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Myopic Coding in Multiterminal Networks
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Abstract—This correspondence investigates the interplay between coop-
eration and achievable rates in multiterminal networks. Cooperation refers
to the process of nodes working together to relay data toward the destina-
tion. There is an inherent tradeoff between achievable information trans-
mission rates and the level of cooperation, which is determined by how
many nodes are involved and how the nodes encode/decode the data. We
illustrate this tradeoff by studying information-theoretic decode–forward-
based coding strategies for data transmission in multiterminal networks.
Decode-forward strategies are usually discussed in the context of omni-
scient coding, in which all nodes in the network fully cooperate with each
other, both in encoding and decoding. In this correspondence, we investi-
gate myopic coding, in which each node cooperates with only a few neigh-
boring nodes. We show that achievable rates of myopic decode–forward
can be as large as that of omniscient decode–forward in the low signal-to-
noise ratio (SNR) regime. We also show that when each node has only a
few cooperating neighbors, adding one node into the cooperation increases
the transmission rate significantly. Furthermore, we show that myopic de-
code–forward can achieve nonzero rates as the network size grows without
bound.

Index Terms—Achievable rates, decode–forward, multiple-relay
channel, multiterminal network, myopic coding.

I. INTRODUCTION

A. Wireless Networks

Wireless networks have been receiving much attention recently by
both researchers and industry. The main advantage of wireless tech-
nology to users is the seamless access to the network whenever and
wherever they are; to service providers, easier deployment, as no cable
laying is required. Examples of wireless networks include cellular mo-
bile networks, Wi-Fi networks, and sensor networks. A large amount
of research has been carried out recently on various aspects of wireless
networks, including power saving [1], [2], routing [3]–[5], transport ca-
pacity [6], [7], and connectivity [8]. In this correspondence, we focus
on transmission rates in multiterminal wireless networks.

Analyzing transmission rates in multiterminal networks is not easy.
Consider the single-relay channel [9], [10], a channel consisting of one
source, one relay, and one destination. Even for this simple three-ter-
minal network, the capacity is not known except for a few special cases,
e.g., the degraded relay channel [9]. This hints at the difficulty of ana-
lyzing multiterminal networks. We attempt to investigate an excerpt of
the multiterminal network by looking at data transmission from a single
source to a single destination, from multiple sources to a single destina-
tion, and from a single source to multiple destinations, with the help of
relay(s). Appropriate models for these types of networks are the mul-
tiple-relay channel [11], [12] (an extension of the single-relay channel),
the multiple-access relay channel [13], [14], and the broadcast relay
channel [15], respectively. The reason for using relays, which have no
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data of their own to send, in the network is as follows. Direct trans-
mission from the source to a far-situated destination may require high
transmission power (due to the path loss of electromagnetic wave prop-
agation). Since wireless networks operate over a shared medium, this
can create direct interference to other users. Transmitting data via in-
termediate relays, using multiple-hop routing or cooperative relaying,
can help to decrease the transmit power and reduce multiuser interfer-
ence.

B. Point-to-Point Coding

A common approach to data transmission is to abstract the wire-
less network into a communication graph, with an edge connecting two
nodes if they can communicate. Data communication happens by iden-
tifying a route, which is a sequence of nodes that connect the source
to the destination. Each node sends data to the next node in the route
and decodes data from the previous node in the route. Transmissions of
other nodes are treated as noise. We call this coding strategy point-to-
point coding in a multiterminal network. This way of transmitting data
from the source to the destination is commonly called multihop routing
in the communications and networking literature. The terms coding and
coding strategy are used interchangeably in this correspondence.

C. Omniscient Coding

Point-to-point coding ignores the inherent broadcast nature of the
wireless channel, i.e., that a node can hear transmissions meant for
other nodes, and thus it can act as a relay for them. Clearly, the best
thing to do is for all nodes to cooperate, helping the source to send its
data to the destination. This requires every node to be aware of the pres-
ence of other nodes and to have knowledge of the processing they do.
We refer to coding strategies that utilize the global view and complete
cooperation as omniscient coding. In the literature, omniscient coding
strategies were investigated for multiterminal networks, e.g., the mul-
tiple-access relay channel, the broadcast relay channel [16], [17], and
the multiple-relay channel [7], [12], [18]. While the rates achievable
by omniscient coding strategies are higher than those achievable by
point-to-point coding strategies in these channels, there are a number
of practical difficulties in implementing complete cooperation, e.g., i)
designing codes based on omniscient coding is more difficult as it in-
volves the optimization of the whole network, ii) the failure of one node
affects the decoding of all other nodes, and iii) all nodes need to be syn-
chronized (for some coding strategies).

D. Myopic Coding

In view of these practical issues, we investigate myopic coding,
coding strategies with constrained communications, e.g., node have
a local view of the network, and limited cooperation. Myopic coding
positions itself between point-to-point coding and omniscient coding.
In myopic coding, communications of the nodes are constrained in
such a way that a node communicates with more than two nodes (as op-
posed to point-to-point coding) but not with all the nodes (as opposed
to omniscient coding) in the network. Myopic coding incorporates
local cooperation. It allows cooperation among neighboring nodes to
increase the transmission rate compared to point-to-point coding. On
the other hand, it partially solves the practical difficulties encountered
in omniscient coding. In this correspondence, we illustrate myopic
coding by using decode–forward-based coding strategies.

We derive achievable rates of myopic coding strategies for the mul-
tiple-relay channel, the multiple-access relay channel, and the broad-
cast channel. We compare the performance of myopic coding to that
of omniscient coding in these channels and show the tradeoff between
achievable rates and complexity.

E. Contributions

The primary aim of this work is to understand how to communicate
data from sources to destinations through a network of wireless relays.
This work is a step in the direction of designing efficient protocols
and algorithms for wireless networks. We ask the following questions
which we will partially answer in the rest of this correspondence.

• What rate regions are achievable in multiterminal channels (such
as the multiple-relay channel, multiple-access relay channel, and
the broadcast relay channel) in which every node has only a local-
ized or myopic view of the network?

• What is the value of cooperation? In other words, what is the im-
pact on the performance, in terms of transmission rates, when
communications among the nodes are constrained compared to
the case when they are unconstrained?

Answering these questions leads to the main contributions of this
correspondence, which are as follows.

• We construct random codes for myopic decode–forward, i.e., de-
code–forward coding strategies [12] with myopic outlook, for the
discrete memoryless multiple-relay channel and derive achievable
rates of the strategies.

• We compute achievable rates of myopic decode–forward and om-
niscient decode–forward for the Gaussian multiple-relay channel.

• Comparing the myopic version and the omniscient version of de-
code–forward, we show that including a few nodes into the coop-
eration increases the transmission rate significantly, often making
it close to that under full cooperation. In other words, sometimes
more cooperation yields diminishing returns.

• We show that in the multiple-relay channel, myopic decode–for-
ward can achieve nonzero rates as the network size grows to in-
finity.

• We derive achievable rate regions of myopic decode–forward for
the multiple-access relay channel and the broadcast relay channel.
On Gaussian channels, we show that under certain conditions, the
performance of myopic coding can be close to that of omniscient
coding.

F. Paper Outline

The rest of the correspondence is organized as follows. In Section II,
we define myopic coding and give examples of two myopic coding
strategies. We present the advantages of myopic coding compared
to omniscient coding. In Section III, we investigate myopic coding
in the multiple-relay channel. We first define the channel model and
then derive achievable rates of two-hop myopic decode–forward. We
then compare achievable rates of one-hop myopic decode–forward,
two-hop myopic decode–forward, and omniscient decode–forward
for the multiple-relay channel. We show that, in the five-node and the
six-node Gaussian multiple-relay channels, when the nodes transmit
at low signal-to-noise ratio (SNR), achievable rates of the two-hop
coding are close to those of the omniscient coding. In Section III-F,
we extend the analysis to the general k-hop myopic decode–forward
for the T -node multiple-relay channel, where k can be any positive
integer from 1 to T � 1 and T is the number of nodes (including the
source, the relays, and the destination) in the channel. In Section III-H,
we investigate myopic coding in a large network, meaning that the
number of nodes grows to infinity. We show that even with a restricted
view, in which a node treats the transmissions of the nodes beyond
its view as noise, achievable rates are still bounded away from zero.
In Sections IV and V, we investigate myopic decode–forward for
two other channels, namely, the multiple-access relay channel and
the broadcast relay channel. We show that under certain conditions,
achievable rates of myopic decode-forward can be as large as that of
omniscient decode-forward. We conclude the paper in Section VI.
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Fig. 1. Omniscient decode–forward for the five-node Gaussian multiple-relay
channel.

II. MYOPIC CODING

A. What Is Myopic Coding

Recall that we categorize a coding strategy as omniscient if all nodes
have a global view of the network and can cooperate completely. Now,
we define myopic coding. This is an informal definition which will be
made more precise later in the correspondence.

Informal Definition 1: A myopic X coding strategy is a constrained
version of the corresponding omniscient X coding strategy. The con-
straint in myopic coding is such that every node cooperates with only a
few other nodes. This cooperation can be in the form of transmitting to
another node, processing (e.g., decoding, amplifying, quantizing), or
canceling the transmissions from another node.

We note that a myopic coding strategy is defined with respect to
an omniscient coding strategy. Though there is no fixed way of con-
straining an omniscient coding strategy, the idea is to limit the pro-
cessing at the nodes by limiting the number of neighbors a node com-
municates and cooperates with. Myopic coding aims to achieve prac-
tical advantages, e.g., lower computational complexity, robustness to
topology changes, and fewer storage/buffer requirements.

To illustrate myopic coding, we now briefly discuss two myopic
coding strategies for the multiple-relay channel, namely, myopic de-
code–forward and myopic amplify–forward.

B. Myopic Decode–Forward for the Multiple-Relay Channel

Let us consider the decode–forward coding strategy for the mul-
tiple-relay channel by Xie and Kumar [12], in which every message
is fully decoded at and forwarded by the relays. It is also known as the
decode-and-forward strategy. In this strategy, block Markov encoding
(irregular block Markov encoding1 [9] and regular block Markov en-
coding1 [19]) can be used. In the Gaussian channel, a node splits its
total transmission power between sending new information and re-
peating what the relays in front (downstream, i.e., toward the destina-
tion) send. For decoding, successive decoding1 [9] can be used for ir-
regular Markov encoding; backward decoding [20] or sliding-window
decoding1 [21] can be used for regular block Markov encoding. In the
Gaussian channel, a node decodes signals from all the nodes behind
(upstream, i.e., toward the source). At the same time, it cancels inter-
fering transmissions from all the nodes in front. Since all the nodes
fully cooperate, we term this coding strategy omniscient decode–for-
ward.

Now, we use an example to illustrate how each node cooperates with
all other nodes in omniscient decode–forward. Consider a five-node
Gaussian multiple-relay channel (the formal definition can be found in
Section III-C). Using omniscient decode–forward, a node transmits to
all the nodes in front. Fig. 1 depicts the transmissions of the nodes. Let
all Ui; i = 1; 2; 3; 4, be independent random variables. When node
4 transmits U4 to node 5, node 3 splits its power, transmitting new

1We use the terminology in [18]. Note that the terms were not used in the
original paper but subsequently used in later papers.

Fig. 2. Two-hop myopic decode–forward for the five-node Gaussian multiple-
relay channel.

information (U3) to node 4 and helping node 4 to transmit another
copy of what node 4 transmits (U4) to node 5. Similarly, nodes 1–3
split their power to transmit new information and old information (the
same information of what the nodes in front transmit). In decoding, a
node decodes the transmissions from all nodes behind. For example,
node 5 decodes all transmissions from nodes 1–4. In addition, a node
cancels all transmissions from the nodes in front when it decodes. For
example, when node 2 decodes U1 from node 1, it cancels U3 and U4

from node 3, U4 from node 4, as well as U2; U3; and U4 from node 1.
Now, we consider a myopic version of the omniscient decode–for-

ward in which nodes are limited in how much information they can
store and process. We define k-hop myopic decode–forward for the
multiple-relay channel as follows.

