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Abstract

The potential benefits of multiple-antenna systems may be limited by two types of channel degrada-

tions—rank deficiencyandspatial fading correlationof the channel. In this paper, we assess the effects

of these degradations on the diversity performance of multiple-input multiple-output (MIMO) systems,

with an emphasis on orthogonal space–time block codes, in terms of the symbol error probability,

the effective fading figure (EFF), and the capacity at low signal-to-noise ratio (SNR). In particular, we

consider a general family of MIMO channels known asdouble-scatteringchannels, which encompasses a

variety of propagation environments from independent and identically distributed Rayleigh to degenerate

keyhole or pinhole cases by embracing both rank-deficient and spatial correlation effects. It is shown that

a MIMO system withnT transmit andnR receive antennas achieves the diversity of ordernTnSnR

max(nT,nS,nR)

in a double-scattering channel withnS effective scatterers. We also quantify the combined effectof the

spatial correlation and the lack of scattering richness on the EFF and the low-SNR capacity in terms

of the correlation figuresof transmit, receive, and scatterer correlation matrices.We further show the

monotonicity properties of these performance measures with respect to the strength of spatial correlation,

characterized by the eigenvalue majorization relations ofthe correlation matrices.

Index Terms

Channel capacity, diversity, double scattering, fading figure, keyhole, multiple-input multiple-output

(MIMO) system, orthogonal space–time block code (OSTBC), spatial fading correlation, symbol error

probability (SEP).

I. INTRODUCTION

Recent rapid advances in multiple-input multiple-output (MIMO) communication theory and

growing cognizance of the tremendous performance gains achieved by MIMO techniques [1]–[9]

have spurred efforts to integrate this technology into future wireless systems such as wireless local

area networks (WLANs) and 4G cellular systems. One of the approaches to exploiting diversity

capability of MIMO channels is the use of orthogonal space–time block codes (OSTBCs),

which have drawn considerable attention because they attain full diversity with scalar maximum-

likelihood (ML) decoding [7]–[9].1

1However, OSTBCs with arbitrary complex constellation cannot provide the full diversity and full transmission rate

simultaneously for more than two transmit antennas [8, Theorem 5.4.2] (see also [10]–[13]). A new class of quasi-orthogonal

codes has been proposed in [14]–[16] with the tradeoff between the decoding complexity, transmission rate and/or diversity.
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In general, the potential benefits of multiple-antenna systems may be limited by rank deficiency

of the channel due to double scattering or the keyhole effect, for example, as well as spatial fading

correlation due, for instance, to insufficient spacing between antenna elements [17]–[30]. Some

mechanism rendering a MIMO channel rank deficient cannot be explained by the archetypal

model based on single-scattering processes [26], [27]. To address this issue, a double-scattering

MIMO model has been proposed recently in [24] wherein the channel matrix is characterized by a

product of two statistically independent complex Gaussianmatrices, in contrast to the common

single complex Gaussian matrix characterization for wireless MIMO channels.2 This double-

scattering model can capture both rank-deficient and spatial correlation effects of MIMO channels

and encompass a variety of propagation environments, bridging the gap between an independent

and identically distributed (i.i.d.) Rayleigh case and a degenerate one-rank channel known as a

keyhole or pinhole channel. There are other recent attemptsto modeling MIMO channels for

more realistic scattering environments (e.g., double or multibounce diffuse scattering) beyond

single scattering [31]–[34].

The effects of rank deficiency and spatial correlation on thecapacity of MIMO channels

are relatively well understood (see, e.g., [17]–[30]). From a capacity point of view, it has been

known that at high signal-to-noise ratio (SNR), the spatialfading correlation reduces the diversity

advantage—a parallel shift of the capacity curve over SNR indecibels (dB)—offered by multiple

antennas, whereas the rank deficiency decreases the spatialmultiplexing benefit—a slope of the

capacity curve over SNR—of multiple-antenna channels [21]. Previously, the performance of

space–time coding in the presence of spatial fading correlation has been extensively studied for

the most popular Rayleigh, Rician, and Nakagami-m fading [35]–[40]. Also, the effect of rank

deficiency has been investigated in [41]–[44] for a special case of the keyhole channel.

The objective of this paper is to assess the effects of doublescattering on the diversity

performance of MIMO systmes in a communication link withnT transmit antennas,nR receive

antennas, andnS effective scatterers on each of the transmit and receive sides, which is referred

to as a “double-scattering(nT, nS, nR)-MIMO channel.” Due to the channel decoupling property,

the OSTBC converts a MIMO fading channel into identical single-input single-output (SISO)

subchannels, each for a different transmitted symbol, witha path gain given by the Frobenius

2In [24], the model was validated by simulations using ray tracing techniques.
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norm3 of the channel matrixHHH [38]–[42]. As a result, the maximum achievable diversity perfor-

mance of MIMO systems can be characterized by the statistical property of ‖HHH‖F. Therefore,

using the OSTBC as a pivotal MIMO diversity technique4 (particularly, in the absence of channel

knowledge at the transmitter), we analyze the relevant performance measures in double-scattering

(nT, nS, nR)-MIMO channels, namely: i) the symbol error probability (SEP) [49], ii) the effective

fading figure (EFF) [50]–[52], and iii) the capacity in a low-SNR regime [53], [54].

Diversity in communication can ameliorate system performances in behalf of error probability,

information rate, and signal fluctuation due to fading. Froma error probability viewpoint, the

diversity attacks a high-SNR slope of the SEP curve, i.e., diversity order. In contrast, the diversity

(from a capacity point of view) affects a low-SNR slope of thecapacity curve rather than a high-

SNR slope. For example, the high- and low-SNR slopes (bits/s/Hz per3 dB) of the capacity for

i.i.d. Rayleigh-fading MIMO channels are given by

S∞ = min (nT, nR)

S0 =
2nTnR

nT + nR

respectively [53]. While the high-SNR capacity slopeS∞ is limited by the spatial multiplexing

gainmin (nT, nR), the low-SNR capacity slopeS0 is limited by the diversity gain amounting to

the harmonic mean ofnT andnR. Therefore, the capacity is multiplexing-limited in the high-SNR

regime, but is diversity-limited in the low-SNR regime. At high SNR, the diversity advantage

serves only to provide the power offset (i.e., the parallel shift of the capacity curve) [21]. These

lessons stimulate a shift of focus to the low-SNR regime in analyzing the diversity effect on the

capacity behavior. More inherently, diversity systems aimto reduce signal fluctuations due to

the nature of fading. The EFF measure is defined as avariance-to-mean-square ratio (VMSR)

of the instantaneous SNR (see Definition 1). This quantity can be used to assess the severity

3The Frobenius norm of anm× n matrixAAA = (Aij) is defined as

‖AAA‖F ,

√

tr
(
AAAAAA†

)
=

(
m∑

i=1

n∑

j=1

|Aij |
2

)1/2

wheretr (·) and† denote the trace operator and the transpose conjugate of a matrix, respectively.

4If the transmitter has channel knowledge, the maximum MIMO diversity can be achieved bytransmit beamforming(often

called maximum ratio transmission (MRT) or MIMO maximal-ratio combining) in the eigenspace of the largest eigenvalue of

the Gramian matrixHHH†HHH [45]–[48].
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of fading and the effectiveness of diversity systems on reducing signal fluctuations. The main

results of this paper can be summarized as follows.

• We show that the achievable diversity is of order

nTnSnR

max (nT, nS, nR)
.

Hence, if the channel is “rich-enough,” that is, the number of effective scatterers is greater

than or equal to the numbers of transmit and receive antennas, the full spatial diversity

order ofnTnR can be achieved even in the presence of double scattering.

• We derive exact analytical expressions for the SEP in three cases of particular interest:

1) spatially uncorrelated double scattering (includes i.i.d. and keyhole channels as special

cases);

2) doubly correlated double scattering (includes a spatially correlated MIMO channel

where spatial correlation is present at both the transmitter and the receiver);

3) multiple-input single-output (MISO) double scattering(corresponds to a pure transmit

diversity system wherein a burden of diversity reception atthe receive terminal is

moved to the transmitter—original motivation of space–time coding [6]–[8]).

• We derive the EFF and the low-SNR capacity of double-scattering (nT, nS, nR)-MIMO

channels. The results show that these performance measuresare completely characterized

by thecorrelation figuresof transmit, receive, and scatterer correlation matrices.5

• The EFF as a functional of the eigenvalues of correlation matrices is monotonically in-

creasing in a sense of Schur (MIS).6 We show that the maximum possible increase in the

EFF due to double scattering is a sum of correlation figures ofthe transmit and receive

correlation matrices, which eventuates when the scatterers tend to be fully correlated or the

keyhole propagation takes place, that is, when only a singledegree of freedom is available

in the channel for communications.

• The low-SNR capacity slope as a functional of the eigenvalues of correlation matrices is

monotonically decreasing in a sense of Schur (MDS). We also obtain the low-SNR capacity

of a double-scattering MIMO channel without the constraintof orthogonal input signaling.

5The correlation figure is defined as a ratio of the second-order statistic of the spectra of correlation matrices to that ofthe

fully correlated matrix (see Definition 2).

6See Appendix I for the notions ofSchur monotonicityandmajorization.
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This enables us to assess the penalty of the use of OSTBCs (forachieving full diversity

with simple decoding) on spectral efficiency in the low-SNR regime.

We note in passing that all the mathematical and statisticalresults (on the monotonicity in a

sense ofSchurand random matrices) obtained in the appendices are applicable to many other

problems related to multiple-antenna communications—forexample, capacity analysis of MIMO

relay channels [5] and spatially correlated MIMO channels [21]–[23], and error probability

analysis of multiple-antenna systems with cochannel interference [55], [56].

This paper is organized as follows. In Section II, the systemmodel considered in the paper is

presented. Section III analyzes the achievable diversity and the SEP in the presence of double

scattering. Section IV analyzes the EFF and the low-SNR capacity (with and without the use

of OSTBCs) of double-scattering(nT, nS, nR)-MIMO channels. Section V concludes the paper.

Apropos of our study, the notions of majorization and Schur monotonicity are briefly discussed in

Appendix I. In Appendix II, we provide supplementary usefulresults on some statistics derived

from complex Gaussian matrices.

Notation: Throughout the paper, we shall use the following notation.N, R, andC denote the

natural numbers and the fields of real and complex numbers, respectively. The superscripts∗,

T , and† stand for the complex conjugate, transpose, and transpose conjugate, respectively.IIIn

and000m×n represent then× n identity matrix and them× n all-zero matrix, respectively.(Aij)

denotes the matrix with the(i, j)th entryAij anddet1≤i,j≤n (Aij) is the determinant of then×n
matrix (Aij). tr (AAA), etr (AAA) = etr(AAA), and‖AAA‖F denote the trace, exponential of the trace, and

Frobenius norm of the matrixAAA, respectively.⊗ and⊕ denote the Kronecker (direct) product

and direct sum of matrices andvec (AAA) denotes the vector formed by stacking all the columns of

AAA into a column vector. Also, we denoteAAA1⊗AAA2⊗· · ·⊗AAAn by
⊗n

i=1AAAi andAAA1⊕AAA2⊕· · ·⊕AAAn

by
⊕n

i=1AAAi. With a slight abuse of notation, a positive-semidefinite matrix AAA is denoted by

AAA ≥ 0 and a positive-definite matrixAAA is denoted byAAA > 0. Finally, for a Hermitian matrix

AAA ∈ Cn×n with the eigenvaluesλ1, λ2, . . . , λn in any order,̺ (AAA) denotes the number of distinct

eigenvalues ofAAA. Also, λ〈k〉 and τk (AAA), k = 1, 2, . . . , ̺ (AAA), denote the distinct eigenvalues of

AAA in decreasing order and its multiplicity, respectively, that is, λ〈1〉 > λ〈2〉 > . . . > λ〈̺(AAA)〉 and
∑̺(AAA)

k=1 τk (AAA) = n.
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II. SYSTEM MODEL

We consider a MIMO wireless communication system withnT transmit andnR receive

antennas, where the channel remains constant for an integermultiple of Nc (≥ nT) symbol

periods and changes independently to a new value for each coherence time. We assume that the

channel is perfectly known at the receiver but unknown at thetransmitter.

A. Orthogonal Space–Time Block Codes

A space–time block coded MIMO system in double-scattering channels is illustrated in Fig. 1.

During anNc-symbol interval, symbolsxi ∈ S, i = 1, 2, . . . , N , are encoded by an OSTBC

defined by anNc×nT transmission matrixGGG, whereS is two-dimensional signaling constellation

[8], [9]. A general construction of complex OSTBCs with the minimal delay and maximal

achievable rate was presented in [10, Proposition 2]. This construction of the OSTBC fornT

transmit antennas gives the maximal achievable rate [10, Theorem 1]

R =
⌈log2 nT⌉+ 1

2⌈log2 nT⌉
(1)

where⌈x⌉ denotes the smallest integer greater than or equal tox. For example, Alamouti’s code
[ x1 x2
−x∗

2 x∗
1

]
is a one-rate OSTBC employing two transmit antennas [7] and

GGG4 =







x1 x2 x3 0
−x∗2 x∗1 0 −x3
−x∗3 0 x∗1 x2
0 x∗3 −x∗2 x1







(2)

is a 3/4-rate OSTBC for four transmit antennas [10].

