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Entanglement-Assisted Capacity of Quantum
Multiple Access Channels

Min-Hsiu Hsieh, lgor Devetak and Andreas Winter

Abstract—We find a regularized formula for the entanglement- was found independently by Ahlswede [4] and Liao [5]. It

assisted (EA) capacity region for quantum multiple access is given by the closure of the convex hull of &Ry, Rz)
channels (QMAC). We illustrate the capacity region calculéion

with the example of the collective phase-flip channel which satisfying

admits a single-letter characterization. On the way, we pruide Ry <I(X;Z|Y)

a first-principles proof of the EA coding theorem based on a

packing argument. We observe that the Holevo-Schumacher- Ry < I(Y; Z]X) 2
Westmoreland theorem may be obtained from a modification Ri+ Ry < I(XY;2Z)

of our EA protocol. We remark on the existence of a family

hierarchy of protocols for multiparty scenarios with a single for some product distributiorp(z)p(y) on X x Y. Here

receiver, in analogy to the two-party case. In this way, we fate the joint distribution of XY Z is p(z)p(y)p(z|z,), and the

several previous results regarding QMACs. conditional mutual information is defined d$X;Z|Y) =
Index Terms—Entanglement-assisted capacity, multiple access I(X;Y Z) — I(X;Y).

channels, quantum information, Shannon theory. The theory of quantum channels is richer, and includes
several distinct capacities depending on the type of inétion
. INTRODUCTION one is trying to send and the additional resources one can

HANNON'S classical channel capacity theorem is one ¢fS€: A quantum channgl” is modeled as a cptp (completely

he central results in classical information thedry [1]. A20Sitive and trace preserving) map. The capacig\) of a
single-sender channel is defined by the trigh, p(y|z), V) quantum channel is defined to be the maximum rate at which
where the setst and ) represent the inpu7t and ’Outpulclassical information can be sent through the quantum aann
alphabets, respectively, and the conditional distributity|z) “V- This capacity was proved independently by Holei [6]
defines the probability of the output beinggiven that the 2nd Schumacher and Westmorelanid [7]. The capagity) is
input wasz. The capacityC' of the channel, the maximum defined to be the maximum rate at which quantum information
rate at which classical information can be transmitteduto 2N Pe sent throggh‘the‘ guantum chank&land a formula
the channel, is given in terms of the mutual informatiofP" It Was proven in[[3], [[9], [[10]. o
I(X;Y)=H(X)+H(Y) - H(XY), (here the entropy of a Entanglement shared be_tween_ sender and receiver is a
random variableX with probability distributionp(z) is given useful resource that generically increases channel dgpaci

_ . The entanglement-assisted classical capa€ity(/\) is the
by H(X) = =2 e pla) log p(@)): maximum grlate at which classical informgtio%(ca)n be trans-
C =maxI(X;Y) (1) mitted through the quantum channafl if the sender and
»(@) receiver have access to unlimited entanglement. A rembrkab
where the joint distribution ofX'Y" is p(z)p(y|x). simple formula for this capacity was found in [11], [12], to

The classical multiple-access (MAC) channél’ x  be formally identical to[{l1), with classical mutual infortitan
Y,p(z|z,y), Z) is a channel with two senders and one reeplaced by the quantum mutual information between quantum
ceiver. Now & and Y are the input alphabets of the firstsystems4 and B
and second sender, respectively. A general overview of MACs
can be found in[]2],[I8]. The capacity problem now involves CeWNV) = m;j‘XI(A B). ®3)
finding the region of achievable transmission ralgsand Rs

for the two senders. The classical capacity region of a MA-{Zhe maximization is performed over the sender's input state

p, and the quantum mutual informatiaf{4; B) is defined
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classical-quantum capacity regiotQ (M) (where one sender [I. BACKGROUND

is sending classical, and the other quantum i_nformati(m), @ Each quantum system is completely described by the state
the qu.antum-qutqntum channel capacity reg@pM) were yector which is a unit vector in Hilbert spagé An alternative
found in [14], [15]. _ ~ way to describe a quantum system is by density operator
In this work we consider the entanglement-assmtepd: H — H, where p has trace equal to one and is a
classical-classical capacity regiéf; (M) of a QMAC M. In - hqsitive operator. Ifp belongs to a quantum syster we
other words, both senders share unlimited entanglemeht Wihay denote it by?. When it is clear from contexts, we will
the receiver and both are sending classical information. Wit the superscript letter that represents the holder ef th
will show it to be theregularized closure of the set of all the guantum system. We always useto denote the maximally

achievable rate pair§i:, R») satisfying mixed stater = (|#H|)~*I where|#| represents the dimen-
Ry <I(A;C|B) sion of H. Given a statep® whose spectral decomposition
R, < I(B;C|A) () is >, pili)(i|, the purification of such state is obtained by

introducing a reference system such that the purified state
R+ Ry < I(AB; C) [p)yAR =3 /pili)A]i)E. We write the density operator of a
for some choice of a product input state @ p, for the pure statdy) asiy = [4) (1]
two senders. The quantum entropic quantities are defindd wit Saying that\' : A — B is a quantum channel, we really
respect to the product of purifications of and p,, after half mean that\ : B(Ha) — B(Hgp) is a cptp (completely
of it has passed through the chanuel. The systemsi and positive trace preserving) map, wheBéX) represents the set
B are the parts remaining on the senders’ sides, @i  of bounded linear operators iH. It may be modeled by an
the channel output system. A precise statement of the resgmetry Uy : A — BE with a larger target spac@E,
is given in Theorem 2. The expressidd (4) thus paralléls (@llowed by tracing out the “environment” systef. Uy is
with the classical mutual information replaced by its quamt known as the Stinespring dilation |16] of". We will often
counterpart. While our formula does not allofiiz (M) to  write Uy (p) for UNpU/{/.

be efficiently computed in general, we exhibit a non-trivial A quantum instrumen{17]/[18Pp = { D }mep 1] =

example for we can computéz (M) in closed form. {1,2,---,u}, is a set of cp (completely positive) map,,
We also provide a new proof of the direct coding theorem ;
for the single-sender entanglement-assisted channetitapa Dy i p — Z Akmp Ay, -
k

Our proof is important and necessary in the following sense.

