, . . . , r, wheret− andt+ denote the times

immediately before and after, respectively, the communication. At any time t, we will havewi(t) = W̄ for all
nodesi ∈ V if, in the information spreading algorithm, every nodei has all the vectorsW 1, . . . ,W n at the same
time t. In this way, we obtain an algorithm for computing the minimum vectorW̄ that uses links of capacityr and
runs in the same amount of time as the information spreading algorithm.

An alternative to using links of capacityr in the computation ofW̄ is to make the time slotr times larger,
and impose a unit capacity on all the links. Now, a node transmits the numbersw1, . . . , wr to its communication

8

partner over a period ofr time slots, and as a result the running time of the algorithm for computingW̄ becomes
greater than the running time of the information spreading algorithm by a factor ofr. The preceding discussion,
combined with the fact that nodes only gain messages as an information spreading algorithm executes, leads to the
following lemma.

Lemma 3:Suppose that the COMP algorithm is implemented using an information spreading algorithmD as
described above. Let̂W i(t) denote the estimate of̄W at nodei at time t. For anyδ ∈ (0, 1), let tm = rT

spr
D (δ).

Then, for any timet ≥ tm, with probability at least1− δ, Ŵ i(t) = W̄ for all nodesi ∈ V .
Note that the amount of data communicated between nodes during the algorithm COMP depends on the values

of the exponential random variables generated by the nodes.Since the nodes compute minima of these variables,
we are interested in a probabilistic lower bound on the values of these variables (for example, suppose that the
nodes transmit the values1/W i

ℓ when computing the minimum̄Wℓ = 1/maxni=1{1/W
i
ℓ}). To this end, we use

the fact that each̄Wℓ is an exponential random variable with ratey to obtain that, for any constantc > 1, the
probability that any of the minimum values̄Wℓ is less than1/B (i.e., any of the inverse values1/W i

ℓ is greater
thanB) is at mostδ/c, whereB is proportional tocry/δ.

B. Proof of Theorem 1

Now, we are ready to prove Theorem 1. In particular, we will show that the COMP algorithm has the properties
claimed in Theorem 1. To this end, consider using an information spreading algorithmD with δ-spreading time
T spr
D (δ) for δ ∈ (0, 1) as the subroutine in the COMP algorithm. For anyδ ∈ (0, 1), let τm = rT spr

D (δ/2). By
Lemma 3, for any timet ≥ τm, the probability thatŴ i 6= W̄ for any nodei at time t is at mostδ/2.

On the other hand, suppose thatŴ i = W̄ for all nodesi at time t ≥ τm. For anyε ∈ (0, 1), by choosing
r ≥ 12ε−2 log(4δ−1) so thatr = Θ(ε−2(1 + log δ−1)), we obtain from Lemma 2 that

Pr
(

∪n
i=1 {ŷi 6∈ [(1− ε)y, (1 + ε)y]} | ∀i ∈ V, Ŵ i = W̄

)

≤ δ/2. (6)

Recall thatT cmp
COMP (ε, δ) is the smallest timeτ such that, under the algorithm COMP, at any timet ≥ τ , all the

nodes have an estimate of the function valuey within a multiplicative factor of(1 ± ε) with probability at least
1− δ. By a straightforward union bound of events and (6), we conclude that, for any timet ≥ τm,

Pr (∪n
i=1 {ŷi 6∈ [(1− ε)y, (1 + ε)y]}) ≤ δ.

For anyε ∈ (0, 1) andδ ∈ (0, 1), we now have, by the definition of(ε, δ)-computing time,

T
cmp
COMP (ε, δ) ≤ τm

= O
(

ε−2(1 + log δ−1)T
spr
D (δ/2)

)

.

This completes the proof of Theorem 1.

IV. I NFORMATION SPREADING

In this section, we analyze a randomized gossip algorithm for information spreading. The method by which nodes
choose partners to contact when initiating a communicationand the data transmitted during the communication are
the same for both time models defined in Section II. These models differ in the times at which nodes contact each
other: in the asynchronous model, only one node can start a communication at any time, while in the synchronous
model all the nodes can communicate in each time slot.

