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Abstract

The potential benefits of multiple-antenna systems mayrbigdd by two types of channel degrada-
tions—rank deficiencyandspatial fading correlatiorof the channel. In this paper, we assess the effects
of these degradations on the diversity performance of plalinput multiple-output (MIMO) systems,
with an emphasis on orthogonal space—time block codes,rimst®f the symbol error probability,
the effective fading figure (EFF), and the capacity at lownalgo-noise ratio (SNR). In particular, we
consider a general family of MIMO channels knowndmsible-scatteringhannels, which encompasses a
variety of propagation environments from independent dedtically distributed Rayleigh to degenerate
keyhole or pinhole cases by embracing both rank-deficieshspatial correlation effects. It is shown that
a MIMO system withn transmit anchy receive antennas achieves the diversity of 0@5%
in a double-scattering channel witly effective scatterers. We also quantify the combined efféthe
spatial correlation and the lack of scattering richnesshenEFF and the low-SNR capacity in terms
of the correlation figuresof transmit, receive, and scatterer correlation matriveés.further show the
monotonicity properties of these performance measurdsredpect to the strength of spatial correlation,

characterized by the eigenvalue majorization relationthefcorrelation matrices.

Index Terms

Channel capacity, diversity, double scattering, fadingriég keyhole, multiple-input multiple-output
(MIMO) system, orthogonal space—time block code (OSTB@atial fading correlation, symbol error
probability (SEP).

. INTRODUCTION

Recent rapid advances in multiple-input multiple-out@dtNIO) communication theory and
growing cognizance of the tremendous performance gains\ahby MIMO techniques [1]-[9]
have spurred efforts to integrate this technology intoriitmireless systems such as wireless local
area networks (WLANS) and 4G cellular systems. One of theagghes to exploiting diversity
capability of MIMO channels is the use of orthogonal spaceetblock codes (OSTBCs),
which have drawn considerable attention because theydttthidiversity with scalar maximum-
likelihood (ML) decoding [7]-[9}

'However, OSTBCs with arbitrary complex constellation aanmprovide the full diversity and full transmission rate
simultaneously for more than two transmit antennas [8, Tdm05.4.2] (see also [10]-[13]). A new class of quasi-ortra

codes has been proposed in [14]-[16] with the tradeoff betmtbe decoding complexity, transmission rate and/or siityer
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In general, the potential benefits of multiple-antennaesystmay be limited by rank deficiency
of the channel due to double scattering or the keyhole effecexample, as well as spatial fading
correlation due, for instance, to insufficient spacing leetwantenna elements [17]-[30]. Some
mechanism rendering a MIMO channel rank deficient cannotXptamed by the archetypal
model based on single-scattering processes [26], [27].dOvess this issue, a double-scattering
MIMO model has been proposed recently in [24] wherein thenblmatrix is characterized by a
product of two statistically independent complex Gaussieatrices, in contrast to the common
single complex Gaussian matrix characterization for sl MIMO channel$.This double-
scattering model can capture both rank-deficient and $pgatieelation effects of MIMO channels
and encompass a variety of propagation environments,ibgdpe gap between an independent
and identically distributed (i.i.d.) Rayleigh case and gateerate one-rank channel known as a
keyhole or pinhole channel. There are other recent attetoptsodeling MIMO channels for
more realistic scattering environments (e.g., double oltibmunce diffuse scattering) beyond
single scattering [31]-[34].

The effects of rank deficiency and spatial correlation on ¢hpacity of MIMO channels
are relatively well understood (see, e.g., [17]-[30]).rRra capacity point of view, it has been
known that at high signal-to-noise ratio (SNR), the spdtiding correlation reduces the diversity
advantage—a parallel shift of the capacity curve over SN&eitibels (dB)—offered by multiple
antennas, whereas the rank deficiency decreases the spaligilexing benefit—a slope of the
capacity curve over SNR—of multiple-antenna channels.[Ptgviously, the performance of
space—time coding in the presence of spatial fading caivaeldas been extensively studied for
the most popular Rayleigh, Rician, and Nakagamfading [35]-[40]. Also, the effect of rank
deficiency has been investigated in [41]—-[44] for a spedalecof the keyhole channel.

The objective of this paper is to assess the effects of dosbdttering on the diversity
performance of MIMO systmes in a communication link with transmit antennasi receive
antennas, andg effective scatterers on each of the transmit and receiassighich is referred
to as a “double-scattering., ns, nr )-MIMO channel.” Due to the channel decoupling property,
the OSTBC converts a MIMO fading channel into identical &nrigput single-output (SISO)

subchannels, each for a different transmitted symbol, witath gain given by the Frobenius

2In [24], the model was validated by simulations using ragitrg techniques.
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norm® of the channel matrid [38]-[42]. As a result, the maximum achievable diversityfpe
mance of MIMO systems can be characterized by the staligiioperty of | H||,. Therefore,
using the OSTBC as a pivotal MIMO diversity technidparticularly, in the absence of channel
knowledge at the transmitter), we analyze the relevanbpmdnce measures in double-scattering
(nr, ng, ng)-MIMO channels, namely: i) the symbol error probability (§H49], ii) the effective
fading figure (EFF) [50]-[52], and iii) the capacity in a I®NR regime [53], [54].

Diversity in communication can ameliorate system perforces in behalf of error probability,
information rate, and signal fluctuation due to fading. Frarerror probability viewpoint, the
diversity attacks a high-SNR slope of the SEP curve, i.gerdity order. In contrast, the diversity
(from a capacity point of view) affects a low-SNR slope of tdapacity curve rather than a high-
SNR slope. For example, the high- and low-SNR slopes (hitg/per3 dB) of the capacity for
i.i.d. Rayleigh-fading MIMO channels are given by

S = min (nr, ng)
Sy = 2nTnr

nTt + NgR

respectively [53]. While the high-SNR capacity slofig is limited by the spatial multiplexing
gainmin (nt, ng), the low-SNR capacity slop#, is limited by the diversity gain amounting to
the harmonic mean ofr andng. Therefore, the capacity is multiplexing-limited in thgghiSNR
regime, but is diversity-limited in the low-SNR regime. Aigh SNR, the diversity advantage
serves only to provide the power offset (i.e., the paraléft ®f the capacity curve) [21]. These
lessons stimulate a shift of focus to the low-SNR regime ialying the diversity effect on the
capacity behavior. More inherently, diversity systems &nreduce signal fluctuations due to
the nature of fading. The EFF measure is defined aarance-to-mean-square ratio (VMSR)

of the instantaneous SNR (see Definitidn 1). This quantity lsa used to assess the severity

*The Frobenius norm of am x n matrix A = (A;;) is defined as
m n 1/2
I1Allp £ y/tr(AAT) = (Z > IAz-j|2>
i=1j=1
wheretr () and{ denote the trace operator and the transpose conjugate ofrix,mespectively.

“If the transmitter has channel knowledge, the maximum MIM@emity can be achieved biyansmit beamformingoften
called maximum ratio transmission (MRT) or MIMO maximaticacombining) in the eigenspace of the largest eigenvafue o
the Gramian matrixd ' H [45]-[48].
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of fading and the effectiveness of diversity systems on ceausignal fluctuations. The main

results of this paper can be summarized as follows.

« We show that the achievable diversity is of order

nTnsnr

max (nT,ns, Nr)
Hence, if the channel is “rich-enough,” that is, the numbleeféective scatterers is greater
than or equal to the numbers of transmit and receive anterthasfull spatial diversity
order ofntng can be achieved even in the presence of double scattering.
« We derive exact analytical expressions for the SEP in thases of particular interest:
1) spatially uncorrelated double scattering (included.iand keyhole channels as special
cases);
2) doubly correlated double scattering (includes a spwat@rrelated MIMO channel
where spatial correlation is present at both the transmaitel the receiver);
3) multiple-input single-output (MISO) double scatterifaprresponds to a pure transmit
diversity system wherein a burden of diversity receptiorthet receive terminal is

moved to the transmitter—original motivation of space-etiooding [6]-[8]).

« We derive the EFF and the low-SNR capacity of double-sdagefnr, ng, ng)-MIMO
channels. The results show that these performance meam@e®mpletely characterized
by the correlation figuresof transmit, receive, and scatterer correlation matrices.

. The EFF as a functional of the eigenvalues of correlationrioeg is monotonically in-
creasing in a sense of Schur (MISWe show that the maximum possible increase in the
EFF due to double scattering is a sum of correlation figuretheftransmit and receive
correlation matrices, which eventuates when the scastéead to be fully correlated or the
keyhole propagation takes place, that is, when only a sidgtgee of freedom is available
in the channel for communications.

« The low-SNR capacity slope as a functional of the eigenwhfecorrelation matrices is
monotonically decreasing in a sense of Schur (MDV#) also obtain the low-SNR capacity

of a double-scattering MIMO channel without the constraihbrthogonal input signaling.

5The correlation figure is defined as a ratio of the secondrastiistic of the spectra of correlation matrices to thathaf
fully correlated matrix (see Definitidd 2).

6See Appendifll for the notions @chur monotonicityand majorization
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This enables us to assess the penalty of the use of OSTBCadffioeving full diversity

with simple decoding) on spectral efficiency in the low-SN#gime.

We note in passing that all the mathematical and statistezllts (on the monotonicity in a
sense ofSchurand random matrices) obtained in the appendices are aplgit@ many other
problems related to multiple-antenna communications—-efkample, capacity analysis of MIMO
relay channels [5] and spatially correlated MIMO chann&@§]{23], and error probability

analysis of multiple-antenna systems with cochannel fietence [55], [56].

This paper is organized as follows. In Sectidn Il, the systeodel considered in the paper is
presented. Sectidnlll analyzes the achievable diversitytae SEP in the presence of double
scattering. Sectiof vV analyzes the EFF and the low-SNR aggpéwith and without the use
of OSTBCs) of double-scattering.r, ng, ng)-MIMO channels. Sectiof vV concludes the paper.
Apropos of our study, the notions of majorization and Schanatonicity are briefly discussed in
Appendix. In Appendi{dll, we provide supplementary usefesults on some statistics derived

from complex Gaussian matrices.