First, our proof uses packing lemma that comes from the id®ae sum of the cp mag® = Zmew D, is trace preserving,

of typical subspaces, which is directly analog to the idea gfq S, AL Awm = I. The instrument has one quantum
typical sets Shannon uses to prove the direct coding theorp,ﬁgut and twgoutputs, classical and quantum. The proligbili
of single-user channel capacity. The previous proofiin [11f classical outcomen and corresponding quantum output
[12] is less trivial in the sense that it is based on the HoJeV@m(p)/(Tf Dyn(p)) is Tt Din (p). Ignoring the classical output
Schumacher-Westmoreland (HSW) theorem [6], [7], whickguces the instrument to the guantum m@p Ignoring
uses the conditional typical subspaces. Our proof demaestr o quantum output reduces the instrument to the set of

our growing understanding of quantum information theorpgoyms (positive operator valued measufa),, } with A, =
We believe that our method of proof will not only become CAL A

powerful tool but also will find many applications in quantum Tnhe trace distance is defined as the trace norm of the
information theory. Second, our proof provides new prapsrt yifference between the two states
that can be used to prove the multiparty generalizations&he

new properties do not exist in the previous proofs. Final, lo=pl=Trv(o—p)?= max Tr[A(o—p)].
show that the HSW theorem is a special case of the two-party -
entanglement-assisted capacity theorem. The method of types is a standard technique of classical

The paper is organized as follows. Sectioh Il containgformation theory. Denote by:™ a sequencerizs ...z,
the relevant background material. This includes notationghere eachs; belongs to the finite sef’. Denote by|X|
conventions, definitions of the method of types, frequengye cardinality of X'. Denote by N(a|z") the number of
typical sequences and subspaces, and useful lemmas.rSediturrences of the symbaole X in the sequence™. Thetype
[T contains statements and proofs of our main results. " of a sequence™ is a probability vector whose elements
section[ IV we compute the capacity region of the collectivgl" - % Denote the set of sequences of typey
phase-flip multiple access channel which admits a single- "
letter expression. In sectidn] V we first rewrite our resutts i Tt =A{a" € X" 1" =t}
the resource inequality framework, from which we recovgty, ihe probability distribution on the set¥’ ands > 0, let
previously known coding theorems for QMACs. In secfion VJ.(S = {t:Ya € X, |ta — pa| < ). Define the set of-typical
we conclude by pointing out the open question regarding t@@quences of length as B
single-letter expression for our entanglement-assist@daty
region of quantum multiple access channels. We also give a b = U T."
conjecture on the entanglement-assisted channel capuitlity tE€Ts ()
more than two inputs. = {z":Vae X, [t2 —p,| <6}



Define the probability distributionp™ on X™ to be the is easy to verify.

tensor power ofp. The sequence™ is drawn fromp™ if The set of generalized Pauli matricgs,,, },,c (42 is defined
and only if each letterr; is drawn independently from. by U 4., = Zd(l)f(d(k) for k,l=0,1,---,d—1 and
Typical sequences enjoy many useful properties. Hép) =

— 3 plog p,. be the Shannon entropy pf For anye, § > 0, Xa(k) =" s)(s + k| = Xa(1)¥,
and all sufficiently large: for which s , (14)
Z I = i2msl/d — Z 1 l.
pn(f];né) >1—¢ (6) d( ) ;6 |S><S| d( )
g nlHE) el < pr(gny < o7l @)I=edl ygn e 70 (7) The + sign denotes addition modutb

T | < 9nlH (p)+ed] 8 We will always use|®) to represent the maximally entan-
756l < (8) gled state. Then the maximally entangled stgié*? on a
for some constant: (see [2] for proofs). Fort € 7; and pair of d-dimensional quantum systemsand B is given as:
for sufficiently largen, the cardinalityD; = |7,”| is lower

d
1
bounded as'[2] 12)A8 = — N7 3)4]i) B, (15)
D, > onH®)=n(9)] 9) Vd ;
and the functiom(6) — 0 asé — 0. We have the following result (see [11] for a proof):
The above concepts generalize to the quantum setting by 2
virtue of the spectral theorem. Lpt= > __ \ p.|z)(z| be the 1 U @ NOAB(UT @) = 74 @ 2B 16
spectral decomposition of a given density matsixin other d? mzzl( m®1) (Unel)=rter, (16
words, |z) is the eigenstate g5 corresponding to eigenvalue N 5 s _ _
p. The von Neumann entropy of the density mafsiis wher?w = m° = 3. We will also need the following
equality:
H(p) = —Trplogp = H(p). (I U)|®) = (U @ 1)|) (17)
Define the type projector for any operatoi/, andU'" denotes transposition @f.
I} = Z lz™) (™). Next is a coherent version of the gentle operator lemma
eneTy ([21], Lemma 9). It states that a measurement which is likely

. . . to be successful in identifying a state tends not to signifiga
The density operator proportional to the type projector Ssturb the state.

_ p,-imn i ; ;
T o= Dy Ht._The _typ|cal subspace associated with the Lemma 1 (Gentle coherent " 0: Let {P?}ke[K]
density matrixp is defined as : . casureme
be a collection of density operators afd;}.c(x) be a set
I, = Z J2™) (2| = Z 7. of POVMSs on gquantum system such that
zn€7—£5 teTs
Properties analogous tbl (6) H (9) hold[19]. For any > 0,
and all sufficiently large: for which

Tr p®"H;5 >1—c¢ (20)

TrppAr >1—¢€

for all k. Let |y )74 be a purification op;!. Then there exists
an isometric quantum operatidd: A — AJ such that

1T @ D) (@) — i @ k) (k||| < VBe.

Proof: Every POVM can be written as an isometry
TrIIy 5 < 2nlH(e)ted] (12) followed by projective measurement on a subsystem. In par-
ticular, there exists an isometfy : A — AJ such that

2,n[H(p)+c5]HZ76 < HZ76P®HH2,5 < 27n[H(p)fc5]HZ767 (11)

for some constant. For ¢ € 75 and for sufficiently larges,

the dimension of the type projectdl} is lower bounded as (IF @ D)|¢)RA = Z[(IR ® \/A_j)|¢)RA]|j)J.
Tr 1P > 2nlH () =n(9)] (13) J

and the functiom(é6) — 0 asd — 0. Thus

For a multipartite state“2¢, we write H(A), = H(p?), (k|{ox|(I @ D)|pr) = (pr|(I @ \/Ar)|br)
etc. We omit the subscript if the state is clear from the cxinte > I®A
Define the quantum mutual information by = (9xl( ©)lée) (18)

=Tr PkAk
I(A;B)=H(A)+ H(B) — H(AB) >1—e

and the quantum conditional mutual information by The first inequality uses that;, < /A, when0 < A < I.