Definition 1: k-hop myopic decode–forward for the multiple-relay
channel is a constrained version of omniscient decode–forward, and
the constraints are as follows.

• In encoding, a node must transmit messages that it has decoded
from at most the past k blocks of received signal.

• In decoding, a node can decode one message using only k blocks
of received signal.

• A node can store a decoded message in its memory over at most
k blocks.

At first glance, the above constraints for myopic decode–forward do
not seem to include the view of a node or how many other nodes a node
can communicate with. However, these are embedded in the definition
itself. The constraints automatically restrict the number of nodes a node
can cooperate with. Furthermore, the restrictions stem from practical
advantages of having fewer processing and storage requirements at the
nodes, which are the motivations behind myopic coding.

Now, let us consider two-hop myopic decode–forward. The encoding
and the decoding processes at the nodes in the five-node multiple-relay
channel are as follows (refer to Fig. 2) .

• Node 1 transmits U1 and U2, node 2 transmits U2 and U3, etc.
• Node 5 decodes U3 and U4, node 4 decodes U2 and U3, etc.
• During decoding, node 2 cancels U2 and U3, node 3 cancels U3

and U4, etc.
We note that this encoding technique is different from [7, Fig. 1],

in which the source and the relay transmit independent signals (hence,
no coherent combining is possible) while the relays and the destination
decode transmissions from all nodes behind. The decoding technique
in [7] is only possible under omniscient coding as a node decodes each
message using the received signals from all upstream nodes, possibly
over a large number of blocks.

In myopic decode–forward for the multiple-relay channel, we use
the concept of regular block Markov encoding and sliding-window
decoding. However, the encoding and the decoding techniques differ
from those found in the literature as the nodes have limited views. It
is noted that myopic coding captures point-to-point coding and omni-
scient coding as special cases. In particular, k-hop myopic decode–for-
ward for the multiple-relay channel where k = 1 is point-to-point
coding and k = T � 1 (T is the number of nodes in the channel)
omniscient decode–forward.
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The reader is reminded that the term “hop” used here does not carry
the same meaning as it does in multihop routing. The term hop is best
understood by looking at the sequence in which the messages are de-
coded, e.g., if the messages are decoded by node i followed by node j,
then node j is node i’s next hop.

We say that a set of nodes V are in the view of node i if node i

processes (e.g., decodes, amplifies, or quantizes) or cancels the trans-
missions from all the nodes in V .

C. Myopic Amplify–Forward for the Multiple-Relay Channel

Next, let us consider the amplify–forward strategy for the multiple-
relay channel by Yuksel and Erkip [22]. We will use the one-source,
two-relay, one-destination network as an example. Consider the “S +
R1(S) + R2(S;R1)” scheme [22, Table I]. In this scheme, the trans-
missions are split into three blocks. In block 1, the source transmits to
both relays and the destination (hence the notation S). In block 2, relay
1 normalizes its received signal from the source in block 1 and forwards
the normalized received signal to relay 2 and the destination (hence the
notation R1(S)). Relay 2 combines the signals that it has received in
blocks 1 and 2, normalizes to its own power value, and transmits the
combined signal in block 3 (hence the notation R2(S;R1)). The desti-
nation then decodes using the three blocks of received signal (hence the
notation S+R1(S)+R2(S;R1)). We term this coding strategy omni-
scient amplify–forward, as each node cooperates with all other nodes.

Now, let us consider a myopic version of the amplify–forward
strategy. It has been noted in [22] that relay 2 can choose to listen
to only relay 1 (which transmits in block 2) and forwards only this
received signal to the destination (the notation used is R2(R1)).
Instead of decoding over three blocks, the destination can choose to
decode only from relay 2 (which transmits in block 3). We see that in
this scheme, a node listens to only one node and forwards to another
node. Hence, we term this strategy one-hop myopic amplify–forward.
One can similarly construct two-hop myopic amplify–forward, and
so on.

D. Practical Advantages of Myopic Coding

In this subsection, we discuss a few practical advantages of my-
opic coding compared to omniscient coding. These include simpler
code design, increased robustness, reduced computation and memory
requirements, and local synchronization. Though the analyses of my-
opic coding in this correspondence are based on information-theoretic
achievable rates (in Shannon’s sense), the practical advantages here are
relevant to code designs based on these strategies (myopic or omni-
scient, decode–forward or amplify–forward, etc.). That researchers are
interested in practical implementations of information-theoretic coop-
erative strategies is apparent in the recent work that has been proposed
in this direction. There are various codes designed based on omni-
scient decode–forward for the single-relay channel [23]–[26] and the
multiple-relay channel [27]–[29]. One may design myopic versions of
these codes to reap the practical advantages discussed in this section.

Looking closely at the low-denssity parity-check (LDPC) codes
using parity forwarding (based on omniscient decode–forward) for the
multiple relay channel [27], we see that the complexity of designing
codes grows with the number of relays. This means that constructing
codes in which all nodes cooperate can be more difficult compared
to designing codes in which nodes only cooperate with neighboring
nodes. This technique of utilizing local knowledge (or limited co-
operation) is prevalent in other wireless network problems, e.g.,
cluster-based routing [30], whereby nodes are split into clusters, and
routes are optimized locally.

Fig. 3. The T -node multiple-relay channel.

Myopic coding schemes are more robust to topology changes than
the corresponding omniscient coding schemes. For example, consider
cancellation of the interference from downstream nodes. In omniscient
coding, a node needs to have the knowledge or an estimate of what
every downstream node transmits in order to cancel it. Any error in the
cancellation (due to topology changes or node failures not known to the
decoder) will affect the decoding and thus the rate. In myopic coding,
nodes only cancel the interference from a few neighboring nodes. This
means that topology changes or node failures beyond a node’s view
are less likely to affect its decoding. In Appendix A, we give another
example to show how node failures affect more nodes in myopic coding
than in omniscient coding.

In addition, the encoding and decoding computations at each node
under myopic coding can be less. Since a node only needs to transmit
to and decode from a few nodes, the node encodes fewer data for its
transmissions and decodes fewer data from the received signals.

Furthermore, since the nodes need to buffer fewer data for encoding,
interference cancellation, and decoding, less memory is required for
buffering and codebook storage. Consider the five-node Gaussian mul-
tiple-relay channel. Using omniscient decode–forward, node 1 encodes
a message four times over four blocks, using different power splits.
Node 5 buffers four blocks of its received signal to decode one message.
The buffer grows as the number of nodes in the network increases. On
the other hand, using myopic decode–forward, the nodes buffer fewer
blocks of received signal, and the buffer size for each node is indepen-
dent of the number of nodes in the network.

Myopic coding mitigates the need for synchronization of the entire
network. Under omniscient decode–forward, all the nodes might need
to be synchronized. On the other hand, under myopic coding, a node
only needs to synchronize with a few neighboring nodes. Hence, syn-
chronization can be done locally.

In brief, myopic coding can increase the robustness and scalability of
the network. In the next section, we analyze the performance of myopic
coding in the multiple-relay channel using the decode–forward coding
strategy.

III. MYOPIC CODING IN THE MULTIPLE-RELAY CHANNEL

In this section, we construct random codes for myopic decode–for-
ward for the multiple-relay channel and compare the performance of
these myopic coding strategies to the corresponding omniscient coding
strategy.

A. Channel Model

Fig. 3 depicts the T -node multiple-relay channel, with node 1 being
the source and node T the destination. Nodes 2 to T � 1 are purely
relays. Message W is generated at node 1 and is to be sent to node T .
A multiple-relay channel can be completely described by the channel
distribution

p
�(y2; y3; . . . ; yT j x1; x2; . . . ; xT�1) (1)
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on Y2 � Y3 � � � � � YT , for each (x1; x2; . . . ; xT�1) 2 X1 � X2 �
� � ��XT�1. In this correspondence, we only consider memoryless and
time-invariant channels [18], which means

p(y2i; . . . ; yT i j xi1; . . . ; xiT�1; y
i�1
2 ; . . . ; yi�1

T )

= p
�(y2i; . . . ; yT i j x1i; . . . ; x(T�1)i) (2)

for all i. We use the following notation: xi denotes an input from
node i into the channel; xij denotes the jth input from node i into
the channel; yij denotes the jth output from the channel to node i; and
xit = xt1; xt2; . . . ; xti.

We denote the T -node multiple-relay channel by the tuple

(X1 � � � � � XT�1; p
�(y2; . . . ; yT j x1; . . . ; xT�1);

Y2 � � � � � YT ): (3)

B. Notation and Definitions

In the multiple-relay channel, the information source at node 1 emits
random letters W , each taking on values from a finite set of size M ,
that is,w 2 f1; . . . ;Mg W . We consider each n uses of the channel
as a block.

Definition 2: An (M;n) code of a T -node multiple-relay channel
comprises the following.

• An encoding function at node 1, f1 : W ! X n
1 , which maps a

source letter to a codeword of length n.
• n encoding functions at node t; t=2; 3; . . . ; T � 1; fti :Yi�1

t !
Xt; i = 1; 2; . . . ; n, such that xti = fti(yt1; yt2; . . . ; yt(i�1)),
which map past received signals to the signal to be transmitted
into the channel.

• A decoding function at the destination, gT : Yn
T !W , such that

ŵ = gT (y
n
T ), which maps received signals of length n to a source

letter estimate.

Definition 3: Assuming that the source letter W is uniformly dis-
tributed over f1; . . . ;Mg, the average error probability is defined as

Pe = PrfŴ 6= Wg: (4)

We denote the estimated ith source letter at the destination as Ŵi.

Definition 4: The rate

R � 1

n
logM (5)

is achievable if, for any � > 0, there is at least one (M;n) code such
that Pe < �.

The following definition and lemma are taken from [31, p. 384] and
[31, p. 386], respectively.

Definition 5: Consider a finite collection of random vari-
ables (X1; X2; . . . ; Xk) with some fixed joint distribution
p(x1; x2; . . . ; xk). Let S denote an arbitrarily ordered subset of
these random variables, and consider n independent copies of S

PrfSSS = sssg =

n

i=1

PrfSi = sig: (6)

The set An
� of �-typical n-sequences (xxx1; xxx2; . . . ; xxxk) is defined as

An
� (X1; X2; . . . ; Xk)

= (xxx1; xxx2; . . . ; xxxk) : � 1

n
log p(sss)�H(S) < �;

8S � fX1; X2; . . . ; Xkg : (7)

Lemma 1: For any � > 0 and for sufficiently large n; jAn
� (S)j �

2n(H(S)+�).

Throughout this correspondence, we follow the notation for node
permutation used in [21]. Let T be the set of all relay nodes, T =
f2; 3; . . . ; T � 1g. Let �( � ) be a permutation on T . Define �(1) =
1; �(T ) = T and �(i : t) = f�(i); �(i+ 1); . . . ; �(t)g.

C. The Gaussian Multiple-Relay Channel

In the T -node Gaussian multiple-relay channel, node t; t =
2; . . . ; T , receives

Yt =
p
�itXi + Zt (8)

where Xi, input to the channel form node i, is a random variable with
fixed average power E[X2

i ] = Pi. Yt is the received signal at node t.
Zt, the receiver noise at node t, is an independent zero-mean Gaussian
random variable with variance Nt. �it is the channel gain from node i
to node t. �it depends on the antenna gain, the carrier frequency of the
transmission, and the distance between the transmitter and the receiver.