B. Signal and Channel Models

For a frequency-flat block-fading channel, thenR × Nc received signal can be expressed in

matrix notation as

YYY =HHHGGGT +WWW (3)

whereHHH ∈ CnR×nT is the random channel matrix whose(i, j)th entriesHij, i = 1, 2, . . . , nR,

j = 1, 2, . . . , nT, are complex propagation coefficients between thejth transmit antenna and the
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ith receive antenna withE {|Hij|2} = 1, andWWW ∼ ÑnR,Nc (000nR×Nc, N0IIInR
, IIINc) is the complex

additive white Gaussian noise (AWGN) matrix (see [21, Definition II.1] and [21, (1)] for the

definition and distribution of complex Gaussian matrices).7 The total power transmitted through

nT antennas is assumed to beP and hence, the average SNR per receive antenna is equal to

γ̄ , P/N0.

For double-scattering(nT, nS, nR)-MIMO channels (see Fig. 1), the channel matrixHHH can be

written as [21], [24]

HHH =
1√
nS

ΦΦΦ
1/2
R HHH1ΦΦΦ

1/2
S HHH2ΦΦΦ

1/2
T (4)

wherenS is the number of effective scatterers on each of the transmitand receive sides,HHH1 and

HHH2 are statistically independent,HHH1 ∼ ÑnR,nS
(000nR×nS

, IIInR
, IIInS

),HHH2 ∼ ÑnS,nT
(000nS×nT

, IIInS
, IIInT

),

and Hermitian positive-definite matricesΦΦΦT, ΦΦΦS, andΦΦΦR arenT×nT transmit,nS×nS scatterer,

andnR × nR receive correlation matrices with all diagonal entries1, respectively.8 This model

can include the rank-deficient effect of MIMO channels as well as spatial fading correlation

by controlling nS and the correlation matricesΦΦΦT, ΦΦΦS, andΦΦΦR. Therefore, (4) is a general

family of MIMO channels spanning from the i.i.d. Rayleigh case (nS → ∞ with ΦΦΦT = IIInT
,

ΦΦΦS = IIInS
, ΦΦΦR = IIInR

) to the degenerate keyhole or pinhole case (nS = 1 with ΦΦΦT = IIInT
,

ΦΦΦR = IIInR
) [24]. Note that the separability of correlation in (4) is a generalization of the well-

known ‘Kronecker model’ [17], [18]. Although there are someattempts to reporting discrepancy

between this separable correlation model and physical measurements (see, e.g., [57], [58]), the

Kronecker correlation model has been accepted widely due toits experimental validation from

European Project [19] and analytical tractability.

In [20], so-calledstochasticrank deficiency—meaning that the channel is rank deficient

due to fading correlation, i.e., the correlation matrices have zero eigenvalues—was deemed

as an important feature when dealing with fading correlation. However, this form of channel

degeneracy cannot cover the case where the channel exhibitsrank deficiency even when fading

is uncorrelated. In contrast, we shall restrictΦΦΦT, ΦΦΦS, andΦΦΦR to positive-definite (i.e., full rank)

matrices in the paper. This implies that the rank ofHHH is equal tomin (nT, nS, nR) with probability

one. Therefore, rank deficiency can be distinguished from the fading correlation effect and may

7There exist minor typos in [21, Definition II.1]; the covariance matrixΣΣΣ⊗ΨΨΨ should be read asΣΣΣT ⊗ΨΨΨ.

8In general, a correlation matrix is positive semidefinite with all diagonal entries1.
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occur only due to the lack of scattering richness withnS less thanmin (nT, nR). This also

enables us to discriminate a one-rankfully correlated scenario from a degenerate keyhole MIMO

channel [29], and grants the channel to exhibit rank deficiency with uncorrelated fading (e.g.,

nS < min (nT, nR) with ΦΦΦT = IIInT
, ΦΦΦS = IIInS

, ΦΦΦR = IIInR
).

Let ΞΞΞ1 = ΦΦΦ
1/2
R HHH1 andΞΞΞ2 = ΦΦΦ

1/2
S HHH2ΦΦΦ

1/2
T , then we have

HHH =
1√
nS

ΞΞΞ1ΞΞΞ2 (5)

whereΞΞΞ1 ∼ ÑnR,nS
(000nR×nS

,ΦΦΦR, IIInS
) andΞΞΞ2 ∼ ÑnS,nT

(000nS×nT
,ΦΦΦS,ΦΦΦT) are statistically inde-

pendent complex Gaussian matrices.

III. SYMBOL ERROR PROBABILITY

With perfect channel knowledge at the receiver, orthogonalspace–time block encoding and

decoding convert a MIMO fading channel intoN equivalent SISO subchannels, each for a

different symbol, with a path gain‖HHH‖F [38]–[42] (as shown in Fig. 1). Consequently, the

performance of OSTBCs is completely characterized by the statistical behavior of‖HHH‖F and the

instantaneous SNR for each of the SISO subchannels, denotedby γSTBC, is given by [41], [42]

γSTBC =
γ̄ ‖HHH‖2F
nTR

. (6)

To evaluate the SEP, we need the probability density function (pdf) or the moment generating

function (MGF) ofγSTBC. For double-scattering(nT, nS, nR)-MIMO channels, the MGF ofγSTBC

can be written as

φγSTBC (s; γ̄) , E

{

etr

(

− sγ̄

nTR
HHHHHH†

)}

= EΞΞΞ1,ΞΞΞ2

{

etr

(

− sγ̄

nSnTR
ΞΞΞ1ΞΞΞ2ΞΞΞ

†
2ΞΞΞ

†
1

)}

= EΞΞΞ1

{

det

(

IIInSnT
+

sγ̄

nSnTR
ΞΞΞ†

1ΞΞΞ1ΦΦΦS ⊗ΦΦΦT

)−1
}

(7)

= EΞΞΞ2

{

det

(

IIInRnS
+

sγ̄

nSnTR
ΦΦΦR ⊗ΞΞΞ2ΞΞΞ

†
2

)−1
}

(8)

where (7) and (8) follow from Lemma 1 in Appendix II.
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A. Achievable Diversity

Before devoting to deriving the SEP expressions, we discussthe diversity order achieved by

the OSTBC. In general, the achievable diversity order can bedefined as

d , lim
γ̄→∞

− logPe

log γ̄
(9)

wherePe denotes the SEP for two-dimensional signaling constellation with polygonal decision

boundaries. In the absence of double scattering, the OSTBC provides the maximum achievable

diversity order ofnTnR. The corresponding diversity order in double-scattering(nT, nS, nR)-

MIMO channels is given by the following result.

Theorem 1:The diversity order achieved by the OSTBC over double-scattering (nT, nS, nR)-

MIMO channels is

dSTBC =
nTnSnR

max (nT, nS, nR)
. (10)

Proof: See Appendix III-A.

Theorem 1 states that if the number of effective scatterers is greater than or equal to the

numbers of transmit and receive antennas, the OSTBC provides the full diversity order ofnTnR

even in the presence of double scattering.

We now present analytical expressions for the SEP of the OSTBC for three cases of particular

interest—spatially uncorrelated double scattering, doubly correlated double scattering, and MISO

double scattering. In what follows, a spatial correlation environment of double-scattering channels

is denoted byT = (ΦΦΦT,ΦΦΦS,ΦΦΦR) for givennT, nS, andnR.

B. Spatially Uncorrelated Double Scattering

Consider a spatial correlation environmentTuc = (IIInT
, IIInS

, IIInR
). This spatially uncorrelated

double-scattering scenario includes i.i.d. and keyhole MIMO channels as special cases.

Let n1 = min (nT, nS), n2 = max (nT, nS), and then1 × n1 random matrixΥΥΥ be

ΥΥΥ =

{
ΞΞΞ2ΞΞΞ

†
2, if nS ≤ nT

ΞΞΞ†
2ΞΞΞ2, if nS > nT,

(11)

which is a matrix quadratic form in complex Gaussian matrices [21, Definition II.3]. Then, from

(8) and (147) in Appendix III, the SEP of the OSTBC withM-PSK signaling in double-scattering

July 5, 2006 DRAFT
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(nT, nS, nR)-MIMO channels can be readily written as

Pe, MPSK=
1

π

∫ Θ

0

E

{

det

(

IIIn1nR
+

gγ̄

nSnTR sin2 θ
ΦΦΦR ⊗ΥΥΥ

)−1
}

dθ (12)

where we have used the fact thatΞΞΞ2ΞΞΞ
†
2 andΞΞΞ†

2ΞΞΞ2 have the same nonzero eigenvalues.9

In the absence of spatial correlation, the random matrixΥΥΥ has the Wishart distribution

W̃n1 (n2, IIIn1) [21, Definition II.2]. Applying Corollary 4 in Appendix II to(12), we obtain

the SEP for this spatially uncorrelated environmentTuc as

P uc-ds
e, MPSK=

1

πAuc-ds

∫ Θ

0

det
{
GGG

uc-ds(θ)
}
dθ (13)

where

Auc-ds=

n1∏

k=1

(n2 − k)! (k − 1)! (14)

andGGGuc-ds(θ) =
(
G

uc-ds
ij (θ)

)
is then1 × n1 Hankel matrix whose(i, j)th entry is given by

G
uc-ds
ij (θ) = (n2 − n1 + i+ j − 2)! 2F0

(

n2 − n1 + i+ j − 1, nR;−
gγ̄

nSnTR sin2 θ

)

. (15)

Example 1 (Uncorrelated Extremes—Keyhole and I.I.D.):The i.i.d. and keyhole MIMO chan-

nels are two extreme cases of spatially uncorrelated doublescattering (i.e.,nS = ∞ andnS = 1,

respectively). IfnS = 1, thenn1 = 1 and n2 = nT. Hence, (13) reduces to [41, eq. (11)] for

keyhole MIMO channels. AsnS → ∞, (13) becomes [42, eq. (26)] (with a Nakagami parameter

m = 1) for i.i.d. Rayleigh-fading MIMO channels.

Fig. 2 shows the SEP of8-PSKGGG4 (2.25 bits/s/Hz) versus the SNR̄γ in spatially uncorrelated

double-scattering(4, nS, 2)-MIMO channels whennS varies from1 (keyhole) to infinity (i.i.d.

Rayleigh). We can see that asnS increases, the SEP approaches that of i.i.d. Rayleigh-fading

MIMO channels in the absence of double scattering. This resembles the behavior in Rayleigh-

fading channels with diversity reception, that is, the channel behaves like an AWGN channel

9As mentioned in the proof of Theorem 1, The SEP for the generalcase of arbitrary two-dimensional signaling constellation

with polygonal decision boundaries can be written as a convex combination of terms akin to (147). Thus, our results can be

easily extended to any two-dimensional signaling constellation.
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(diversity order of∞) as the number of receive antennas increases. Observe that whennS ≥ 4,

the slope of the SEP curve at high SNR is identical to that of the i.i.d. case. This example

confirms the result of Theorem 1: the diversity orders are equal to dSTBC = 2, 4, and 6 for

nS = 1, 2, and 3, respectively, whereasdSTBC = 8 for nS = 5, 10, 20, 100, and∞ (i.i.d.).

A clearer understanding about the diversity behavior is obtained by referring to Fig. 3, where

the SEPs of16-PSK Alamouti (4 bits/s/Hz) andGGG4 (3 bits/s/Hz) OSTBCs versus the SNR̄γ

in spatially uncorrelated double-scattering(nT, nS, nR)-MIMO channels are shown. Using (10),

we can easily show that the Alamouti andGGG4 codes achieve the diversity order ofdSTBC = 2 for

(2, 3, 1) and(4, 2, 1) channels;dSTBC = 6 for (2, 5, 3) and(4, 3, 2) channels; anddSTBC = 20 for

(2, 10, 11) and (4, 5, 5) channels. As can be seen, we obtain a close agreement in the slopes of

the SEP curves, corresponding to the same value ofdSTBC, at high SNR.

C. Doubly Correlated Double Scattering

Consider a spatial correlation environmentTdc = (ΦΦΦT, IIInS
,ΦΦΦR), where spatial correlation

exists only on the transmit and receive ends. Note that this scenario includes a spatially correlated

MIMO channel in the absence of double scattering (nS = ∞) as a special case. LetλTi andλRj ,

i = 1, 2, . . . , nT, j = 1, 2, . . . , nR, be the eigenvalues ofΦΦΦT andΦΦΦR in any order, respectively.