I(A;C|B) = H(AB) + H(BC) — H(ABC) — H(B). The statement of the lemma follows from the fact that for pure

] o states|¢) and|v),
These are non-negative by strong subadditivity| [20]. If

I(A; B) = 0 then ¢ =l =2v1 = [(Cl¥)]2.
I(A;C|B) = I(A;CB) [ |



The packing lemma below will prove to be a powerful tool | E" | m
in quantum information theory. The technique used here is Encoding Map Ue"| o ’
simple, directly analogous to the classical coding theorem g k &( A" Yw | B

Lemma 2 (Packing): We are given an ensemble < P
{Am, om tmes With average density operator - ‘(p>®~ A .

2 { p" =T ., s
o= Z A Om.- B D —
meS Decoding Map

Assume the existence of projectdisand{II,, } ,,cs with the
following properties:
Fig. 1. Two-party entanglement-assisted communication

Tro,Il, > 1—e¢ (19)
Tro,lT > 1—¢, (20)
direct proof based on the packing lemma which only uses
Trll, < d, (21) ; ,
. typical subspaces. The proof perhaps sheds more light on
Holl < DI (22)

why achievable rates take on the form of mutual information.

for all m € S and some positive integefd andd. Let N = Furthermore, our proof provides new properties_( i) any _iii
|vD/d| for some0 < v < 1 where|r| represents the largestPelow) that serve as a bridge to the proof of multiparty cgdin
integer less tham. Then there exists a map : [N] — S, theorem. _

and a corresponding set of POVMA } (] Which reliably As shown in Fig[]L, Alice and Bob are connected by a large

distinguishes between the stafes; ) }xc(n) in the sense that NUmbern uses of the quantum channéf : A" — B. Alice
controls the channel input systedi and Bob has access to

TrojgAr > 1 —4(e + V8e) — 8y the channel outpu3. They also have entanglement in the
for all & & [N] form of n copies of some pure bipartite stage* Z°. Any
S . such state is determined upto a local unitary transformaiio
Proof: See AppendiXCA. [

: the local density operatgr?’ = Tr 548", Alice and Bob
Lemma 3: If |)ABE is a pure state then y operaigr FBY
use these resources to communicate, in analogy to superdens

H(B|E)y = —H(B|A)y. coding [22]. Based on her message Alice performs a quantum
o ABE operation on her share of the entanglement. She then sends
Proof: Since [¢) is pure, we haveH(A)y = it through the quantum channel. Bob performs a decoding
H(BE)y andH(E)y = H(AB)y. Then measurement on the channel output plus his share of the
H(B|E)y = H(BE), — H(E),, entanglement. They endeavor to maximize the communication
_ _ rate.
= H(A)y = H(AB)y (23) We formalize the above information processing task. Define
= —H(B|A)y. an[n, R, p, ] entanglement-assisted code by
[ | « a set of unitary encoding mapy },c(2nr) acting on
Lemma 4: For any stater“BF, A= AL LAl for Alice;

I(A: B), < H(B), + H(B|E),. « Bob’s decoding instrumenD = {Dy}c[.~r] acting on

B"B'™,
Proof: Introduce a reference system that purifies the such that for allk € [2"F]
statec4B¥ | then i) Tr{[Dyo((N®o&)x D)} >1—¢
I(A;B), = H(B), — H(B|A), ||) the encoded density operator satisf@gp®") = p®™;
— H(B), + H(B|ER), 2y
< H(B), + H(B|E),. (P& ™) o (Un®" o &) & D) = (UN®" ® D))
The first equality follows from the definition of quantum <e

mutual information. The second equality follows from Lemma

[B. The first inequality uses the fact that conditioning resuc whgr.eo rgpresents composition of two maps. .
entropy [20]. m Condition i) means that Bob correctly decodes Alice’s

message with high probability. This condition suffices feot
party entanglement-assisted communication. The rengainin
] ] two properties, which were not shown in_[11], [12], are im-
A. Two party entanglement-assisted coding portant for the multiparty generalization. Condition iieems

Before attacking the multiuser problem we give a new prodiiat Alice always inputs a tensor power state into the chlanne
of the two-party entanglement-assisted direct codingrégreo Condition iii) says that the encoding and decoding openatio
This theorem was first proved in_[11] and subsequently in effect cancel each other out. So it is as if Alice just sent
[12]. Both proofs invoke the HSW theorem. The HSW theorethe statep®™ down the channel without any coding. In reality,
uses the method of conditionally typical subspaces. We giveshe has also managed to convey the message to Bob.

Il. M AIN RESULT



Theorem 5: Define #47 = (I @ N)p?4 and R = Let \ye = 7 and R = I(A;B)g — (2¢ + 1)5. We now
I(A; B)y. For everye,6 > 0 and n sufficiently large, there apply the packing lemma to the ensemblg., 04 } sacs and
exists an[n, R — ¢, p, €] entanglement-assisted code. projectorsll andIl... Thus there exist a map: [2"%] — S

PrQLof: Let ¢(1),...,t(a) be an ordering of the distinctand a POVM{A}c[2nr] such that
typest® . Define the maximally mixed state? = 1/daH;1(a), T AL ST 37
where d, = Trll},,,. Define |,) to be the maximally Tf(k) 2k = L =€ (37)
entangled state on a pair df,-dimensional quantum systemsyith

A™ and B" € =4(e+V8e) +16 x 27,
|a) " P = \/% S A P (25) Define the encoding operation b, = Uy ). Including
¢ aneTh,, the environment system, the state BPPB'"E" after the
In the beginning Alice and Bob share the entangled state a@PPlication of the channélyy is
|@yA" BT = | p)en TR P ETE = (UN®" @ ) (Upry @ T W) B (38)
=Y Vpal®a), (26) = (UN®" @ Uy W) 5™