We consider Gaussian multiple-relay channels with fixed average
transmit power at the source and at all relays. We note that using om-
niscient decode–forward, having a maximum average power constraint
on every node is equivalent to having a fixed average transmit power
constraint on the node, as the overall rate is a nondecreasing function
of the average transmit power at any node, keeping the transmit power
of other nodes constant. This is because a node decodes the transmis-
sions from all upstream nodes and cancels the transmissions from all
downstream nodes. So, the transmissions of all nodes are either used
in decoding or canceled but are never treated as noise. However, under
myopic coding, lowering the transmit power at certain nodes may help
to reduce the interference at other nodes and increase the overall rate.
Hence, the maximum rate achievable by myopic decode–forward with
maximum average power constraints on the nodes is lower-bounded by
that with fixed average power constraints.

We use the standard path loss model for signal propagation. The
channel gain is given by

�it = �d
��
it (9)

where � is the path loss exponent, and � � 2 with equality for free
space transmission. � is a positive constant as far as the analyses in
this correspondence are concerned. Hence, the received power at node
t from node i is given by

Pit = �itPi = �d
��
it Pi: (10)

For the channel where all transmitters have the same power con-
straint, i.e., Pi = P , and all receivers have the same noise power, i.e.,
Nt = N , we define the SNR to be P

N
.

D. Achievable Rates

In this subsection, we investigate achievable rates of two myopic
decode–forward coding strategies and the omniscient decode–forward
coding strategy.

1) Omniscient Coding: First, we consider achievable rates of om-
niscient decode-forward. Xie and Kumar [12] proposed a decode–for-
ward coding strategy for the multiple-relay channel. They showed that
the following rate is achievable, which is higher than that in [7]:

R � max
�( � )

max
p( � )

min
1�t�T�1

I X�(1:t);Y�(t+1) jX�(t+1;T�1) (11a)

= Romniscient: (11b)
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The first maximization allows us to arrange the order in which data flow
through the relay nodes. The second maximization is over all possible
distributions p(x1; x2; . . . ; xT�1) onX1�� � ��XT�1. The minimiza-
tion is over all relays and the destination, where full decoding of the
messages must be done. Since all the information must pass through
each relay, the relay that decodes at the lowest rate becomes the bot-
tleneck of the overall transmission. We note in the mutual information
term that node �(t + 1) receives the transmission from all nodes be-
hind, X�(1:t). Since it knows what the nodes in front transmit (by the
flow of data), it can cancel out their transmissions, as seen in the con-
ditioned term X�(t+1;T�1).

Now, we investigate achievable rates of myopic decode–forward
coding strategies. We note that using decode–forward, all relays must
fully decode the messages. We assume that the relays decode the
messages sequentially.

2) One-Hop Myopic Coding (Point-To-Point Coding): In one-hop
myopic decode–forward, a relay node transmits what it has decoded
from one block of received signal. This means a node transmits to only
the node in the next hop. In decoding, a node decodes one message
using one block of received signal. This means a node decodes from
only one node behind. A node keeps its decoded message for one block,
and it uses the last decoded message to cancel the effect of its own
transmission. Using random coding [32], node�(t) can reliably decode
data up to the rate

R�(t) = I(X�(t�1);Y�(t) jX�(t)) (12)

for some p(x1)p(x2) � � � p(xT�1); t 2 f2; . . . ; Tg, and X�(T ) = 0.
Since all information must pass through all nodes in order to reach the
destination, the overall rate is constrained by

R � min
t2f2;...;Tg

R�(t): (13)

Noting that the messages can flow through the relays in any order [21]
and the nodes transmit independent signals, we have the following re-
sult.

Theorem 1: Let

(X1 � � � � � XT�1; p
�(y2; . . . ; yT j x1; . . . ; xT�1);Y2 � � � � � YT )

be a memoryless multiple-relay channel. Under one-hop myopic de-
code–forward or point-to-point coding, the rate R is achievable, where

R � max
�( � )

max
p( � )

min
t2f2;...;Tg

I X�(t�1); Y�(t) jX�(t) = R1�hop:

(14)

The outer maximization is over all possible node permutations and the
inner maximization is taken over all joint distributions of the form

p(x1; . . . ; xT�1; y2; . . . ; yT ) = p(x1)p(x2) � � � p(xT�1)

�p�(y2; . . . ; yT j x1; . . . ; xT�1):

3) Two-Hop Myopic Coding: Instead of just transmitting to only
its immediate neighbor, a node might want to help the neighboring
node to transmit to the neighbor’s neighbor. Under two-hop myopic de-
code–forward, a node can transmit messages that it has decoded in the
past two blocks of received signals. That means in block i, a node trans-
mits data that it has decoded in blocks i�1 and i�2. In decoding, it de-
codes one message using only two blocks of received signal. Two-hop
myopic decode–forward achieves rates up to that given in the following
theorem.

Theorem 2: Let

(X1 � � � � � XT�1; p
�(y2; . . . ; yT j x1; . . . ; xT�1);Y2 � � � � � YT )

be a T -node memoryless multiple-relay channel. Using two-hop my-
opic decode–forward, the rate R is achievable, where

R � max
�( � )

max
p( � )

min
t2f2;...;Tg

I U�(t�2);

U�(t�1); Y�(t) jU�(t); U�(t+1) (15a)

= R2-hop (15b)

where U�(0) = U�(T ) = U�(T+1) = 0, for �(0) = 0 and �(T +1) =
T + 1. The outer maximization is over all possible relay permutations
and the inner maximization is taken over all joint distributions of the
form

p(x1; x2 . . . ; xT�1; u1; u2 . . . ; uT�1; y2; y3 . . . ; yT )

= p u�(1) p u�(2) � � � p u�(T�1)

� p x�(1) ju�(1); u�(2)

� p x�(2) ju�(2); u�(3) � � � p x�(T�1) ju�(T�1)

� p
�(y2; . . . ; yT j x1; . . . ; xT�1):

The Proof of Theorem 2 can be found in Appendix B.
Using a particular probability distribution function on a coding

strategy, we term the maximum rate at which a node can reliably
decode the source messages the reception rate. For example, using
one-hop myopic decode–forward, the reception rate at node �(t)
is R�(t) = I(X�(t�1);Y�(t) jX�(t)); using two-hop myopic de-
code–forward, the reception rate at node �(t) is

R�(t) = I(U�(t�2); U�(t�1); Y�(t) jU�(t); U�(t+1)):

E. Performance Comparison

In this subsection, we compare achievable rates of the two myopic
coding strategies and the omniscient coding strategy for the Gaussian
multiple-relay channel.

1) Channel Setup: Consider a linear five-node channel, in which
nodes are arranged in a straight line in the sense that for any i < j <

k; dik = dij + djk . Node 1 is the source, nodes 2, 3, and 4 are the
relays, and node 5 is the destination. Node t; t = 2; 3; 4; 5, receives
the following channel output:

Yt =

4

�d
��
it Xi + Zt: (17)

In all analyses in this subsection, we use the following parameters:
N2 = N3 = N4 = N5 = N = 1 W, � = 1, and � = 2.

Now, consider a point-to-point link. The rate at which information
can be transmitted through a Gaussian channel (per channel use) from
node i to node t is given by [31]

R �
1

2
log 1 +

Pit

Nt

: (18)

Throughout this correspondence, logarithm base 2 is used and hence
the units of rate are bits per channel use.

2) One-Hop Myopic Coding: In one-hop myopic decode–forward,
node t transmits only to node t+1. Let us first consider node 1. It sends
X1 to node 2. Node 2 receives

Y2 = �d
��
12 X1 + �d

��
32 X3 + �d

��
42 X4 + Z2: (19)
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Fig. 4. Achievable rates of one-hop myopic decode–forward for the five-node
multiple-relay channel, with equal node spacing.

Fig. 5. Achievable rates of one-hop myopic decode–forward for the five-node
multiple-relay channel, with the optimal node spacing.

Node 2 decodes new messages from node 1’s transmission. From (12),
the reception rate at node 2 is

R2 = I(X1;Y2 jX2)

=
1

2
log 2�e �d

��
12 P1 + �d

��
23 P3 + �d

��
24 P4 +N2

� 1

2
log 2�e �d

��
23 P3 + �d

��
24 P4 +N2 (20a)

=
1

2
log 1 +

d�212 P1

1 + d�223 P3 + d�224 P4
: (20b)

Here, we have substituted � = 1; � = 2; and N2 = 1 W. The reception
rates at nodes 3, 4, and 5 can be computed in similar way. Achievable
rates of one-hop myopic decode–forward are

R � min
t2f2;3;4;5g

Rt = R1-hop: (21)

We note that the message flow through the nodes in the order
f1; 2; 3; 4; 5g gives the highest achievable rate in this network.

Figs. 4 and 5 show achievable rates of one-hop myopic decode–for-
ward for equal node spacing and the optimal node spacing, respectively.
In the latter, the spacing among the nodes is determined by brute force,

with the constraints that all five nodes form a straight line (node i+ 1
is in front of node i) and d15 = 4.

When the nodes are equally spaced, R1-hop is constrained by recep-
tion rates R2 and R3. In order to increase R2 and R3, the distance d12
and d23 should be decreased. We see that this is indeed the case. The
optimum values for d12 and d23 are less than 1 m, as can be seen in
Fig. 5.

We see in Fig. 5 that as the average transmit power increases, the
optimal d12 and d23 decrease while the optimal d34 and d45 increase.
This is because R2 and R3 are significantly affected when P3 and
P4 increase. Recall that in one-hop myopic decode–forward, a node
treats the transmissions of all the nodes beyond its view as noise. For
example, node 3 decodes from node 2, and treats the transmissions of
nodes 1 and 4 as noise. Since there is no transmitting node in front of
node 4, R4 and R5 are less affected by the increase of the transmit
power. Hence, to compensate for the greater noise experienced by
nodes 2 and 3 as the transmit power increases, d12 and d23 are reduced
to increase R2 and R3.

3) Two-Hop Myopic Coding: In two-hop myopic decode–forward,
node t; t = 1; 2; 3, allocate �t of its power to transmit to node t + 2
and (1� �t) of its power to node t + 1. Since there is only one node
in front of node 4, it allocates all its power to transmit to node 5. The
transmission by each node is listed as follows:

• Node 4 sends X4 =
p
P4U4.

• Node 3 sends X3 =
p
�3P3U4 + (1� �3)P3U3.

• Node 2 sends X2 =
p
�2P2U3 + (1� �2)P2U2.

• Node 1 sends X1 =
p
�1P1U2 + (1� �1)P1U1.

Here, Ui; i = 1; 2; 3; 4 are independent Gaussian random variables,
each with unit variance, 0 � �j � 1 for j = 1; 2; 3.

From (77), for fixed f�1; �2; �3g, the reception rate at node 2 is

R2 = I(U1; Y2 jU2; U3) (22a)

=
1

2
log 2�e �d

��
12 (1� �1)P1

+ �d
��
23 �3P3 + �d

��
24 P4

2

+N2

� 1

2
log 2�e �d

��
23 �3P3 + �d

��
24 P4

2

+N2 (22b)

=
1

2
log 1 +

d�212 (1� �1)P1

1 + d�223 �3P3 + d�224 P4

2
: (22c)

Here, we have substituted � = 1; � = 2; and N2 =1 W. The reception
rates at nodes 3, 4, and 5 can be computed in a similar way.

Minimizing over all reception rates and maximizing over all possible
power splits, the overall achievable rate is given by

R � max
f� ;� ;� g

min
t2f2;3;4;5g

Rt = R2-hop: (23)

We note that the message flow in the node permutation f1; 2; 3; 4; 5g
gives the highest overall rate in this network. Figs. 6–9 show achievable
rates, reception rates, and power splits for nodes in different positions.
We note that the nodes are arranged in a straight line.