Suppose thatnS ≥ nT. Then,ΥΥΥ ∼ W̃nT
(nS,ΦΦΦT). Applying Theorem 10 in Appendix II to (12),

we obtain the SEP in the environmentTdc as

P dc-ds
s, MPSK=

1

πAdc-ds

∫ Θ

0

det
([
GGG

dc-ds
1 (θ) GGG

dc-ds
2 (θ) · · · GGG

dc-ds
̺(ΦΦΦT) (θ)

])
dθ (16)

with

Adc-ds= det
([
BBB

dc-ds
1 BBB

dc-ds
2 · · · BBB

dc-ds
̺(ΦΦΦT)

])
·

nT∏

i=1

(nS − i)! (17)

whereBBB
dc-ds
k =

(
B

dc-ds
k,ij

)
andGGG

dc-ds
k (θ) =

(
G

dc-ds
k,ij (θ)

)
, k = 1, 2, . . . , ̺ (ΦΦΦT), are nT × τk (ΦΦΦT)

matrices whose(i, j)th entries are given respectively by

B
dc-ds
k,ij = (−1)i−j (i− j + 1)j−1 λ

T
〈k〉

nS−i+j
(18)
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and

G
dc-ds
k,ij (θ) =

̺(ΦΦΦR)
∑

p=1

τp(ΦΦΦR)
∑

q=1

{

Xp,q (ΦΦΦR) · λT〈k〉
nS−nT+i+j−1

(nS − nT + i+ j − 2)!

× 2F0

(

nS − nT + i+ j − 1, q ;−
gγ̄λR〈p〉λ

T
〈k〉

nSnTR sin2 θ

)}

. (19)

In (19),Xp,q (ΦΦΦR) is the(p, q)th characteristic coefficient ofΦΦΦR (see Definition 4 in Appendix II).

Fig. 4 shows the SEP of8-PSKGGG4 versus the SNR̄γ in doubly correlated double-scattering

(4, 10, 4)-MIMO channels. In this figure, the transmit and receive correlations follow the constant

correlationΦΦΦT = ΦΦΦR = ΦΦΦ
(c)
4 (ρ), defined by (53) in Appendix I, and the correlation coefficient

ρ ranges from0 (spatially uncorrelated double scattering) to0.9. The characteristic coefficients

of the constant correlation matrix are given by (131) and (132) (see Example 6 in Appendix II).

For comparison, we also plot the SEP of i.i.d. Rayleigh-fading MIMO channels. In Figure 4, we

can see that the SNR penalty due to double scattering withnS = 10 (in the absence of spatial

correlation) is about1 dB at the SEP of10−6 and it becomes larger than2.5 dB for ρ ≥ 0.5. In

Fig. 5, the SEP of8-PSKGGG4 at γ̄ = 15 dB is depicted as a function of a correlation coefficient

ρ for doubly correlated double-scattering(4, nS, 4)-MIMO channels with constant correlation

ΦΦΦT = ΦΦΦR = ΦΦΦ
(c)
4 (ρ) whennS = 5, 10, 20, 50, 100, and∞ (doubly correlated Rayleigh). This

figure demonstrates that double scattering and spatial correlation degrade the SEP performance

considerably.

D. MISO Double Scattering

Finally, we consider a double-scattering MISO channel. This is a pure transmit diversity system

wherein the burden of diversity reception at the receive terminal is moved to the transmitter.

The SEP in double-scattering MISO channels can be obtained from (8) with nR = 1 as

Pmiso-ds
e, MPSK=

1

π

∫ Θ

0

E

{

det

(

IIInS
+

gγ̄

nSnTR sin2 θ
ΞΞΞ2ΞΞΞ

†
2

)−1
}

dθ. (20)

Let λSi , i = 1, 2, . . . , nS, be the eigenvalues ofΦΦΦS in any order. Then, applying Theorem 11 in
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Appendix II to (20), we obtain

Pmiso-ds
e, MPSK=

1

π

̺(ΦΦΦS)∑

p=1

̺(ΦΦΦT)∑

q=1

τp(ΦΦΦS)∑

i=1

τq(ΦΦΦT)∑

j=1

Xp,i (ΦΦΦS)Xq,j (ΦΦΦT)

∫ Θ

0
2F0

(

i, j ;−
gγ̄λS〈p〉λ

T
〈q〉

nSnTR sin2 θ

)

dθ (21)

whereXp,i (ΦΦΦS) andXq,j (ΦΦΦT) are the characteristic coefficients ofΦΦΦS andΦΦΦT, respectively.

The effects of the spatial correlation and the number of effective scatterers on the SEP

performance in MISO channels can be ascertained by referring to Fig. 6, where the SEP of8-

PSKGGG4 at γ̄ = 25 dB versusnS is depicted for double-scattering(4, nS, 1)-MIMO channels. The

transmit and scatterer correlations follow the constant correlationΦΦΦT = ΦΦΦ
(c)
4 (ρ) andΦΦΦS = ΦΦΦ(c)

nS
(ρ)

where ρ varies from0 to 0.9. Note that the maximum achievable diversity order is equal to

dSTBC = 4 for nS ≥ 4. Hence, the SEP performance improves rapidly asnS increases, and

approaches the corresponding SEP in the absence of double scattering.

IV. EFFECTIVE FADING FIGURE AND LOW-SNR CAPACITY

In this section, we access the combined effect of rank deficiency and spatial correlation on the

performance of OSTBCs in terms of the EFF and the capacity in alow-SNR regime. It will be

apparent that these performance measures are completely characterized by thekurtosisof ‖HHH‖F.

A. Effective Fading Figure

One of the goals of diversity systems is to reduce the signal fluctuation due to the stochastic

nature of multipath fading. Therefore, it is of interest to characterize the variation of the instan-

taneous SNR at the output where the amount of signal fluctuations is measured. The following

measure can be used to assess the severity of fading and the effectiveness of diversity systems

on reducing signal fluctuations.

Definition 1 (Effective Fading Figure):For the instantaneous SNRγ at the output of interest

in a communication system subject to fading, the effective fading figure (EFF) in dB for the

output SNRγ is defined as the VMSR ofγ, i.e.,

EFFγ (dB) , 10 log10

{
Var {γ}
(E {γ})2

}

. (22)

It should be noted that the EFF is akin to the notions of the normalized standard deviation

(NSD) of the instantaneous combiner output SNR [50]–[52] and the amount of fading (AF)
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[59], [60]. The AF, as defined in [59, eq. (2)], is purely to characterize the amount of random

fluctuations in the channel itself and conveys no information about diversity systems. In contrast,

the NSD is a measure of the signal fluctuations at the diversity combiner output, enabling us to

compare the effectiveness of diversity combining techniques such as maximal-ratio combining

(MRC), equal-gain combining (EGC), selection combining (SC), and hybrid section/maximal-

ratio combining (H-S/MRC). If the signal fluctuation is measured at each branch output, the

EFF is synonymous with the AF. In contrast, when the signal fluctuation is measured at the

diversity combiner output, the EFF is equal to the square of the NSD of the instantaneous SNR

at the combiner output. The term ‘AF’ was also confusingly used for diversity systems in some

literature with a view to bridging the philosophy between characterizing physical channel fading

and quantifying the degree of diversity effectiveness [42], [61], [62].

By definition, the efficiency of OSTBCs on reducing the severity of fading can be assessed

by

EFFSTBC (dB) , 10 log10

{
Var {γSTBC}
(E {γSTBC})2

}

= 10 log10 {κ (‖HHH‖F)− 1} (23)

whereκ (‖HHH‖F) is the kurtosis of‖HHH‖F defined by

κ (‖HHH‖F) ,
E
{
[‖HHH‖F − E {‖HHH‖F}]

4}

(
E
{
[‖HHH‖F − E {‖HHH‖F}]2

})2

=
E
{
‖HHH‖4F

}

(
E
{
‖HHH‖2F

})2 . (24)

In (24), the second equality follows from the fact that the kurtosis is invariant with respect to

translations of a random variable. Note that the minimum EFFis equal to−∞ dB if there is no

random fluctuation in the received signal. Also, the EFF is equal to 0 dB for Rayleigh fading

without diversity and hence,EFFSTBC > 0 dB means that the variation of the instantaneous SNR

in each SISO subchannel is more severe than that in Rayleigh fading.

1) Note on the Kurtosis of‖HHH‖F: The kurtosis measures the peakedness or flatness of a

distribution [63]. It has been revealed that this normalized form of the fourth statistic of fading

distributions plays a key role in the low-SNR behavior of thespectral efficiency in fading
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channels [53], [64]. To proceed with derivingκ (‖HHH‖F) for double-scattering(nT, nS, nR)-MIMO

channels, we first define the following scalar quantity related to a correlation matrix.

Definition 2 (Correlation Figure):For an arbitraryn×n correlation matrixΦΦΦ, thecorrelation

figure of ΦΦΦ is defined by

ζ (ΦΦΦ) ,
tr
(
ΦΦΦ2
)

tr
(
1112n
) =

1

n2
tr
(
ΦΦΦ2
)

(25)

where111n denotes then× n all-one matrix.

Note that 1
n
≤ ζ (ΦΦΦ) ≤ 1, where the lower and upper bounds correspond to uncorrelated and

fully correlated cases, respectively.10 The following Schur monotonicity properties hold for the

correlation figure (the proofs are given in Appendix III-B).

Property 1: Let ΦΦΦ be ann × n correlation matrix. Then, the correlation figureζ (ΦΦΦ) as a

functional of the eigenvalues ofΦΦΦ is MIS, that is, ifΦΦΦ � Φ̀ΦΦ, then

ζ (ΦΦΦ) ≤ ζ
(
Φ̀ΦΦ
)
. (26)

Property 2: Let ΦΦΦi, i = 1, 2, . . . , m, be ni × ni correlation matrices. Then, the product of

correlation figures,
∏m

i=1 ζ (ΦΦΦi), as a functional of the eigenvalues of
⊗m

i=1ΦΦΦi, is MIS, that is,

if
m⊗

i=1

ΦΦΦi �
m⊗

i=1

Φ̀ΦΦi , (27)

then
m∏

i=1

ζ (ΦΦΦi) ≤
m∏

i=1

ζ
(
Φ̀ΦΦi

)
. (28)

Property 3: Let ΦΦΦi, i = 1, 2, . . . , m, be ni × ni correlation matrices. Then, the sum of

correlation figures,
∑m

i=1 ζ (ΦΦΦi), as a functional of the eigenvalues of
⊕m

i=1
1
ni
ΦΦΦi, is MIS, that

is, if

m⊕

i=1

1
ni
ΦΦΦi �

m⊕

i=1

1
ni
Φ̀ΦΦi , (29)

10Similar to (25), thecorrelation numberwas defined as1
n
tr
(
ΦΦΦ2
)

[54]. While the correlation figure and number are the

second-order statistics of the spectra of a correlation matrix, normalized by those of fully correlated and uncorrelated matrices,

respectively, the correlation figure is bounded by0 ≤ ζ (ΦΦΦ) ≤ 1 for any correlation structure, asn → ∞.
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then

m∑

i=1

ζ (ΦΦΦi) ≤
m∑

i=1

ζ
(
Φ̀ΦΦi

)
. (30)

The next theorem shows thatκ (‖HHH‖F) depends exclusively on the spectra of spatial correlation

matrices and is quantified solely by their correlation figures.

Theorem 2:For double-scattering(nT, nS, nR)-MIMO channels, the kurtosis of‖HHH‖F is

κ (‖HHH‖F) = ζ (ΦΦΦT) ζ (ΦΦΦR) + ζ (ΦΦΦT) ζ (ΦΦΦS) + ζ (ΦΦΦR) ζ (ΦΦΦS) + 1. (31)

Proof: See Appendix III-C.

Example 2 (Spatially Uncorrelated Double Scattering):In the absence of spatial fading cor-

relation (Tuc), we have

κ (‖HHH‖F) =
1

nTnR
+

1

nTnS
+

1

nRnS
+ 1. (32)

As compared with the i.i.d. case, the keyhole increases the kurtosis of the fading distribution

in SISO subchannels by twice the reciprocal of the harmonic mean between the numbers of

transmit and receive antennas, that is,1
nT

+ 1
nR

.

Next, we show the Schur monotonicity property ofκ (‖HHH‖F).
Corollary 1: Let

JJJ (T) ,
ΦΦΦT ⊗ΦΦΦR

nTnR
⊕ ΦΦΦT ⊗ΦΦΦS

nTnS
⊕ ΦΦΦS ⊗ΦΦΦR

nSnR
(33)

for a spatial correlation environmentT = (ΦΦΦT,ΦΦΦS,ΦΦΦR). Then, the kurtosis of‖HHH‖F, as a

functional of the eigenvalues ofJJJ (T), is a MIS (or isotone) function, that is, ifJJJ (T1) � JJJ (T2),

then

κ (‖HHH‖F ;T1) ≤ κ (‖HHH‖F ;T2) . (34)

Proof: It follows immediately from Theorem 2 and Properties 2 and 3 stating the fact that

the product and sum of correlation figures preserve the monotonicity property.

Corollary 1 implies that the less spatially correlated fading results in the less peaky fading

distribution of each SISO subchannel.
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2) Note on the EFF ofγSTBC: From Theorem 2 and (23), it is straightforward to see that the

EFFSTBC in double-scattering(nT, nS, nR)-MIMO channels is given by

EFFSTBC (dB) = 10 log10 {ζ (ΦΦΦT) ζ (ΦΦΦR) + ζ (ΦΦΦT) ζ (ΦΦΦS) + ζ (ΦΦΦR) ζ (ΦΦΦS)} (35)

from which we can make the following observations on theEFFSTBC.