The information spreading algorithm that we study is presented in Fig. 2, which makes use of the following
notation. LetMi(t) denote the set of messages nodei has at timet. Initially, Mi(0) = {mi} for all i ∈ V . For a
communication that occurs at timet, let t− andt+ denote the times immediately before and after, respectively, the
communication occurs.

As mentioned in Section II-A, the nodes choose communication partners according to the probability distribution
defined by ann × n matrix P . The matrixP is non-negative and stochastic, and satisfiesPij = 0 for any pair
of nodesi 6= j such that(i, j) 6∈ E. For each such matrixP , there is an instance of the information spreading
algorithm, which we refer to as SPREAD(P).

9

Algorithm SPREAD(P)
When a nodei initiates a communication at timet:

1. Node i chooses a nodeu at random, and contactsu. The choice of the communication partneru is made
independently of all other random choices, and the probability that nodei chooses any nodej is Pij .

2. Nodesu and i exchange all of their messages, so that

Mi(t
+) = Mu(t

+) = Mi(t
−) ∪Mu(t

−).

Fig. 2. A gossip algorithm for information spreading.

We note that the data transmitted between two communicatingnodes in SPREAD conform to thepush and pull
mechanism. That is, when nodei contacts nodeu at time t, both nodesu and i exchange all of their information
with each other. We also note that the description in the algorithm assumes that the communication links in the
network have infinite capacity. As discussed in Section III-A, however, an information spreading algorithm that
uses links of infinite capacity can be used to compute minima using links of unit capacity.

This algorithm is simple, distributed, and satisfies the transmitter gossip constraint. We now present analysis of
the information spreading time of SPREAD(P) for doubly stochastic matricesP in the two time models. The goal
of the analysis is to prove Theorem 2. To this end, for anyi ∈ V , let Si(t) ⊆ V denote the set of nodes that have
the messagemi after any communication events that occur at absolute timet (communication events occur on a
global clock tick in the asynchronous time model, and in eachtime slot in the synchronous time model). At the
start of the algorithm,Si(0) = {i}.

A. Asynchronous model

As described in Section II, in the asynchronous time model the global clock ticks according to a Poisson process
of raten, and on a tick one of then nodes is chosen uniformly at random. This node initiates a communication,
so the times at which the communication events occur correspond to the ticks of the clock. On any clock tick, at
most one pair of nodes can exchange messages by communicating with each other.

Let k ≥ 0 denote the index of a clock tick. Initially,k = 0, and the corresponding absolute time is0. For
simplicity of notation, we identify the time at which a clocktick occurs with its index, so thatSi(k) denotes the
set of nodes that have the messagemi at the end of clock tickk. The following lemma provides a bound on the
number of clock ticks required for every node to receive every message.

Lemma 4:For anyδ ∈ (0, 1), define

K(δ) = inf{k ≥ 0 : Pr(∪n
i=1{Si(k) 6= V }) ≤ δ}.

Then,

K(δ) = O

(

n
log n+ log δ−1

Φ(P)

)

.

Proof: Fix any nodev ∈ V . We study the evolution of the size of the setSv(k). For simplicity of notation,
we drop the subscriptv, and writeS(k) to denoteSv(k).

Note that |S(k)| is monotonically non-decreasing over the course of the algorithm, with the initial condition
|S(0)| = 1. For the purpose of analysis, we divide the execution of the algorithm into two phases based on the size
of the setS(k). In the first phase,|S(k)| ≤ n/2, and in the second phase|S(k)| > n/2.

Under the gossip algorithm, after clock tickk+1, we have either|S(k+1)| = |S(k)| or |S(k+1)| = |S(k)|+1.
Further, the size increases if a nodei ∈ S(k) contacts a nodej /∈ S(k), as in this casei will push the message
mv to j. For each such pair of nodesi, j, the probability that this occurs on clock tickk+ 1 is Pij/n. Since only
one node is active on each clock tick,

E[|S(k + 1)| − |S(k)| | S(k)] ≥
∑

i∈S(k),j /∈S(k)

Pij

n
. (7)

10

When |S(k)| ≤ n/2, it follows from (7) and the definition of the conductanceΦ(P) of P that

E[|S(k + 1)| − |S(k)| | S(k)] ≥
|S(k)|

n

∑

i∈S(k),j /∈S(k) Pij

|S(k)|

≥
|S(k)|

n
min

S⊂V, 0<|S|≤n/2

∑

i∈S,j /∈S Pij

|S|

=
|S(k)|

n
Φ(P)

= |S(k)|Φ̂, (8)

whereΦ̂ = Φ(P)
n .