_ |T1) is a purification ofos(;). By Lemmall, there exists an
where p, = ZI"ET;{Q) p”(:c”) The type prOJectorSH?(a) isometryD/ . B"B'™ — B"B'™J such that
induce a decomposition of the Hilbert spag&®™ of A" / J
. N . IRD)Y)—T k)(k < V8¢
(correspondingly ofB’") into a direct sum (T2 D)(Te) k® k) (k[T < v8e
Bob performs the controlled unitary

H®n - H o) m « m
@? e WIET =3 k)R @ UF)
k

Let G = {(91,92,-"* :ga) © 9o € [di], € [a]}, B = - . o
{(b1,ba,--- ,ba) : by € {0,1}}, andS = G x B. Every Defining D" = (W ® I5") o D', this implies

elgments“ eSis uglquely det_ermlned_bya eg anqlb“ e B. H(I D) (Ty) — [(Uj(\@}n @ D(e®™)] @ |k><k|H < V3e.
Given an element® € S, define a unitary operatiotis. to (39)
be a The instrumenD = {D;} is defined byD” followed by a
Usa = Uga po = @(—1)ba Uy, (27) von Neumann measurement of the systédmEquation [(3P)
a=1 expresses the fact that the classical communication being
where {U,_} are thed? generalized Pauli operatorg_[14)performed is almost decoupled from all the quantum systems
defined ont, o). Define qulved in the protocol, including a_ncnlas and the mb_lg
environmnent. We remark that this guarantees the ability to
oB"B" = (N® @ 1) [(Usa ® A" B (Ul @ I)} “coherify” the protocol in the sense df [23].
(28) Condition i) in the form

= (I U (IoUL).
The last equality follows from[{17). Let to be the average Tr {[Dyo (N®" 0 &) @ D] (¢*")} =1 -¢

of 0.« overS, then we get((29). The last equality comes frof immediate from[{37). Condition ii) follows from the con-
(30) and [(31) below. When = o/, struction [27). Condition iii) in the form

m Z Z pa(N®" ® I) {(Uga,ba & I)@a(U;a_’ba & I)} H[(D ® IE") o ((Ux@}n 0 &) ® I) . (Uj(\g}n ® I)](g0®n)
gregbeenB

< V8¢

follows from (39). [ ]

1
:(/\/®n®1)@ § E pa(Uga®I)q)a(UJa®I)
g1 Ya

= (N®" @ Ipo(mfy @ mp). (30)

The last equality follows from[{16). Whea # o', we get
(31). Define the projectors oB’'" B™

B. Remark on the HSW theorem

Suppose that Alice and Bob are connected by a spegial
channel of the form

_ /
Mo = (1 UL I 5 (19 US), N=Nok,
I =M, 5 @ 117 5. (32)  \wherea is the dephasing channel
The following properties are proved in Appendix B. For all A:p— Z |x) (x| p|x){x]|.
e > 0,9 > 0 and all sufficiently largen, z
Trowld > 1—e (33) A {c— ¢} channelis equivalent to one with classical inputs
T I ; 1_ (34) and quantum outputs. The HSW coding theorem states that
FOsatlsn = n[HE(AB) e ratesR = I(A; B)y, 648 = (I ® N)p?4" are achievable
Trlle < 2 ’ (35)  even without entanglement assistance. We show that this fac
Holl < 2nlHA)e+H(B)otedly (36) follows from our construction in two steps.
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The first step is to replace the entanglement used by classiceeasurement on the channel output plus his share of the
common randomness. Observe that the encoding operatientanglement. Now both Alice’s and Bob’s communication
Us. all satisfy rates need to be optimized.

AB 6 Uw = AB 6 U 0 AB™, We formalize the above information processing task. Define
an (n, Ry, Rs, €) entanglement-assisted code by

This follows from the corresponding property of the general . two sets of encoding cptp map§fy }epenm) taking A

ized Pauli operator$ (14). Hence for cq chann€ls to A™ for Alice, and{£7};c(onx.) taking B to B™ for
n Bob ;
Of(k) :[(N® ng)®f]( ) ' .
[ ] Ch | d d POVM A nRq nRy
= [(N®" 0 & o A®™) ® I](¢®™) (40) CA?JrEI;eCS P Wetdicprryienry On
= [(W®" o &) ® I(F™"), such that
Where ® 1 2 CaC AC BC
= (8© D=3 pale)lal o Tr {Aral(M®" 0 (€1 © €0)) @ 19495 ) (194 @ THC=)]}

>1—e (41)
is the dephased version of The states®™ can be constructed
from classical common randomness like that used in Shan-
non’s original coding theorem.

The second step is showing that common randomness is
needed. The argument parallels the derandomization siep fr

the proof of the packing lemma (Appendl3 A). We have thus S Theorem 6: Consider a guantum multiple access channel

recovered the HSW coding theorem. A B )
i L : A’B" — C. For some stategy* and define
The benefit of the above proof is its close analogy t/(;/l - P1 Pz

Shannon’s joint typicality decoding. We only made use of 9ABC = (I8 @ M)(pP4 @ oBP) (42)
typical subspaces and not conditionally typical subspaces

We say that(R;, R2) is an achievable rate pair if for all
> 0,9 > 0 and sufficiently large: there exists arfn, R; —

0,€) entanglement-assisted code. The entanglement-
Qgglsted:apacny region Cg(M) is defined to be the closure
Tof the set of all achievable rate pairs.

where |o1)44" and [p2)P5" are purifications of pi!
and p2 respectively. Define the two-dimensional region

C. Multiple-Access Channel Cgr(M, p1,p2), shown in Fig.[2, by the set of pairs of
We turn to the communication scenario with two sendergonnegative rate6R,, R,) satisfying

Alice and Bob, and one receiver, Charlie. They are connected

by a large numben of uses of themultiple-access quantum Ry < I(A;C|B)g

channelM : A’B’ — C. Alice and Bob control the channel Ry < I(B;ClA)g (43)
input systemsA’ and B’, respectively. Charlie has access Ry + Ry < I(AB; C)g.

to the channel outpu€. Each sender also shares unlimited

entanglement with the receiver, in the form of arbitraryepuDefine Cx(M) as the union of theCr(M, p1, p2) regions
states|I'; )44 and|I'5) B2, The systemd is held by Alice, taken over all stateg;, p. Then the entanglement-assisted
B by Bob, andC4Cp by Charlie. Based on her messagéapacity regiorCz (M) is given by the regularized expression
Alice performs a quantum operation on her share of the —_—

entanglement, and likewise for Bob: These are then s_ent Cp(M) = U laE(MW) (44)
through the quantum channel. Charlie performs a decoding oy



R, N5™ is effective the channel from Bob to Charlie if Alice
simply inputs theA’ part of the entangled state/purification

(o' “4)@n without encoding.
I(B;C|A) Fix ¢ > 0,6 > 0. Define Ry = I(A4;C)y —
and R, = I(B;C|A)y — 6, with 6 defined in [(4R).