Notation: Throughout the paper, we shall use the following notattdnR, andC denote the
natural numbers and the fields of real and complex numbespgectively. The superscripts
T, andt stand for the complex conjugate, transpose, and transprgegate, respectively.,
and0,,.,, represent thes x n identity matrix and then x n all-zero matrix, respectively.4;;)
denotes the matrix with th@, j)th entry A,; anddet;<; ;<,, (4;;) is the determinant of the x n
matrix (A;;). tr (A), etr (A) = ¢*@, and ||A|| denote the trace, exponential of the trace, and
Frobenius norm of the matrid, respectively® and & denote the Kronecker (direct) product
and direct sum of matrices andc (A) denotes the vector formed by stacking all the columns of
A into a column vector. Also, we denoth ® A, ®---®A, by Q| A, andA, & A, &---BA,
by ;_, A;. With a slight abuse of notation, a positive-semidefinitetrirad is denoted by
A > 0 and a positive-definite matrid is denoted byA > 0. Finally, for a Hermitian matrix
A € C™™ with the eigenvalueg, \,, ..., A\, in any order,o (A) denotes the number of distinct
eigenvalues ofA. Also, A, and7, (A), k = 1,2,...,0(A), denote the distinct eigenvalues of

A in decreasing order and its multiplicity, respectivelyattlis, )\<1> > >\<2> > .. > >\<Q(A)> and
S 7 (4) = .
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[l. SYSTEM MODEL

We consider a MIMO wireless communication system with transmit andng receive
antennas, where the channel remains constant for an integkiple of N. (> nt) symbol
periods and changes independently to a new value for eacrate time. We assume that the

channel is perfectly known at the receiver but unknown attthesmitter.

A. Orthogonal Space-Time Block Codes

A space—time block coded MIMO system in double-scatterimanaels is illustrated in Fi@l 1.
During an N.-symbol interval, symbols; € S, i = 1,2,..., N, are encoded by an OSTBC
defined by anV. x nt transmission matrig, whereS is two-dimensional signaling constellation
[8], [9]. A general construction of complex OSTBCs with thenimal delay and maximal
achievable rate was presented in [10, Proposition 2]. Taissttuction of the OSTBC fonr
transmit antennas gives the maximal achievable rate [18prEm 1]

[log,nt] + 1
9[logy nr|

R = (1)

where[z] denotes the smallest integer greater than or equal Eor example, Alamouti’s code

[ %z +¢] is a one-rate OSTBC employing two transmit antennas [7] and

* *
—Ty T

T i) ZT3 0
* *
G, — —x5 x7 0 —x3 @)
—x5 0 a7 @9

0 25 —a5 x

is a3/4-rate OSTBC for four transmit antennas [10].

B. Signal and Channel Models

For a frequency-flat block-fading channel, thg x N, received signal can be expressed in

matrix notation as
Y =HG" +W 3)

where H € C"»*"T is the random channel matrix whosg j)th entriesH,;, i = 1,2,..., ng,

j=12,...,nt, are complex propagation coefficients betweenjthetransmit antenna and the
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ith receive antenna witfi {|H;;]*} = 1, andW ~ NHR,NC (0n xNe» Nod oy, Inv.) is the complex
additive white Gaussian noise (AWGN) matrix (see [21, Dé&bni Il.1] and [21, (1)] for the
definition and distribution of complex Gaussian matriceShe total power transmitted through
nt antennas is assumed to eand hence, the average SNR per receive antenna is equal to
5 2 P/N.

For double-scatteringur, ns, nr )-MIMO channels (see Fidl 1), the channel matHxcan be
written as [21], [24]

H= 8" 2/ H,3 (4)

Vs
whereng is the number of effective scatterers on each of the trarsnaitreceive sidedf; and
H, are statistically independer,; ~ N, e (0nnxnss Lngs Ing )y Ha ~ Nog e Ongnes Ing, Inr),
and Hermitian positive-definite matric@s., &5, and®y arenr x ny transmit,ng x ng scatterer,
andngy x ng receive correlation matrices with all diagonal entriegespectively. This model
can include the rank-deficient effect of MIMO channels aslwvasl spatial fading correlation
by controlling ng and the correlation matricedr, ®5, and ®i. Therefore, [4) is a general
family of MIMO channels spanning from the i.i.d. Rayleighsea@s — oo with & = I,,,
& =1,, &g = I,,) to the degenerate keyhole or pinhole casg € 1 with &, = I,,,
&y = 1,,) [24]. Note that the separability of correlation id (4) is engralization of the well-
known ‘Kronecker model’ [17], [18]. Although there are somtéempts to reporting discrepancy
between this separable correlation model and physical uneaents (see, e.g., [57], [58]), the
Kronecker correlation model has been accepted widely duts texperimental validation from
European Project [19] and analytical tractability.

In [20], so-calledstochasticrank deficiency—meaning that the channel is rank deficient
due to fading correlation, i.e., the correlation matriceseh zero eigenvalues—was deemed
as an important feature when dealing with fading corretatidowever, this form of channel
degeneracy cannot cover the case where the channel extaibksleficiency even when fading
is uncorrelated. In contrast, we shall restdet, &5, and®y to positive-definite (i.e., full rank)
matrices in the paper. This implies that the raniois equal tomin (nr, ng, ng) with probability

one. Therefore, rank deficiency can be distinguished fraenfalding correlation effect and may

"There exist minor typos in [21, Definition 11.1]; the covariz matrix2 @ ¥ should be read a&” @ W.

8In general, a correlation matrix is positive semidefinitehvall diagonal entrieq.
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occur only due to the lack of scattering richness with less thanmin (nr,ng). This also
enables us to discriminate a one-rdalty correlated scenario from a degenerate keyhole MIMO
channel [29], and grants the channel to exhibit rank defogiemith uncorrelated fading (e.g.,
ns < min (n,ng) With ®p =1,,., &5 =1,,, Pr = 1,,,,).
LetZ, = ®/°H, andZ, = ®,°H,®/, then we have
1

Y

whereZ; ~ Ny ons (Onpxcng, @r, Ing) aNdZy ~ Nog oy (Ong ey, s, @) are statistically inde-

[1]

152 )

pendent complex Gaussian matrices.

IIl. SyMBOL ERROR PROBABILITY

With perfect channel knowledge at the receiver, orthog@palce—time block encoding and
decoding convert a MIMO fading channel inf¥ equivalent SISO subchannels, each for a
different symbol, with a path gaifiH ||, [38]-[42] (as shown in Fig[l1l). Consequently, the
performance of OSTBCs is completely characterized by thissital behavior of H ||, and the
instantaneous SNR for each of the SISO subchannels, dehgtegkgc, is given by [41], [42]

_ 2
Y HHHF

R (6)

YsTBC =

To evaluate the SEP, we need the probability density fundgalf) or the moment generating
function (MGF) ofystgc. For double-scatteringur, ns, nr)-MIMO channels, the MGF ofistgc

can be written as

_ —1
57 oo
= E-El {det (ITLSNT + nSnTR :1.:1@5 X @T) } (7)
57 -1
= Eg, {det (IWS —— ®r ® 525';) } (8)

where [¥) and[{8) follow from Lemmid 1 in Appendi} .
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A. Achievable Diversity

Before devoting to deriving the SEP expressions, we disthessliversity order achieved by
the OSTBC. In general, the achievable diversity order caddimed as

—log P,
42 im —287¢
=00 log¥

(9)

where P, denotes the SEP for two-dimensional signaling constehiatvith polygonal decision
boundaries. In the absence of double scattering, the OSTB@Gdes the maximum achievable
diversity order ofnrngr. The corresponding diversity order in double-scattering, ns, ng)-
MIMO channels is given by the following result.

Theorem 1:The diversity order achieved by the OSTBC over double-sdat (nr, ng, ng)-
MIMO channels is

nTnsnr

(10)

d = )
STBC ™ hax (nT,ns, nR)

Proof: See AppendiXJI[-A. O

Theorem[dl states that if the number of effective scatterengréater than or equal to the
numbers of transmit and receive antennas, the OSTBC protdefull diversity order ofirng
even in the presence of double scattering.

We now present analytical expressions for the SEP of the @SfbBthree cases of particular
interest—spatially uncorrelated double scattering, dhoabrrelated double scattering, and MISO
double scattering. In what follows, a spatial correlatiomionment of double-scattering channels

is denoted byl = (&1, &g, ®r) for givennr, ng, andng.

B. Spatially Uncorrelated Double Scattering

Consider a spatial correlation environméht = (1,.,., 1., I,;). This spatially uncorrelated
double-scattering scenario includes i.i.d. and keyhol&MIchannels as special cases.

Let ny = min (nr, ng), ne = max (nt,ng), and then; x n; random matrixXY’ be

=ie (11)

oo, if ng > nr,

Y _ {EQE;, if ng S nrt

which is a matrix quadratic form in complex Gaussian masri@i, Definition 11.3]. Then, from
@) and [14¥) in Appendik1ll, the SEP of the OSTBC with-PSK signaling in double-scattering
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(nr, ng, ng)-MIMO channels can be readily written as

1 [° 97 -
0

nsnTR sin2 0

where we have used the fact tiﬁjﬁg andEEEg have the same nonzero eigenvallies.

In the absence of spatial correlation, the random maltixhas the Wishart distribution
Wi, (n2,I,,) [21, Definition 11.2]. Applying Corollary[# in AppendiXdll tofI2), we obtain
the SEP for this spatially uncorrelated environm@&pt as

_ 1 © :
P;CMdPSSK: Wuc-ds/ov det {GUC dS(e)} df (13)
where
ACS =TT (na = k)l (k — 1)! (14)
k=1

andG"*(9) = (Gy=4(9)) is then, x n; Hankel matrix whoséi, j)th entry is given by

G (0) = (ny —ny + i+ —2)! 2 <n2 o Aidj— 1 ng; —ﬁ) . (15)
Example 1 (Uncorrelated Extremes—Keyhole and I.I.O0pe i.i.d. and keyhole MIMO chan-
nels are two extreme cases of spatially uncorrelated dadaltering (i.e.ns = co andng = 1,
respectively). Ifng = 1, thenn; = 1 andn, = nt. Hence, [IB) reduces to [41, eq. (11)] for
keyhole MIMO channels. Aas — oo, (I3) becomes [42, eq. (26)] (with a Nakagami parameter
m = 1) for i.i.d. Rayleigh-fading MIMO channels.