We seek an upper bound on the duration of the first phase. To this end, let

Z(k) =
exp

(

Φ̂
4 k
)

|S(k)|
.

Define the stopping timeL = inf{k : |S(k)| > n/2}, andL∧ k = min(L, k). If |S(k)| > n/2, thenL∧ (k+1) =
L ∧ k, and thusE[Z(L ∧ (k + 1)) | S(L ∧ k)] = Z(L ∧ k).

Now, suppose that|S(k)| ≤ n/2, in which caseL ∧ (k + 1) = (L ∧ k) + 1. The functiong(z) = 1/z is convex
for z > 0, which implies that, forz1, z2 > 0,

g(z2) ≥ g(z1) + g′(z1)(z2 − z1). (9)

Applying (9) with z1 = |S(k + 1)| andz2 = |S(k)| yields

1

|S(k + 1)|
≤

1

|S(k)|
−

1

|S(k + 1)|2
(|S(k + 1)| − |S(k)|).

Since|S(k + 1)| ≤ |S(k)| + 1 ≤ 2|S(k)|, it follows that

1

|S(k + 1)|
≤

1

|S(k)|
−

1

4|S(k)|2
(|S(k + 1)| − |S(k)|). (10)

Combining (8) and (10), we obtain that, if|S(k)| ≤ n/2, then

E

[

1

|S(k + 1)|

∣

∣

∣ S(k)

]

≤
1

|S(k)|

(

1−
Φ̂

4

)

≤
1

|S(k)|
exp

(

−
Φ̂

4

)

,

as1− z ≤ exp(−z) for z ≥ 0. This implies that

E[Z(L ∧ (k + 1)) | S(L ∧ k)] = E





exp
(

Φ̂
4 (L ∧ (k + 1))

)

|S(L ∧ (k + 1))|

∣

∣

∣

∣

S(L ∧ k)





= exp

(

Φ̂

4
(L ∧ k)

)

exp

(

Φ̂

4

)

E

[

1

|S((L ∧ k) + 1)|

∣

∣

∣
S(L ∧ k)

]

≤ exp

(

Φ̂

4
(L ∧ k)

)

exp

(

Φ̂

4

)

exp

(

−
Φ̂

4

)

1

|S(L ∧ k)|

= Z(L ∧ k),

and thereforeZ(L ∧ k) is a supermartingale.
SinceZ(L ∧ k) is a supermartingale, we have the inequalityE[Z(L ∧ k)] ≤ E[Z(L ∧ 0)] = 1 for anyk > 0, as

Z(L ∧ 0) = Z(0) = 1. The fact that the setS(k) can contain at most then nodes in the graph implies that

Z(L ∧ k) =
exp

(

Φ̂
4 (L ∧ k)

)

|S(L ∧ k)|
≥

1

n
exp

(

Φ̂

4
(L ∧ k)

)

,

11

and so

E

[

exp

(

Φ̂

4
(L ∧ k)

)]

≤ nE[Z(L ∧ k)] ≤ n.

Becauseexp(Φ̂(L ∧ k)/4) ↑ exp(Φ̂L/4) ask → ∞, the monotone convergence theorem implies that

E

[

exp

(

Φ̂L

4

)]

≤ n.

Applying Markov’s inequality, we obtain that, fork1 = 4(ln 2 + 2 ln n+ ln(1/δ))/Φ̂,

Pr(L > k1) = Pr

(

exp

(

Φ̂L

4

)

>
2n2

δ

)

<
δ

2n
. (11)

For the second phase of the algorithm, when|S(k)| > n/2, we study the evolution of the size of the set of nodes
that do not have the message,|S(k)c|. This quantity will decrease as the message spreads from nodes inS(k) to
nodes inS(k)c. For simplicity, let us consider restarting the process from clock tick 0 after L (i.e., when more
than half the nodes in the graph have the message), so that we have |S(0)c| ≤ n/2.