When the nodes are equally spaced, we see that the overall rate is
constrained by R2 and R3. Increasing the transmit power increases R3

more thanR2. So, to maximizeminfR2; R3g, the optimal�2 increases
to increase R2 further. When the transmit power increases beyond 10
W, �2 reaches its maximum and the overall rate is now restricted by
R2 alone. To understand this, we look at the rate equations. For nodes
3–5, they decode the transmissions from 2 1/2 nodes behind, but node 2
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Fig. 6. Achievable rates of two-hop myopic decode–forward for the five-node
multiple-relay channel, with equal node spacing.

Fig. 7. Achievable rates of two-hop myopic decode–forward for the five-node
multiple-relay channel, with node 2 closer to the source.

decodes only from node 1. This makes R2 the bottleneck of the overall
transmission rate. High R4 and R5 suggests that the overall rate can be
improved by readjusting the position of the nodes.

One way to improve R2 is to decrease d12. By doing this, we reduce
the signal attenuation from node 1 to node 2. This indeed increases
the overall rate, as shown in Fig. 7. Here d12 = 0.5 m, while keeping
the positions of nodes 3, 4, and 5 unchanged. Now, we see that the
overall rate is constrained by R2; R3; R4; and R5, i.e., no single bot-
tleneck. We have seen that the increase in transmit power increases the
reception rates of different nodes by different amount. Hence, when
the transmit power increases, the �’s adjust themselves to maximize
minfR2; R3; R4; R5g.

Now, we study the cases when the relay nodes are clustered at the
source or at the destination. Fig. 8 shows achievable rates when the re-
lays are clustered at the source. In this arrangement, the overall rate is
constrained by both R2 and R5 when the nodes transmit at low power,
and byR5 alone when the nodes transmit at high power. ThatR5 being
the bottleneck should not come as a surprise as node 5 is positioned far
away from the rest of the nodes. However, at high power, the constraint
is at R2 and not at R5. The reason is that node 2 receives strong inter-
ference from node 4, which is near.

When the relays are clustered at the destination, we expect R2 to
constrain the overall rate. This is shown in Fig. 9. The reception rate at

Fig. 8. Achievable rates of two-hop myopic decode–forward for the five-node
multiple-relay channel, with the relays clustered at the source.

Fig. 9. Achievable rates of two-hop myopic decode–forward for the five-node
multiple-relay channel, with the relays clustered at the destination.

node 2 is low as the signal from node 1 is severely attenuated due to the
large d12 and high interference from nodes 4 and 5, which are close to
node 2.

It is noted that when the overall rate is constrained by R2, the power
allocations affecting it, which are �1 and �3 should be set to zero.
Setting �1 = 0, we ensure that all power from node 1 carries new
information to node 2. Setting �3 = 0, we maximize the amount of
interference that node 2 can cancel in its decoding.

4) Omniscient Coding: In omniscient decode–forward, encoding is
as follows.

• Node 4 sends X4 =
p
P4U4.

• Node 3 sends X3 = (1� �3)P3U3 +
p
�3P3U4.

• Node 2 sends X2 = (1� �2 � �2)P2U2 +
p
�2P2U3 +p

�2P2U4.
• Node 1 sends X1 = (1� �1 � �1 � 
1)P1U1+

p

1P1U2 +p

�1P1U3 +
p
�1P1U4.

Here, Ui; i = 1; 2; 3; 4 are independent Gaussian random variables
with unit variances 0 � �1 + �1 + 
1 � 1; 0 � �2 + �2 � 1; 0 �
�3 � 1, and �i; �j ; 
1 � 0; i = 1; 2; 3; j = 1; 2. To illustrate the
power splits, let us consider node 1. It allocates �1 of its total power to
transmit to node 5, �1 of its power to node 4, 
1 of its power to node
3, and the remaining power to node 2.
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Fig. 10. Achievable rates under different coding strategies in the five-node mul-
tiple-relay channel.

Fixing some f�1; �1; 
1; �2; �2; �3g, the reception rate at node 2 is

R2 = I(X1; Y2 jX2X3X4) (24a)

=
1

2
log 2�e �d

��
12 (1��1��1�
1)P1+N2 �

1

2
log 2�eN2

(24b)

=
1

2
log 1+d

�2
12 (1��1��1�
1)P1 : (24c)

Here, we have substituted � = 1; � = 2 and N2 = 1 W. The reception
rates at nodes 3, 4, and 5 can be computed in a similar way. Omniscient
decode–forward achieves rates up to

Romnicient = max
f� ;� ;
 ;� ;� ;� g

min
t2f2;3;4;5g

Rt: (25)

We define the following efficiency term to benchmark the perfor-
mance of k-hop myopic coding:

�k =
Rk�hop

Romniscient
(26)

where k 2 f1; 2; . . . ; T�1g. It is the ratio of the maximum achievable
rate of a k-hop myopic coding strategy to that of the corresponding
omniscient coding strategy.

Figs. 10 and 11 show achievable rates in the five-node and the six-
node multiple-relay channel, respectively, using one-hop, two-hop, and
omniscient decode–forward.

The maximum rate achievable by myopic coding can never exceed
that by the corresponding omniscient coding. This is because under my-
opic coding, every node treats the transmissions of the nodes outside
its view as noise. In addition, a node can only transmit limited mes-
sages. On the other hand, under omniscient coding, a node can decode
the signals from all the nodes behind and cancel the transmissions of
all the nodes in front. A node can also possibly transmit all previously
decoded messages.

In Fig. 10, we see a seemingly strange result that the maximum
achievable rate of two-hop myopic decode–forward is as high as that
of omniscient decode–forward. This can happen in a five-node channel
under certain circumstances. Using either omniscient or two-hop my-
opic decode–forward, node 3 in the five-node multiple-relay channel
can communicate with all other nodes, i.e., it decodes from nodes 1

Fig. 11. Achievable rates under different coding strategies in the six-node mul-
tiple-relay channel.

and 2, and cancels transmissions from node 4. So, when the overall
transmission rates is constrained by R3, the maximum achievable rate
of two-hop myopic decode–forward is the same as that of omniscient
decode–forward. This explains why �2 = 1 at low SNR in Fig. 10.

However, as the number of relays increases, we expect achievable
rates of two-hop myopic decode–forward to be strictly less than that of
omniscient decode–forward. We see that this is indeed the case from
Fig. 11, in which �2 is strictly less than 1.

Comparing achievable rates of one-hop and two-hop myopic
decode–forward, the rates improve significantly when one more
node is added into the nodes’ view. This suggests that in a large
network with many relays, k-hop myopic decode–forward, where k

needs not be large, could achieve rates close to that of omniscient
decode–forward.

Furthermore, �1 and �2 are high in the low-SNR regime. The
efficiency drops as the SNR increases. To understand this phenomenon,
we consider different types of noise, i.e., receiver noise and interference.
The nodes in both omniscient and myopic decode–forward experience
the same receiver noise. So, in the low-SNR regime, where the receiver
noise isdominant,myopicdecode–forwardperformsclose toomniscient
decode–forward, and the efficiency is higher. On the other hand, in
the high-SNR regime, the interference (which a node cannot cancel
in myopic decode–forward but can in omniscient decode–forward)
is dominant. So, the efficiency of myopic decode–forward drops.

F. Extending to k-Hop Myopic Coding

Now, we generalize two-hop myopic decode–forward to k-hop my-
opic decode–forward where k 2 f1; . . . ; T�1g and have the following
theorem.

Theorem 3: Let

(X1 � � � � � XT�1; p
�(y2; . . . ; yT j x1; . . . ; xT�1); Y2 � � � � � YT )

be a T -node memoryless multiple-relay channel. Under k-hop de-
code–forward, the rate R is achievable, where

R � max
�( � )

max
p( � )

min
t2f2;...;Tg

I U�(t�k); . . . ;

U�(t�1); Y�(t) jU�(t); . . . ; U�(t+k�1) (27a)

= Rk-hop: (27b)
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Fig. 12. The power allocation of two-hop myopic decode–forward for the Gaussian multiple-relay channel.

Here, U�(m) = 0, for all m = 2� k; 3� k; . . . ; 0; T; T +1; . . . ; T +
k � 1. The outer maximization is over all relay permutations and the
inner maximization is taken over all joint distributions of the form

p(x1; x2 . . . ; xT�1; u1; u2 . . . ; uT�1; y2; y3 . . . ; yT )

= p(u�(1))p(u�(2)) � � � p(u�(T�1))

� p x�(T�1) j u�(T�1)

� p x�(T�2) j u�(T�2); u�(T�1) � � �
� p(x�(T�k) ju�(T�k); u�(T�k+1) . . . ; u�(T�1))

� p x�(T�k�1) j u�(T�k�1); u�(T�k) . . . ; u�(T�2) � � �
� p x�(1) j u�(1); u�(2); . . . ; u�(k)
� p

�(y2; . . . ; yT j x1; . . . ; xT�1):

The proof can be found in Appendix C. In the extreme case where
k = T � 1, we end up with omniscient decode–forward.

G. On the Gaussian Multiple-Relay Channel With Fading

In the analyses so far, we compared the performance of myopic
coding strategies in static Gaussian channels, i.e., without fading. Now,
we explain how myopic coding is done in the Gaussian channel with
phase fading or Rayleigh fading.

It has been shown by Kramer et al. [18, Theorem 8] that under
phase fading or Rayleigh fading, the maximum omniscient decode–for-
ward rate can be achieved by independent Gaussian input distribu-
tions. In this case, Xi; i = 1; . . . ; T � 1, are independent Gaussian
random variables. Under omniscient decode–forward, node t decodes
from all nodes i; i < j, and cancels the transmissions of nodes l; l �
j. In k-hop myopic decode–forward, the nodes transmit independent
Gaussian signals as they would under the omniscient coding. How-
ever, in the decoding, node t decodes the signals only from k nodes
behind, i.e., nodes i; i = maxf1; t � kg; . . . ; t � 1. It cancels the
transmissions from only k nodes in front (including itself), i.e., nodes
l; l = t; . . . ;minft+ k � 1; T � 1g. It treats the rest of the transmis-
sions as noise. The following theorem characterizes the performance of
k-hop myopic decode–forward for the Gaussian multiple-relay channel
with phase fading or Rayleigh fading.

Theorem 4: Consider a T -node Gaussian multiple-relay channel
with phase fading or Rayleigh fading. Using k-hop decode–forward,
the rate in (27) is achievable, by setting Xi = Ui; xi = ui;8i =
1; 2; . . . ; T � 1.

The proof for the above theorem is straightforward given that the
nodes transmit independent signals in the fading channel.

H. Myopic Coding in Large Multiple-Relay Channels

One potential problem of myopic coding is whether the rate van-
ishes when the number of nodes in the network grows. This concern

arises because in myopic decode–forward, a node treats transmissions
of nodes beyond its view as pure noise. As the number of transmitting
nodes grows to infinity and each decoding node only has a limited view,
the noise power might sum to infinity. The noise might overpower the
signal power and drive the transmission rate to zero.

In this section, we scrutinize achievable rates of two-hop myopic
decode–forward in the T -node multiple-relay channel when T grows
to infinity. The rationale of studying two-hop myopic coding is that
we can always achieve higher transmission rates using k-hop myopic
coding with k > 2.

Theorem 5: Achievable rates of k-hop myopic decode-forward in
the T -node Gaussian multiple-relay channel are bounded away from
zero, for any T � 3.

Now, we prove Theorem 5. In two-hop myopic decode–forward for
the T -node Gaussian multiple-relay channel (we shall extend T to in-
finity later), the transmission of each node is as follows.

• Node t; t = 1; 2; . . . ; T � 2, sends Xt =
p
�tPtUt+1 +

(1� �t)PtUt.
• Node T � 1 sends XT�1 =

p
PT�1UT�1

whereUi; i = 1; 2; . . . ; T �1, are independent Gaussian random vari-
ables with unit variances and 0 � �i � 1. The transmissions of the
nodes around node t are depicted in Fig. 12.