Fig.[@ shows the SEP &#PSK G, (2.25 bits/s/Hz) versus the SNRin spatially uncorrelated
double-scattering4, ngs, 2)-MIMO channels whemg varies from1 (keyhole) to infinity (i.i.d.
Rayleigh). We can see that ag increases, the SEP approaches that of i.i.d. Rayleigimdadi
MIMO channels in the absence of double scattering. Thisméges the behavior in Rayleigh-

fading channels with diversity reception, that is, the aterbehaves like an AWGN channel

°As mentioned in the proof of Theorelh 1, The SEP for the germsé of arbitrary two-dimensional signaling consteltatio
with polygonal decision boundaries can be written as a comoenbination of terms akin td_{Il7). Thus, our results can be

easily extended to any two-dimensional signaling coregieth.
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(diversity order ofoo) as the number of receive antennas increases. Observe tieatiyy > 4,
the slope of the SEP curve at high SNR is identical to that efithd. case. This example
confirms the result of Theorefd 1: the diversity orders areabtmi dstgc = 2, 4, and 6 for
ng = 1, 2, and 3, respectively, whereagstgc = 8 for ng = 5, 10, 20, 100, and oo (i.i.d.).
A clearer understanding about the diversity behavior isioled by referring to Figl3, where
the SEPs ofl6-PSK Alamouti ¢ bits/s/Hz) andG, (3 bits/s/Hz) OSTBCs versus the SNR
in spatially uncorrelated double-scatterifigr, ns, nr)-MIMO channels are shown. Using{10),
we can easily show that the Alamouti agd codes achieve the diversity order dfrgc = 2 for
(2,3,1) and (4,2, 1) channelsystgc = 6 for (2,5,3) and (4, 3,2) channels; andsrgc = 20 for
(2,10,11) and (4, 5,5) channels. As can be seen, we obtain a close agreement inofiees sbf

the SEP curves, corresponding to the same valuéffc, at high SNR.

C. Doubly Correlated Double Scattering

Consider a spatial correlation environméhy; = (®r,1,,,®r), where spatial correlation
exists only on the transmit and receive ends. Note that teisario includes a spatially correlated
MIMO channel in the absence of double scattering € oc) as a special case. Laf and A\,
1=1,2,...,n1,j =1,2,...,nR, be the eigenvalues @ and®y in any order, respectively.
Suppose thatg > nr. Then,T ~ W, (ng, ®1). Applying TheoreniZI0 in AppendiXlil td{12),

we obtain the SEP in the environméeR; as

(S)
plcdas 1 /O det ([G%(0) GL®(6) --- G (9)]) db (16)

S,MPSK - 7_‘_“4(:1(;.(15
with

A (B BE® B [[ (ns ) an

=1
where B{®® = (B{%) and Gi°®(0) = (GI5%(0)), k = 1,2,...,0(®1), are ny x 7, (®r)
matrices whoséi, j)th entries are given respectively by

BIH = (—1) 7 (i~ j+ 1)

ng—i+j
kij Ny (18)

j—1
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and
o(®r) 7p(®Pr
ng—nr+i+j—1 . .
chljds ):Z Z{ pq (I)R )\’<II‘€>S Tt I (ns—nT+z+]—2)!
p: :

9NN
><2Fo<ns—nT+i+j—1,q;—¢.<k> - (19

ngntR sin? 6

In 9), X, , (Pr) is the(p, ¢)th characteristic coefficient dbr (see Definitiorild in Appendiklil).
Fig.[4 shows the SEP ¢f-PSK G, versus the SNRy in doubly correlated double-scattering
(4, 10,4)-MIMO channels. In this figure, the transmit and receive elations follow the constant
correlation®t = & = <I>§f) (p), defined by [(5B) in Appendill I, and the correlation coeffitien
p ranges from) (spatially uncorrelated double scattering)0t®6. The characteristic coefficients
of the constant correlation matrix are given by {|131) dndlji8ee ExamplEl6 in AppendiX II).
For comparison, we also plot the SEP of i.i.d. Rayleigh+igd/lIMO channels. In FigurEl4, we
can see that the SNR penalty due to double scattering myith 10 (in the absence of spatial
correlation) is about dB at the SEP of0~¢ and it becomes larger than5 dB for p > 0.5. In
Fig.[d, the SEP oB-PSK G, at7 = 15 dB is depicted as a function of a correlation coefficient
p for doubly correlated double-scatterinid, ns,4)-MIMO channels with constant correlation
& = Py = <I> (p) whenng = 5, 10, 20, 50, 100, and oo (doubly correlated Rayleigh). This
figure demonstrates that double scattering and spatiatlation degrade the SEP performance

considerably.

D. MISO Double Scattering

Finally, we consider a double-scattering MISO channelsT$a pure transmit diversity system
wherein the burden of diversity reception at the receiveteal is moved to the transmitter.

The SEP in double-scattering MISO channels can be obtanosed @) withny = 1 as

1 [° 97 -
Pehipsk = — /0 E {det (Ins + —.EQE;) }d@. (20)

ngnrR sin? 6

Let \3, i = 1,2,...,ng, be the eigenvalues d#s in any order. Then, applying Theordml 11 in
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Appendix[l to [Z0), we obtain

97)\< >>\

o(®s) o(®T) 7 (®s) T¢(PT)
7:7 . y
ngnrR sin? 6

PI=— 3 3 3 Y 4,8 X, (@) / JF)

plql i=1 7j=1

) a9 (21)

where X, ; (®s) and X, ; (®r) are the characteristic coefficients ®f and®r, respectively.

The effects of the spatial correlation and the number ofcéffe scatterers on the SEP
performance in MISO channels can be ascertained by refetairFig.[6, where the SEP &
PSKG, aty = 25 dB versusng is depicted for double-scatteririd, ngs, 1)-MIMO channels. The
transmit and scatterer correlations follow the constametation® = <I>§f) (p) and®g = <I>§fs) (p)
where p varies from0 to 0.9. Note that the maximum achievable diversity order is eqaal t
dstec = 4 for ng > 4. Hence, the SEP performance improves rapidlynasincreases, and

approaches the corresponding SEP in the absence of dowttersa.

IV. EFFECTIVE FADING FIGURE AND LOW-SNR CAPACITY

In this section, we access the combined effect of rank defigi@nd spatial correlation on the
performance of OSTBCs in terms of the EFF and the capacitylawaSNR regime. It will be

apparent that these performance measures are completebctérized by th&urtosisof || H || ..

A. Effective Fading Figure

One of the goals of diversity systems is to reduce the signeatuation due to the stochastic
nature of multipath fading. Therefore, it is of interest taracterize the variation of the instan-
taneous SNR at the output where the amount of signal fluchugis measured. The following
measure can be used to assess the severity of fading andiebvehess of diversity systems
on reducing signal fluctuations.

Definition 1 (Effective Fading Figure)For the instantaneous SNRat the output of interest
in a communication system subject to fading, the effectairfg figure (EFF) in dB for the
output SNR~ is defined as the VMSR of, i.e.,

N Var {v}
EFF, (dB) = 10log;, {7@ {7})2 } : (22)

It should be noted that the EFF is akin to the notions of thenatived standard deviation
(NSD) of the instantaneous combiner output SNR [50]-[52] #me amount of fading (AF)
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[59], [60]. The AF, as defined in [59, eq. (2)], is purely to cheterize the amount of random
fluctuations in the channel itself and conveys no informratibout diversity systems. In contrast,
the NSD is a measure of the signal fluctuations at the diyecsitnbiner output, enabling us to
compare the effectiveness of diversity combining techesgsuch as maximal-ratio combining
(MRC), equal-gain combining (EGC), selection combinin@)Sand hybrid section/maximal-
ratio combining (H-S/MRC). If the signal fluctuation is meaesd at each branch output, the
EFF is synonymous with the AF. In contrast, when the signaitdiation is measured at the
diversity combiner output, the EFF is equal to the squardnefNSD of the instantaneous SNR
at the combiner output. The term ‘AF’ was also confusinglgdifor diversity systems in some
literature with a view to bridging the philosophy betweem@tterizing physical channel fading
and quantifying the degree of diversity effectiveness [4@]], [62].

By definition, the efficiency of OSTBCs on reducing the sdyeoiff fading can be assessed

by

EFFstae (dB) £ 101ogy, {w}

(E {WS;TBC})2
= 10log,o {x (| H|lz) — 1} (23)

wherex (||H||) is the Kkurtosis of| H||. defined by

o E{[IH] —E{IH|}'}
E{IH]e — E{H|: 1)’
E{|H|}}

T E(HEED

In 24), the second equality follows from the fact that thetdsis is invariant with respect to

r(H|g)

(24)

translations of a random variable. Note that the minimum ERéqual to—oc dB if there is no
random fluctuation in the received signal. Also, the EFF isaéqo 0 dB for Rayleigh fading
without diversity and hencé&;FFstgc > 0 dB means that the variation of the instantaneous SNR
in each SISO subchannel is more severe than that in Raylaijhd.

1) Note on the Kurtosis of H||;: The kurtosis measures the peakedness or flatness of a
distribution [63]. It has been revealed that this normaliferm of the fourth statistic of fading

distributions plays a key role in the low-SNR behavior of thgectral efficiency in fading
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channels [53], [64]. To proceed with deriviag || H ||;;) for double-scatteringnr, ng, ng)-MIMO
channels, we first define the following scalar quantity eslatio a correlation matrix.
Definition 2 (Correlation Figure):For an arbitraryh x n correlation matrix®, the correlation

figure of @ is defined by

tr (<I>2) 1
w () " —tr (®%) (25)

n

C(®)=

wherel,, denotes the: x n all-one matrix.

Note that% < ¢ (®) < 1, where the lower and upper bounds correspond to uncordetatd
fully correlated cases, respectivéfyThe following Schur monotonicity properties hold for the
correlation figure (the proofs are given in AppentdixTll-B).