In clock tick k + 1, a nodej ∈ S(k)c will receive the message if it contacts a nodei ∈ S(k) and pulls the
message fromi. As such,

E[|S(k)c| − |S(k + 1)c| | S(k)c] ≥
∑

j∈S(k)c,i/∈S(k)c

Pji

n
,

and thus

E[|S(k + 1)c| | S(k)c] ≤ |S(k)c| −

∑

j∈S(k)c,i/∈S(k)c Pji

n

= |S(k)c|

(

1−

∑

j∈S(k)c,i/∈S(k)c Pji

n|S(k)c|

)

≤ |S(k)c|
(

1− Φ̂
)

. (12)

We note that this inequality holds even when|S(k)c| = 0, and as a result it is valid for all clock ticksk in the
second phase. Repeated application of (12) yields

E[|S(k)c|] = E[E[|S(k)c| | S(k − 1)c]]

≤
(

1− Φ̂
)

E[|S(k − 1)c|]

≤
(

1− Φ̂
)k

E[|S(0)c|]

≤ exp
(

−Φ̂k
)(n

2

)

For k2 = ln(n2/δ)/2Φ̂ = (2 ln n+ln(1/δ))/Φ̂, we haveE[|S(k2)
c|] ≤ δ/(2n). Markov’s inequality now implies

the following upper bound on the probability that not all of the nodes have the message at the end of clock tick
k2 in the second phase.

Pr(|S(k2)
c| > 0) = Pr(|S(k2)

c| ≥ 1)

≤ E[|S(k2)
c|]

≤
δ

2n
. (13)

12

Combining the analysis of the two phases, we obtain that, fork′ = k1+k2 = O((log n+log δ−1)/Φ̂), Pr(Sv(k
′) 6=

V) ≤ δ/n. Applying the union bound over all the nodes in the graph, andrecalling thatΦ̂ = Φ(P)/n, we conclude
that

K(δ) ≤ k′ = O

(

n
log n+ log δ−1

Φ(P)

)

.

This completes the proof of Lemma 4.
To extend the bound in Lemma 4 to absolute time, observe that Corollary 1 implies that the probability that

κ = K(δ/3) + 27 ln(3/δ) = O(n(log n + log δ−1)/Φ(P)) clock ticks do not occur in absolute time(4/3)κ/n =
O((log n+ log δ−1)/Φ(P)) is at most2δ/3. Applying the union bound now yieldsT spr

SPREAD(P)(δ) = O((log n+

log δ−1)/Φ(P)), thus establishing the upper bound in Theorem 2 for the asynchronous time model.

B. Synchronous model

In the synchronous time model, in each time slot every node contacts a neighbor to exchange messages. Thus,
n communication events may occur simultaneously. Recall that absolute time is measured in rounds or time slots
in the synchronous model.

The analysis of the randomized gossip algorithm for information spreading in the synchronous model is similar
to the analysis for the asynchronous model. However, we needadditional analytical arguments to reach analogous
conclusions due to the technical challenges presented by multiple simultaneous transmissions.

In this section, we sketch a proof of the time bound in Theorem2,T spr
SPREAD(P)(δ) = O((log n+log δ−1)/Φ(P)),

for the synchronous time model. Since the proof follows a similar structure as the proof of Lemma 4, we only
point out the significant differences.

As before, we fix a nodev ∈ V , and study the evolution of the size of the setS(t) = Sv(t). Again, we divide
the execution of the algorithm into two phases based on the evolution of S(t): in the first phase|S(t)| ≤ n/2, and
in the second phase|S(t)| > n/2. In the first phase, we analyze the increase in|S(t)|, while in the second we
study the decrease in|S(t)c|. For the purpose of analysis, in the first phase we ignore the effect of the increase
in |S(t)| due to thepull aspect of protocol: that is, when nodei contacts nodej, we assume (for the purpose of
analysis) thati sends the messages it has toj, but thatj does not send any messages toi. Clearly, an upper bound
obtained on the time required for every node to receive everymessage under this restriction is also an upper bound
for the actual algorithm.