Assume that all the nodes are equally spaced at 1 m apart and
transmit at power P . Consider the received signal power at node t, we
can always find a nonempty set f(�1; . . . ; �T�2) : 0 � �i � 1; i =
1; . . . ; T � 2g such that

Psig(t) = ( 3���t�3�P + 2��(1� �t�2)�P )
2

+ ( 2���t�2�P + 1��(1� �t�1)�P )
2 (29a)

= ( 3���t�3�P + 2��(1� �t�2)�P )
2

+ ( 2���t�2�P + 1��(1� �t�1)�P )
2 (29b)

> 0 (29c)

for t � 4, and

Psig(2) = (1� �1)�P > 0 (30a)

Psig(3) = 2��(1� �1)�P

+ ( 2���1�P + 1��(1� �2)�P )
2
> 0: (30b)

Now we consider nodes 4 � t � T �3, the noise power is Pnoise(t) =
Nt < 1, and the interference power is given by

Pint(t) = ( 3��(1� �t�3)�P + 4���t�4�P )2

+ ( 4��(1� �t�4)�P + 5���t�5�P )2 + � � �
+ ( (t� 2)��(1� �2)�P + (t� 1)���1�P )

2

+ (t� 1)��(1� �1)�P
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+ ( 1���t+1�P + 2��(1� �t+2)�P )2

+ ( 2���t+2�P + 3��(1� �t+3)�P )2 + � � �

+ ( (T � t� 3)���T�3�P

+ (T � t� 2)��(1� �T�2)�P )2

+ ( (T � t� 2)���T�2�P

+ (T � t� 1)���P )2 (31a)
Pint(t)

�P
= 3���t�3 + 4�� + 5�� + � � �+ (t� 1)��

+ 2 3��4��(1� �t�3)�t�4

+ 2 4��5��(1� �t�4)�t�5 + � � �

+ 2 (t� 2)��(t� 1)��(1� �2)�1

+ 1���t+1 + 2�� + 3�� + � � �+ (T � t� 1)��

+ 2 1��2���t+1(1� �t+2)

+ 2 2��3���t+2(1� �t+3) + � � �

+ 2 (T � t� 3)��(T � t� 2)���T�3(1� �T�2):

(32a)

Simplifying, we get

Pint(t)

�P
= 3���t�3 +

t�1

j=4

1

j�
+ 1���t+1 +

T�t�1

j=2

1

j�

+ 2

t�2

j=3

(1� �t�j)�t�(j+1)

j�(j + 1)�

+ 2

T�t�3

j=1

�t+j(1� �t+j+1)

j�(j + 1)�
(33a)

<

t�1

j=3

1

j�
+

T�t�1

j=1

1

j�
+ 2

t�2

j=3

1

j�
+ 2

T�t�3

j=1

1

j�
(33b)

< 6

T

j=1

1

j�
< 6�(�): (33c)

Here �(�) = 1
j=1

1
j

is the Riemann zeta function. It has been cal-

culated that �(2) = �

6
; �(3) = 1:202057 . . ., etc. It is easily seen

that the Riemann zeta function is a decreasing function of �. Since
� � 2; Pint(t) < �2�P for 4 � t � T � 3. We can also show
that Pint(t)=(�P ) for t = 2; 3; T � 2; T � 1; T are bounded. Hence,
we can always find a nonempty set f(�1; . . . ; �T�2)g such that the
reception rate at every node t; 8t 2 f2; 3; . . . ; Tg, is

Rt =
1

2
log 1 +

Psig(t)

Pint(t) +Nt

> 0 (34)

which is bounded away from zero. This means the maximum achiev-
able rate

R2�hop = max
f� ;...;� g

min
t2f2;3;...;Tg

Rt > 0 (35)

is bounded away from zero.
When more nodes are included in the view of myopic coding, Psig

increases and Pint decreases. In general, assuming that the nodes are
roughly equally spaced, achievable rates of myopic decode–forward
are bounded away from zero even when the network size grows to in-
finity.

In the next two sections, we study achievable rates of myopic and
omniscient coding strategies for the multiple-access relay channel and
the broadcast relay channel.

Fig. 13. Omniscient decode–forward for the four-node multiple-access relay
channel.

IV. MYOPIC CODING IN THE MULTIPLE-ACCESS RELAY CHANNEL

A. Channel Model

The multiple-access relay channel has multiple sources, one relay,
and one destination. In the T -node multiple-access relay channel,
nodes 1 to T � 2 are the sources, node T � 1 is the relay, and node T
is the destination. The rates (R1; . . . ; RT�2) for nodes 1; . . . ; T � 2,
respectively, are said to be achievable if each node can transmit
messages to the destination at their respective rates with diminishing
error probability. They follow closely the definition that we adopt for
the multiple-relay channel. The sources do not receive feedback from
the channel. The multiple-access relay channel can be completely
described by its channel distribution of the following form:

p�(yT�1; yT j x1; . . . ; xT�1): (36)

B. Achievable Rates

In this correspondence, we consider the four-node multiple-access
relay channel, where nodes 1 and 2 are the sources, node 3 is the relay,
and node 4 is the destination. We assume that data from node 1 and
node 2 are independent. We investigate decode–forward-based coding
strategies for the multiple-access relay channel, in which the relay must
decode all messages from both sources.

1) Omniscient Coding: In omniscient decode–forward for the
four-node multiple-access relay channel, nodes 1 and 2 transmit to
both nodes 3 and 4. This is depicted in Fig. 13. Using offset encoding
[14] and sliding-window decoding, omniscient decode–forward
achieves the following rate region [18]:

R1 � I(X1;Y3 jU1; U2; X2; X3) (37a)

R1 � I(X1;X3;Y4 jU2; X2) (37b)

R2 � I(X2;Y3 jU1; U2; X1; X3) (37c)

R2 � I(X2;X3; Y4 jU1; X1) (37d)

R1 +R2 � I(X1;X2;Y3 jU1; U2; X3) (37e)

R1 +R2 � I(X1;X2; X3;Y4) (37f)

where the mutual information terms are taken over

p(u1; u2; x1; x2; x3; y3; y4)

= p(u1; x1)p(u2; x2)p(x3 ju1; u2)p
�(y3; y4 j x1; x2; x3): (38)

We note that in this four-node multiple-access relay channel, two-hop
myopic decode–forward is equivalent to omniscient decode–forward.

2) One-Hop Myopic Coding: In one-hop myopic decode–forward
for the four-node multiple-access relay channel, nodes 1 and 2 transmit
to node 3, but not to node 4. In this scenario, we have the channel model
as depicted in Fig. 14. We can view this as a multiple-access channel
(from nodes 1–2 to node 3) cascaded with a point-to-point channel
(from node 3 to node 4). Modifying the results of the multiple-access
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Fig. 14. One-hop myopic decode-forward for the four-node multiple-access
relay channel.

channel in [33], the following rate region is achievable by one-hop my-
opic decode–forward:

R1 � I(X1;Y3 jX2; X3) (39a)

R2 � I(X2;Y3 jX1; X3) (39b)

R1 +R2 � I(X1;X2;Y3 jX3) (39c)

R1 +R2 � I(X3;Y4) (39d)

where the mutual information terms are derived under the joint distri-
butions

p(x1; x2; x3; y3; y4) = p(x1)p(x2)p(x3)p
�(y3; y4 j x1; x2; x3):

C. Performance Comparison

1) Channel Setup: Now, we investigate achievable rates of one-hop
myopic decode–forward and omniscient decode–forward for the four-
node Gaussian multiple-access relay channel. Nodes 1, 2, and 3 send
X1; X2; and X3; respectively. Node 3 receives

Y3 = �d��
13 X1 + �d��

23 X2 + Z3 (40)

and node 4 receives

Y4 = �d��
14 X1 + �d��

24 X2 + �d��
34 X3 + Z4 (41)

where Z3 and Z4 are independent zero-mean white Gaussian noise
with variances N3 and N4, respectively. X1; X2; and X3 are zero-
mean Gaussian random variables with fixed average transmit power
E[X2

i ] = Pi; i = 1; 2; 3. In our analysis, we use the following param-
eters. d12 = d23 = d13 = 1 m, N3 = N4 =1 W, � = 1; � = 2; d13 =
d23, and d14 = d24. We let R0

3 be the reception rate (sum rate) at node
3, and R0

4 the reception rate (sum rate) at node 4.
2) One-Hop Myopic Coding: From (39c), the reception rate (sum

rate) at node 3 is

R0
3 =

1

2
log 2�eE Y 2

3 �
1

2
log 2�eE Z2

3 (42a)

=
1

2
log 2�e �d��

13 P1 + �d��
23 P2 +N3 �

1

2
log 2�eN3 (42b)

=
1

2
log(1 + P1 + P2): (42c)

Here, we have substituted � = 1; d13 = d23 = 1 m, � = 2, and N3 =
1 W. From (39d), the reception rate at node 4 is

R0
4 =

1

2
log 2�e �d��

14 P1 + �d��
24 P2 + �d��

34 P3 +N4

�
1

2
log 2�e �d��

14 P1 + �d��
24 P2 +N4 (43a)

=
1

2
log 1 +

P3=d
2
34

1 + P1=d214 + P2=d224
(43b)

Fig. 15. Achievable sum rates of one-hop myopic decode–forward and omni-
scient decode–forward for the four-node multiple-access relay channel.

Fig. 16. Achievable sum rates of one-hop myopic decode–forward for the four-
node multiple-access relay channel.

where (43b) is obtained after substituting � = 1; � = 2; N4 =1 W,
and d214 = d224 = (

p
3

2
+ d34)

2 + 1

4
.

Since each message must be completely decoded by nodes 3 and 4,
the following rates are achievable:

R0 = R1 +R2 � minfR0
3; R

0
4g = R1�hop: (44)

Fig. 15 shows how the maximum achievable sum rate R1-hop
varies with d34 when P1 = P2 = P3 = 10 W. When the desti-
nation is near the relay, R0

4 is higher than R0
3, which is a constant

at I(X1X2;Y3 jX3) = 2.196 bits/channel use. Hence, R1-hop is
constrained by R0

3. When d34 increases, R1-hop is constrained by R0
4,

which decreases as d34 increases.
Intuitively, when the rate is constrained by R0

4, nodes 1 and 2 can
reduce their transmit power to reduce the interference from nodes 1
and 2 at node 4. Fig. 16 shows achievable rates when we vary P1 = P2
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while keeping d34 andP3 constant. WhenP1 = P2 � 2.196 W,R1-hop
is constrained byR03. IncreasingP1 andP2 increasesR1-hop. However,
when P1 and P2 are large, the interference at node 4 increases and
R1-hop is now constrained by R04. In this case, increasing P1 and P2
decreases R1-hop. We see that there is an optimal point P1 = P2 =
2.196 W for which R1-hop is maximized for fixed d34 and P3.

3) Omniscient Coding: In omniscient decode–forward, nodes 1, 2,
and 3 transmit the following [16]:

X1 =
p
P1(

p
�1U1 +

p
1� �1V1) (45a)

X2 =
p
P2(

p
�2U2 +

p
1� �2V2) (45b)

X3 =
p
P3( �1U1 + �2U2) (45c)

where Uk and Vk; k = 1; 2, are independent, zero-mean Gaussian
random variables with unit variance, 0 � �1; �2 � 1; �1; �2 � 0,
and �1 + �2 = 1.

From (37e), the reception rate (sum rate) at node 3 is

R
0
3 = H(Y3 jU1; U2; X3)�H(Y3 jU1; U2; X1; X2; X3) (46a)

=
1

2
log 2�e P1�d

��
13 (1� �1)

+ P2�d
��
23 (1� �2) +N3 � 1

2
log 2�eN3 (46b)

=
1

2
log [1 + P1(1� �1) + P2(1� �2)] : (46c)

Here, (46c) is obtained by substituting � = 1; d13 = d23 = 1 m,N3 =
1 W.