By Theorem 1, for sufficiently largen there exists an
[n, R1, p1, €] entanglement-assisted co®', D') for A; and
an [n, Ry, pa, €] entanglement-assisted cod€?, D?) for N
such that for allk € [27f1],1 € [2"F2],

) Tr{[Dy o (NP0 &) @ IN)(f™)} 21~ ¢

B i)

1(B; C)

I(A;C) I(4; C|B) 1 R 1 C \® C &
(D" @ 1) o (W2 0 ) & 194) — (NE™ @ 194)])(5™)

Fig. 2. Capacity region of multiple access channel for fixgout stateso;
and p2 <g
i) Tr{[Df o (N5 0 &) @ I97)](p3")} > 1 —¢;

i H H dny _ dn
where the bar indicates taking closure. There is an addition'v) the encoded density operator satisi&p;™) = o™

single-letter upper bound on the sum rate We now define our code for the multiple access channel
M. Alice and Bob encode according t£}} and {£7},
Ry + Ry < max I(AB;C)y. (45) respectively. Define the instrumelt = {D;;} on CC4Cp
P1,P2 by
Proof: (direct coding theorem) Let the entanglement be Dy =D} o (D} ® I°8),

given in a tensor power form, as in Theorem 1. Define fhen Charlie's decoding POVMAy;} is the restriction of

[, By, Bz, 1, 2, €] entangleme.nt-asm_sted code as a spem{%k 1}. Examining the success probability of decoding Alice’s
case of an(n,Rj, Rs,e) code: specifyI'y = ¢7" and meésagek'

Iy = ¢3", and identifyA := A™ and B := B'™.
To show the achievability of every rate pgiRi, Rz) in Tr {(Dj © 19%) o (M®" o (& ® 7)) @ 19472 ) (o7 © p5™)}

the convex hull o_f theCE(M,_pl,pz), it suffices to show _ T {D} o (M o (&} ® £2)) ® I94) (02" @ p&™)}

that the corner points are achievable. Once we show that, the 1 on 1 s Care @ o @

non-corner points can be achieved by time-sharing (see, e.g 1= 1Pk © (M®" o (& @ I7 1)) @ I)(p1" @ py")}

[24]). Consider the corner point Q. For al > 0,6 > 0 = Tr{[D} o ((NF" o &) @ D](¢™)}

and n sufficiently large, we show below that there exists> 1 _ ¢

a[n,1(A;0)g — 0,1(B;C|A)g — 8, p1,p2, €] entanglement- (46)

assisted cod¢é€?, £2, D). . . . _
The point Q corresponds to the maximum rate that &f'¢ Second equality follows fromliv) and the third frén ).

which Alice can send as long as Bob sends at his maximum!V€Xt €xamining the success probability of decoding Bob's

rate. This is the rate that is achieved when Bob's input f8€ssageé: Rewrite[ii) in terms ofM:

considered as noise for the channel from Alice to Charlie. m

From the two party direct coding theorem, Alice can send I[(D* @ 19%) o (M 0 (£ @ I77)) @ I9477)

at a ratel(A;C) and Charlie can decode the message with — (M @ I98))(pF" @ §™)| < &

arbitrarily low probability. Charlie then knows which erding . . . p—

operation Alice used and can subtract its effect from thsemcegl2 is unitary and safisfiesiv),

channel. Therefore, Bob can achieve the tB; C|A). This

Dl ICB ®n 51 52 ICACB
outlines the proof of the achievability of point Q. ID7 @ 7)o (MP" o (& @ &) @ )

Define the channel; : A’ — C by — (Mo (I @ £)) @ I99P)|(pF" ® p5™)|| < &;
Nt w s M(w® ps) Rewrite[ii) in terms of M
2 n A" 2 CaCr ®n ®n
N{™ is the effective channel from Alice to Charlie when Tr{[Df o (M*" o (I @ &) @ 17277 (07" ® 95™)}
Bob's input to M®™ is p5". DefineN; : A’ — CpC by >1l-e
Nl :w’—)([@M)(W@(ﬂg). Define

Observe thatV; is an extension alV;. Hence it is a restriction QCCaCs

of Un; - = (D' @I )o (Mo (E @ D)) RTTATE ) (7" @p™)
Define the channel; : B’ — C,C by H
ence

Notwis (I M)(p1 @w). Tr [D} QCC4CE] > 1 — 2.



where the functiom(n, €) tends td) ase tends tad andn tends

| to infinity. The inequality is standard in classical infortoa
e g L g theory [2]. It is obtained by applying Fano’s inequality [2]
& (47). Denote the state of the system at titniey

K — s Ca

Unr

L : e WKLCACBCTE" _ ([KLCACE @ [7&)(£) © &),
— > o B : - Apr
g P C .
; T UK — B SRy | 0 (6] @ 19 (0AO),
: B k

time t

B'"LCg _ 2—nR2 DN L ® 52 ® ICB FBCB
Fig. 3. A general protocol for multiple-access entanglersssisted classical 2 Z | >< | ( ! )( 2 )
communication !

Denote byA™ the system which purifies the restriction of the

Now (@1) follows. This concludes the achievability of point4m parts of the statg, at timet,. ThenA™ containsk” and
Q. C,4 as subsystems. Defing™ in a similar fashion.

Corner point P can be shown in the same manner. Corner e Holevo bound reads
point R corresponds to the maximum rate achievable from Bob
to Charlie when Alice is not sending any information. The
proof is obvious since we can assume that Alice is throwin . "
the same state into the channel all the time. The corner poﬁle entropic quantities below refer to the state

O follows from the same reasoning. This concludes the proofI(KL, CACEC™)
of direct coding theorem. ' B
=I(C™";CACKL)—I(CyCp;C™") + I(KL;CsCp)
< I(C™;CACBKL)
< H(C")+H(C"|E")

I(KL; KL) < I(KL; C4CpC™),. (49)

Remark. The entanglement assistance may be phrased in
terms of tensor powers of ebit statgb,) = %(|0)|0> +
[1)|1)) instead of the arbitraryI';) and |T';). The protocol

achieving the corner points of the regiafiz (M, p1, p2) =H(C") - H(C"[A"B")
uses|I';) = [¢1)®" and |Ty) = |¢2)®". By entanglement = [(C"; A"B").
dilution [25], |T';) may be asymptotically obtained from an (50)

ebit rate of F; = H(A)p shared between Alice and Charlie.

