
ar
X

iv
:q

ua
nt

-p
h/

05
11

22
8v

2 
 1

0 
N

ov
 2

01
0

1

Entanglement-Assisted Capacity of Quantum
Multiple Access Channels

Min-Hsiu Hsieh, Igor Devetak and Andreas Winter

Abstract—We find a regularized formula for the entanglement-
assisted (EA) capacity region for quantum multiple access
channels (QMAC). We illustrate the capacity region calculation
with the example of the collective phase-flip channel which
admits a single-letter characterization. On the way, we provide
a first-principles proof of the EA coding theorem based on a
packing argument. We observe that the Holevo-Schumacher-
Westmoreland theorem may be obtained from a modification
of our EA protocol. We remark on the existence of a family
hierarchy of protocols for multiparty scenarios with a single
receiver, in analogy to the two-party case. In this way, we relate
several previous results regarding QMACs.

Index Terms—Entanglement-assisted capacity, multiple access
channels, quantum information, Shannon theory.

I. I NTRODUCTION

SHANNON’S classical channel capacity theorem is one of
the central results in classical information theory [1]. A

single-sender channel is defined by the triple(X , p(y|x),Y)
where the setsX and Y represent the input and output
alphabets, respectively, and the conditional distribution p(y|x)
defines the probability of the output beingy given that the
input wasx. The capacityC of the channel, the maximum
rate at which classical information can be transmitted through
the channel, is given in terms of the mutual information
I(X ;Y ) = H(X) +H(Y )−H(XY ), (here the entropy of a
random variableX with probability distributionp(x) is given
by H(X) = −∑

x∈X p(x) log p(x)):

C = max
p(x)

I(X ;Y ) (1)

where the joint distribution ofXY is p(x)p(y|x).
The classical multiple-access (MAC) channel(X ×

Y, p(z|x, y),Z) is a channel with two senders and one re-
ceiver. Now X and Y are the input alphabets of the first
and second sender, respectively. A general overview of MACs
can be found in [2], [3]. The capacity problem now involves
finding the region of achievable transmission ratesR1 andR2

for the two senders. The classical capacity region of a MAC

Manuscript received February 21, 2006; revised January 29,2008. The
work of M.-H. Hsieh and I. Devetak was supported by the National Science
Foundation under NSF 05-501 Grant 0524811. The work of A. Winter was
supported by the European Union (EU) under Grant RESQ, no. IST-2001-
37559 and the United Kingdom Engineering and Physical Sciences Research
Council’s “QIP IRC”.

M.-H. Hsieh is with the Electrical Engineering Department,University
of Southern California, Los Angeles, CA 90089 USA (e-mail: minhsiuh@
usc.edu).

I. Devetak is with University of Southern Califonia, USC Viterbi School of
Engineering, Los Angeles CA 90089-2565 USA (e-mail: devetak@usc.edu).

A. Winter is with Department of Mathematics, University of Bristol, Bristol
BS8 1TW, U.K. (e-mail: A.J.Winter@bristol.ac.uk).

was found independently by Ahlswede [4] and Liao [5]. It
is given by the closure of the convex hull of all(R1, R2)
satisfying

R1 ≤ I(X ;Z|Y )

R2 ≤ I(Y ;Z|X)

R1 +R2 ≤ I(XY ;Z)

(2)

for some product distributionp(x)p(y) on X × Y. Here
the joint distribution ofXY Z is p(x)p(y)p(z|x, y), and the
conditional mutual information is defined asI(X ;Z|Y ) =
I(X ;Y Z)− I(X ;Y ).

The theory of quantum channels is richer, and includes
several distinct capacities depending on the type of information
one is trying to send and the additional resources one can
use. A quantum channelN is modeled as a cptp (completely
positive and trace preserving) map. The capacityC(N ) of a
quantum channel is defined to be the maximum rate at which
classical information can be sent through the quantum channel
N . This capacity was proved independently by Holevo [6]
and Schumacher and Westmoreland [7]. The capacityQ(N ) is
defined to be the maximum rate at which quantum information
can be sent through the quantum channelN , and a formula
for it was proven in [8], [9], [10].