From (37f), the reception rate at node 4 is

R
0
4 = H(Y4)�H(Y4 jX1; X2; X3) (47a)

=
1

2
log 2�e

P1

d214
+

P2

d224
+

P3

d234
+ 2k P1P3(d14d34)���1�1

+ 2k P2P3(d24d34)���2�2 +N4 +
1

2
log 2�eN4 (47b)

=
1

2
log 1 +

P1

d214
+

P2

d224
+

P3

d234
+

2
p
�1�1P1P3

d14d34

+
2
p
�2�2P2P3

d24d34
: (47c)

Here, we have substituted � = 1; � = 2; N4 = 1 W. d214 = d224 =
(
p
3

2
+ d34)

2 + 1

4
.

The following rates are achievable:

R
0 = R1 +R2 � minfR03; R04g = Romniscient

= R2-hop (48)

for some 0 � �1; �2 � 1; and �1 + �2 = 1.
To compare achievable rates of one-hop myopic decode–forward

with that of omniscient decode–forward, we have calculated R0 for
P1 = P2 = P3 =10 W. Because of symmetry, we set �1 = �2
and �1 = �2 = 1

2
.

Fig. 15 shows achievable rates for varying d34 and �1 (= �2). We
see that when d34 is small, i.e., the destination is close to the relay, the
optimal�1 is 0. This is intuitive because as d34 is small, the overall rate
is constrained byR03. The relay-to-destination link is almost noise-free.
The reception rate at node 3,R03, is maximized at�1 = 0 when nodes 1

Fig. 17. R versus P ; P and P for one-hop myopic decode–forward for the
four-node multiple-access relay channel.

and 2 allocate all signal power for new information (rather than helping
the relay to transmit old information).

When d34 is small, the maximum achievable sum-rate of one-hop
myopic decode–forward is the same as that of omniscient decode–for-
ward. As the constraint is on R03, whether node 4 decodes additional
signals from nodes 1 and 2 does not have any effect on the overall
achievable rate. However, as d34 increases, the rate constraint shifts to
R04.R04 of one-hop myopic decode–forward is lower than that of omni-
scient decode–forward because node 4 does not decode transmissions
from nodes 1 and 2 in the former.

Also, when the maximum achievable sum rate is constrained by R04,
the rate can be increased with a larger �1. This is because �1 controls
the portion of power for direct transmission from nodes 1 and 2 to node
4. Using a higher �1, the rate on the constrained link (1; 2; 3) ! 4
improves and so does the overall rate. When the relay is close to the
destination, a smaller �1 is preferred. When the relay is far away from
the destination, higher achievable rates are possible using a larger �1.
We note that no matter how far the relay is from the destination, the
optimal �1 is always strictly less than 1. Setting �1 = 1 means the
source does not send new information and merely repeats what the relay
sends and hence new information is never transmitted.

Figs. 17 and 18 depict achievable sum rates of one-hop myopic de-
code–forward and omniscient decode–forward (with �1 = �2 = 0 in
the omniscient coding) for different transmission power. d34 is set to
1 m. It is noted that for small d34, the optimal �1 and �2 are 0. So, we
set �1 = �2 = 0 for the omniscient coding strategy.

In Fig. 17, we see that increasing P3 always increases achievable
rates of both myopic decode–forward and omniscient decode–forward.
This is because transmissions from node 3 are never treated as noise.
However, in one-hop myopic decode–forward, increasing P1 and P2
decreases R04 and R0, as node 4 treats these transmissions as noise.
On the other hand, increasing the transmit power at any node always
increases achievable rates in omniscient decode–forward, as all trans-
missions are either canceled off or decoded.

From Fig. 18, we see that when the sources transmit at low power
and the relay transmits at high power, achievable sum rates of one-hop
myopic decode–forward are as high as that of omniscient decode–for-
ward. The reason for this is similar to that explain in Section III-E4.
When the source–relay link is the bottleneck of the overall transmis-
sion, achievable rates of myopic decode–forward are the same as that
of the corresponding omniscient decode–forward.
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Fig. 18. Comparison of achievable sum rates of one-hop myopic decode–for-
ward and omniscient decode–forward for the four-node multiple-access relay
channel.

V. MYOPIC CODING IN THE BROADCAST RELAY CHANNEL

A. Channel Model

The broadcast relay channel has one source, one relay, and multiple
destinations. In a T -node broadcast relay channel, nodes 1 is the source
(which does not receive feedback from the channel), node 2 the relay,
and nodes 3 � T the destinations. The common rate R0 (information
that is common to all destinations) and the private rates (R3; . . . ; RT )
for nodes 3; . . . ; T , respectively, are said to be achievable if the source
can transmit information to the destinations at these rates with dimin-
ishing error probability.

The broadcast relay channel can be completely described by its
channel distribution of the following form:

p
�(y2; . . . ; yT j x1; x2): (49)

B. Achievable Rates

In this correspondence, we consider the four-node broadcast relay
channel, where nodes 1 is the source, node 2 is the relay, and nodes
3 and 4 are the destinations. Node 1 is connected to a message gen-
erator that generates messages W3 and W4 to be sent to nodes 3 and
4, respectively; and common message W0 to be sent to both destina-
tions. We assume that W3 and W4 are independent. Again, we use de-
code–forward-based coding strategies, in which the relay fully decodes
all messages from the source.

1) Omniscient Coding: In omniscient decode–forward for the four-
node broadcast relay channel, node 1 transmits to nodes 2, 3, and 4,
while node 2 transmits to nodes 3 and 4. This is depicted in Fig. 19.
Kramer et al. [17] gives achievable rates for the case where there are
independent individual messages for nodes 3 and 4 as well as common
messages for both receivers. In this correspondence, we consider the
case where there is no private message. Under this condition, the fol-
lowing common rates [17, eq. (28)] are achievable by omniscient de-
code–forward:

R0 � min[I(X1;Y2 jX2); I(X1;X2;Y3); I(X1;X2;Y4)]

= Romniscient: (50)

Fig. 19. Omniscient decode–forward for the four-node broadcast relay
channel.

Fig. 20. One-hop myopic decode–forward for the four-node broadcast relay
channel.

Similar to the multiple-access relay channel, omniscient decode–for-
ward is equivalent to two-hop decode–forward for the four-node broad-
cast relay channel.

2) One-Hop Myopic Coding: In one-hop myopic decode–forward
for the four-node broadcast channel, node 1 transmits to only node 2,
and node 2 transmits to nodes 3 and 4. This is depicted in Fig. 20. This
is equivalent to a single point-to-point channel cascaded with a broad-
cast channel. The following rates are achievable by one-hop myopic
decode–forward:

R0 � min[I(U0; Y3); I(U0; Y4)] (51a)

R0 +R3 � I(U0; Y3) + I(U3; Y3 jU0) = I(U0; U3; Y3)

(51b)

R0 +R4 � I(U0; Y4) + I(U4; Y4 jU0) = I(U0; U4; Y4)

(51c)

R0 +R3 +R4 � min[I(U0; Y3); I(U0; Y4)] + I(U3; Y3 jU0)

+ I(U4; Y4 jU0)� I(U3;U4 jU0) (51d)

R0 +R3 +R4 � I(X1;Y2 jX2) (51e)

for some p(u0; u3; u4; x1; x2) = p(x1)p(u0; u3; u4; x2). The rates
are obtained by cascading a point-to-point channel (from node 1 to node
2) to a broadcast channel (from node 2 to nodes 3 and 4). Equation (51e)
gives the rate constraints on the point-to-point channel; (51a)–(51d)
give the rate constraints on the broadcast channel with common infor-
mation [34, p. 391]. Here,U0 carries information to be decoded by both
nodes 3 and 4. U3 and U4 carry private information to nodes 3 and 4,
respectively. We set private messages to zero, that is, R3 = R4 = 0.
We chooseU0 = X2; U3 = U4 = 0. Hence, the rate at which common
messages can be sent to both receivers is

R0 � min[I(X1; Y2 jX2); I(X2;Y3); I(X2;Y4)]

= R1-hop: (52)

We see that (52) differs from (50) in the last two terms. In the former,
there is no cooperation between node 1 and node 2. In the latter, coop-
eration under the omniscient coding is reflected in the term (X1;X2).

C. Performance Comparison

1) Channel Setup: We compare achievable rates of one-hop
myopic decode–forward and omniscient decode–forward for the
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four-node Gaussian broadcast relay channel. Nodes 2, 3, and 4 receive
the following signal, respectively:

Y2 = �d��12 X1 + Z2 (53a)

Y3 = �d��13 X1 + �d��23 X2 + Z3 (53b)

Y4 = �d��14 X1 + �d��24 X2 + Z4 (53c)

where E[X2
1 ] = P1; E[X2

2 ] = P2 and Z2; Z3; and Z4 are white
Gaussian noise with variances N2; N3; and N4; respectively. In the
analysis in this subsection, we use the following parameters: d23 =
d24 = d34 = 1 m, d13 = d14; N2 = N3 = N4 = 1 W, � = 1, and
� = 2.

2) One-Hop Myopic Coding: In one-hop myopic decode–forward,
the reception rate at node 2 is

R02 =
1

2
log 2�e[�d��12 P1 +N2] �

1

2
log 2�eN2 (54a)

=
1

2
log 1 +

P1
d212

: (54b)

Due to symmetry, the reception rates at both node 3 and node 4 are

R03 = R04 =
1

2
log 2�e �d��23 P2 + �d��13 P1 +N3

�

1

2
log 2�e �d��13 P1 +N3 (55a)

=
1

2
log 1 +

P2=d
2
23

1 + P1=d213
(55b)

=
1

2
log 1 +

P2

1 + P

1=4+(
p
3=2+d )

: (55c)

Hence, achievable common rates are up to

R0 � minfR02; R03; R04g (56a)

=
1

2
log 1 + min

P1
d212

;
P2

1 + P

1=4+(
p
3=2+d )

(56b)

= R1-hop: (56c)

3) Omniscient Coding: In the case where only common messages
are to be sent, the channel can be simplified to two identical relay
channels due to symmetry. Similar to the relay channel, nodes 1 and
2 transmit the following, respectively:

X1 =
p
P1(

p
�U2 +

p
1� �U1) (57a)

X2 =
p
P2U2 (57b)

where U2 and U1 are independent zero-mean Gaussian random vari-
ables with unit variance.

The reception rate at node 2 is

R02 = I(X1;Y2 jX2) (58a)

=
1

2
log 2�e[�d��12 �P1 +N2] � 1

2
log 2�eN3 (58b)

=
1

2
log 1 +

(1� �)P1
d212

(58c)

Fig. 21. R vs. d for one-hop myopic decode-forward and omniscient de-
code-forward for the four-node broadcast relay channel.

and the reception rate at node 3 (and node 4 due to symmetry) is

R03 = R04 = I(X1;X2;Y3) (59a)

=
1

2
log 2�e �d��13 (1� �)P1

+ �d��13 �P1 + �d��23 P2

2

+N3 � 1

2
log 2�eN3

(59b)

=
1

2
log 1 +

P1

1=4 + (
p
3=2 + d12)2

+ P2

+ 2
�P1P2

1=4 + (
p
3=2 + d12)2

: (59c)

Hence, achievable common rates are up to

R0 � minfR02; R03; R04g (60a)

=
1

2
log 1 + min

(1� �)P1
d212

;
P1
d213

+ P2 + 2
�P1P2
d213

(60b)

= Romniscient; (60c)

for some 0 � � � 1, where d213 = 1=4 + (
p
3=2 + d12)

2.
In Fig. 21, the maximum achievable common rate is constrained by

R03 (and R04) when d12 is small, and by R02 when d12 gets large. From
the rate expressions, we see that R02 of the myopic coding and the om-
niscient coding has the same expression (by setting � = 0 in the latter).
When the maximum achievable common rate is constrained by R02, the
optimal � is 0, to make the first term in (60) largest possible. When d12
is large, R02 is the bottleneck, and achievable rates under both coding
strategies are the same. This is because using either the myopic coding
or the omniscient coding, node 2 only decodes from node 1. Comparing
the transmit power of 1 W and 10 W, when nodes transmit at lower
power (or lower SNR) R02 constrains the overall rate for a larger range
of d12. So, achievable rates of one-hop myopic decode–forward are as
high as that of omniscient decode–forward for larger range of d12 in
the low-SNR regime.