Likewise |I'2) may be asymptotically obtained from an ebiffhe first inequality follows from/(KL;C4Cg) = 0 and
rate of B = H(B)y shared between Bob and Charliel(C4Cpg;C™) > 0. The second inequality holds because of
Entanglement dilution additionally requires an arbitgesimall Lemmal4. The second equality is from Lemfia 3.

rate of classical communication. This resource is obtalmed Putting everything together gives

applying the HSW theorem to an arbitrarily small fraction of

the_n channelsM. Doing so has no effect on the capacity Ri + Ry < n(n,e) + l](cn;Aan)_ (51)
region. n

Proof: (converse) Start with some(n,R;, Ry, e) Observe that
entanglement-assisted code (see Hifj. 3). Assume Alice’s 1

messagek and Bob’s messagé are picked according to H(C™)+ H(C"|E")

the uniform distributions or2"#:] and [2"f2], respectively. " 1

These correspond to random variablés and L. Alice < EZ[H(CZ-)+H(01»|E¢)]

performs the encoding operatid} on the A part of |I'; )A€ @ 50
conditioned onk = k. Bob performs the encoding operation < g}%’;[ﬂ(c)e + H(C|E)o] (52)
&% on the B part of [I'2)B¢s conditioned onL = I. The o

olutput of &} @ £7 is sent through the multiple access channel N g}%[ﬂ(c)e ~ H(C|AB)]

MP®" just after timety . The channel outpuf™ is acquired =max I[(AB;C)g.

by Charlie at timet. Charlie performs a POVM on the p1:p2

channel output and his part of the entanglem@atUs. The The stated is defined in [[@D).

measure_ment outcome is a random varidhle= (K, L). By An upper bound on Alice’s rat®&; is obtained in a similar
the condition|(41), fashion. Equations
Pr{K # Kand L # L} <e. (47) R
_ _ _ nRky = H(K) < I(K; K) + nn(n, €), (53)
The protocol ends at timegr. We first obtain an upper bound
on the sum rat&R?; + R,. At this time and

n(Ry 4+ Ry) = H(KL) < I(KL; KL) + nn(n,¢), (48) I(K;K) < I(K;CaCC™),, (54)



are obtained as above. With respectto Proof: First we show that[{80) is precisely the region
Cg (M, m, ), proving achievability. The correspondifigtate
I(K, CACBCn) E( ™ 7T) p g y p &

is
— I(CBCR,CAK) — I(CA; CBCn) + I(K, CA) HABC (IAB ® M )((I)AA/ ® cI)BB/)
< I(CgC™;CaK)
)

where|®) is the maximally entangled stafe {15). It is easy to
< I(B"C" CAK |®) y 9 e (15) y

(55) see that

< H(B"C")+ H(B"C"|E") H(A) = H(B) = H(x) = log d
= H(B"C") — H(B"C"|A") H(AC) = H(BC) = logd + H(p) (61)
=I(A";B"C") H(ABC) = H(p).
= I{4% C7|B"). Hence we reach our conclusion
Hence . I(A;C|B) = 2logd
Ry < n(n,e) + —I(A™ C"|B"). (56) I(B;C|A) = 2logd (62)

By the same argument I(AB;C) = 4logd — H(p).

1 It remains to show that {60) is an upper bound on the
Ry < n(n,e) + —I(B"; C"|A"). (57) capacity region. It is clear from((#3) thak, < 2H(A)
and Ry, < 2H(B). Hence the first two inequalities i _(60).

The reason that we do not single-letterize the ré&te®ndR>  The third makes use of the single-letter upper bolnd (45) on
using arguments i (51) is due to the definition of systetfis | g, It suffices to show that

and B", which contain the classical informatidid and L as

subsystems, respectively. At the same time, the channelibut max [(AB;C)g = 4logd — H(p), (63)

C™ also contains information regardirfg and L. Therefore, P

it is not trivial that chain rule is applicable to systed@gc» Wwhere .

(likewise A"C™). 045C = (I @ M) (P4, (64)
Now assume thatR;, R2) is achievable. This means thata

for all e > 0,6 > 0, there exists aifin, R; — 9§, R2 —J, ¢) code,

and hence

nd oABA'B’ is a purification of pA'B". [l We need three
ingredients. The first is that the maximum [n}(63) is attained
for statesp?’B’ diagonal in the{|jl)} basis (see Appendix
for a proof of this fact). Define a Stinespring dilation

1
< - n.,  m|pn
Rl_n(n,e)+5+nI(A ;C"|B") Um, : AB" — CE of M,, as

1
< —I(B™;C™| A" 58 '
R2_T](n,€)+5+n ( 7C | ) ( ) Z|jl |¢]l jl|AB (65)
1
Ry + Rz <n(n,e) +26 + —I(C"; A"B").
n where

It follows that (Ry, R2) is in the v(n,¢,d) neighborhood of i2mh(j+0)/d.
the LCx(M®™) region, withv(n,e,8) — 0 ase — 0,6 — [60)" Z\/_|k
0,n — oo. Hence (R1, Ry) is in Cg(M), concludmg the
proof of the converse. m By the results of AppendikiC