Consider a time slott + 1 in the first phase. Forj /∈ S(t), let Xj be an indicator random variable that is1 if
nodej receives the messagemv via a push from some nodei ∈ S(t) in time slot t+ 1, and is0 otherwise. The
probability thatj does not receivemv via a push is the probability that no nodei ∈ S(t) contactsj, and so

E[Xj | S(t)] = 1− Pr(Xj = 0 | S(t))

= 1−
∏

i∈S(t)

(1− Pij)

≥ 1−
∏

i∈S(t)

exp(−Pij)

= 1− exp



−
∑

i∈S(t)

Pij



 . (14)

The Taylor series expansion ofexp(−z) aboutz = 0 implies that, if0 ≤ z ≤ 1, then

exp(−z) ≤ 1− z + z2/2 ≤ 1− z + z/2 = 1− z/2. (15)

For a doubly stochastic matrixP , we have0 ≤
∑

i∈S(t) Pij ≤ 1, and so we can combine (14) and (15) to obtain

E[Xj | S(t)] ≥
1

2

∑

i∈S(t)

Pij .

13

By linearity of expectation,

E[|S(t+ 1)| − |S(t)| | S(t)] =
∑

j 6∈S(t)

E[Xj | S(t)]

≥
1

2

∑

i∈S(t),j 6∈S(t)

Pij

=
|S(t)|

2

∑

i∈S(t),j 6∈S(t) Pij

|S(t)|
.

When |S(t)| ≤ n/2, we have

E[|S(t+ 1)| − |S(t)| | S(t)] ≥ |S(t)|
Φ(P)

2
. (16)

Inequality (16) is analogous to inequality (8) for the asynchronous time model, withΦ(P)/2 in the place ofΦ̂.
We now proceed as in the proof of Lemma 4 for the asynchronous model. Note that|S(t+ 1)| ≤ 2|S(t)| here in
the synchronous model because of the restriction in the analysis to only consider the push aspect of the protocol in
the first phase, as each node inS(t) can push a message to at most one other node in a single time slot. Repeating
the analysis from the asynchronous model leads to the conclusion that the first phase of the algorithm ends in
O
(

logn+log δ−1

Φ(P)

)

time with probability at least1− δ/2n.

The analysis of the second phase is the same as that presentedfor the asynchronous time model, witĥΦ replaced
by Φ. As a summary, we obtain that it takes at mostO

(

logn+log δ−1

Φ(P)

)

time for the algorithm to spread all the
messages to all the nodes with probability at least1−δ. This completes the proof of Theorem 2 for the synchronous
time model.

V. A PPLICATIONS

We study here the application of our preceding results to several types of graphs. In particular, we consider
complete graphs, constant-degree expander graphs, and grid graphs. We use grid graphs as an example to compare
the performance of our algorithm for computing separable functions with that of a known iterative averaging
algorithm.

For each of the three classes of graphs mentioned above, we are interested in theδ-information-spreading time
T spr
SPREAD(P)(δ), whereP is a doubly stochastic matrix that assigns equal probability to each of the neighbors of

any node. Specifically, the probabilityPij that a nodei contacts a nodej 6= i wheni becomes active is1/∆, where
∆ is the maximum degree of the graph, andPii = 1−di/∆, wheredi is the degree ofi. Recall from Theorem 1 that
the information dissemination algorithm SPREAD(P) can be used as a subroutine in an algorithm for computing
separable functions, with the running time of the resultingalgorithm being a function ofT spr

SPREAD(P)(δ).

A. Complete graph

On a complete graph, the transition matrixP hasPii = 0 for i = 1, . . . , n, andPij = 1/(n − 1) for j 6= i.
This regular structure allows us to directly evaluate the conductance ofP , which isΦ(P) ≈ 1/2. This implies that
the (ε, δ)-computing time of the algorithm for computing separable functions based on SPREAD(P) is O(ε−2(1+
log δ−1)(log n+ log δ−1)). Thus, for a constantε ∈ (0, 1) andδ = 1/n, the computation time scales asO(log2 n).

B. Expander graph

Expander graphs have been used for numerous applications, and explicit constructions are known for constant-
degree expanders [23]. We consider here an undirected graphin which the maximum degree of any vertex,∆, is
a constant. Suppose that the edge expansion of the graph is

min
S⊂V, 0<|S|≤n/2

|F (S, Sc)|

|S|
= α,

whereF (S, Sc) is the set of edges in the cut(S, Sc), andα > 0 is a constant. The transition matrixP satisfies
Pij = 1/∆ for all i 6= j such that(i, j) ∈ E, from which we obtainΦ(P) ≥ α/∆. Whenα and∆ are constants,
this leads to a similar conclusion as in the case of the complete graph: for any constantε ∈ (0, 1) and δ = 1/n,
the computation time isO(log2 n).