Property 1: Let ® be ann x n correlation matrix. Then, the correlation figuté®) as a

functional of the eigenvalues & is MIS, that is, if® < ®, then

(@) < (D). (26)
Property 2: Let ®;, : = 1,2,...,m, be n; x n; correlation matrices. Then, the product of

correlation figures] [, ¢ (®;), as a functional of the eigenvalues &;", ®;, is MIS, that is,
if

® ® (27)
then

[Tc@) <J[c@). (28)
i=1 =1
Property 3: Let ®,, « = 1,2,...,m, be n; x n; correlation matrices. Then, the sum of

correlation figuresy~", ¢ (®;), as a functional of the eigenvalues @;”, .-®;, is MIS, that

is, if

(29)

D

3|,_.
I)\
1D+
el
:9"

0gimilar to [Z8), thecorrelation humberwas defined as}; tr (<I>2) [54]. While the correlation figure and number are the
second-order statistics of the spectra of a correlationixpatormalized by those of fully correlated and uncorrethimatrices,

respectively, the correlation figure is bounded(by ¢ (®) < 1 for any correlation structure, as— oo.
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then
@) <> (@) (30)
=1 i=1
The next theorem shows that|| H||.) depends exclusively on the spectra of spatial correlation

matrices and is quantified solely by their correlation figure

Theorem 2:For double-scatteringnr, ng, ng)-MIMO channels, the kurtosis ofH ||;. is

f(([H|p) = ¢ (@r) ¢ (Br) + C(@1) ¢ (Rs) + C(Pr) C (Ps) + 1. (31)

Proof: See AppendiX1I[=C. O

Example 2 (Spatially Uncorrelated Double Scatteringy):the absence of spatial fading cor-

relation (Ty;), we have

1 1 1
k([ Hlp) = + + + 1 (32)

nrnr nrns nRrNs

As compared with the i.i.d. case, the keyhole increases thi@sis of the fading distribution
in SISO subchannels by twice the reciprocal of the harmormammbetween the numbers of
transmit and receive antennas, that;js,+ ;.

Next, we show the Schur monotonicity property «of|| H ).

Corollary 1: Let

2 1@ 0B B0y
- NTNR nrns nsngr

J (T) (33)

for a spatial correlation environmefit = (@1, ®s, ®r). Then, the kurtosis of|H||,,, as a
functional of the eigenvalues ¢f (T), is a MIS (or isotone) function, that is, il (T;) < J (Ts),
then

f([Hllg; Ty) < g ([[H|[p;T2) (34)

Proof: It follows immediately from Theorerfl 2 and Propertiés 2 Bhdadisg the fact that
the product and sum of correlation figures preserve the noonoty property. O

Corollary[d implies that the less spatially correlated fadresults in the less peaky fading

distribution of each SISO subchannel.
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2) Note on the EFF ofistgg From Theoreni]2 and(R3), it is straightforward to see that the

EFFstec in double-scatteringnr, ns, nr )-MIMO channels is given by

EFFstec (dB) = 101og)o {C (1) ¢ (®r) + ¢ (1) ¢ (®s) + ¢ (Pr) € (Ps)} (35)

from which we can make the following observations on B¢ stac.

. The EFFstgc as a functional of the eigenvalues gf(T) is MIS, that is,
EFFstec(Ty) < EFFsrac(T2) (36)

wheneverJ (T;) < J (T,). This reveals that the less spatially correlated fadingltgsn
the less severe random fluctuations in equivalent SISO sunehs induced by OSTBCs.

. In the absence of double scattering(®s) is equal to zero and thus, the double scat-
tering together with spatial correlation causes Bidstgc to increase by the amount of
C(®r) ¢ (Ps)+C (Pr) ¢ (Ps). In particular, the maximum increase in tBEFstgc is a sum of
correlation figures of the transmit and receive correlatiwatrices, that isg (®r1) + ¢ (®r),
which eventuates whefg goes to be fully correlated or when the keyhole effect takes

place.

B. Low-SNR Capacity

Recent information-theoretic studies show that the firdeo analysis of the capacity versus
the SNR fails to reveal the impact of the channel and thatre®coder analysis is required to
assess the wideband or low-SNR performance of communicayistems [53], [54]. In particular,
it was demonstrated that the tradeoff between the caparchits/s/Hz and energy per bit required
for reliable communication is the key measure of channehcigyin a low-SNR regime. In this
regime, the capacity can be characterized by two parametarsely, i)%min, the minimum
bit energy per noise levekquired to reliably communicate at any positive data rateefe £y
denotes the total transmitted energy per bit), andji)the low-SNR slop€bits/s/Hz per3 dB)
of the capacity at the poirﬁ—gmm.

1) General Input Signaling:Before proceeding to study the low-SNR capacity achieved
by OSTBCs, we first deal with the more general case of inputadigg, assuming that the
fading process is ergodic and coding is across many indgmeridding blocks without a delay

constraint.
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Theorem 3:Consider a general double-scatteripg:, ns, nr)-MIMO channel
Y=HX+W (37)

where the channel matrifl is given by [4) at each coherence interval and the input signa
X € Crr*™e js subject to the power constraiEt{HXH%} = N¢P. Suppose that the receiver
knows the realization oH, but the transmitter has no channel knowledge. Then, thémim

required% for reliable communication is
— = — (38)

and the low-SNR slope of the capacity is

2
C(@1) + C(®s) + ¢ (Br) + ¢ (1) C(Ps) ¢ (Pr)

Proof: See AppendiXJIL:D. O

So = bits/s/Hz per3 dB. (39)

From Theoreni]3, we can make the following observations.

« The %mm is inversely proportional tag, whereas the double scattering and spatial fading
correlation as well as the numbers of transmit antennas #ectiee scatterers do not affect
this measure. Moreover, regardless of the number of anseane propagation conditions,
the minimum received bit energy per noise level requireddtable communication%mm,
is equal to

Lo ng - B 5948 (40)
No min i
which is a fundamental feature of the channels where thetiaedioise is Gaussian [53,

Theorem 1].
. The low-SNR slopeS, as a functional of the eigenvalues &f(T) is MDS, that is, if

J (Ty) = J (T,), then
So(Tq1) > S (To) (41)
where J (T) is defined for the environmefit = (&1, ®5, Pr) as follows:

Tmadrg® g, 210800

nrt ns nRr nTnsnr

(42)
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Note that[(4lL) follows from[(39) and Propertlds 2 &hd 3. ThidS/roperty reveals that the
low-SNR slope decreases with the amount of spatial coroel@m contrast to the high-SNR

capacity slopenin (nr, ng, ng), wWhich is invariant with respect to spatial correlation][21

Example 3 (Dual-Antenna SystenQonsidernt = ng = 2. In the presence of spatially
uncorrelated double scattering, the low-SNR slope for ggrmuble-scattering?, ng, 2)-MIMO

channels is

Sop=2- (1 + nis . Z) 1 bits/s/Hz per3 dB (43)
which is bounded by /9 < S, < 2. The lowest and highest slopes are achieved whepn- 1
(keyhole) andng = oo (i.i.d.), respectively.

2) OSTBC Input SignalingWe now turn attention to the low-SNR behavior of the capacity
for double-scatteringnr, ns, ng)-MIMO channels employing OSTBCs.

Theorem 4:Consider a double-scatteringr, ns, nr )-MIMO channel
Y =HG +W

where the channel matrik is given by [#) at each coherence interval and the OSTBG
subject to the power constraim{HgH%} = N P. Then, the OSTBC achieves the minimum

required%mm same as that without the orthogonal signaling constraint

ESTBC _ 10g_82 a4)
No min nR
and the low-SNR slope of the capacity
SSTBC — 2R bits/s/Hz per3 dB. (45)
C(®1) ¢ (Pr) + ¢ (D7) ¢ (Ps) + C(Pr) C (Ps) + 1
Proof: See AppendiXII-E. O

From Theorenil4, we can make the following observations imlfgrto IV-B1.

« As compared with the general case, the use of OSTBCs doesicralase the minimum
required% for reliable communication in MIMO channels.

« The low-SNR slopeS5™C as a functional of the eigenvalues §f(T) is MDS, that is, if

J (Ty) = J (Ty), then

S§TBC(Ty) > S3T8C(Ty). (46)
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In contrast, we see froml (159) that the high-SNR slope of #pacity is equal t&r, which

does not depend on spatial correlation and double scagterin
Example 4 (Alamouti's Code)Considernt = ng = 2. In the presence of spatially uncor-
related double scattering, the low-SNR slope for Alamsutiode with two receive antennas
is

-1
SSTBC = 5. (1 + 14 bits/s/Hz per3 dB (47)
5 ng 5

which is bounded by /9 < S3TBC < 8/5.

In Fig.[d, the capacity (bits/s/Hz) verquggémin and its low-SNR approximation are depicted
with and without the signaling constraint of the OSTEEin double-scattering4, 20, 4)-MIMO
channels with exponential correlatiohy = ®; = ®'° (0.5) and ®s = &\ (0.5). For the
OSTBCG,, the low-SNR approximation is remarkably accurate for dyfavide range of%min,
whereas there exists some discrepancy between the Monie $aulation and the first-order
approximation for the general input signaling—approxiehat 1% difference at%min =0 dB,
for example. In this scenario, the low-SNR slopes a% and 2.46 bits/s/Hz per3 dB with
and without the OSTBC input signaling constraint, respetyi Thus, the use of the OSTBC
G incurs aboutd9% reduction in the slope. This slope reduction is much smalian that in
a high-SNR regime: the high-SNR slope for the OST@Cis R = 3/4 and the corresponding

slope for the general signaling is equaliton (nr, ng, ng) = 4 bits/s/Hz per3 dB [21].