• TheEFFSTBC as a functional of the eigenvalues ofJJJ (T) is MIS, that is,

EFFSTBC(T1) ≤ EFFSTBC(T2) (36)

wheneverJJJ (T1) � JJJ (T2). This reveals that the less spatially correlated fading results in

the less severe random fluctuations in equivalent SISO subchannels induced by OSTBCs.

• In the absence of double scattering,ζ (ΦΦΦS) is equal to zero and thus, the double scat-

tering together with spatial correlation causes theEFFSTBC to increase by the amount of

ζ (ΦΦΦT) ζ (ΦΦΦS)+ζ (ΦΦΦR) ζ (ΦΦΦS). In particular, the maximum increase in theEFFSTBC is a sum of

correlation figures of the transmit and receive correlationmatrices, that is,ζ (ΦΦΦT)+ ζ (ΦΦΦR),

which eventuates whenΦΦΦS goes to be fully correlated or when the keyhole effect takes

place.

B. Low-SNR Capacity

Recent information-theoretic studies show that the first-order analysis of the capacity versus

the SNR fails to reveal the impact of the channel and that second-order analysis is required to

assess the wideband or low-SNR performance of communication systems [53], [54]. In particular,

it was demonstrated that the tradeoff between the capacity in bits/s/Hz and energy per bit required

for reliable communication is the key measure of channel capacity in a low-SNR regime. In this

regime, the capacity can be characterized by two parameters, namely, i) Eb
N0 min

, the minimum

bit energy per noise levelrequired to reliably communicate at any positive data rate (whereEb

denotes the total transmitted energy per bit), and ii)S0, the low-SNR slope(bits/s/Hz per3 dB)

of the capacity at the pointEb
N0 min

.

1) General Input Signaling:Before proceeding to study the low-SNR capacity achieved

by OSTBCs, we first deal with the more general case of input signaling, assuming that the

fading process is ergodic and coding is across many independent fading blocks without a delay

constraint.

July 5, 2006 DRAFT



18 REVISED FOR PUBLICATION IN THE IEEE TRANSACTIONS ON INFORMATION THEORY

Theorem 3:Consider a general double-scattering(nT, nS, nR)-MIMO channel

YYY =HXHXHX +WWW (37)

where the channel matrixHHH is given by (4) at each coherence interval and the input signal

XXX ∈ CnT×Nc is subject to the power constraintE
{
‖XXX‖2F

}
= NcP. Suppose that the receiver

knows the realization ofHHH, but the transmitter has no channel knowledge. Then, the minimum

required Eb
N0

for reliable communication is

Eb

N0 min
=

loge 2

nR
(38)

and the low-SNR slope of the capacity is

S0 =
2

ζ (ΦΦΦT) + ζ (ΦΦΦS) + ζ (ΦΦΦR) + ζ (ΦΦΦT) ζ (ΦΦΦS) ζ (ΦΦΦR)
bits/s/Hz per3 dB. (39)

Proof: See Appendix III-D.

From Theorem 3, we can make the following observations.

• The Eb
N0 min

is inversely proportional tonR, whereas the double scattering and spatial fading

correlation as well as the numbers of transmit antennas and effective scatterers do not affect

this measure. Moreover, regardless of the number of antennas and propagation conditions,

the minimum received bit energy per noise level required forreliable communication,E
r
b

N0 min
,

is equal to

Er
b

N0 min
= nR · Eb

N0 min
= −1.59 dB (40)

which is a fundamental feature of the channels where the additive noise is Gaussian [53,

Theorem 1].

• The low-SNR slopeS0 as a functional of the eigenvalues of̀JJJ (T) is MDS, that is, if

J̀JJ (T1) � J̀JJ (T2), then

S0 (T1) ≥ S0 (T2) (41)

whereJ̀JJ (T) is defined for the environmentT = (ΦΦΦT,ΦΦΦS,ΦΦΦR) as follows:

J̀JJ (T) ,
ΦΦΦT

nT
⊕ ΦΦΦS

nS
⊕ ΦΦΦR

nR
⊕ ΦΦΦT ⊗ΦΦΦS ⊗ΦΦΦR

nTnSnR
. (42)
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Note that (41) follows from (39) and Properties 2 and 3. This MDS property reveals that the

low-SNR slope decreases with the amount of spatial correlation in contrast to the high-SNR

capacity slopemin (nT, nR, nS), which is invariant with respect to spatial correlation [21].

Example 3 (Dual-Antenna System):ConsidernT = nR = 2. In the presence of spatially

uncorrelated double scattering, the low-SNR slope for general double-scattering(2, nS, 2)-MIMO

channels is

S0 = 2 ·
(

1 +
1

nS

· 5
4

)−1

bits/s/Hz per3 dB (43)

which is bounded by8/9 ≤ S0 ≤ 2. The lowest and highest slopes are achieved whennS = 1

(keyhole) andnS = ∞ (i.i.d.), respectively.

2) OSTBC Input Signaling:We now turn attention to the low-SNR behavior of the capacity

for double-scattering(nT, nS, nR)-MIMO channels employing OSTBCs.

Theorem 4:Consider a double-scattering(nT, nS, nR)-MIMO channel

YYY =HHHGGGT +WWW

where the channel matrixHHH is given by (4) at each coherence interval and the OSTBCGGG is

subject to the power constraintE
{
‖GGG‖2F

}
= NcP. Then, the OSTBC achieves the minimum

required Eb
N0 min

same as that without the orthogonal signaling constraint

Eb

N0

STBC

min
=

loge 2

nR
(44)

and the low-SNR slope of the capacity

SSTBC
0 =

2R
ζ (ΦΦΦT) ζ (ΦΦΦR) + ζ (ΦΦΦT) ζ (ΦΦΦS) + ζ (ΦΦΦR) ζ (ΦΦΦS) + 1

bits/s/Hz per3 dB. (45)

Proof: See Appendix III-E.

From Theorem 4, we can make the following observations in parallel to IV-B.1.

• As compared with the general case, the use of OSTBCs does not increase the minimum

required Eb
N0

for reliable communication in MIMO channels.

• The low-SNR slopeSSTBC
0 as a functional of the eigenvalues ofJJJ (T) is MDS, that is, if

JJJ (T1) � JJJ (T2), then

SSTBC
0 (T1) ≥ SSTBC

0 (T2) . (46)
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In contrast, we see from (159) that the high-SNR slope of the capacity is equal toR, which

does not depend on spatial correlation and double scattering.

Example 4 (Alamouti’s Code):ConsidernT = nR = 2. In the presence of spatially uncor-

related double scattering, the low-SNR slope for Alamouti’s code with two receive antennas

is

SSTBC
0 =

8

5
·
(

1 +
1

nS
· 4
5

)−1

bits/s/Hz per3 dB (47)

which is bounded by8/9 ≤ SSTBC
0 ≤ 8/5.

In Fig. 7, the capacity (bits/s/Hz) versusE
r
b

N0 min
and its low-SNR approximation are depicted

with and without the signaling constraint of the OSTBCGGG4 in double-scattering(4, 20, 4)-MIMO

channels with exponential correlationΦΦΦT = ΦΦΦR = ΦΦΦ
(e)
4 (0.5) and ΦΦΦS = ΦΦΦ

(e)
20 (0.5). For the

OSTBCGGG4, the low-SNR approximation is remarkably accurate for a fairly wide range ofE
r
b

N0 min
,

whereas there exists some discrepancy between the Monte Carlo simulation and the first-order

approximation for the general input signaling—approximately 11% difference atE
r
b

N0 min
= 0 dB,

for example. In this scenario, the low-SNR slopes are1.26 and 2.46 bits/s/Hz per3 dB with

and without the OSTBC input signaling constraint, respectively. Thus, the use of the OSTBC

GGG4 incurs about49% reduction in the slope. This slope reduction is much smallerthan that in

a high-SNR regime: the high-SNR slope for the OSTBCGGG4 is R = 3/4 and the corresponding

slope for the general signaling is equal tomin (nT, nR, nS) = 4 bits/s/Hz per3 dB [21].

V. CONCLUSIONS

We investigated the combined effect of rank deficiency and spatial fading correlation on the

diversity performance of MIMO systems. In particular, we considered double-scattering MIMO

channels employing OSTBCs which use up all antennas to realize full diversity advantage.

We characterized the effects of double scattering on the severity of fading and the low-SNR

capacity by quantifying the EFF and the capacity slope in terms of thecorrelation figuresof

spatial correlation matrices. The Schur monotonicity properties were shown for these performance

measures as functionals of the eigenvalues of correlation matrices. We also determined the

required scattering richness of the channel to achieve the full diversity order ofnTnR. Finally,

we derived the exact SEP expressions for some classes of double scattering, which consolidate
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the effects of rank efficiency and spatial correlation on theSEP performance. On account of the

generality of channel modeling, the results of the paper aresubstantial enough to encompass

those for well-accepted existing models (e.g., i.i.d./spatially correlated/keyhole MIMO channels)

as special cases of our solutions.

APPENDIX I

MAJORIZATION, SCHUR MONOTONICITY, AND CORRELATION MATRICES

We use the concept of majorization [65]–[69] as a mathematical tool to characterize different

spatial correlation environments. Using the majorizationtheory, the analytical framework was

established in [52] to assess the performance of multiple-antenna diversity systems with different

power dispersion profiles. In particular, monotonicity theorems were proved for various perfor-

mance measures such as the NSD of the output SNR, the ergodic capacity, the matched-filter

bound, the inverse SEP, and the symbol error outage. The notion of majorization has also been

used in [18], [36], [70] as a measure of correlation. In this appendix, we briefly discuss the basic

properties of majorization and Schur monotonicity.

A. Majorization and Correlation Matrices

Given a real vectoraaa = (a1, a2, . . . , an)
T ∈ Rn, we rearrange its components in decreasing

order asa[1] ≥ a[2] ≥ · · · ≥ a[n].

Definition 3: For aaa = (a1, a2, . . . , an)
T , bbb = (b1, b2, . . . , bn)

T ∈ Rn, we denoteaaa ≺ bbb and say

thataaa is weakly majorized(or submajorized) by bbb if

k∑

i=1

a[i] ≤
k∑

i=1

b[i], k = 1, 2, . . . , n. (48)

If
∑n

i=1 ai =
∑n

i=1 bi holds in addition toaaa ≺ bbb, then we say thataaa is majorizedby bbb and denote

asaaa � bbb.

For example, if eachai ≥ 0 and
∑n

i=1 ai = n, then

(1, 1, . . . , 1)T � (a1, a2, . . . , an)
T � (n, 0, . . . , 0)T . (49)

Of particular interest are the majorization relations among Hermitian matrices in terms of their

eigenvalue vectors to compare different spatial correlation environments. A Hermitian matrixAAA

July 5, 2006 DRAFT



22 REVISED FOR PUBLICATION IN THE IEEE TRANSACTIONS ON INFORMATION THEORY

is said to bemajorizedby a Hermitian matrixBBB, simply denoted byAAA � BBB, if λλλ (AAA) � λλλ (BBB)

whereλλλ (·) denote the vector of eigenvalues of a Hermitian matrix. For example, the well-known

Schur’s theorem [68, eq. (5.5.8)] on the relationship between the eigenvalues and diagonal entries

of Hermitian matrices can be written as

AAA ◦ IIIn � AAA for HermitianAAA ∈ C
n×n (50)

where◦ denotes a Hadamard (i.e., entrywise) product. One of the most useful results on the

eigenvalue majorization is the following theorem.

Theorem 5 ( [67, Theorem 7.1]):A linear map L : Cn×n → Cn×n is called positive if

L (AAA) ≥ 0 for AAA ∈ Cn×n ≥ 0 and unital if L (IIIn) = IIIn. It is said to bedoubly stochastic

if L is a unital positive linear map with the trace-preserving property, i.e.,trL (AAA) = tr (AAA),

∀AAA ∈ Cn×n. LetAAA ∈ Cn×n be Hermitian andL be a doubly stochastic map. Then,

L (AAA) � AAA. (51)

Recall that the Schur product theorem [68, Theorem 5.2.1] says that the Hadamard product of

two positive semidefinite matrices is positive semidefinite. Therefore ifΦΦΦ ∈ C
n×n is an arbitrary

correlation matrix and defineL (AAA) = AAA ◦ΦΦΦ, thenL is obviously a doubly stochastic map on

Cn×n.

Corollary 2: Let AAA ∈ Cn×n be Hermitian andΦΦΦ ∈ Cn×n be a correlation matrix. Then,

AAA ◦ΦΦΦ � AAA. (52)

In fact, this result was first given in [69, Corollary 2] without using the notion of doubly

stochastic maps. From Corollary 2, we can obtain the eigenvalue majorization relations for

the well-known correlation models—constant, exponential, and tridiagonal correlation—which

have been widely used for many communication problems of multiple-antenna systems (see,

e.g., [21]–[23], [49], [54], [71]).

Example 5 (Constant, Exponential, and Tridiagonal Matrices): Thenth-order constant, expo-

nential, and tridiagonal matrices with a coefficientρ, denoted byΦΦΦ(c)
n (ρ), ΦΦΦ(e)

n (ρ), andΦΦΦ(t)
n (ρ)

respectively, aren× n symmetric Toeplitz matrices of the following structures:
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ΦΦΦ(c)
n (ρ) =







1 ρ ρ · · · ρ
ρ 1 ρ · · · ρ
...