14

C. Grid

We now consider ad-dimensional grid graph onn nodes, wherec = n1/d is an integer. Each node in the grid
can be represented as ad-dimensional vectora = (ai), whereai ∈ {1, . . . , c} for 1 ≤ i ≤ d. There is one node
for each distinct vector of this type, and so the total numberof nodes in the graph iscd = (n1/d)d = n. For any
two nodesa andb, there is an edge(a, b) in the graph if and only if, for somei ∈ {1, . . . , d}, |ai − bi| = 1, and
aj = bj for all j 6= i.

In [1], it is shown that the isoperimetric number of this gridgraph is

min
S⊂V, 0<|S|≤n/2

|F (S, Sc)|

|S|
= Θ

(

1

c

)

= Θ

(

1

n1/d

)

.

By the definition of the edge set, the maximum degree of a node in the graph is2d. This means thatPij = 1/(2d) for
all i 6= j such that(i, j) ∈ E, and it follows thatΦ(P) = Ω

(

1
dn1/d

)

. Hence, for anyε ∈ (0, 1) andδ ∈ (0, 1), the (ε,
δ)-computing time of the algorithm for computing separable functions isO(ε−2(1+log δ−1)(log n+log δ−1)dn1/d).

D. Comparison with Iterative Averaging

We briefly contrast the performance of our algorithm for computing separable functions with that of the iterative
averaging algorithms in [25] [5]. As noted earlier, the dependence of the performance of our algorithm is in
proportion to1/Φ(P), which is a lower bound for the iterative algorithms based ona stochastic matrixP .

In particular, when our algorithm is used to compute the average of a set of numbers (by estimating the sum of
the numbers and the number of nodes in the graph) on ad-dimensional grid graph, it follows from the analysis in
Section V-C that the amount of time required to ensure the estimate is within a(1± ε) factor of the average with
probability at least1 − δ is O(ε−2(1 + log δ−1)(log n + log δ−1)dn1/d) for any ε ∈ (0, 1) and δ ∈ (0, 1). So, for
a constantε ∈ (0, 1) andδ = 1/n, the computation time scales asO(dn1/d log2 n) with the size of the graph,n.
The algorithm in [5] requiresΩ(n2/d log n) time for this computation. Hence, the running time of our algorithm
is (for fixed d, and up to logarithmic factors) thesquare rootof the runnning time of the iterative algorithm! This
relationship holds on other graphs for which the spectral gap is proportional to the square of the conductance.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel algorithm for computing separable functions in a totally distributed manner.
The algorithm is based on properties of exponential random variables, and the fact that the minimum of a collection
of numbers is an order- and duplicate-insensitive statistic.

Operationally, our algorithm makes use of an information spreading mechanism as a subroutine. This led us
to the analysis of a randomized gossip mechanism for information spreading. We obtained an upper bound on
the information spreading time of this algorithm in terms ofthe conductance of a matrix that characterizes the
algorithm.

In addition to computing separable functions, our algorithm improves the computation time for the canonical
task of averaging. For example, on graphs such as paths, rings, and grids, the performance of our algorithm is of
a smaller order than that of a known iterative algorithm.

We believe that our algorithm will lead to the following totally distributed computations: (1) an approximation
algorithm for convex minimization with linear constraints; and (2) a “packet marking” mechanism in the Internet.
These areas, in which summation is a key subroutine, will be topics of our future research.

VII. A CKNOWLEDGMENTS

We thank Ashish Goel for a useful discussion and providing suggestions, based on previous work [10], when
we started this work.

15

REFERENCES

[1] M. C. Azizoğlu andÖ. Eğecioğlu. The isoperimetric number ofd-dimensionalk-ary arrays.International Journal of Foundations of
Computer Science, 10(3):289–300, 1999.

[2] Z. Bar-Yossef, T. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan. Counting distinct elements in a data stream. InProceedings of
RANDOM 2002, pages 1–10, 2002.

[3] N. Berger, C. Borgs, J. T. Chayes, and A. Saberi. On the spread of viruses on the internet. InProceedings of the Sixteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 301–310, 2005.