V. CONCLUSIONS

We investigated the combined effect of rank deficiency aratiapfading correlation on the
diversity performance of MIMO systems. In particular, wansmered double-scattering MIMO
channels employing OSTBCs which use up all antennas tozeedlill diversity advantage.
We characterized the effects of double scattering on therggwf fading and the low-SNR
capacity by quantifying the EFF and the capacity slope imseof thecorrelation figuresof
spatial correlation matrices. The Schur monotonicity praps were shown for these performance
measures as functionals of the eigenvalues of correlatiatrices. We also determined the
required scattering richness of the channel to achieveuteliersity order ofnrng. Finally,

we derived the exact SEP expressions for some classes ofedstditering, which consolidate

DRAFT July 5, 2006



SHIN AND WIN: MIMO DIVERSITY IN THE PRESENCE OF DOUBLE SCATTRING 21

the effects of rank efficiency and spatial correlation on3#® performance. On account of the
generality of channel modeling, the results of the papersatestantial enough to encompass
those for well-accepted existing models (e.g., i.i.d fislg correlated/keyhole MIMO channels)

as special cases of our solutions.

APPENDIX |

MAJORIZATION, SCHUR MONOTONICITY, AND CORRELATION MATRICES

We use the concept of majorization [65]-[69] as a matheraktanl to characterize different
spatial correlation environments. Using the majorizatibeory, the analytical framework was
established in [52] to assess the performance of multipterma diversity systems with different
power dispersion profiledn particular, monotonicity theorems were proved for oas perfor-
mance measures such as the NSD of the output SNR, the ergahcity, the matched-filter
bound, the inverse SEP, and the symbol error outage. Themoftimajorization has also been
used in [18], [36], [70] as a measure of correlation. In tippendix, we briefly discuss the basic

properties of majorization and Schur monotonicity.

A. Majorization and Correlation Matrices

Given a real vecton = (a,as, . .. ,an)T € R™, we rearrange its components in decreasing

order asap) = agp = -+ = Ay

Definition 3: Fora = (a1, as, ..., a,)", b= (b1, bs, ..., b,)" € R*, we denotea < b and say

thata is weakly majorizedor submajorizedl by b if

k k
ag < by, k=12....n (48)
i=1 i=1

If S a; = >, b holds in addition ta < b, then we say thad is majorizedby b and denote

asa < b.
For example, if eacl; > 0 and} " , a; = n, then
(1,1,..., )" < (a1, a9,...,a,)" < (n,0,...,0)". (49)

Of particular interest are the majorization relations aghéfermitian matrices in terms of their

eigenvalue vectors to compare different spatial cormaénvironments. A Hermitian matrid
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is said to bemajorizedby a Hermitian matrixB, simply denoted byd < B, if A (A) < A (B)
where) () denote the vector of eigenvalues of a Hermitian matrix. angple, the well-known
Schur’s theorem [68, eg. (5.5.8)] on the relationship betwiae eigenvalues and diagonal entries

of Hermitian matrices can be written as

Aol, <A for HermitianA € C™" (50)

where o denotes a Hadamard (i.e., entrywise) product. One of the oseful results on the

eigenvalue majorization is the following theorem.

Theorem 5 ( [67, Theorem 7.1])A linear map £ : C™" — C™" is called positive if
L(A) > 0for A e C > 0 andunital if £(I,,) = I,. It is said to bedoubly stochastic
if £ is a unital positive linear map with the trace-preservingperty, i.e.,tr £ (A) = tr (A),
VA € C"*", Let A € C"*™ be Hermitian andC be a doubly stochastic map. Then,

L(A) < A. (51)

Recall that the Schur product theorem [68, Theorem 5.2yi #eat the Hadamard product of
two positive semidefinite matrices is positive semidefiniteerefore if® ¢ C"*" is an arbitrary
correlation matrix and defin€ (A) = A o ®, then L is obviously a doubly stochastic map on
Cnxn_

Corollary 2: Let A € C™*™ be Hermitian andP € C™*" be a correlation matrix. Then,

Aod < A. (52)

In fact, this result was first given in [69, Corollary 2] witliousing the notion of doubly
stochastic maps. From Corollafy 2, we can obtain the eideevmajorization relations for
the well-known correlation modelseenstant exponential andtridiagonal correlatior—which
have been widely used for many communication problems oftippedantenna systems (see,
e.g., [21]-[23], [49], [54], [71)).

Example 5 (Constant, Exponential, and Tridiagonal MatsjceThenth-order constant, expo-
nential, and tridiagonal matrices with a coefficigntdenoted byd'® (p), ®© (p), and®® (p)

respectively, arer x n symmetric Toeplitz matrices of the following structures:
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(1 p p p
1
20 (=1, . "7 (53)
o pop o 10
ro1 0 p2 p(n—l)
© p 1 p ptn=?)
®,” (p) . (54)
n—1 n—2 n—3
N A
0, 01
p 1 p
1
8= " . (55)
p 1 p
0 P

Note that®!” (p), @ (p) with p € [0,1] and®' (p) with p € [0,0.5/ cos -Z] are correlation

matrices, since they are positive semidefinite for suchesbfp. Let 0 < p; < ps. Then, since

B (51) = 89 (1) 0 8 (22)
B (51) — 8 (1) 0 8" (22)
o (p1) = @) (p2) 0 B (p—;) :

it follows from Corollary[2 that

@ (p,) < @9 (py) (56)
@' (p1) = @ () (57)
Y (p1) 2 @Y (p2). (58)

Remark:If 0 < p; < po, then®® (Z—;) and ®© (%) are positive semidefinite. Hence, the

majorization relationd(36)E(58) hold, although each matself is only Hermitian but may not

be positive semidefinite.

B. Schur Monotonicity

The concept of majorization is closely related to a MIS (or $)Cfunction. If a function

f : (a subset ofR" — R satisfiesf (ai,...,a,) < f(b1,...,b,) whenevera < b, then f is
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called a MIS (or isotone) function on (a subset Bf). The following theorem gives a necessary

and sufficient condition forf to be MIS.

Theorem 6 (Schur 1923} et C R and f : I" — R be continuously differentiable. Then,
the functionf is MIS onI" if and only if

f is symmetric onl™ (59)
and for alli # j,
af  of
s — 2| > n
(a; — a;) {8% 8%} >0 Va el (60)

Note that Schur’s conditiori.{60) can be replaced by

(0,1 — ag) |:88—Jl - g—ai] >0 Va c 1" (61)

because of the symmetry. ffis MIS onI", then—f is a MDS function onl".

APPENDIX I

SOME STATISTICS DERIVED FROM COMPLEX GAUSSIAN MATRICES

This appendix gives useful results on some statistics @erfirom complex Gaussian matrices.

A. Preliminary Results

Lemma 1:Let X, ~ J\7m,n (01 xn, 8, %), K =1,2,...,p, be statistically independent com-

plex Gaussian matrices and

X = [Xl X2 T Xp} ~ Nm,np <0m><np7 27 @i:l \I’k) . (62)
Then, forA € C™™ > (0 andB = @}_, By, B, € C"*" > 0, we have
p
E {etr (~AXBX')} =[] det (I, + A @ ¥,B,) ™" . (63)
k=1

Proof: SinceAXBX' =" _ AX,B,X!, we have

E {etr (~AXBX")} = f[ Ex, {ctr(~AXBiX]) } . (64)

k=1
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Thereforé!
Ex, {etr(~AX,B:X]) }
= / etr(~AX, BiX] - 27X, ¥, ' X])dX,
Xk
= Ck/ exp [—(vec(XL))T {(ET ® \I'k)_l + AT @ Bk} Vec(XL)] dX;,
Xk
T -1 T -1
= ¢ det {(2 ® \Ifk) +A ® Bk}
= det (In, + AZ @ ¥,.B;,) " (65)

wherec, = 7" det ()" det (¥;)"". Combining [6#) and{85) complete the proof. [

Lemma 2:Let X ~ Ny (Onun, 2, ¥). Then, forA, B € C™<", we have
E {etr (X'A + B'X)} = etr (CAUB'). (66)
Proof: Let M, and M, be m x n matrices such that

tr(X'A+B'X - 7' X¥ ' XT)

= tr (ST MU M) + {—z:—l (X — M) ¥ (X — M,)! } . (67)
Then, since
/X etr{-S"" (X — M) ¥ " (X — M) }dX = 7™ det ()" det (¥)"", (68)
we get
E{etr(X'A+B'X)} = etr(Z7"'M, ¥ 'M}). (69)

By comparing both the sides di_{67), we have

M, = AV (70)
M, = £BV. (71)
Finally, substituting[[7I0) and{¥1) int@_(69) completes freof. O

Hif X = (Xy;) is anm x n matrix of functionally independent complex variables,rthe

X = H ﬁ ARX,; dSX;.

i=1j=1
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Lemma 3:Let X ~ J\~fm7n (M,%,W¥). Then, the characteristic function &f is

Dy (Z) 2 E{exp [j?Rtr (XZT)}}

= exp {mu (MZ") - itr AYA )} (72)
wherey = v/—1 andZ € C™*" is an arbitrary matrix.
Proof: Let X1 ~ Npn (0, 2, ¥). Then,
bx (Z) = exp []%tr (MZT)] -E {exp [jéRtr (X1ZT)] } . (73)
Since
Rix (X,2') = 3 (21X, + X12), (74)
it follows from Lemmal® that
E {exp []%tr (XlzT)}} = etr (—EZZ\IIZT) . (75)
Combining [ZB) and[{45) completes the proof. O

We remark that Lemm@l 3 is a counterpart result of the real waf£2, Theorem 2.3.2].