...
...

. . .
...

ρ ρ ρ · · · 1







n×n

(53)

ΦΦΦ(e)
n (ρ) =







1 ρ ρ2 · · · ρ(n−1)

ρ 1 ρ · · · ρ(n−2)

...
...

...
. . .

...
ρn−1 ρn−2 ρn−3 · · · 1







n×n

(54)

ΦΦΦ(t)
n (ρ) =











1 ρ 0
ρ 1 ρ

ρ 1 ρ
. .. . . . . . .

ρ 1 ρ
0 ρ 1











n×n

. (55)

Note thatΦΦΦ(c)
n (ρ), ΦΦΦ(e)

n (ρ) with ρ ∈ [0, 1] andΦΦΦ(t)
n (ρ) with ρ ∈

[
0, 0.5/ cos π

n+1

]
are correlation

matrices, since they are positive semidefinite for such values ofρ. Let 0 ≤ ρ1 ≤ ρ2. Then, since

ΦΦΦ(c)
n (ρ1) = ΦΦΦ(c)

n (ρ2) ◦ΦΦΦ(c)
n

(
ρ1
ρ2

)

ΦΦΦ(e)
n (ρ1) = ΦΦΦ(e)

n (ρ2) ◦ΦΦΦ(e)
n

(
ρ1
ρ2

)

ΦΦΦ(t)
n (ρ1) = ΦΦΦ(t)

n (ρ2) ◦ΦΦΦ(e)
n

(
ρ1
ρ2

)

,

it follows from Corollary 2 that

ΦΦΦ(c)
n (ρ1) � ΦΦΦ(c)

n (ρ2) (56)

ΦΦΦ(e)
n (ρ1) � ΦΦΦ(e)

n (ρ2) (57)

ΦΦΦ(t)
n (ρ1) � ΦΦΦ(t)

n (ρ2) . (58)

Remark:If 0 ≤ ρ1 ≤ ρ2, thenΦΦΦ(c)
n

(
ρ1
ρ2

)

andΦΦΦ(e)
n

(
ρ1
ρ2

)

are positive semidefinite. Hence, the

majorization relations (56)–(58) hold, although each matrix itself is only Hermitian but may not

be positive semidefinite.

B. Schur Monotonicity

The concept of majorization is closely related to a MIS (or MDS) function. If a function

f : (a subset of)Rn → R satisfiesf (a1, . . . , an) ≤ f (b1, . . . , bn) wheneveraaa � bbb, then f is
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called a MIS (or isotone) function on (a subset of)Rn. The following theorem gives a necessary

and sufficient condition forf to be MIS.

Theorem 6 (Schur 1923):Let I ⊂ R and f : In → R be continuously differentiable. Then,

the functionf is MIS on In if and only if

f is symmetric onIn (59)

and for all i 6= j,

(ai − aj)

[
∂f

∂ai
− ∂f

∂aj

]

≥ 0 ∀aaa ∈ I
n. (60)

Note that Schur’s condition (60) can be replaced by

(a1 − a2)

[
∂f

∂a1
− ∂f

∂a2

]

≥ 0 ∀aaa ∈ I
n (61)

because of the symmetry. Iff is MIS on I
n, then−f is a MDS function onIn.

APPENDIX II

SOME STATISTICS DERIVED FROM COMPLEX GAUSSIAN MATRICES

This appendix gives useful results on some statistics derived from complex Gaussian matrices.

A. Preliminary Results

Lemma 1:Let XXXk ∼ Ñm,n (000m×n,ΣΣΣ,ΨΨΨk), k = 1, 2, . . . , p, be statistically independent com-

plex Gaussian matrices and

XXX =
[
XXX1 XXX2 · · · XXXp

]
∼ Ñm,np (000m×np,ΣΣΣ,

⊕p
k=1ΨΨΨk) . (62)

Then, forAAA ∈ Cm×m ≥ 0 andBBB =
⊕p

k=1BBBk, BBBk ∈ Cn×n ≥ 0, we have

E
{
etr
(
−AXBXAXBXAXBX†)} =

p
∏

k=1

det (IIImn +AΣAΣAΣ⊗ΨΨΨkBBBk)
−1 . (63)

Proof: SinceAXBXAXBXAXBX† =
∑p

k=1AAAXXXkBBBkXXX
†
k, we have

E
{
etr
(
−AXBXAXBXAXBX†)} =

p
∏

k=1

EXXXk

{

etr
(
−AAAXXXkBBBkXXX

†
k

)}

. (64)
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Therefore11

EXXXk

{

etr
(
−AAAXXXkBBBkXXX

†
k

)}

= ck

∫

XXXk

etr
(
−AAAXXXkBBBkXXX

†
k −ΣΣΣ−1XXXkΨΨΨ

−1
k XXX†

k

)
dXXXk

= ck

∫

XXXk

exp
[

−
(
vec
(
XXX†

k

))†
{(

ΣΣΣT ⊗ΨΨΨk

)−1
+AAAT ⊗BBBk

}

vec
(
XXX†

k

)]

dXXXk

= ckπ
mn det

{(
ΣΣΣT ⊗ΨΨΨk

)−1
+AAAT ⊗BBBk

}−1

= det (IIImn +AΣAΣAΣ⊗ΨΨΨkBBBk)
−1 (65)

whereck = π−mn det (ΣΣΣ)−n det (ΨΨΨk)
−m. Combining (64) and (65) complete the proof.

Lemma 2:Let XXX ∼ Ñm,n (000m×n,ΣΣΣ,ΨΨΨ). Then, forAAA,BBB ∈ Cm×n, we have

E
{
etr
(
XXX†AAA+BBB†XXX

)}
= etr

(
ΣΣΣAAAΨΨΨBBB†) . (66)

Proof: Let MMM 1 andMMM 2 bem× n matrices such that

tr
(
XXX†AAA+BBB†XXX −ΣΣΣ−1XXXΨΨΨ−1XXX†)

= tr
(
ΣΣΣ−1MMM 1ΨΨΨ

−1MMM †
2

)
+ tr

{

−ΣΣΣ−1 (XXX −MMM 1)ΨΨΨ
−1 (XXX −MMM 2)

†
}

. (67)

Then, since
∫

XXX

etr
{
−ΣΣΣ−1 (XXX −MMM 1)ΨΨΨ

−1 (XXX −MMM 2)
†}dXXX = πmn det (ΣΣΣ)n det (ΨΨΨ)m , (68)

we get

E
{
etr
(
XXX†AAA+BBB†XXX

)}
= etr

(
ΣΣΣ−1MMM 1ΨΨΨ

−1MMM †
2

)
. (69)

By comparing both the sides of (67), we have

MMM 1 = ΣAΨΣAΨΣAΨ (70)

MMM 2 = ΣBΨΣBΨΣBΨ. (71)

Finally, substituting (70) and (71) into (69) completes theproof.

11If XXX = (Xij) is anm× n matrix of functionally independent complex variables, then

dXXX =
m∏

i=1

n∏

j=1

dℜXij dℑXij .
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Lemma 3:Let XXX ∼ Ñm,n (MMM,ΣΣΣ,ΨΨΨ). Then, the characteristic function ofXXX is

ΦXXX (ZZZ) , E

{

exp
[
ℜ tr

(
XZXZXZ†)]

}

= exp

[

ℜ tr
(
MZMZMZ†)− 1

4
tr
(
ΣΣΣZZZΨΨΨZZZ†)

]

(72)

where =
√
−1 andZZZ ∈ C

m×n is an arbitrary matrix.

Proof: Let XXX1 ∼ Ñm,n (000m×n,ΣΣΣ,ΨΨΨ). Then,

ΦXXX (ZZZ) = exp
[
ℜ tr

(
MZMZMZ†)] · E

{
exp

[
ℜ tr

(
XXX1ZZZ

†)]} . (73)

Since

ℜ tr
(
XXX1ZZZ

†) =
1

2
tr
(
ZZZ†XXX1 +XXX†

1ZZZ
)
, (74)

it follows from Lemma 2 that

E
{
exp

[
ℜ tr

(
XXX1ZZZ

†)]} = etr

(

−1

4
ΣΣΣZZZΨΨΨZZZ†

)

. (75)

Combining (73) and (75) completes the proof.

We remark that Lemma 3 is a counterpart result of the real casein [72, Theorem 2.3.2].

B. Hypergeometric Functions of Matrix Arguments

The hypergeometric functions of matrix arguments often appear in deriving the distributions

and statistics of random matrices [72]–[76]. In parallel tothe hypergeometric functions of a

scalar argument, the hypergeometric functions of one or twomatrix arguments can be expressed

as an infinite series of zonal polynomials:12

pF̃q (a1, . . . , ap; b1, . . . , bq;AAA) =
∞∑

k=0

∑

κ

[a1]κ · · · [ap]κ
[b1]κ · · · [bq]κ

C̃κ (AAA)

k!
(76)

12Zonal polynomials of a symmetric matrix were introduced in [73] using group representation theory. In parallel to a real

matrix argument, zonal polynomials of a Hermitian matrix were defined in [74] as natural extension of the real case. Those

polynomials are homogeneous symmetric functions in the eigenvalues of matrix argument and can be constructed in terms

of homogeneous symmetric polynomials such as monomial symmetric functions, elementary symmetric functions, and Schur

functions [77].
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pF̃
(n)
q (a1, . . . , ap; b1, . . . , bq;AAA,BBB) =

∞∑

k=0

∑

κ

[a1]κ · · · [ap]κ
[b1]κ · · · [bq]κ

C̃κ (AAA) C̃κ (BBB)

k! C̃κ (IIIn)
(77)

with HermitianAAA ∈ Cn×n andBBB ∈ Cn×n. In (76) and (77),κ = (k1, k2, . . . , kn) denotes a

partition of the nonnegative integerk such thatk1 ≥ k2 ≥ . . . ≥ kn ≥ 0 and
∑n

i=1 ki = k,

[a]κ is the complex multivariate hypergeometric coefficient of the partitionκ [74, eq. (84)], and

C̃κ (·) is the zonal polynomial of a Hermitian matrix [74, eq. (85)].Although these functions are

of great interest from an analytical point of view, the practical difficulty lies in their numerical

aspects. The determinantal representation for the hypergeometric function of two Hermitian

matrices [76, Lemma 3] settles this computational problem and has been widely used in the

literature of multiple-antenna communication theory (see, e.g., [22], [23], [55], [56]). However,

[76, Lemma 3] is valid only for the case of two matrix arguments with the same dimension

and the distinct eigenvalues. In the following lemma, we generalize [76, Lemma 3] for the case

that two matrix arguments have the different matrix dimension and the eigenvalues of arbitrary

multiplicity.

Lemma 4 (Generic Determinantal Formula):Let ΛΛΛ ∈ Cm×m and ΣΣΣ ∈ Cn×n, m ≤ n, be

Hermitian matrices with the ordered eigenvaluesλ1 ≥ λ2 ≥ . . . ≥ λm andσ1 ≥ σ2 ≥ . . . ≥ σn,

respectively. Givenai, bj ∈ C wherei = 1, 2, . . . , p and j = 1, 2, . . . , q, define

Hn,ν
p,q (x) , pFq (a1 − n+ ν, . . . , ap − n+ ν; b1 − n+ ν, . . . , bq − n + ν; x) (78)

χn,ν
p,q ,

∏q
j=1 (bj − n + 1)ν

∏p
i=1 (ai − n+ 1)ν

(79)

whereν is an arbitrary nonnegative integer,(a)n = a (a+ 1) · · · (a+ n− 1), (a)0 = 1 is the

Pochhammer symbol, andpFq (a1, a2, . . . , ap; b1, b2, . . . , bq; z) is the generalized hypergeometric

function of scalar argument [78, eq. (9.14.1)]. Then,

pF̃
(n)
q (a1, . . . , ap; b1, . . . , bq;ΛΛΛ,ΣΣΣ) ·

m∏

i<j

(λj − λi)

=
Km,n

p,q

det (ΛΛΛ)n−m ·
det

([
ZZZ(n−m),1 ZZZ(n−m),2 · · · ZZZ(n−m),̺(ΣΣΣ)

YYY1 YYY2 · · · YYY̺(ΣΣΣ)

])

det
([
ZZZ(n),1 ZZZ (n),2 · · · ZZZ(n),̺(ΣΣΣ)

]) (80)
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with

Km,n
p,q =

m∏

i=1

χn,n−i
p,q · (n− i)! (81)

whereYYYk = (Yk,ij) andZZZ(l),k =
(
Z(l),k,ij

)
, l ≤ n, k = 1, 2, . . . , ̺ (ΣΣΣ), arem × τk (ΣΣΣ) and

l × τk (ΣΣΣ) matrices, whose(i, j)th entries are given respectively by

Yk,ij =
λj−1
i

χn,j−1
p,q

· Hn,j
p,q

(
λiσ〈k〉

)
(82)

Z(l),k,ij = (i− j + 1)j−1 σ
i−j
〈k〉 . (83)