Fig. 22 depicts achievable rates of one-hop myopic decode–forward
and that of omniscient decode–forward for different P1 and P2.
Achievable rates of the myopic coding are as high as that of the
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Fig. 22. Comparison of achievable sum rates of one-hop myopic decode-for-
ward and omniscient decode-forward for the four-node broadcast relay channel.

omniscient coding when P1 is low and P2 is high. This is exactly the
criteria for R0 to be constrained by R0

2, or in other words, when the
source–relay link is the bottleneck.

VI. CONCLUSION

We derived achievable rates of myopic decode–forward coding
strategies for the multiple-relay channel, the multiple-access relay
channel, and the broadcast relay channel. Myopic coding has practical
advantages of being more robust to network topology changes, less
processing, and fewer storage requirements at each node.

We showed that in the low-SNR regime, achievable rates of two-hop
myopic decode–forward are as large as that of omniscient decode–for-
ward in a five-node multiple-relay channel, and close to that of the
omniscient coding in a six-node channel. Comparing one-hop myopic
decode–forward and two-hop myopic decode–forward, we see that
adding a node into the nodes’ view improves the achievable rate
significantly. Hence, besides being more practical, a myopic coding
strategy potentially (as only nonconstructive coding is being con-
sidered) performs as good or close to the corresponding omniscient
coding strategy. This means in a large network, we might do local
coding design without compromising much on the achievable rate.

We also analyzed two myopic coding strategies in the multiple-ac-
cess relay channel and the broadcast relay channel. Using examples
of four-node Gaussian channels, we showed that achievable rates of
these myopic coding strategies are as good as those of their corre-
sponding omniscient coding strategies when the source(s) transmit(s)
at low power and the relay transmits at high power.

The analysis in this correspondence helps us to understand coding in
multiterminal networks better. This work sheds light on the practical
design of efficient transmission protocols in wireless networks, where
robustness, computational power, and storage memory are important
design considerations, in addition to transmission rate.

APPENDIX A
AN EXAMPLE TO SHOW THAT MYOPIC CODING IS MORE ROBUST

Toillustratetherobustnessofmyopiccoding,weconsiderdecode–for-
ward in theseven-nodeGaussianmultiple-relaynetwork inwhichnode4
fails. This means the signal contributed by node 4 will stop. We consider
the following scenarios in myopic and omniscient coding.

i) Two-hop myopic decode–forward:
a) When the overall transmission rate is not affected: Node 2

decodes only from node 1, and cancels the interference only

from itself (echo cancellation) and node 3. So, the failure of
node 4 does not affect the decoding at node 2. Node 7 will
also not be affected as it decodes only from nodes 5 and 6.
In brief, the failure of node t only affects nodes t�1; t+1;
and t+ 2 in two-hop myopic decode–forward.

b) When the overall transmission rate is affected: Suppose that
upon node 4’s failure, the overall transmission rate is low-
ered due to the change in the reception rate of node 5. Ad-
ditional reconfiguration at the source is required. Now, the
source will have to transmit at a lower rate. One way of
doing this is to use the existing code, but pad the lower rate
messages with zeros. With zero-padding, the encoding and
decoding at nodes 2 and 7 need not be changed as the sup-
ported rates at these nodes are not affected.

ii) Omniscient decode–forward: Nodes 2 and 3, who presume that
node 4 is still transmitting and attempt to cancel its transmis-
sions, will introduce more noise to their decoders. Nodes 5 to 7,
who use node 4’s signal contribution in the decoding, will expe-
rience a lower SNR. Hence, the supported rates at these nodes
will be lowered.

Using omniscient coding, any topology change in the network (e.g.,
node failure or relocation) requires reconfiguration of more nodes com-
pared to using myopic coding.

APPENDIX B
PROOF OF THEOREM 2

In this appendix, we describe the encoding and decoding schemes,
and prove achievable rates of two-hop myopic decode–forward for the
multiple-relay channel. We consider B + T � 2 transmission blocks,
each of n uses of the channel. A sequence of independent B indices,
wb 2 f1; 2; . . . ; 2nRg; b = 1; 2; . . . ; B are sent over n(B + T � 2)
uses of the channel. As B ! 1, the rate RnB=n(B + T � 2)! R
for any n.

Note: We use w and z to represent the source message. The nota-
tion wj denotes the information which the source outputs at the jth
block. This means the source emits w1; w2; . . . in blocks 1; 2; . . ., re-
spectively. The notation zt denotes the new information which node t
transmits. Since each node transmits codewords derived from the last
two decoded messages, node 2 always transmits (z2; z3). These dif-
ferent notations are used at different instances for better illustration.

A. Codebook Generation

In this subsection, we see how the codebook at each node is gener-
ated.

• First, fix the probability distribution
p(u1; u2; . . . ; uT�1; x1; x2; . . . ; xT�1) = p(u1)p(u2) � � �

p(uT�1)p(x1 ju1; u2)p(x2 ju2; u3) � � � p(xT�1 juT�1)

for each ui 2 Ui.
• For each t 2 f1; . . . ; T � 1g, generate 2nR independent and

identically distributed (i.i.d.) n-sequences in Un
t , each drawn ac-

cording to p(uuut) = n

i=1
p(uti). Index them as uuut(zt); zt 2

f1; . . . ; 2nRg.
• Define xxxT�1(zT�1) = uuuT�1(zT�1).
• For each t 2 f1; . . . ; T � 2g, define a deterministic function that

maps (uuut; uuut+1) to xxxt

xxxt(zt; zt+1) = ft(uuut(zt); uuut+1(zt+1)): (61)

• Repeat the above steps to generate a new independent codebook
[12]. These two codebooks are used in alternate block of trans-
mission. The reason for using two independent codebooks will be
made clear in the error probability analysis section.
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Fig. 23. The encoding scheme of two-hop myopic decode-forward for the mul-
tiple-relay channel.

We see that in each transmission block, node t; t 2 f1; . . . ; T �2g,
sends messages of two blocks: zt (new data) and zt+1 (old data). In the
same block, node t+1 sends messages zt+1 and zt+2. Note that a node
cooperates with the node in the next hop by repeating the transmission
zt+1. We will see this clearer in the next subsection.

B. Encoding

Fig. 23 shows the encoding process for two-hop myopic decode–for-
ward. The encoding steps are as follows.

• In the beginning of block 1, the source emits the first source letter
w1. Note that there is no new information after B blocks. We
define wB+1 = wB+2 = � � � = wB+T�2 = 1.

• In block 1, node 1 transmits xxx1(w1; w0). Since the rest of the
nodes have not received any information, they send dummy sym-
bols xxxi(w2�i; w1�i); i 2 f2; . . . ; T �1g. We define wb = 1, for
b � 0. In block 1, z1 = w1; z2 = w0; . . .

• At the end of block 1, assume that node 2 correctly decodes the
first signal w1.

• In block 2, node 2 transmits xxx2(w1; w0). Node 1 trans-
mits xxx1(w2; w1). It helps node 2 to retransmit w1 and
sends w2 (new information) at the same time. In block 2,
z1 = w2; z2 = w1; z3 = w0; . . .

• Generalizing, in block b 2 f1; . . . ; B + T � 2g, node t; t 2
f1; . . . ; T � 1g, has data (w1; w2; . . . ; wb�t+1). Under two-hop
myopic decode–forward, it sends xxxt(wb�t+1; wb�t).

• We see that a node sends messages that it has decoded in the past
two blocks. This adheres to the constraints of two-hop myopic
decode–forward.

C. Decoding

• Under the two-hop myopic decode–forward constraints, a node
can store a decoded message no longer than two blocks and can
use two blocks of received signal to decode one message.

• Node 2’s decoding is slightly different from the other nodes as it
has only one upstream node. So it decodes every message using
one block of received signal. We illustrate the decoding of mes-
sage w4 at node 2. At the end of block 4, assuming that node 2
has already decoded messages (w1; w2; w3) correctly. However,
due to the myopic coding constraint, it only has w2 and w3 in its
memory. This is becausew1 was decoded at the end of block 1 and
would have to be discarded at the end of block 3. So, it finds the
a unique uuu1(w4) which is jointly typical with uuu3(w2);uuu2(w3),
and yyy2;4 (the received signal at node 2 in block 4). We write yyy2;4
instead of yyy24 to avoid the confusion with the received signal of
node 24. An error is declared is there if no such w4 or more than
one unique w4.

• Nodes 3 to T decode a message using two blocks of received
signal. Consider node 3. At the end of block 4, assuming that
node 3 has already decoded w1 (decoded at the end of block 2)
and w2 (decoded at the end of block 3) correctly. Assume that it
now correctly decodes w3 using signals from blocks 3 and 4. At
the end of block 4, it finds a set of uuu1(w4) which is jointly typical
with uuu4(w1);uuu3(w2);uuu2(w3); and yyy3;4. We call this set L1(w4).

Fig. 24. Decoding at node t of message w .

Since it can only keeps messages decoded over two blocks, it
keeps w2 and w3 and discard w1. At the end of block 5, node 3
finds a set of uuu2(w4) that is jointly typical with uuu4(w2);uuu3(w3);
and yyy3;5. We call this set L2(w4). It finds a unique w4 that belong
to both sets, that is, ŵ4 2 L1(w4)\L2(w4). Here\ denotes inter-
section of sets. An error is declared when the intersection contains
more than one index or the sets do not intersect.

• We now generalize the decoding process. Refer to Fig. 24, at
the end of block b � 1, assuming that node t has correctly
decoded (w1; . . . ; wb�t). Under the myopic coding constraint,
it has in its memory wb�t�1 and wb�t. It decodes wb�t+1. It
then finds a set of uuut�2(wb�t+2) that is jointly typical with
(uuut�1(wb�t+1); uuut(wb�t);uuut+1(wb�t�1); yyyt(b�1)). Label this
set L1(wb�t+2). It discards wb�t�1 from its memory. At the
end of block b, it finds the set of uuut�1(wb�t+2) that is jointly
typical with (uuut(wb�t+1); uuut+1(wb�t); yyytb). Label this set
L2(wb�t+2). It declare ŵb�t+2 if there is one and only one index
in L1(wb�t+2) \ L2(wb�t+2).

D. Achievable Rates and Probability of Error Analysis

In the previous subsection, we said that node t decodes message
wb�t+2 in block b. We denote the event that no decoding error is made
at all nodes in the first b block,1 � b � B + T � 2, by

C(b) fŵt(k�t+2) = wk�t+2 : 8t 2 [2; T ] and k 2 [1; b]g (62)

where ŵt(b) is node t’s estimate of the message wb. This means in the
first b blocks, node 2 will have correctly decoded (w1; w2; . . . ; wb),
node 3 will have correctly decoded (w0; w1; . . . ; wb�1), and so on.
We set wk = 1 for k � 0. They are the dummy signals sent by the
nodes.

We denote the probability that there is no decoding error up to block
b as

Pc(b) PrfC(b)g (23)

and Pc(0) 1. The probability that one or more error occurs during
block b 2 [1; B + T � 2] at some node t 2 [2; T ], given that there is
no error in decoding at all nodes in all blocks up to b� 1, is

Pe(b) Pr ŵt(b�t+2) 6= wb�t+2 :

for some t 2 f2; . . . ; Tg j C(b� 1)g (64a)

�

T

t=2

Pr ŵt(b�t+2) 6= wb�t+2 j C(b� 1) (64b)

T

t=2

Pet(b) (64c)

where Pet(b) Prfŵt(b�t+2) 6= wb�t+2 j C(b� 1)g, which is the
probability that node t wrongly decodes the latest letter wb�t+2 in
block b, given that it has correctly decoded the past letters.