B. Hypergeometric Functions of Matrix Arguments

The hypergeometric functions of matrix arguments ofteneappn deriving the distributions
and statistics of random matrices [72]-[76]. In parallelthe hypergeometric functions of a
scalar argument, the hypergeometric functions of one ormatrix arguments can be expressed

as an infinite series of zonal polynomiafs:

pFy(ar o ayiby b A) =30 % [[Czﬂ“%f]] C.. (A) 75

k!
k=0 & K

1270nal polynomials of a symmetric matrix were introduced 78][ using group representation theory. In parallel to a real
matrix argument, zonal polynomials of a Hermitian matrixrevelefined in [74] as natural extension of the real case. Those
polynomials are homogeneous symmetric functions in there@ues of matrix argument and can be constructed in terms
of homogeneous symmetric polynomials such as monomial stnurfunctions, elementary symmetric functions, and $chu

functions [77].
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o > ail,, - lap], Cw (A) C, (B
oo bihB) =3 GG EREE o
with Hermitian A € C**™ and B € C"*". In (Z8) and [7),x = (ki,k,...,k,) denotes a
partition of the nonnegative integér such thatt; > k, > ... > k£, > 0 and Zle k; = k,
la], is the complex multivariate hypergeometric coefficientlué partitionx [74, eq. (84)], and
C. (-) is the zonal polynomial of a Hermitian matrix [74, eq. (8%]though these functions are
of great interest from an analytical point of view, the pieadt difficulty lies in their numerical
aspects. The determinantal representation for the hypergeic function of two Hermitian
matrices [76, Lemma 3] settles this computational problem has been widely used in the
literature of multiple-antenna communication theory (seg., [22], [23], [55], [56]). However,
[76, Lemma 3] is valid only for the case of two matrix argunsentith the same dimension
and the distinct eigenvalues. In the following lemma, weegalize [76, Lemma 3] for the case
that two matrix arguments have the different matrix dimensand the eigenvalues of arbitrary

multiplicity.

Lemma 4 (Generic Determinantal Formulalet A € C™*™ and ¥ € C"*", m < n, be
Hermitian matrices with the ordered eigenvalugs> Xy > ... > )\, ando; > 09 > ... > 0,

respectively. Giver;,b; € C wherei =1,2,...,pandj =1,2,...,¢q, define
Hyo () £ F,(a;—n+v,...,ap—n+viby—n+v,....b,—n+v;) (78)

o1 (b —n+1),

n,v é j=1
P i (@i —n+ 1),

(79)

where v is an arbitrary nonnegative integér), = a(a+1)---(a+n—1), (a), = 1 is the
Pochhammer symbol, and, (a1, as, ..., a,;b1,bs, ..., by; 2) is the generalized hypergeometric

function of scalar argument [78, eq. (9.14.1)]. Then,

m

qu(") (al,...,ap;bl,...,bq;A,E) H()\J_)\Z)

i<j

ot Ziem)l Zmem)2  Z(nem)e(E)
Ky A2 V> e Vo) (80)
det (A)n_m det ([Z(n),l Z(n),Z s Z(n)@(z)])
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with

Kmn = Hx”"’ n—1) (81)

where Yy, = (Viij) and 20y, = (Zpwij), | < n bk =1,2,...,0(%), arem x 7 (¥) and

[ x 1, (£) matrices, whoséi, j)th entries are given respectively by

Py

Viij = =gt - My (Niogy) (82)
Xp,q

Ziyig = (= j+1); 0,7 (83)

In particular, forOF (A ¥), K= in (E1) and the(i, j)th entry of Y, in 2) reduce to

Kyt =] (n— ) (84)
=1
Viij = N (85)

Proof: Let us dilate them x m matrix A to the n x n matrix A & 0,,_,, by affixing
zero elements. Then, this augmented maki® 0,,_,, has the eigenvalues;, \,, ..., \,, and
(n—m) additional zero eigenvalues. Note that zonal polynomiefsetid on its Hermitian matrix
arguments through Schur functions in the eigenvalues afixreguments [74]—-[77]. Since Schur

functions are invariant to augmenting zero elements [29§ easy to show that
C.(A®0,_,) =Cy(A). (86)

Let A\i1, Ao, - - -, A, be (n—m) additional zero eigenvalues and denote the left-hand dide o
@0) by LHSgg, for convenience. Then, it follows froni{B6) and [76, Lemmatt®t

Aok, P (o)) o

LHSen = 10 03— oy LI (87)

1<j

From a computational point of view, (B7) presents numediéiculty since the Vandermonde

determinan [;_; (A; — A;) or [[;; (o; — 0;) becomes zero when some of thes or o;'s are
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equal. This can be alleviated by using Cauchy’s mean valeerém (or L'HOspital’s rule):

g 0 00)
LH K0l li . = A
S@n) = im im N0 —o) H (A —N) (88)

o—0 {)\k}k m+1—>0 Hl<j ()\j — A i<

whereo — ¢ means that

{Uz} —>U (1)

T2(2)
{ }2 Tl(; —2i-1 U<2>’

Let n-dimensional vectors (z) andwv (z) be

u(z) = (’H;L”ql (012) ,H;ﬁ’; (022),... ,’H;L”ql (Unz)) (89)
v(z) = (l,z,...,z"_l) (90)
and letu® () andv® () be thekth derivatives oz (z) andv (z) with respect to;, respectively.

Note that thejth componentsi!” (z) and v\ (z), j = 1,2,...,n, of u® () andv® () are

given respectively by

k

ugk) (2) = XU cHE T (042) (91)
o (2) = (G = k) (92)

where [@1) follows from the differentiation identity of [86q. (7.2.3.47)]. Then, taking the limits
on \;’s, we get

det (Hpa (o)) et ([U2])

1<i,j<n

li — 93
{)\k}Zirmnﬂ_)O H?<j O‘j o Ai) det ([“?; D )

with the (n —m) x n matrices
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Un = (Unss) = : (94)

Va=(an)=| . |, (95)
,v(n—m—l) (O)

and them x n matricesUs = (H2! (\io;)) andVe = (A '). From [31) and[{d2), it is easy

to see that thei, j)th entries ofU, andV , are given respectively by

ot

Unij =uf Y (0) = =L (96)
Xp.q
i (=1, fi=j
Vasj = vy Y (0) = . (97)
0, otherwise

Now, using the result on the determinant of a partitionedrimat

det ({é gD =det (A)det (D —CA™'B), if Ais invertible (98)
we have
AR R
Val\ _ T 0 1 D
det({VB}) = (I —1)!-det 5 5 E
=1 )\nm—m )\Zz_m+1 )\Zm_l
ol § NG | RVl | [OV ) (99)
=1 k=1 1<J
Hence, combining(88)[{93), and{99) gives
K de([B])
LHSgy = —2L i (100)

m n
det (A)"™™ oo HKJ- (0 —03)
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whereU, = (aj.‘l) is the (n — m) x n submatrix of the Vandermonde matrix of, o, . .., 0.

Using similar steps leading t@{93), we obtain

al(g]) ([P P T P)

lim =

| (101)
oo [[ie; (0 — 03) det ([Zwa 2wz = Zmyes))

where the(i, j)th entries ofm x 7, (¥) matricesy,, and! x 7, (¥) matricesZ;, | < n,
k=1,2,...,0(X), are given by [(82) and(83), respectively. Finally, substig (I01) into
(I00) completes the proof of the lemma. O

As a by-product of LemmBl 4, we obtain the following determia& formula for the hyper-

geometric function of one matrix argument.

Corollary 3: If ¥ = I,, in Lemmal#, then we have

m

pFylan,.apiby, b ) - TG = x) = Jet (NIt () (102)
i<j -

Proof: The result follows immediately froni_(98) and Lemida 4 wittX) = 1, 4 (£) = n,

ando ;) = 1.

C. Some Statistics

Lemma 5:Let X ~ N, (005, 2, ¥). Then, forA € C™™ > 0 and B € C™*" > 0, the
kth-order cumulant ofr(AXBX') is

k
(Cumk{tr (AXBXT)} 2 (1) % by axmx) ()|
= (k— 1! tr{(AZ)"} tr{(¥B)*} (103)

where ., axpxt) () £ E{etr(—sAXBX")} is the MGF oftr(AXBX").

Proof: Since

tr(AXBXT) = (VeC(XT))T(AT ® B) Vec(XT)
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is a quadratic form in complex Gaussian variables, whoseackexistic function has been

reported in [81], it can be readily shown that

1

Pur(axBxT) (s) = det {Imn + S(ET ® \I’) (AT ® B)}
= det (In, + sSAX @ ¥B) ™" (104)
Therefore,

;—; In ¢, axpxt) (8) = (=1)" (k= D!tr { [(Imn +sAX @ ¥B)' (A ® \IIB)] k} . (105)

Hence, we obtain the resulf{103) from(105) witk= 0. O

We remark that the cumulants, except for the first-order damuare invariant with respect
to translations of a random variable. The first and seconérocdmulants are the mean and
variance of the underlying random variable, respectivaty] other higher-order statistics can
also be obtained from general relationships between theuleumts and moments. Lemnia 5
reveals that all cumulants of (AXBXT) as functionals of the eigenvalues 4E and ¥B are
MIS.

Lemma 6:Let X ~ N, (0psn, 2, ). Then, forA € C™™ > 0 and B € C™" > 0, we

have
E {tr [(AXBXT)Z} } = tr? (AZ) tr{(¥B)*} + tr* (¥B) tr{(AZ)?}. (106)

Proof: We first start with the characteristic function 8f = (S;;) = AY2XB"?. Let
2 = (SZJ) = A1/22A1/2 and\i’ = (\IIZJ) = Bl/z\I’Bl/2. Then,

ds(Z)=E {exp []%tr(Al/zXBl/ZZT)} }
— ox (472B'?)
@ otr (—iiz\ilz* )
— ¢#%) (107)
where (a) follows from Lemmfl 3 and

Yy

1=

Z SipZpi V3o Z,. (108)

q>|r~

,_.
=
Il
—
Q
Il
—
<.
Il
—
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It follows from the characteristic functiotes (Z) in ([I0Z) that

E {Siljis?k

1272

Ly 1 0%s (Z)
SZ:sJ3Si4j4} - j4 8Zilj18232j282i aZZ;jz;
_ 1 [0¢5(Z)  0ps(2)
7Rz, 557,
U*

J1j2

=X

3J3 Z=0

Z=0
\il*

J1ja

Yo U 48

Jaja 14

1172 Zi3i2 \D;:sjz (109)

with

%@, 03] (110)

— p(Z)

1Z) =e {amziljl 1937,

_0p(2) 001(2)
a§RZ@'2J2 ! agZ@'zjz

_0p:(2) 0 (Z)
aéRZi:sjé g 8$Zi3j3 .