In particular, for0F̃
(n)
0 (ΛΛΛ,ΣΣΣ), Km,n

p,q in (81) and the(i, j)th entry ofYYYk in (82) reduce to

Km,n
0,0 =

m∏

i=1

(n− i)! (84)

Yk,ij = λj−1
i eλiσ〈k〉 . (85)

Proof: Let us dilate them × m matrix ΛΛΛ to the n × n matrix ΛΛΛ ⊕ 000n−m by affixing

zero elements. Then, this augmented matrixΛΛΛ ⊕ 000n−m has the eigenvaluesλ1, λ2, . . . , λm and

(n−m) additional zero eigenvalues. Note that zonal polynomials depend on its Hermitian matrix

arguments through Schur functions in the eigenvalues of matrix arguments [74]–[77]. Since Schur

functions are invariant to augmenting zero elements [79], it is easy to show that

C̃κ (ΛΛΛ⊕ 000n−m) = C̃κ (ΛΛΛ) . (86)

Let λm+1, λm+2, . . . , λn be (n−m) additional zero eigenvalues and denote the left-hand side of

(80) byLHS(80) for convenience. Then, it follows from (86) and [76, Lemma 3]that

LHS(80) = Kn,n
p,q

det
1≤i,j≤n

(
Hn,1

p,q (λiσj)
)

∏n
i<j (λj − λi) (σj − σi)

·
m∏

i<j

(λj − λi) . (87)

From a computational point of view, (87) presents numericaldifficulty since the Vandermonde

determinant
∏n

i<j (λj − λi) or
∏n

i<j (σj − σi) becomes zero when some of theλi’s or σi’s are
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equal. This can be alleviated by using Cauchy’s mean value theorem (or L’Hôspital’s rule):

LHS(80) = Kn,n
p,q lim

σσσ→σ̃σσ
lim

{λk}nk=m+1→0

det
1≤i,j≤n

(
Hn,1

p,q (λiσj)
)

∏n
i<j (λj − λi) (σj − σi)

·
m∏

i<j

(λj − λi) (88)

whereσσσ → σ̃σσ means that

{
σi
}τ1(ΣΣΣ)

i=1
→ σ〈1〉,

{
σi
}τ1(ΣΣΣ)+τ2(ΣΣΣ)

i=τ1(ΣΣΣ)+1
→ σ〈2〉,

...
{
σi
}n

i=n−τ̺(ΣΣΣ)(ΣΣΣ)+1
→ σ〈̺(ΣΣΣ)〉.

Let n-dimensional vectorsuuu (z) andvvv (z) be

uuu (z) =
(
Hn,1

p,q (σ1z) ,Hn,1
p,q (σ2z) , . . . ,Hn,1

p,q (σnz)
)

(89)

vvv (z) =
(
1, z, . . . , zn−1

)
(90)

and letuuu(k) (z) andvvv(k) (z) be thekth derivatives ofuuu (z) andvvv (z) with respect toz, respectively.

Note that thejth componentsu(k)j (z) and v(k)j (z), j = 1, 2, . . . , n, of uuu(k) (z) andvvv(k) (z) are

given respectively by

u
(k)
j (z) =

σk
j

χn,k
p,q

· Hn,k+1
p,q (σjz) (91)

v
(k)
j (z) = (j − k)k z

j−k−1 (92)

where (91) follows from the differentiation identity of [80, eq. (7.2.3.47)]. Then, taking the limits

on λk’s, we get

lim
{λk}nk=m+1→0

det
1≤i,j≤n

(
Hn,1

p,q (λiσj)
)

∏n
i<j (λj − λi)

=
det
([

UUUA
UUUB

])

det
([

VVV A
VVV B

]) (93)

with the (n−m)× n matrices
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UUUA = (UA,ij) =








uuu(0) (0)
uuu(1) (0)

...
uuu(n−m−1) (0)








(94)

VVV A = (VA,ij) =








vvv(0) (0)
vvv(1) (0)

...
vvv(n−m−1) (0)







, (95)

and them × n matricesUUUB =
(
Hn,1

p,q (λiσj)
)

andVVV B =
(
λj−1
i

)
. From (91) and (92), it is easy

to see that the(i, j)th entries ofUUUA andVVV A are given respectively by

UA,ij = u
(i−1)
j (0) =

σi−1
j

χn,i−1
p,q

(96)

VA,ij = v
(i−1)
j (0) =

{
(i− 1)! , if i = j

0 , otherwise.
(97)

Now, using the result on the determinant of a partitioned matrix

det

([
AAA BBB
CCC DDD

])

= det (AAA) det
(
DDD −CCCAAA−1BBB

)
, if AAA is invertible, (98)

we have

det

([
VVV A

VVV B

])

=

n−m∏

l=1

(l − 1)! · det













λn−m
1 λn−m+1

1 · · · λn−1
1

λn−m
2 λn−m+1

2 · · · λn−1
2

...
...

. . .
...

λn−m
m λn−m+1

m · · · λn−1
m













=

n−m∏

l=1

(l − 1)!

m∏

k=1

λn−m
k

m∏

i<j

(λj − λi) . (99)

Hence, combining (88), (93), and (99) gives

LHS(80) =
Km,n

p,q

det (ΛΛΛ)n−m lim
σσσ→σ̃σσ

det
([

ŨUUA
UUUB

])

∏n
i<j (σj − σi)

(100)
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whereŨUUA =
(
σi−1
j

)
is the(n−m)×n submatrix of the Vandermonde matrix ofσ1, σ2, . . . , σn.

Using similar steps leading to (93), we obtain

lim
σσσ→σ̃σσ

det
([

ŨUUA
UUUB

])

∏n
i<j (σj − σi)

=

det

([
ZZZ(n−m),1 ZZZ(n−m),2 · · · ZZZ(n−m),̺(ΣΣΣ)

YYY1 YYY2 · · · YYY̺(ΣΣΣ)

])

det
([
ZZZ(n),1 ZZZ(n),2 · · · ZZZ(n),̺(ΣΣΣ)

]) (101)

where the(i, j)th entries ofm × τk (ΣΣΣ) matricesYYYk and l × τk (ΣΣΣ) matricesZZZ (l),k, l ≤ n,

k = 1, 2, . . . , ̺ (ΣΣΣ), are given by (82) and (83), respectively. Finally, substituting (101) into

(100) completes the proof of the lemma.

As a by-product of Lemma 4, we obtain the following determinantal formula for the hyper-

geometric function of one matrix argument.

Corollary 3: If ΣΣΣ = IIIn in Lemma 4, then we have

pF̃q (a1, . . . , ap; b1, . . . , bq;ΛΛΛ) ·
m∏

i<j

(λj − λi) = det
1≤i,j≤m

(
λj−1
i Hn,n−m+j

p,q (λi)
)
. (102)

Proof: The result follows immediately from (98) and Lemma 4 with̺ (ΣΣΣ) = 1, τ1 (ΣΣΣ) = n,

andσ〈1〉 = 1.

C. Some Statistics

Lemma 5:Let XXX ∼ Ñm,n (000m×n,ΣΣΣ,ΨΨΨ). Then, forAAA ∈ Cm×m ≥ 0 andBBB ∈ Cn×n ≥ 0, the

kth-order cumulant oftr
(
AXBXAXBXAXBX†) is

Cumk

{

tr
(
AXBXAXBXAXBX†)

}

, (−1)k
dk

dsk
lnφtr(AXBXAXBXAXBX†) (s)

∣
∣
∣
∣
s=0

= (k − 1)! tr
{
(AΣAΣAΣ)k

}
tr
{
(ΨBΨBΨB)k

}
(103)

whereφtr(AXBXAXBXAXBX†) (s) , E
{
etr
(
−sAXBXAXBXAXBX†)} is the MGF oftr

(
AXBXAXBXAXBX†).

Proof: Since

tr
(
AXBXAXBXAXBX†) =

(
vec
(
XXX†))†(AAAT ⊗BBB

)
vec
(
XXX†)
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is a quadratic form in complex Gaussian variables, whose characteristic function has been

reported in [81], it can be readily shown that

φtr(AXBXAXBXAXBX†) (s) = det
{
IIImn + s

(
ΣΣΣT ⊗ΨΨΨ

)(
AAAT ⊗BBB

)}−1

= det (IIImn + sAΣAΣAΣ⊗ΨBΨBΨB)−1 . (104)

Therefore,

dk

dsk
lnφtr(AXBXAXBXAXBX†) (s) = (−1)k (k − 1)! tr

{[

(IIImn + sAΣAΣAΣ⊗ΨBΨBΨB)−1 (AΣAΣAΣ⊗ΨBΨBΨB)
]k
}

. (105)

Hence, we obtain the result (103) from (105) withs = 0.

We remark that the cumulants, except for the first-order cumulant, are invariant with respect

to translations of a random variable. The first and second order cumulants are the mean and

variance of the underlying random variable, respectively,and other higher-order statistics can

also be obtained from general relationships between the cumulants and moments. Lemma 5

reveals that all cumulants oftr
(
AXBXAXBXAXBX†) as functionals of the eigenvalues ofAΣAΣAΣ andΨBΨBΨB are

MIS.

Lemma 6:Let XXX ∼ Ñm,n (000m×n,ΣΣΣ,ΨΨΨ). Then, forAAA ∈ Cm×m ≥ 0 andBBB ∈ Cn×n ≥ 0, we

have

E

{

tr
[(
AXBXAXBXAXBX†)2

]}

= tr2 (AΣAΣAΣ) tr
{
(ΨBΨBΨB)2

}
+ tr2 (ΨBΨBΨB) tr

{
(AΣAΣAΣ)2

}
. (106)

Proof: We first start with the characteristic function ofSSS = (Sij) = AAA1/2XXXBBB1/2. Let

Σ̃ΣΣ =
(
Σ̃ij

)
= AAA1/2ΣΣΣAAA1/2 andΨ̃ΨΨ =

(
Ψ̃ij

)
= BBB1/2ΨΨΨBBB1/2. Then,

ΦSSS (ZZZ) = E

{

exp
[

ℜ tr
(
AAA1/2XXXBBB1/2ZZZ†)

]}

= ΦXXX

(

AAA1/2ZZZBBB1/2
)

(a)
= etr

(

−1

4
Σ̃ΣΣZZZΨ̃ΨΨZZZ†

)

= eϕ(ZZZ) (107)

where (a) follows from Lemma 3 and

ϕ (ZZZ) = −1

4

m∑

i=1

m∑

p=1

n∑

q=1

n∑

j=1

Σ̃ipZpjΨ̃jqZ
∗
iq. (108)
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It follows from the characteristic functionΦSSS (ZZZ) in (107) that

E
{
Si1j1S

∗
i2j2
Si3j3S

∗
i4j4

}
=

1

4
∂ΦSSS (ZZZ)

∂Zi1j1∂Z
∗
i2j2
∂Zi3j3∂Z

∗
i4j4

∣
∣
∣
∣
ZZZ=000

=
1

4

[
∂ϕ3 (ZZZ)

∂ℜZi4j4

− 
∂ϕ3 (ZZZ)

∂ℑZi4j4

]∣
∣
∣
∣
ZZZ=000

= Σ̃i1i2Ψ̃
∗
j1j2

Σ̃i3i4Ψ̃
∗
j3j4

+ Σ̃i1i4Ψ̃
∗
j1j4

Σ̃i3i2Ψ̃
∗
j3j2

(109)

with

ϕ1 (ZZZ) = eϕ(ZZZ)

[
∂ϕ (ZZZ)

∂ℜZi1j1

+ 
∂ϕ (ZZZ)

∂ℑZi1j1

]

(110)

ϕ2 (ZZZ) =
∂ϕ1 (ZZZ)

∂ℜZi2j2

− 
∂ϕ1 (ZZZ)

∂ℑZi2j2

(111)

ϕ3 (ZZZ) =
∂ϕ2 (ZZZ)

∂ℜZi3j3

+ 
∂ϕ2 (ZZZ)

∂ℑZi3j3

. (112)

Using (109), we obtain

EXXX

{

tr
[(
AXBXAXBXAXBX†)2

]}

= ESSS

{

tr
[(
SSSSSS†)2

]}

=

m∑

i=1

n∑

p=1

n∑

q=1

m∑

j=1

E
{
SipS

∗
jpSjqS

∗
iq

}

=
m∑

i=1

n∑

p=1

n∑

q=1

m∑

j=1

(

Σ̃ijΨ̃ppΣ̃jiΨ̃qq + Σ̃iiΨ̃pqΣ̃jjΨ̃qp

)

= tr2
(
Σ̃ΣΣ
)
tr
(
Ψ̃ΨΨ

2)
+ tr2

(
Ψ̃ΨΨ
)
tr
(
Σ̃ΣΣ

2)
(113)

from which (106) follows readily.