[4] D. P. Bertsekas and J. N. Tsitsiklis.Parallel and Distributed Computation: Numerical Methods. Prentice Hall, 1989.
[5] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Gossip algorithms: Design, analysis and applications. InProceedings of IEEE

INFOCOM 2005, pages 1653–1664, 2005.
[6] E. Cohen. Size-estimation framework with applicationsto transitive closure and reachability.Journal of Computer and System Sciences,

55(3):441–453, 1997.
[7] J. Considine, F. Li, G. Kollios, and J. Byers. Approximate aggregation techniques for sensor databases. InProceedings of the 20th

International Conference on Data Engineering, pages 449–460, 2004.
[8] A. Dembo and O. Zeitouni.Large Deviations Techniques and Applications. Springer, second edition, 1998.
[9] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart, and D. Terry. Epidemic algorithms for

replicated database maintenance. InProceedings of the Sixth Annual ACM Symposium on Principlesof Distributed Computing, pages
1–12, 1987.

[10] M. Enachescu, A. Goel, R. Govindan, and R. Motwani. Scale free aggregation in sensor networks. InInternational Workshop on
Algorithmic Aspects of Wireless Sensor Networks, 2004.

[11] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base applications.Journal of Computer and System Sciences,
31(2):182–209, 1985.

[12] A. M. Frieze and G. R. Grimmett. The shortest-path problem for graphs with random arc-lengths.Discrete Applied Mathematics,
10:57–77, 1985.

[13] A. Ganesh, L. Massoulié, and D. Towsley. The effect of network topology on the spread of epidemics. InProceedings of IEEE
INFOCOM 2005, pages 1455–1466, 2005.

[14] R. Karp, C. Schindelhauer, S. Shenker, and B. Vöcking.Randomized rumor spreading. InProceedings of the 41st Annual IEEE
Symposium on Foundations of Computer Science, pages 565–574, 2000.

[15] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate information. InProceedings of the 44th Annual IEEE
Symposium on Foundations of Computer Science, pages 482–491, 2003.

[16] D. Kempe and J. Kleinberg. Protocols and impossibilityresults for gossip-based communication mechanisms. InProceedings of the
43rd Annual IEEE Symposium on Foundations of Computer Science, pages 471–480, 2002.

[17] D. Kempe, J. Kleinberg, and A. Demers. Spatial gossip and resource location protocols. InProceedings of the 33rd Annual ACM
Symposium on Theory of Computing, pages 163–172, 2001.

[18] D. Kempe and F. McSherry. A decentralized algorithm forspectral analaysis. InProceedings of the 36th Annual ACM Symposium on
Theory of Computing, pages 561–568, 2004.

[19] E. Modiano, D. Shah, and G. Zussman. Maximizing throughput in wireless networks via gossip.Submitted, 2005.
[20] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson. Synopsis diffusion for robust aggregation in sensor networks.In Proceedings

of the 2nd International Conference on Embedded Networked Sensor Systems, pages 250–262, 2004.
[21] B. Pittel. On spreading a rumor.SIAM Journal of Applied Mathematics, 47(1):213–223, 1987.
[22] R. Ravi. Rapid rumor ramification: Approximating the minimum broadcast time. InProceedings of the 35th Annual IEEE Symposium

on Foundations of Computer Science, pages 202–213, 1994.
[23] O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph product, and new constant-degree expanders and

extractors. InProceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science, pages 3–13, 2000.
[24] A. Sinclair. Algorithms for Random Generation and Counting: A Markov Chain Approach. Birkhäuser, Boston, 1993.
[25] J. N. Tsitsiklis. Problems in Decentralized Decision Making and Computation. PhD thesis, Department of Electrical Engineering and

Computer Science, Massachusetts Institute of Technology,1984.
[26] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans. Distributed asynchronous deterministic and stochastic gradientoptimization algorithms.

IEEE Transactions on Automatic Control, 31(9):803–812, 1986.

	Introduction
	Related work
	Organization

	Preliminaries and Results
	Our contribution

	Function Computation
	Using information spreading to compute minima
	Proof of Theorem ??

	Information spreading
	Asynchronous model
	Synchronous model

	Applications
	Complete graph
	Expander graph
	Grid
	Comparison with Iterative Averaging

	Conclusions and Future Work
	Acknowledgments
	References