171

©2(Z) (111)

¢3(2) (112)

Using [109), we obtain

Ex {tr|(AXBX")’|} =B {tx [(s5")°] }

m n n m

)W PACETIY

i=1 p=1 ¢=1 j=1

= tr? (2) tr (\Il ) + tr? (‘Il) tr (2 ) (113)

from which [I06) follows readily. O

Theorem 7:Let X1 ~ N, (00, 21, %) and Xy ~ N, (0,4, 22, %,) be statistically

independent complex Gaussian matrices. Then,

Ex,x, {*(X: X,X0X]) |
= tr (B7) tr? (1 22) tr (¥3) + tr (27) 022 (L) tr{ (¥, 5,)°}

+ 0% (B0) tr{ (U1 82)° } tr (03) + 012 (59) tr? (U1 2) tr? (Us) (114)
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and

Ex, x, {tr [(X1X2X£XI)2} }
= tr? (1) tr? (U1 22) tr (¥3) + 62 (B1) 022 (W) tr{ (¥, 5,)°}

+tr{ (U182)° ) tr (T3) tr (B7) + 622 (U1 5) tr% (Ty) tr (7). (115)
Proof: Using the first two cumulants from Lemna& 5, we get

Ex,x. {*(X: XX1X]) |

= Ex, {tr (Z3) tr [(XQXE\Iflﬂ + tr? (3y) tr’ (X2X£\Ifl)} (116)
where it follows from Lemmal6 that
Ey, {tr [(XQXEII'l)z} } = tr2 (U,5,) tr (U2) + t2? (Uy) tr{ (U, 55)%) (117)

and from Lemmadl5 that

Ex, {tr2 (X2X§\p1)} = tr{ (W,5,)?} tr (V2) + 022 (U, 5,) 2% (). (118)

Combining [IIb6)-H118) yields the desired resi{114).
Similar to [I16), we have

Ex, x, {tr [(Xlxzxg)qﬂ }

= Ex, {0 () tr | (0X00)°] + 62 (XX00) r (2) | (119)
From [I17)-{119), we obtain the desired resulf [115). O
Theorem 8:Let X ~ J\7m,n (0rxn, 8, I,), m < n, andoy,o09,...,0, be the eigenvalues of

Y in any order. Then, the joint pdf of the ordered eigenvaldes> N\, > ... > A, > 0 of a
central complex Wishart matriX X' ~ W,, (n, ) is given by

m

P ()\1, )\2, ey )\m) = .A_l det ([Gl G2 ce GQ(E)}) det ()\;_1) H )\Z_m (120)

1<i,j<m
k=1

where
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A=Ky -det ([Bi By -+ Bys)) (121)

andG, = (Gy,;) andBy, = (Biy;), k=1,2,...,0(X), arem x 7, (£) matrices, whosé;, j)th
entries are given respectively by

Grj = N Te /7w (122)

Biij= (1) (i—j+1),_ o5 (123)
Proof: The joint eigenvalue density, (A1, Ao, ..., Ay) IS given by [74, eq. (95)] in terms
of the hypergeometric function of matrix arguments. To emnthis joint pdf more amenable
to further analysis and computationally tractable, we wapmmmal4 to [74, eq. (95)], which

results in [IZD) after some algebra. O

Note that[[I2D) is valid for any covariance matExwith the eigenvalues of arbitrary multiplic-
ity and hence, generalizes the previous determinantaéseptation for the joint eigenvalue pdf of
Wishart matrices. IE = I,,, in TheoreniB, all of the eigenvalues are identically equalrte and
hence, withp (£) = 1, 74 (£) = m, anda<1> = 1, (I20) reduces to [22, eq. (6)]. Furthermore, if all
the eigenvalues dE are distinct, then, with (X) =m andn (X) = (X)) =... =7, (¥) =1,
(X20) reduces to [22, eq. (18)].

Theorem 9:Let X ~ Nm,n (0pscny I, ¥), m < n, A € C"™" be Hermitian positive definite,
and By, s, . .., B, be the eigenvalues ad'/>WAY? in any order. Then, the joint pdf of the
ordered eigenvalues, > X, > ... > \,, > 0 of a matrix quadratic forrX AX" is given by

Dx ()\17 )\27 ey )\m)

det v(n—m),l v(n—m)z T v(n_m),g(A1/2\1:A1/2)
@, Q. T QQ(Al/zq,Al/z)
det

let (A1) (124)
K™ det (A®)™ det ([V(nm Vi - v(n)@(Al/?q/Al/?)]) 15“9”( )

where @, = (Qrii) and Vi, = Vo) | < n k= 1,2,...,0(A*TAY?), arem x
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7 (AV*®A'?) andi x 7, (A'/*¥A'/?) matrices, whoséi, j)th entries are given respectively by

Qrij = N le MPw (125)
Vi = (=17 (0 =+ 1), By (126)
Proof: Let § = XAX', thenS ~ Q,,,(A,I,,,¥) is a positive-definite quadratic form

in the complex Gaussian matrix [21, Definition 11.3]. Usirwetpdf [23, (2)], we can write the

joint eigenvalue pdf ofS in the form

m

,n.m(m 1) 9
PO, g, A) = = / ps (UDUY) 1] (N = \;)? [dU]
Ly (m) Jueum) E ’
~D det (A®)™™ 1
- _ En D Y A=)
T, (n> T, (m> 040 H H

1<j

(127)

where D = diag (A1, A, - -, M)y Do (@) = 7 D2 T[T (o —4) with R (@) > m — 1 is
the complex multivariate gamma function afiid-) is the gamma function. I_IR7Y (m) =
{U U = Im} is the unitary group of order. and [dU] is the unitary invariant Haar measure
on the unitary group{ (m) normalized to make the total volume unity. Similar to Theof&,
we obtain the desired resulf{124) applying Lemtha 4101(127). O

Definition 4 (Characteristic Coefficient)Let A be ann x n Hermitian matrix with the eigen-
valuesay, as, ..., qy in any order. Then, théi, j)th characteristic coefficientt; ; (A), i =
1,2,...,0(A), 7 = 1,2,...,7:,(A), is defined as a partial fraction expansion coefficient of
det (I, + £A)™" such that

o(A)

det (I, +€4) " = [ (1 +€ay,) ™
i=1
0(A) 7;,(A)

=33 X A) (1+eay) (128)

=1 j=1

where¢ is a scalar constant such thiat+-£ A is nonsingular. Théi, j)th characteristic coefficient
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X, ; (A) can be determined by

1 d=i T _
Xij(A) = = [ (1+ Uoz@) ) det (I, +vA) 1]

L Wi, j
wiilag dv®i.i

v:—l/am
ky

= (4)
_ (=™ 3 7 (7 (A) + ki — 1 0
oaly 11 ky >n<A>+m (129)

Q. «
(7’> k1+k2+...+kQ(A):wi,j =1 1 _
l#1 o

k1 €{0,N} for Vi#i
k;=0

Wherewm =T; (A) - ]

Note that the characteristic coefficients are invarianhweéspect to the constatitand only
a function of the spectra od. In addition, it can be seen froi{128) with= 0 that the sum

of all the characteristic coefficients is equal to one. Byrdedin, we have

0, j=1,2,....n—1
Xy (In) = , (130)
1, 7=n.

Example 6 (Constant Correlation Matrix)Consider a constant correlation matd® (p).
Since the eigenvalues @' (p) are 1 + (n— 1) p and 1 — p with n — 1 multiplicity, it is

easy to show that the characteristic coefficient®{5t (p), p € (0,1), are

—n+1
n
21 (@ (p) = <71 — pi np) (131)
1— P np —n+j
X (@7 () = 7 P (1 — np) (132)

wherej =1,2,...,n— 1.

Theorem 10:Let X ~ N, (0xn, 2, 1,), m < n, andoy, 0y, . .., 0,, be the eigenvalues of
Y. Let A be av x v positive-semidefinite matrix with the eigenvalues «s, ..., «,. Then, for

¢ >0, we have

E{det (L, +§A@ XXT) '} = A7 det ([ @ -+ Quz)) (133)
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where A is given in [IZ1) and?, = (Q45), k =1,2,...,0(X), arem x 7, (X£) matrices whose
(i, 7)th entry is given by

o(4) 7p(A)

Qpij = ZZ{ "mﬂﬂ "h=—m+i+j—2)

p=1 ¢=1

XoFg(n—m+i+j— —Eayy )} (134)

where X, , (A) is the (p, ¢)th characteristic coefficient oA.
Proof: From Theorenil8, we have

E {det (I, + €A XX') '

o(4)
—E { I det (I + €y, XXT)T”(A)}
p=1

m o(A)

- // TTTT( +€apmre) " oa(rnds - An)dhidAo -+ A,

0<Am < .. <Ay <00 F=1P=1

m o(A)
n—m —7p(A)
< ml_A / / H {)‘k |J [CRaeY }
k=1 p=1

m- fold

xdet ([G1 Gy -+ Gyx)])  det ()\;_1) d\yd)y - - - d),,

1<i,j<m

O A1 det ([ Q2 - Qm)) (135)

where(a) follows from the fact that the integrand is symmetrichin A, ..., \,,, and(b) follows
from the generalized Cauchy—Binet formula [22, Append&B, Lemma 2], yielding théi, j)th
entry of m x 7, (£) matricesQy, k =1,2,...,0(X), as

Qk,ij _ /0 H (1 + 504<p>)\) —Tp(A))\n—m+i+j—2€—)\/cr<k>d)\. (136)

Using a partial fraction decompositiof, (136) can be wniths

Ui ZZXM / (L+ EagyA) A 2e N (137)

p=1 ¢=1
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where the characteristic coefficients , (A) is given by [I2B). We complete the proof of the
theorem by evaluating the integral In-(137) with the helptaf following integral identity:

/ (1+az)" ' a" e /de = b (n — 1)! o Fy (n, —pu + 1; —ab) (138)
0

wherea,b > 0,n € N, andp € C. O

Corollary 4: Let X ~ Nm,n (0rxn, 8, I,), m < n. Then, forv € N, we have

det (Q)
;
E{det( +EXXT) } T i (139)
where = (€2;;) is them x m Hankel matrix whose:, j)th entry is given by
Qi=m—m+i+j—-2) o Fy(n—m+i+j—1v;-E). (140)