Theorem 7:Let XXX1 ∼ Ñm,p (000m×p,ΣΣΣ1,ΨΨΨ1) andXXX2 ∼ Ñp,n (000p×n,ΣΣΣ2,ΨΨΨ2) be statistically

independent complex Gaussian matrices. Then,

EXXX1,XXX2

{

tr2
(
XXX1XXX2XXX

†
2XXX

†
1

)}

= tr
(
ΣΣΣ2

1

)
tr2 (ΨΨΨ1ΣΣΣ2) tr

(
ΨΨΨ2

2

)
+ tr

(
ΣΣΣ2

1

)
tr2 (ΨΨΨ2) tr

{
(ΨΨΨ1ΣΣΣ2)

2}

+ tr2 (ΣΣΣ1) tr
{
(ΨΨΨ1ΣΣΣ2)

2} tr
(
ΨΨΨ2

2

)
+ tr2 (ΣΣΣ1) tr

2 (ΨΨΨ1ΣΣΣ2) tr
2 (ΨΨΨ2) (114)

July 5, 2006 DRAFT



34 REVISED FOR PUBLICATION IN THE IEEE TRANSACTIONS ON INFORMATION THEORY

and

EXXX1,XXX2

{

tr
[(
XXX1XXX2XXX

†
2XXX

†
1

)2
]}

= tr2 (ΣΣΣ1) tr
2 (ΨΨΨ1ΣΣΣ2) tr

(
ΨΨΨ2

2

)
+ tr2 (ΣΣΣ1) tr

2 (ΨΨΨ2) tr
{
(ΨΨΨ1ΣΣΣ2)

2}

+ tr
{
(ΨΨΨ1ΣΣΣ2)

2} tr
(
ΨΨΨ2

2

)
tr
(
ΣΣΣ2

1

)
+ tr2 (ΨΨΨ1ΣΣΣ2) tr

2 (ΨΨΨ2) tr
(
ΣΣΣ2

1

)
. (115)

Proof: Using the first two cumulants from Lemma 5, we get

EXXX1,XXX2

{

tr2
(
XXX1XXX2XXX

†
2XXX

†
1

)}

= EXXX2

{

tr
(
ΣΣΣ2

1

)
tr
[(
XXX2XXX

†
2ΨΨΨ1

)2
]

+ tr2 (ΣΣΣ1) tr
2
(
XXX2XXX

†
2ΨΨΨ1

)}

(116)

where it follows from Lemma 6 that

EXXX2

{

tr
[(
XXX2XXX

†
2ΨΨΨ1

)2
]}

= tr2 (ΨΨΨ1ΣΣΣ2) tr
(
ΨΨΨ2

2

)
+ tr2 (ΨΨΨ2) tr

{
(ΨΨΨ1ΣΣΣ2)

2} (117)

and from Lemma 5 that

EXXX2

{

tr2
(
XXX2XXX

†
2ΨΨΨ1

)}

= tr
{
(ΨΨΨ1ΣΣΣ2)

2} tr
(
ΨΨΨ2

2

)
+ tr2 (ΨΨΨ1ΣΣΣ2) tr

2 (ΨΨΨ2) . (118)

Combining (116)–(118) yields the desired result (114).

Similar to (116), we have

EXXX1,XXX2

{

tr
[(
XXX1XXX2XXX

†
2XXX

†
1

)2
]}

= EXXX2

{

tr2 (ΣΣΣ1) tr
[(
XXX2XXX

†
2ΨΨΨ1

)2
]

+ tr2
(
XXX2XXX

†
2ΨΨΨ1

)
tr
(
ΣΣΣ2

1

)}

. (119)

From (117)–(119), we obtain the desired result (115).

Theorem 8:Let XXX ∼ Ñm,n (000m×n,ΣΣΣ, IIIn), m ≤ n, andσ1, σ2, . . . , σm be the eigenvalues of

ΣΣΣ in any order. Then, the joint pdf of the ordered eigenvaluesλ1 ≥ λ2 ≥ . . . ≥ λm > 0 of a

central complex Wishart matrixXXXXXX† ∼ W̃m (n,ΣΣΣ) is given by

pλλλ (λ1, λ2, . . . , λm) = A−1 det
([
GGG1 GGG2 · · · GGG̺(ΣΣΣ)

])
det

1≤i,j≤m

(
λi−1
j

)
m∏

k=1

λn−m
k (120)

where
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A = Km,n
0,0 · det

([
BBB1 BBB2 · · · BBB̺(ΣΣΣ)

])
(121)

andGGGk =
(
Gk,ij

)
andBBBk =

(
Bk,ij

)
, k = 1, 2, . . . , ̺ (ΣΣΣ), arem× τk (ΣΣΣ) matrices, whose(i, j)th

entries are given respectively by

Gk,ij = λj−1
i e−λi/σ〈k〉 (122)

Bk,ij = (−1)i−j (i− j + 1)j−1 σ
n−i+j
〈k〉 . (123)

Proof: The joint eigenvalue densitypλλλ (λ1, λ2, . . . , λm) is given by [74, eq. (95)] in terms

of the hypergeometric function of matrix arguments. To render this joint pdf more amenable

to further analysis and computationally tractable, we apply Lemma 4 to [74, eq. (95)], which

results in (120) after some algebra.

Note that (120) is valid for any covariance matrixΣΣΣ with the eigenvalues of arbitrary multiplic-

ity and hence, generalizes the previous determinantal representation for the joint eigenvalue pdf of

Wishart matrices. IfΣΣΣ = IIIm in Theorem 8, all of the eigenvalues are identically equal toone and

hence, with̺ (ΣΣΣ) = 1, τ1 (ΣΣΣ) = m, andσ〈1〉 = 1, (120) reduces to [22, eq. (6)]. Furthermore, if all

the eigenvalues ofΣΣΣ are distinct, then, with̺ (ΣΣΣ) = m andτ1 (ΣΣΣ) = τ2 (ΣΣΣ) = . . . = τm (ΣΣΣ) = 1,

(120) reduces to [22, eq. (18)].

Theorem 9:Let XXX ∼ Ñm,n (000m×n, IIIm,ΨΨΨ), m ≤ n, AAA ∈ Cn×n be Hermitian positive definite,

and β1, β2, . . . , βn be the eigenvalues ofAAA1/2ΨΨΨAAA1/2 in any order. Then, the joint pdf of the

ordered eigenvaluesλ1 ≥ λ2 ≥ . . . ≥ λm > 0 of a matrix quadratic formXAXXAXXAX† is given by

pλλλ (λ1, λ2, . . . , λm)

=

det

([
VVV(n−m),1 VVV(n−m),2 · · · VVV(n−m),̺(AAA1/2ΨΨΨAAA1/2)
QQQ1 QQQ2 · · · QQQ̺(AAA1/2ΨΨΨAAA1/2)

])

Km,m
0,0 det (AAAΨΨΨ)m det

([

VVV(n),1 VVV(n),2 · · · VVV(n),̺(AAA1/2ΨΨΨAAA1/2)

]) det
1≤i,j≤m

(
λi−1
j

)
(124)

whereQQQk =
(
Qk,ij

)
and VVV(l),k =

(
V(l),k,ij

)
, l ≤ n, k = 1, 2, . . . , ̺

(
AAA1/2ΨΨΨAAA1/2

)
, arem ×
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τk
(
AAA1/2ΨΨΨAAA1/2

)
and l× τk

(
AAA1/2ΨΨΨAAA1/2

)
matrices, whose(i, j)th entries are given respectively by

Qk,ij = λj−1
i e−λi/β〈k〉 (125)

V(l),k,ij = (−1)i−j (i− j + 1)j−1 β
−i+j
〈k〉 . (126)

Proof: Let SSS = XAXXAXXAX†, thenSSS ∼ Q̃m,n (AAA,IIIm,ΨΨΨ) is a positive-definite quadratic form

in the complex Gaussian matrix [21, Definition II.3]. Using the pdf [23, (2)], we can write the

joint eigenvalue pdf ofSSS in the form

pλλλ (λ1, λ2, . . . , λm) =
πm(m−1)

Γ̃m (m)

∫

UUU∈U(m)

pSSS
(
UDUUDUUDU †)

m∏

i<j

(λi − λj)
2 [dUUU ]

=
πm(m−1) det (AΨAΨAΨ)−m

Γ̃m (n) Γ̃m (m)
0F̃

(n)
0

(
DDD,−ΨΨΨ−1AAA−1

)
m∏

k=1

λn−m
k

m∏

i<j

(λi − λj)
2

(127)

whereDDD = diag (λ1, λ2, . . . , λm), Γ̃m (α) = πm(m−1)/2
∏m−1

i=0 Γ (α− i) with ℜ (α) > m − 1 is

the complex multivariate gamma function andΓ (·) is the gamma function. In (127),U (m) =
{
UUU : UUUUUU † = IIIm

}
is the unitary group of orderm and[dUUU ] is the unitary invariant Haar measure

on the unitary groupU (m) normalized to make the total volume unity. Similar to Theorem 8,

we obtain the desired result (124) applying Lemma 4 to (127).

Definition 4 (Characteristic Coefficient):LetAAA be ann×n Hermitian matrix with the eigen-

valuesα1, α2, . . . , αn in any order. Then, the(i, j)th characteristic coefficientXi,j (AAA), i =

1, 2, . . . , ̺ (AAA), j = 1, 2, . . . , τi (AAA), is defined as a partial fraction expansion coefficient of

det (IIIn + ξAAA)−1 such that

det (IIIn + ξAAA)−1 =

̺(AAA)
∏

i=1

(
1 + ξα〈i〉

)−τi(AAA)

=

̺(AAA)
∑

i=1

τi(AAA)
∑

j=1

Xi,j (AAA)
(
1 + ξα〈i〉

)−j
(128)

whereξ is a scalar constant such thatIIIn+ξAAA is nonsingular. The(i, j)th characteristic coefficient
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Xi,j (AAA) can be determined by

Xi,j (AAA) =
1

̟i,j!α
̟i,j

〈i〉
·
[

d̟i,j

dυ̟i,j

(
1 + υα〈i〉

)τi(AAA)
det (IIIn + υAAA)−1

]∣
∣
∣
∣
∣
υ=−1/α

〈i〉

=
(−1)̟i,j

α
̟i,j

〈i〉

∑

k1+k2+...+k̺(AAA)=̟i,j

kl∈{0,N} for ∀l 6=i
ki=0

̺(AAA)
∏

l=1
l 6=i

(
τl (AAA) + kl − 1

kl

)
αkl
〈l〉

(

1− α
〈l〉

α
〈i〉

)τl(AAA)+kl
(129)

where̟i,j = τi (AAA)− j.

Note that the characteristic coefficients are invariant with respect to the constantξ and only

a function of the spectra ofAAA. In addition, it can be seen from (128) withξ = 0 that the sum

of all the characteristic coefficients is equal to one. By definition, we have

X1,j (IIIn) =

{
0, j = 1, 2, . . . , n− 1

1, j = n.
(130)

Example 6 (Constant Correlation Matrix):Consider a constant correlation matrixΦΦΦ(c)
n (ρ).

Since the eigenvalues ofΦΦΦ(c)
n (ρ) are 1 + (n− 1) ρ and 1 − ρ with n − 1 multiplicity, it is

easy to show that the characteristic coefficients ofΦΦΦ(c)
n (ρ), ρ ∈ (0, 1), are

X1,1

(
ΦΦΦ(c)

n (ρ)
)
=

(
nρ

1− ρ+ nρ

)−n+1

(131)

X2,j

(
ΦΦΦ(c)

n (ρ)
)
= − 1− ρ

1− ρ+ nρ
·
(

nρ

1− ρ+ nρ

)−n+j

(132)

wherej = 1, 2, . . . , n− 1.

Theorem 10:Let XXX ∼ Ñm,n (000m×n,ΣΣΣ, IIIn), m ≤ n, andσ1, σ2, . . . , σm be the eigenvalues of

ΣΣΣ. LetAAA be aν × ν positive-semidefinite matrix with the eigenvaluesα1, α2, . . . , αν . Then, for

ξ ≥ 0, we have

E

{

det
(
IIImν + ξ AAA⊗XXXXXX†)−1

}

= A−1 det
([
ΩΩΩ1 ΩΩΩ2 · · · ΩΩΩ̺(ΣΣΣ)

])
(133)

July 5, 2006 DRAFT



38 REVISED FOR PUBLICATION IN THE IEEE TRANSACTIONS ON INFORMATION THEORY

whereA is given in (121) andΩΩΩk = (Ωk,ij), k = 1, 2, . . . , ̺ (ΣΣΣ), arem× τk (ΣΣΣ) matrices whose

(i, j)th entry is given by

Ωk,ij =

̺(AAA)
∑

p=1

τp(AAA)
∑

q=1

{

Xp,q (AAA) σ
n−m+i+j−1
〈k〉 (n−m+ i+ j − 2)!

× 2F0

(
n−m+ i+ j − 1, q ;−ξα〈p〉σ〈k〉

)}

(134)

whereXp,q (AAA) is the (p, q)th characteristic coefficient ofAAA.