Entanglement shared between sender and receiver is a
useful resource that generically increases channel capacity.
The entanglement-assisted classical capacityCE(N ) is the
maximum rate at which classical information can be trans-
mitted through the quantum channelN if the sender and
receiver have access to unlimited entanglement. A remarkably
simple formula for this capacity was found in [11], [12], to
be formally identical to (1), with classical mutual information
replaced by the quantum mutual information between quantum
systemsA andB

CE(N ) = max
ρ
I(A;B). (3)

The maximization is performed over the sender’s input state
ρ, and the quantum mutual informationI(A;B) is defined
with respect to the purification ofρ after half of it has passed
through the channelN . The systemA is the half remaining on
the sender’s side, andB is the channel output system. Formal
definitions of these concepts will be given in Section II.

A quantum multiple access channel (QMAC)M is a cptp
map with two senders and one receiver. Each sender can
transmit either classical or quantum information through the
channelM. The classical-classical capacity regionC(M) for
the case in which both senders transmit classical information
through QMACM was found by Winter [13]. Later on, the
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classical-quantum capacity regionCQ(M) (where one sender
is sending classical, and the other quantum information), and
the quantum-quantum channel capacity regionQ(M) were
found in [14], [15].

In this work we consider the entanglement-assisted
classical-classical capacity regionCE(M) of a QMACM. In
other words, both senders share unlimited entanglement with
the receiver and both are sending classical information. We
will show it to be theregularized closure of the set of all the
achievable rate pairs(R1, R2) satisfying

R1 ≤ I(A;C|B)

R2 ≤ I(B;C|A)
R1 +R2 ≤ I(AB;C)

(4)

for some choice of a product input stateρ1 ⊗ ρ2 for the
two senders. The quantum entropic quantities are defined with
respect to the product of purifications ofρ1 andρ2, after half
of it has passed through the channelM. The systemsA and
B are the parts remaining on the senders’ sides, andC is
the channel output system. A precise statement of the result
is given in Theorem 2. The expression (4) thus parallels (2)
with the classical mutual information replaced by its quantum
counterpart. While our formula does not allowCE(M) to
be efficiently computed in general, we exhibit a non-trivial
example for we can computeCE(M) in closed form.

We also provide a new proof of the direct coding theorem
for the single-sender entanglement-assisted channel capacity.
Our proof is important and necessary in the following sense.
First, our proof uses packing lemma that comes from the idea
of typical subspaces, which is directly analog to the idea of
typical sets Shannon uses to prove the direct coding theorem
of single-user channel capacity. The previous proof in [11],
[12] is less trivial in the sense that it is based on the Holevo-
Schumacher-Westmoreland (HSW) theorem [6], [7], which
uses the conditional typical subspaces. Our proof demonstrates
our growing understanding of quantum information theory.
We believe that our method of proof will not only become a
powerful tool but also will find many applications in quantum
information theory. Second, our proof provides new properties
that can be used to prove the multiparty generalization. These
new properties do not exist in the previous proofs. Finally,we
show that the HSW theorem is a special case of the two-party
entanglement-assisted capacity theorem.

The paper is organized as follows. Section II contains
the relevant background material. This includes notational
conventions, definitions of the method of types, frequency
typical sequences and subspaces, and useful lemmas. Section
III contains statements and proofs of our main results. In
section IV we compute the capacity region of the collective
phase-flip multiple access channel which admits a single-
letter expression. In section V we first rewrite our results in
the resource inequality framework, from which we recover
previously known coding theorems for QMACs. In section VI
we conclude by pointing out the open question regarding the
single-letter expression for our entanglement-assisted capacity
region of quantum multiple access channels. We also give a
conjecture on the entanglement-assisted channel capacitywith
more than two inputs.

II. BACKGROUND

Each quantum system is completely described by the state
vector which is a unit vector in Hilbert spaceH. An alternative
way to describe a quantum system is by density operator
ρ : H → H, where ρ has trace equal to one and is a
positive operator. Ifρ belongs to a quantum systemA we
may denote it byρA. When it is clear from contexts, we will
omit the superscript letter that represents the holder of the
quantum system. We always useπ to denote the maximally
mixed stateπ = (|H|)−1I where |H| represents the dimen-
sion of H. Given a stateρA whose spectral decomposition
is