(AB C)g = 2H {T‘Jl} ZT‘J1¢J1 (66)
IV. THE COLLECTIVE PHASEFLIP CHANNEL EXAMPLE

Consider the case thatl’| = |B'| = d > 2. The collective wherep = >, ;| jl)(jl|.
phase-flip channel [14M,, : A’B’ — C' is defined as The second ingredient is that(AB;C), is a concave
i function of p and hence has a unique local optimum. This
B . . . . t is because fordegradable channels [24] such asM,, the
My(p) =D p(Z(k) @ Z(k)p(Z(k) @ Z(R))T (59 conerent informationl (AB)C) := I(AB;C) — H(A) is a
k=0 concave function of input density matrix[14]. Since H (A)
where Z(k) is the generalized Pauli phase operator frof§ &lso concave we conclude thitAB; C') is concave.
(@4). We will show that the capacity region for the multiple The third ingredient is to use the method of Lagrange
access phase-flip chann#l,, assisted by entanglement is thénultipliers to find a local optimum fof (AB; C')¢. We need
collection of all pairs of nonnegatlve raté®,, Ry) which 10 optimize

satis
b fri) =2H{rji}) - dem A
R <2logd il

Ry <2 logd (60) lwe have already shown that this maximum is achieved for tloeluymt
R1 + Ry < 4logd— H(p). statepA'B’ = 74’ @ 1B
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with Lagrange multipliet\. Differentiating with respect to the and

r;; givesd? simultaneous equations. By inspection,= 1/d? 1
9 ; yISPecon— L/ d (M) > I(AYBC) g = dlac + S IBYC) 4 = dlse. (72)

is a solution to this system of equations. The second ingredi = 92
ensures that this is in fact the global maximum. Thus These equations are of the form
1 1
mgxI(AB; Cp =2H({5}) — H( > om) (M) > Q1q — glac +Q2(q — glsc- (73)

The optimal set of pairéQ, Q) satisfying [7B8) was found in
[14], [15]. Equations[(71) and (¥2) recover the “corner psin
as claimed. m of the corresponding capacity region.

Coherifying only Bob’s resources in equatidn(67) gives

=4logd — H(p)

V. A HIERARCHY OF QMAC RESOURCE INEQUALITIES

T . (M) + H(A) [ga)ac
In this section we phrase our result using the theory of > (A C I1(BYCA
resource inequalities developed [n[23]. The multiple asce 2 1(4;C) e = clac + I(B)CA) [q = dlsc-
channelM : A’'B" — C assisted by some ratg; of ebits ConsiderM of a special{cq — ¢} form in which Alice’s
shared between Alice and Charlie and some fajeof ebits input is dephased before being sent though the channel. The
shared between Bob and Charlie, was used to enable &ratearguments from Sectioh II[iB apply here to show that the
bits of communication between Alice and Charlie and a rafdice-Charlie entanglement is not needed. Thus we recover
R, bits of communication between Bob and Charlie. This isnother coding theorem proven in_[14] which characterizes

written as the pairs(R;, Q=) for which
(M) + E1[gqlac + B2 [qd]Bc (M) = Ri[e = cJac + Q2[q — dlBc-
> Ry [c— clac + Ra[c = c|pc. We can also recover the result of Winter[13] which solves
Without accounting for entanglement consumption (i. etirsgt (M) > Ry [c— clac + Rz [c — c]Bc.

E, = E; = o0) the above resource inequality holds iff

. . for {cc — ¢} channelsM. We just apply the argument
(R1, Ry) € Cp(M), with Cg(M) given by Theorenl6. The .
“if” direction, i.e. the direct coding theorem, followedofn from Sectior(TII-B to remove the need for any entanglement

the “corner points” assistance.
P Ultimately we would like to solve

(M) + H(A)[qqlac + H(B) [qq]BC

(M) > Q11q — qlac + Er[qgqlac + Ri[c = clac
>I(A;C)[c— cJac + I(B;CA) [c = e (67)

+Q2[q = qlBc + E2[qq]pc + Rz [c — c|sc,
where the 6 rates may be positive or negative. The single user
(M) + H(A) [gqlac + H(B) [gdlzo caseQ, = F; = R, = 0 was solved in[[26].
> I(A;CB) [c — clac + 1(B;C) [c = ]pc.  (68) VI. CONCLUSION

and

All the entropic quantities are defined relative to the state We derived a regularized formula for the entanglement-
6ABC defined in [(4R). assisted capacity region for quantum multiple access &isnn
Just as in the single user case (cf. rule O [inl[23])his expression parallels the capacity region for classica
the protocol can be made coherent, replacing— ¢| by multiple access channels. We leave it as an open problem to
%([q q]+[g — ¢]). Canceling terms on both sides gives “fathersingle-letterize the above capacity region. We do not krfow i

protocols for the QMAC the regularization in our main theorem is actually necgssar
1 1 Indications that it might not be are the successful single-
(M) + = I(A; BE) [qqlac + = I(B; E) [qq]Bc letterization of the two-user entanglement-assisted aigpim
1 2 12 [11] which we have used to obtain the single-letter bound on
> —I(A;C) g — qlac + = I(B;CA) [q — g]lpc (69) the rate-sum above, and the fact that the regularizatiootis n
q 2 2 necessary in the classical case.
an

Though the issue with more than 2 inputs was not addressed,
1 1 we expect it to be an easy extension. Suppose we have a
(M) + §I(A;E) ladlac + §I(B;AE) ladlsc QMAC M with s senders and 1 receiver such th&t :
1 1 A1As--- Ay, — B. We conjecture the following statement to
> §I(A;CB) [q—>q]Ac+§I(B;C) [¢ — ¢lc, (70) be true [13]:

where the entropic quantities are now defined with respect te entanglement-assisted capacity region of the quantum

a purificationgABCE of gABC, multiple access channel M is.the regularized versipn pf the
Applying [¢ — ¢] > [qq] to the above equations gives ~ Convex closure of all nonnegative { Ry, -- - , R, } satisfying
1 R; < I(A[J); B|A[J¢]) VJ C [s],
(M) = I(A)0) g = qlac + 5 [(B)CA) [g = qloc (71) ; (A[J]; BIA[T]) [s]
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where A[J] = {4;|i € [J]} and [J¢] = [s]\J. By property [19) and{45)

The difficult problem would be to consider the quantum TromTm 2 Tromlln — o1l = o]l
multiway channel which has senders and- receivers. We > 1—e—VBe (76)

believe a different approach might be needed. For k # 1, the random variableX;, and X; are independent.

Thus
APPENDIXA
PROOF OFPACKING LEMMA Exv[Trox,Tx] = Tr(IEox, 1T Elly,)
, < D 'ETrIly,
We need the following lemma from_[27]. < 4/D 77
Lemma 7 (Hayashi, Nagaoka): For any operator8 < S < < d/D. (77)
I andT > 0, we have The first inequality follows fronE ox, = o and property[{21).
1 1 The second follows fronil < I and property((22). Taking the
I-VS+T SVS+T  <2(I-8)+4T. expectation of[(74), and incorporatiig [76) ahd](77) gives
We are now ready to prove the packing lemma, along lines P. < 2(e +V8¢) + 4(N — 1)d/D,
D
suggested by the work [27]. < 2(e+v/Be) + ANd/D (78)
Proof: Let X denote a sequence of random variables = 2(e + V/8e) + 4y =: €.