3312 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 7, JULY 2008

Now, we need to compute the error probabilityPet(b). As mentioned
in the decoding section, the decoding of a message spans over two
blocks. For example, let us look at the decoding of message wb�t+2

at node t, as depicted in Fig. 24. The message to be decoded is boxed
and the messages that node t has correctly decoded are marked with .
In block b� 1, node t find a set of wb�t+2 for which

(uuut�2(wb�t+2); uuut�1(wb�t+1); uuut(wb�t);uuut+1(wb�t�1);

yyyt(b�1) 2 An
� (Ut�2; Ut�1; Ut; Ut+1; Yt) A1: (65)

In block b, node t finds a set of wb�t+2 for which

(uuut�1(wb�t+2); uuut(wb�t+1); uuut+1(wb�t); yyytb)

2 An
� (Ut�1; Ut; Ut+1; Yt) A2: (66)

Node t then finds the intersection of the two sets to determine the value
of wb�t+2.

Assuming that node t has correctly decoded wb�t�1; wb�t, and
wb�t+1, we define the following error events:

E1 (uuut�2(wb�t+2); uuut�1(wb�t+1);

uuut(wb�t);uuut+1(wb�t�1); yyyt(b�1)) =2 A1 (67a)

E2 (uuut�2(v); uuut�1(wb�t+1); uuut(wb�t);

uuut+1(wb�t�1); yyyt(b�1)) 2 A1 (67b)

E3 (uuut�1(wb�t+2); uuut(wb�t+1); uuut+1(wb�t); yyytb) =2 A2

(67c)

E4 (uuut�1(v); uuut(wb�t+1); uuut+1(wb�t); yyytb) 2 A2 (67d)

for some v 2 fv 2 [1; . . . ; 2nR] : v 6= wb�t+2g, and

E5 E2 \ E4: (68)

E5 is the event where v 6= wb�t+2 is found in the intersection of the
decoding sets and is, therefore, wrongly decoded as the transmitted
message. An error occurs during the decoding in block b at node t if
events E1; E3, or E5 occurs. Now, we can rewrite

Pet(b) = PrfE1 [ E3 [ E5g � PrfE1g+PrfE3g+PrfE5g: (69)

The last equation is due to the union bound of events.
From the definition of jointly typical sequences (Definition 5), we

know that
PrfE1g � � (70a)

PrfE3g � � (70b)
for sufficiently large n.

Using Lemma 1, we derive the probability of a particular
v 6= wb�t+2 that satisfies (67b)

Pr (uuut�2(v); uuut�1(wb�t+1); uuut(wb�t);

uuut+1(wb�t�1); yyyt(b�1)) 2 A1

=
(uuu ;uuu ;uuu ;uuu ;yyy )2A

p(uuut�2)p(uuut�1; uuut; uuut+1; yyyt)

(71a)

� jA1j2
�n(H(U )��)2�n(H(U ;U ;U ;Y )��) (71b)

� 2n(H(U ;U ;U ;U ;Y )+�)2�n(H(U )��)

� 2�n(H(U ;U ;U ;Y )��) (71c)

= 2�n(H(U )�H(U jY ;U ;U ;U )�3�) (71d)

� 2�n(I(U ;Y jU ;U ;U )�3�): (71e)

The last equation is because H(Ut�2) � H(Ut�2 jUt�1; Ut; Ut+1).

By a similar method, we can calculate the probability of a particular
v 2 fv 2 f1; . . . ; 2nRg : v 6= wb�t+2g satisfies (67d)

Prf(uuut�1(v2); uuut(wb�t+1); uuut+1(wb�t); yyytb) 2 A2g

� 2�n(I(U ;Y jU ;U )�3�): (72)

Combining these two probabilities, we find the probability that node
t wrongly decodes wb�t+2 to any v 2 fv 2 f1; . . . ; 2nR] : v 6=
wb�t+2g to be

PrfE5g = Prfv satisfies (68)g (73a)

= Prfv satisfies (67b)gPrfv satisfies (67d)g

(73b)

� (2nR � 1)� 2�n(I(U ;Y jU ;U ;U )�3�)

� 2�n(I(U ;Y jU ;U )�3�) (73c)

< 2�n(I(U ;U ;Y jU ;U )�6��R) (73d)

� �: (73e)
Here, (73b) is due to the use of independent codebooks for each alter-
nating block. The last equation is made possible for sufficiently large
n and if

R < I(Ut�2; Ut�1;Yt jUt; Ut+1) � 6�: (74)

With this rate constraint and large n, we see that the probability of
error is

Pe(b) =

T

t=2

Pet(b) (75a)

�

T

t=2

[PrfE1g+ PrfE3g+PrfE5g] (75b)

� (T � 1)3�; (75c)
which can be made arbitrarily small. Hence, the rate in (74) is achiev-
able.

Equation (74) is only the rate constraint at one node. In two-hop
myopic decode–forward, each message must be fully decoded at each
node, hence, the overall rate is constrained by

R � min
t2f2;...;Tg

Rt; (76)

where
Rt = I(Ut�2; Ut�1; Yt jUt; Ut+1) (77)

and U0 = UT = UT+1 = 0. Since the message can flow through the
relays in any order. Hence we arrive at Theorem 2.

APPENDIX C
PROOF OF THEOREM 3

Now, we prove Theorem 3. We start by describing the codebook
generation. We send B blocks of information over B + T � 2 blocks
of channel use.

A. Codebook Generation

The codebook generation for k-hop myopic decode–forward for the
multiple-relay channel is as follows.

• Fix the probability distribution function

p(u1; u2; . . . ; uT�1; x1; x2; . . . ; xT�1)

= p(u1)p(u2) � � � p(uT�1)p(xT�1 j uT�1)

� p(xT�2 juT�2; uT�1) � � �

� p(xT�k juT�k; uT�k+1 . . . ; uT�1)

� p(xT�k�1 juT�k�1; uT�k . . . ; uT�2) � � �

� p(x1 ju1; u2; . . . ; uk): (78a)
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Fig. 26. The decoding scheme for k-hop myopic decode–forward for the multiple-relay channel. Underlined symbols are those that have been decoded by node
t prior to block b.

• For each t 2 f1; . . . ; T � 1g, generate 2nR i.i.d.n-sequences in
Un
t , each drawn according to p(uuut) = n

i=1 p(uti). Index them
as uuut(zt); zt 2 f1; . . . ; 2nRg.

• Define xxxT�1(zT�1) = uuuT�1(zT�1).
• For each t 2 [T � k; T � 2], define a deterministic function that

maps (uuut; uuut+1; . . . ; uuuT�1) to xxxt

xxxt(zt; zt+1; . . . ; zT�1)

= ft(uuut(zt); uuut+1(zt+1); . . . ; uuuT�1(zT�1)): (79)

• For each t 2 [1; T � k � 1], define a deterministic function that
maps (uuut; uuut+1; . . . ; uuut+k�1) to xxxt

xxxt(zt; zt+1; . . . ; zt+k�1)

= ft(uuut(zt); uuut+1(zt+1); . . . ; uuut+k�1(zt+k�1)): (80)

• Repeat the above steps to generate k � 1 new independent code-
books. These k codebooks are used in cycle and reused after k
blocks of n transmissions.

For the sake of illustration, we denote the code of node
t; t 2 f1; . . . ; T � 1g; by xxxt(zt; zt+1; . . . ; zt+k�1) where zj = 1
for j � T . These are dummy symbols that do not affect the encoding
process.

B. Encoding

We now describe the encoding process for k-hop myopic de-
code–forward. It is depicted in Fig. 25.

• In the beginning of block 1, the source emits the first source letter
w1. Note that there is no new information in blocks b for B+1 �
b � B + T � 2. We assume that wB+1 = wB+2 = � � � =
wB+T�2 = 1.

• In block 1, node 1 transmitsxxx1(w1; w0; . . . ; w2�k). Since the rest
of the nodes have not received any information, they send dummy
symbols xxxi(w2�i; w1�i; . . . ; w3�k�i); i 2 f2; . . . ; T � 1g. We
define wb = 1, for b � 0.

• At the end of block b� 1; b � 2, we assume that node t has cor-
rectly decoded messages up to wb�t+1. Under the k-hop myopic
constraints, a node can encode with at most k previously decoded
messages in each block of transmission. So, in block b, node t en-
code minfk; T � tg previously decoded messages, i.e., it sends
xxxt(wb�t+1; wb�t; . . . ; wb�t�k+2). We note that there are only
T � t nodes in front of node t. For the case of T � t < k, node
t sends xxxt(wb�t+1; wb�t; . . . ; wb�T+2; 1; . . . ; 1). This means, it
sets wi = 1 for i � b � T + 1, which is equivalent to sending
dummy symbols. This is because at the end of block b� 1, node
T will have already correctly decoded signals up to wb�T+1. As
this is the last node in the network, all other nodes will have had
decoded those signals. Hence, no node needs to transmit wi = 1
for i � b�T +1 again. The dummy symbols are included so that
the same transmit notation can be used for all the nodes.

Fig. 25. The encoding scheme for k-hop myopic decode–forward for the mul-
tiple-relay channel.

C. Decoding and Achievable Rates of k-Hop Myopic
Decode–Forward

We look at how node t, for t � k+1, decodes wb�t+2 at the end of
block b. Fig. 26 shows what the nodes transmit.

• During block b, there are k nodes that encode wb�t+2 in their
transmissions. These are nodes ft � k; . . . ; t � 1g. Nodes
f1; . . . ; t� k � 1g do not encode wb�t+2 in their transmissions
in block b as they have to discard the message due to the buffering
constraint of the k-hop myopic coding.

• At the end of block b, node t finds L1(ŵb�t+2) in which

(uuut�1(ŵb�t+2); uuut(wb�t+1); . . . ;

uuut+k�1(wb�t�k+2); yyytb) 2 An
� : (81)

Here, we note that node t can store k old messages.
Hence, during the decoding at the end of block b, it knows
(uuut(wb�t+1); . . . ; uuut+k�1(wb�t�k+2)). The rate contribution
from (81) is

R
(1)
t = I(Ut�1;Yt jUt; . . . ; Ut+k�1): (82)

• Moving back one block, at the end block b � 1, node t has mes-
sages (uuut(wb�t); . . . ; uuut+k�1(wb�t�k+1)) in its storage. After
decodinguuut�1(wb�t+1), it then forms the setL2(ŵb�t+2) which

(uuut�2(ŵb�t+2); uuut�1(wb�t+1); . . . ;

uuut+k�1(wb�t�k+1); yyyt(b�1)) 2 An
� : (83)

The rate contribution from this is

R
(2)
t = I(Ut�2; Yt jUt�1; . . . ; Ut+k�1): (84)

• Repeating this for blocks (b� i+ 1); 3 � i � k, node t find the
set Li(ŵb�t+2), and the rate contribution is

R
(i)
t = I(Ut�i;Yt jUt�i+1; . . . ; Ut+k�1): (85)

The proof is similar to that for two-hop myopic decode–forward
and will be omitted here.
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• Finally, node t finds ŵb�t+2 2
k

i=1 Li(ŵb�t+2), where de-
notes the intersection of sets. A unique ŵb�t+2 can be found if
the reception rate at node t is not more than

Rt =

k

i=1

R
(i)
t = I(Ut�k; . . . ; Ut�1; Yt jUt; . . . ; Ut+k�1):

(86)

• Since all data must pass through every node, the overall rate is
constrained by the node which has the lowest reception rate, that is

R � min
t2f2;...;Tg

Rt: (87)

With this, we have Theorem 3.
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