Proof: From Theorem 8, we have

E

{

det
(
IIImν + ξ AAA⊗XXXXXX†)−1

}

= E







̺(AAA)
∏

p=1

det
(
IIIm + ξα〈p〉XXXXXX

†)−τp(AAA)







=

∫

· · ·
∫

0<λm≤...≤λ1<∞

m∏

k=1

̺(AAA)
∏

p=1

(
1 + ξα〈p〉λk

)−τp(AAA)
pλλλ
(
λ1, λ2, . . . , λm

)
dλ1dλ2 · · · dλm

(a)
=

1

m!A

∫ ∞

0

· · ·
∫ ∞

0
︸ ︷︷ ︸

m-fold

m∏

k=1






λn−m
k

̺(AAA)
∏

p=1

(
1 + ξα〈p〉λk

)−τp(AAA)







× det
([
GGG1 GGG2 · · · GGG̺(ΣΣΣ)

])
det

1≤i,j≤m

(
λi−1
j

)
dλ1dλ2 · · · dλm

(b)
= A−1 det

([
ΩΩΩ1 ΩΩΩ2 · · · ΩΩΩ̺(ΣΣΣ)

])
(135)

where(a) follows from the fact that the integrand is symmetric inλ1, λ2, . . . , λm and(b) follows

from the generalized Cauchy–Binet formula [22, Appendix],[23, Lemma 2], yielding the(i, j)th

entry ofm× τk (ΣΣΣ) matricesΩΩΩk, k = 1, 2, . . . , ̺ (ΣΣΣ), as

Ωk,ij =

∫ ∞

0

̺(AAA)
∏

p=1

(
1 + ξα〈p〉λ

)−τp(AAA)
λn−m+i+j−2e−λ/σ

〈k〉dλ. (136)

Using a partial fraction decomposition, (136) can be written as

Ωk,ij =

̺(AAA)
∑

p=1

τp(AAA)
∑

q=1

Xp,q (AAA)

∫ ∞

0

(
1 + ξα〈p〉λ

)−q
λn−m+i+j−2e−λ/σ

〈k〉dλ (137)
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where the characteristic coefficientsXp,q (AAA) is given by (129). We complete the proof of the

theorem by evaluating the integral in (137) with the help of the following integral identity:
∫ ∞

0

(1 + ax)µ−1 xn−1e−x/bdx = bn (n− 1)! 2F0 (n,−µ+ 1 ;−ab) (138)

wherea, b > 0, n ∈ N, andµ ∈ C.

Corollary 4: Let XXX ∼ Ñm,n (000m×n,ΣΣΣ, IIIn), m ≤ n. Then, forν ∈ N, we have

E

{

det
(
IIIm + ξXXXXXX†)−ν

}

=
det (ΩΩΩ)

∏m
i=1 (n− i)! (i− 1)!

(139)

whereΩΩΩ = (Ωij) is them×m Hankel matrix whose(i, j)th entry is given by

Ωij = (n−m+ i+ j − 2)! 2F0 (n−m+ i+ j − 1, ν ;−ξ) . (140)

Proof: It follows immediately from Theorem 10 withΣΣΣ = IIIm, AAA = IIIν , ̺ (ΣΣΣ) = 1,

τ1 (ΣΣΣ) = m, σ〈1〉 = 1, ̺ (AAA) = 1, τ1 (AAA) = ν, andα〈1〉 = 1.

Theorem 11:LetXXX ∼ Ñm,n (000m×n,ΣΣΣ,ΨΨΨ), σi, i = 1, 2, . . . , m, andψj , j = 1, 2, . . . , n, be the

eigenvalues ofΣΣΣ andΨΨΨ, respectively. Then, forξ ≥ 0, we have

E

{

det
(
IIIm + ξXXXXXX†)−1

}

=

̺(ΣΣΣ)
∑

p=1

̺(ΨΨΨ)
∑

q=1

τp(ΣΣΣ)
∑

i=1

τq(ΨΨΨ)
∑

j=1

Xp,i (ΣΣΣ)Xq,j (ΨΨΨ) 2F0

(
i, j ;−ξ σ〈p〉ψ〈q〉

)
(141)

whereXp,i (ΣΣΣ) andXq,j (ΨΨΨ) are the(p, i)th and(q, j)th characteristic coefficients ofΣΣΣ andΨΨΨ,

respectively.

Proof: It follows from Lemmas 1 and 2 that

det
(
IIIm + ξXXXXXX†)−1

= Eyyy1

{

etr
(

−ξXXX†yyy1yyy
†
1XXX
)}

= Eyyy1,yyy2

{

etr
(

ξyyy†1XXXyyy2 − yyy†2XXX
†yyy1

)}

(142)

whereyyy1 ∼ Ñm,1 (000m×1, IIIm, 1) andyyy2 ∼ Ñn,1 (000n×1, IIIn, 1). Denoting the left-hand side of (141)

by LHS(141) and using (142), we have

LHS(141) = Eyyy1,yyy2

{

EXXX

{

etr
(

ξyyy2yyy
†
1XXX −XXX†yyy1yyy

†
2

)}}

= Eyyy1,yyy2

{

exp
(

−ξyyy†1ΣΣΣyyy1yyy†2ΨΨΨyyy2
)}

. (143)
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Now, introducing a delta function to decouple the expectations foryyy1 andyyy2 in (143) yields

LHS(141) = Eyyy1,yyy2

{∫ ∞

−∞
e−ξzyyy†2ΨΨΨyyy2δ

(
z − yyy†1ΣΣΣyyy1

)
dz

}

(a)
=

1

2π
Eyyy1,yyy2

{∫ ∞

−∞

∫ ∞

−∞
e−ξzyyy†2ΨΨΨyyy2e(z−yyy†1ΣΣΣyyy1)ωdωdz

}

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
eωz Eyyy1

{

etr
(
−ωΣΣΣyyy1yyy†1

)}

Eyyy2

{

etr
(
−ξzΨΨΨyyy2yyy†2

)}

dωdz

(b)
=

1

2π

∫ ∞

−∞

∫ ∞

−∞
eωz det (IIIm + ωΣΣΣ)−1 det (IIIn + ξzΨΨΨ)−1 dωdz

(c)
=

1

2π

̺(ΣΣΣ)
∑

p=1

̺(ΨΨΨ)
∑

q=1

τp(ΣΣΣ)
∑

i=1

τq(ΨΨΨ)
∑

j=1

{

Xp,i (ΣΣΣ)Xq,j (ΨΨΨ)

×
∫ ∞

−∞

∫ ∞

−∞
eωz

(
1 + σ〈p〉ω

)−i(
1 + ξψ〈q〉z

)−j
dωdz

}

(144)

where(a) is obtained by replacing the delta function with its Fourierrepresentation,(b) follows

from Lemma 1, and(c) is obtained from Definition 4. Using the integral identity, for a > 0,

ℓ ∈ N, andz ∈ R,
∫ ∞

−∞
eωz (1 + aω)−ℓ dω =

πzℓ−1e−
√
z2/a

aℓ (ℓ− 1)!
(1 + sign (z)) , (145)

(144) can be written as

LHS(141) =

̺(ΣΣΣ)
∑

p=1

̺(ΨΨΨ)
∑

q=1

τp(ΣΣΣ)
∑

i=1

τq(ΨΨΨ)
∑

j=1

Xp,i (ΣΣΣ)Xq,j (ΨΨΨ)

σi
〈p〉 (i− 1)!

∫ ∞

0

(
1 + ξψ〈q〉z

)−j
zi−1e−z/σ

〈p〉dz. (146)

Finally, we obtain the desired result (141) by evaluating the integral in (146) with the help of

(138).

APPENDIX III

PROOFS

A. Proof of Theorem 1

We first prove Theorem 1 forM-ary phase shift keying (M-PSK) signaling. The SEP of the

OSTBC withM-PSK constellation can be expressed as [41], [42]

Pe, MPSK=
1

π

∫ Θ

0

φγSTBC

( g

sin2 θ
; γ̄
)

dθ (147)
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whereΘ = π − π/M andg = sin2 (π/M). From (147), we can obtain the upper bound as

Pe, MPSK≤
(

1− 1

M

)

φγSTBC (g; γ̄) (148)

which becomes tighter as̄γ increases [49], and hence yields

dSTBC = lim
γ̄→∞

− log φγSTBC (g; γ̄)

log γ̄
. (149)

Therefore, the asymptotic behavior of the MGFφγSTBC (s; γ̄) at largeγ̄ reveals a high-SNR slope

of the SEP curve.

Suppose that̄γ is sufficiently large. FornT ≤ nR, it follows from (7) that

log φγSTBC (g; γ̄) ≈ − rank
(

ΞΞΞ†
1ΞΞΞ1ΦΦΦS ⊗ΦΦΦT

)

︸ ︷︷ ︸

nT·min(nR,nS)

· log γ̄ + constant. (150)

Similarly, using (8), we have fornT > nR,

logφγSTBC (g; γ̄) ≈ − rank
(

ΦΦΦR ⊗ΞΞΞ2ΞΞΞ
†
2

)

︸ ︷︷ ︸

nR·min(nT,nS)

· log γ̄ + constant′. (151)

Hence,

dSTBC = min (nT, nR) ·min {max (nT, nR) , nS} (152)

from which (10) follows immediately. For a general case of arbitrary two-dimensional signaling

constellation with polygonal decision boundaries, the SEPcan be written as a convex combination

of terms akin to (147) [82]. Hence, we can easily generalize the proof to the case of any two-

dimensional signaling constellation.

B. Proofs of Property 1–3

1) Proof of Property 1: Let λ1, λ2, . . . , λn be the eigenvalues ofΦΦΦ. Then, the correlation

figure ζ (ΦΦΦ) defined in Definition 2 can be written as

ζ (ΦΦΦ) =
1

n2

n∑

k=1

λ2k (153)

which is symmetric inλ1, λ2, . . . , λn and holds Schur’s condition (61). Hence, we complete the

proof.
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2) Proof of Property 2: Since
∏m

i=1 ζ (ΦΦΦi) = ζ (
⊗m

i=1ΦΦΦi), it follows immediately from

Property 1.

3) Proof of Property 3: Let λ(i)1 , λ
(i)
2 , . . . , λ

(i)
n be the eigenvalues ofΦΦΦi (i = 1, 2, . . . , m).

Then,
∑m

i=1 ζ (ΦΦΦi) can be written as

m∑

i=1

ζ (ΦΦΦi) =

m∑

i=1

ni∑

k=1

(

λ
(i)
k

ni

)2

(154)

which is symmetric in
{

1
ni
λ
(i)
1 ,

1
ni
λ
(i)
2 , . . . ,

1
ni
λ
(i)
ni

}m

i=1
and holds Schur’s condition (61). Since

{
1
ni
λ
(i)
1 ,

1
ni
λ
(i)
2 , . . . ,

1
ni
λ
(i)
ni

}m

i=1
are the eigenvalues of

⊕m
i=1

1
ni
ΦΦΦi, we complete the proof.

C. Proof of Theorem 2

Using Theorem 7 in Appendix II, we get

E
{
‖HHH‖4F

}
= EΞΞΞ1,ΞΞΞ2

{

tr2
(

1

nS

ΞΞΞ1ΞΞΞ2ΞΞΞ
†
2ΞΞΞ

†
1

)}

=

(
nR

nS

)2

tr
(
ΦΦΦ2

T

)
tr
(
ΦΦΦ2

S

)
+ tr

(
ΦΦΦ2

T

)
tr
(
ΦΦΦ2

R

)
+

(
nT

nS

)2

tr
(
ΦΦΦ2

R

)
tr
(
ΦΦΦ2

S

)
+ (nTnR)

2 .

(155)

Combining (24), (25), and (155), together with the fact thatE
{
‖HHH‖2F

}
= nTnR, yields (31).

D. Proof of Theorem 3

In this case, the ergodic capacity (or Shannon-sense mean capacity) is given by the well-known

expression [2]–[4]

C (γ̄) = E

{

log2 det

(

IIInR
+

γ̄

nT

HHHHHH†
)}

bits/s/Hz (156)

which is achieved by the complex Gaussian inputXXX ∼ ÑnT,Nc

(
000nT×Nc,

P
nT
IIInT

, IIINc

)
.

From [53, (35)] and [53, Theorem 9], we get

Eb

N0 min
=

nT loge 2

E
{
‖HHH‖2F

} =
loge 2

nR
(157)
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and

S0 =
2
(
E
{
‖HHH‖2F

})2

E

{

tr
[(
HHHHHH†)2

]}

=
2 (nTnRnS)

2

EΞΞΞ1,ΞΞΞ2

{

tr

[(

ΞΞΞ1ΞΞΞ2ΞΞΞ
†
2ΞΞΞ

†
1

)2
]} . (158)

Using Definition 2 and Theorem 7 in Appendix II, (158) can be expressed in terms of the

correlation figures ofΦΦΦT, ΦΦΦR, andΦΦΦS as in (39).

E. Proof of Theorem 4

Due to the channel decoupling property of OSTBCs, the Shannon capacity of OSTBC MIMO

channels can be written as

CSTBC(γ̄) = R · E
{

log2

(

1 +
γ̄ ‖HHH‖2F
nTR

)}

bits/s/Hz (159)

which is achieved by complex Gaussian inputsxk ∼ CN
(
0, P

nTR
)
. From [53, (35)], [53, Theo-

rem 9] and the first two derivatives of (159) atγ̄ = 0, it is easy to show (44) and

SSTBC
0 =

2R
κ (‖HHH‖F)

(160)

from which and Theorem 2, (45) follows readily.
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