Proof: It follows immediately from Theorenfi 10 witl = I,,, A = I, o(¥) = 1,
nE) =moy,=104)=1m7(4)=v andao, = 1. O
Theorem 11:Let X ~ N, (0scn, 2,%), 04,7 = 1,2,...,m, andyy;, j = 1,2,...,n, be the
eigenvalues ok and V¥, respectively. Then, fof > 0, we have
o(E) o(¥) () 74(¥)

E{det( +EXXT)” } Xpi (B) Xy () oFp (1,55 —Eoythyyy)  (141)

p=1 ¢g=1 =1 j=1

where X, ; (¥£) and &, ; (¥) are the(p, i)th and(q, j)th characteristic coefficients & and ¥,
respectively.
Proof: It follows from Lemmadl anfll2 that

det (I, + ¢XXT) ' =E,, {etr <—§XTy1y1X) }
=Ey u, {etr (5?/ Xy, — XT?/l) } (142)

wherey, ~ N1 (0px1, In, 1) andy, ~ N1 (0,41, 1, 1). Denoting the left-hand side df{141)
by LHSgzy and using[142), we have

LHS@zy) = Ey, 4, {EX {etr <§y2in — XTylyg) }}

= By, {0 (—0iSy i) (143)
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Now, introducing a delta function to decouple the expeetetifory, andy, in (I43) yields
LHS@zm) = Ey, 4, {/ e—gzy;qug(;(z - yizyl)dz}

T ’ N
1= [

oL / / ¢ det (I, + Jw8) ™" det (I, + £2%) ™ dwdz

eI

plqlzl]l

o(B) o(¥) 7(8) 74 (¥)
{ 2.3 (¥)

X /_Oo /_Oo (1 —l—ja@w)_i(l + &/J@z) _jdwdz} (144)

where(a) is obtained by replacing the delta function with its Fourigpresentationb) follows
from Lemmall, andc) is obtained from Definitiom]4. Using the integral identitgrfa > 0,
¢ e N, andz € R,

oo . » rt1 —V22/a '
/ e (1 + jaw) ™ dw = A (1 +sign (2)), (145)

o0

(@I23) can be written as

o(¥) 7 () 7(¥)

o(%)
LHS@ay = » > X’” =) _X‘”l' ‘I’)/O (L+&pyz) 72 e ™ mdz. (146)

p=1 ¢g=1 =1 j=1

Finally, we obtain the desired resuli(141) by evaluating ithtegral in [I46) with the help of
@38). ]

APPENDIX |11

PROOFs
A. Proof of Theorerfill1

We first prove Theorerl 1 fok/-ary phase shift keyingM/-PSK) signaling. The SEP of the
OSTBC with M-PSK constellation can be expressed as [41], [42]

1 ©
Pawesi= = [ 0 (57 (147)
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where©®© = 7 — w/M and g = sin® (x/M). From [14Y), we can obtain the upper bound as

1 _
Pe mpsk < <1 - M) Qb’YSTBc (95 ’Y) (148)

which becomes tighter ag increases [49], and hence yields

dstec = lim —log ¢’YSTB_C (95 ’Y) . (149)
F—o0 log &

Therefore, the asymptotic behavior of the M@E,,.. (s;7) at largey reveals a high-SNR slope
of the SEP curve.
Suppose that is sufficiently large. Fonr < ng, it follows from (@) that

log qb’YSTBC (g§ '7) ~ —rank <EIE1‘I>S X ¢T> . log ¥+ constant (150)

J

~
nr-min(ng,ng)

Similarly, using [B), we have fonr > ng,

log qb'YSTBC (g§ ’7) ~ —rank <q>R ® 5252) -logy + constarit (151)

7

W
ngr-min(nT,ng)

Hence,

dSTBC = min (nT, TLR) . min {max (nT, nR) s ns} (152)
from which [I0) follows immediately. For a general case dfitaary two-dimensional signaling
constellation with polygonal decision boundaries, the $&fPbe written as a convex combination

of terms akin to[(147) [82]. Hence, we can easily generalieeroof to the case of any two-

dimensional signaling constellation.

B. Proofs of Propert{1133

1) Proof of Propertydl:Let A\, \s,..., A\, be the eigenvalues ab. Then, the correlation

figure ¢ (@) defined in Definitio R can be written as

@)= 5> N (159
k=1

which is symmetric in\{, \,, ..., A, and holds Schur’s conditiofiL{1). Hence, we complete the

proof.
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2) Proof of Property[R: Since [[2, ¢ (®;) = ¢ (R, ®,), it follows immediately from
Property[l.

3) Proof of PropertyB: Let A A ... A% be the eigenvalues ob; (i = 1,2,...,m).
Then,>"" ¢ (®;) can be written as

m m ng () 2
> (@)= (ﬁ) (154)

which is symmetric in{nii)\(") AA;“,...,%A,@}W and holds Schur's conditiofi{b1). Since

1 9 p,; i=1

{i)\(i) AP ni)\ﬁf)}j; are the eigenvalues @p.", ~®;, we complete the proof.

1 9n, i=1 n;

C. Proof of Theorerfll2

Using Theorenid7 in Appendixlll, we get

| e
E{|H|}} = Ez,z, {tﬂ (n_mﬁgq)}
S
nr > no\ 2
=<f)uﬂﬁﬁdﬁ}mdﬁ@m@@+(§)tdﬁ&u@@+mmw?
S S

(155)

Combining [24), [25), and{Ib5), together with the fact tBat|H|[7 } = nrng, yields [31).

D. Proof of Theoreni]l3

In this case, the ergodic capacity (or Shannon-sense meagitg is given by the well-known

expression [2]-[4]

CH) =E {log2 det (InR n iHHT) } bits/s/Hz (156)

nr

which is achieved by the complex Gaussian injut- NnT,NC (OnTme %InT,INC).
From [53, (35)] and [53, Theorem 9], we get

Ey,  nrlog.2  log,2
No min E{HHH%} nR

(157)
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and
RGN

2 o))

(158)

Using Definition[2 and Theoreml 7 in Append® I[{158) can beressed in terms of the

correlation figures ofbr, &, and®g as in [39).

E. Proof of Theorerhl4

Due to the channel decoupling property of OSTBCs, the Shacapacity of OSTBC MIMO

channels can be written as

— 2
Cstec(7) =R -E {log2 (1 e 1) ||F> } bits/s/Hz (159)
nTR

which is achieved by complex Gaussian inputs~ CN (0, ;7). From [53, (35)], [53, Theo-
rem 9] and the first two derivatives df (1159) at= 0, it is easy to show{44) and

2R
SSTBC __ ar (160)
° k(1 Hg)

from which and Theorerll 2[-(#5) follows readily.
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uncorrelated double scattering -
ii.d. Rayleigh (1= 00)

ns=1,2,3,5,10,20,100:

Symbol error probability

SNR 7 (dB)

Fig. 2. SEP of8-PSK G, (2.25 bits/s/Hz) versusy in spatially uncorrelated double-scatterig) ns, 2)-MIMO channels.
ns =1, 2, 3, 5, 10, 20, 50, 100, oo (i.i.d. Rayleigh).
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TTToiiodiiiiiiiiiiifriiiiiiiiidiiiiiiiiiis

e 16-PSK Alamouti code

Symbol error probability

SNR 7 (dB)

Fig. 3. SEP ofl6-PSK Alamouti ¢ bits/s/Hz) and7, (3 bits/s/Hz) OSTBCs versugin spatially uncorrelated double-scattering
(nT,ns,nr)-MIMO channels. The Alamouti ang, codes achieve the diversity order éfrsc = 2 in (2,3,1) and (4,2,1)
links, respectively. Thelstac’s for (2,5,3), (4,3,2) and (2,10, 11), (4,5,5) pairs are6 and 20, respectively.
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10 TTTIiiiiiiiiiidiiiiiiiiiiiiIIT R T - -::::1 T TiiiiiiiiiIi: T
: —— doubly correlated double scattering (15=10)

1 - i.i.d. Rayleigh

Symbol error probability

4 9=0,0.1,02,0.3,04,05,
- 0.6,0.7,0.8,0.9

6 10 14 18 22 26
SNR 7 (dB)

Fig. 4. SEP of8-PSK G, (2.25 bits/s/Hz) versusy in doubly correlated double-scatteririd, 10, 4)-MIMO channels. The
transmit and receive correlations follow the constantelation®r = &g = <I>ff) (p) for p = 0 (spatially uncorrelated double-
scattering)0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and0.9. For comparison, the SEP for i.i.d. Rayleigh-fading MIMCaohels is

also plotted.
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Symbol error probability
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—— doubly correlated double scattering
doubly correlated Rayleigh (15 = 00)

ns=>5,10,20,50,100

8-PSK G,

SNR 7 =15dB -

10°
0.

Correlation coefficient p

Fig. 5. SEP of8-PSK G, (2.25 bits/s/Hz) as a function of correlation coefficiemtin doubly correlated double-scattering

(4,ns,4)-MIMO channels with constant correlatichtr = ®r = <I>ff) (p). ns = 5, 10, 20, 50, 100, co (doubly correlated

Rayleigh) andy = 15 dB.
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Symbol error probability

. ‘ 8-PSKg4
U SNR¥y=25dB i
10'6 i i i i
1 5 10 15 20

Number of effective scatterers, ng

Fig. 6. SEP oB-PSKG, (2.25 bits/s/Hz) versus:is in double-scattering4, ns, 1)-MIMO channels. The transmit and scatterer
correlations follow the constant correlatidn = <I>ff) (p) and®s = <I>§f§ (p) for p =0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
and0.9. ¥ = 25 dB.
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5 T T T T

low-SNR approximation /

***** Monte Carlo simulation ,

Capacity (bits/s/Hz)

2 -1 0 1 2 3
Ey/Ny (dB)

Fig. 7.  Capacity in bits/s/Hz versus the receivﬁg for the general input signaling and OSTRE, in double-scattering
(4,20, 4)-MIMO channels with exponential correlaticghr = ®r = <I>ff) (0.5) and®s = @;%) (0.5).
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