X1, X, ..., XN, where each random variahlg, takes values
from S and is distributed according ta. Set f(k) = X,. WO more stan_dargl steps are ne_eded. _
Each random cod€' = {02, }1c(n] IS generated according to i) Derandomization. There exists at least one particular

X), = a5. Definep. (k) to be the probability of error for a  value z™ of the string X such that this code&’* =
single codewordr,, : {o,~} for which p.(C*) is at least as small as the

expectation value. Thus
pe(C*) < €. (79)

i) Average to maximal error probability. Since

1
N _1 _1 Pe(C*) = — pe(k) < ¢,
() () P>
=1 =1 thenp. (k) < 2¢ for at least half the indicek. Throw the
with others away and redefing N and~ accordingly. This
Y,, = IIL,,II. further changes the error estimate4i@ + V8€) + 8.

. .. |
Definep.(C) to be the average probability of error, averaged pamark 8: The major difference between the proof of pack-

over all codewords irC" ing lemma and the proof of HSW theorem is that the ensemble

pe(k) = Troy, (I — Ag),

where the POVM element§A,} are constructed by the so-
called square root measurement[6], [[7]

~

1 & in HSW theorem is assumed to be of the tensor powet of
pe(C) = —= ) pe(k). copies of {\;,p,;}. This is where the conditional typicality
N J J

k=1 comes into play in order to bound the probability of corngctl
Definep, to be the average probability of error, averaged ovéentifying the classical message. However, in packingiem
all possible random codeg to be: the ensemble is assumed to be some general statd§’in
Even thought the projectois,,, indeed conditioned om, but

Pe = Exn~ [pe(C)]. they are not necessary projectors onto conditionally ipic

subspace, Therefore, as we have claimed before, the proof of

The idea here is that if the average probability of efpotis acking lemma only requires typicality
&e '

small enough, we can then show the existence of at least
good code. In what follows, we will first show that < ¢

, APPENDIX B
for somee’ — 0 whenn — oo.

PrROOFS OF PROPERTIE(33)-(38)

Invoking Lemma_¥/, we can now place an upper bound on - Proof of property[(3B).

pe(O): DefineP to be the complement of the projectBr That
isP=1-P.
N
1 I =11} mn”
pe(C) < — g 20 —Tro,, YTy,) +4 g Trog, YT | - N(p)v,(5® p:0 5
N _ n n
k=1 1#k = (I =}y 6) @ (I =115 5)
74) :I®I_I®Hg,5_HX/(p),6®I+HX/(p),6®HZ,6

The gentle operator lemma in_[21] and propeftyl (20) give . .
’ P 2] Propeftu (20) 9 >IRI—T@Mps— TN, ;@1

[Tom Il — o || < V/3Be. (75) (80)
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Therefore where the{|¢;)F} are not necessarily orthogonal. GivEi,
TroBB I the complementary channdl“ : A’ — E = Tr g o Uy acts

I oI, (@ ) on some input statp?’ as
>Troge —Trog(I @I 5) — Trog (Il s ® 1 :

B'fin e o N¢(p) = Tr pUn (p)
=1-Trlo ,5] —Tr [UsaH/\/(p),a]

8% °7p _ .| B INB| o NE i Al 1A By 1B\ B
N = (Do )1y iy 1% 612 i
(81) ' ' 2
_ o = lilplivgF
the last line by a double application ¢f{10). i
II. Proof of property [(34). —. Z’WE'
By @8) and (D), Z_
T‘I'USGHSa = Tl"9®nﬂg(; (86)
>1—e (82) depends only on the diagonal elemefits} of p expressed
_ - in the dephasing basis. When thig;)*} are also orthogonal,
The last line follows from[(10). the channelV is called completely dephasing and is denoted
I11. Proof of property [(35). by A. It corresponds to performing a projective measurement
in the dephasing basis and ignoring the result. The follgwin
Trile = Trlly 5 < 2niH(AB)oted], (83) properties hold[28]:
The inequality follows from[{12). Ne=N A
IV. Proof of property [(35). NoA=AoN (87)
tE;;lacause of[(T3), we can bound the density operafor H(A(p)) > Hip).
117, Defineg4? = (11 @ N')¢pA4’, wherep4” is a purification
n_ _te) - o—n[H(p)=n(®)[n , ' p
T = TriIf <2 P - B4 of the input statep?.
“ Lemma 9: Given a dephasing channdl : A’ — B, the
Then mutual information/ (4; B)y is maximal when the input state
IoTI p*" is diagonal in the dephasing basis.
. Proof: Since
( N(p),8 ® p,6) ;p (N (ﬂ-a) ®7To¢) ( N(p),é ® p,5) I(A,B) _ H(A) + H(B) _ H(BA)
- Zpa (HN(p),6N® (FQ)H/\/(P),(;) ® (Hp,éﬂ—anp,é)
o { } = H(p) + H(N(p)) — HN*“(p))
< (H;Q(MNW(Z pawg)ﬂx/(p)ya) ® (27 "HE)=nOIn ) < H(A(p)) + H((A o N(p)) — HN® 0 A(p))
. = H(A(p) + HN 0 A(p) — HIN® 0 A(p))
—n[H —cdln —n[H(p)—n(d n
S(g [H(N (p)) ]HN(p),6)®(2 [H (p)=n( ”Hp.,a) (88)
— 9—n[H(p)+H(N (p))—cd—n(8)] 11 The inequality is saturated when= A(p) = > ri|é)(i], in
_ 9 nlH(A)0+H(B)o—cs—n(d)] 1 which case
(85) I(A; B) = 2H({ri}) — H(Z rigi).
where the first inequality follows fron{ (84) and the second ‘
from (7). .
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. : lized dephasi h Is.
We follow the techniques of [14]] [28]/ [24]. Let’ and On generalized dephasing channeis

B be quantum systems of dimensidrwith respective bases
{|Z->A’} and{|z‘>B}. REFERENCES
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