∑
i pi|i〉〈i|, the purification of such state is obtained by

introducing a reference systemR such that the purified state
|ψ〉AR =

∑
i

√
pi|i〉A|i〉R. We write the density operator of a

pure state|ψ〉 asψ ≡ |ψ〉〈ψ|.
Saying thatN : A → B is a quantum channel, we really

mean thatN : B(HA) → B(HB) is a cptp (completely
positive trace preserving) map, whereB(H) represents the set
of bounded linear operators inH. It may be modeled by an
isometry UN : A → BE with a larger target spaceBE,
followed by tracing out the “environment” systemE. UN is
known as the Stinespring dilation [16] ofN . We will often
write UN (ρ) for UN ρU †

N .
A quantum instrument [17], [18]D = {Dm}m∈[µ], [µ] :=

{1, 2, · · · , µ}, is a set of cp (completely positive) mapsDm,

Dm : ρ→
∑

k

AkmρA
†
km.

The sum of the cp mapsD =
∑

m∈[µ]Dm is trace preserving,

and
∑

km A
†
kmAkm = I. The instrument has one quantum

input and two outputs, classical and quantum. The probability
of classical outcomem and corresponding quantum output
Dm(ρ)/(TrDm(ρ)) isTrDm(ρ). Ignoring the classical output
reduces the instrument to the quantum mapD. Ignoring
the quantum output reduces the instrument to the set of
POVMs (positive operator valued measure){Λm} with Λm =∑
k A

†
kmAkm.

The trace distance is defined as the trace norm of the
difference between the two states

‖σ − ρ‖ = Tr
√
(σ − ρ)2 = max

−I≤Λ≤I
Tr [Λ(σ − ρ)].

The method of types is a standard technique of classical
information theory. Denote byxn a sequencex1x2 . . . xn,
where eachxi belongs to the finite setX . Denote by|X |
the cardinality ofX . Denote byN(a|xn) the number of
occurrences of the symbola ∈ X in the sequencexn. Thetype
tx

n

of a sequencexn is a probability vector whose elements
tx

n

a = N(a|xn)
n . Denote the set of sequences of typet by

T n
t = {xn ∈ Xn : tx

n

= t}.
For the probability distributionp on the setX andδ > 0, let
τδ = {t : ∀a ∈ X , |ta − pa| ≤ δ}. Define the set ofδ-typical
sequences of lengthn as

T n
p,δ =

⋃

t∈τδ
T n
t

= {xn : ∀a ∈ X , |txn

a − pa| ≤ δ}.
(5)
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Define the probability distributionpn on Xn to be the
tensor power ofp. The sequencexn is drawn from pn if
and only if each letterxi is drawn independently fromp.
Typical sequences enjoy many useful properties. LetH(p) =
−∑

x px log px be the Shannon entropy ofp. For anyǫ, δ > 0,
and all sufficiently largen for which

pn(T n
p,δ) ≥ 1− ǫ (6)

2−n[H(p)+cδ] ≤ pn(xn) ≤ 2−n[H(p)−cδ], ∀xn ∈ T n
p,δ (7)

|T n
p,δ| ≤ 2n[H(p)+cδ] (8)

for some constantc (see [2] for proofs). Fort ∈ τδ and
for sufficiently largen, the cardinalityDt = |T n

t | is lower
bounded as [2]

Dt ≥ 2n[H(p)−η(δ)] (9)

and the functionη(δ) → 0 asδ → 0.
The above concepts generalize to the quantum setting by

virtue of the spectral theorem. Letρ =
∑

x∈X px|x〉〈x| be the
spectral decomposition of a given density matrixρ. In other
words, |x〉 is the eigenstate ofρ corresponding to eigenvalue
px. The von Neumann entropy of the density matrixρ is

H(ρ) = −Tr ρ log ρ = H(p).

Define the type projector

Πnt =
∑

xn∈T n
t

|xn〉〈xn|.

The density operator proportional to the type projector is
πt = Dt

−1Πnt . The typical subspace associated with the
density matrixρ is defined as

Πnρ,δ =
∑

xn∈T n
p,δ

|xn〉〈xn| =
∑

t∈τδ
Πnt .

Properties analogous to (6) – (9) hold [19]. For anyǫ, δ > 0,
and all sufficiently largen for which

Tr ρ⊗nΠnρ,δ ≥ 1− ǫ (10)

2−n[H(ρ)+cδ]Πnρ,δ ≤ Πnρ,δρ
⊗nΠnρ,δ ≤ 2−n[H(ρ)−cδ]Πnρ,δ, (11)

TrΠnρ,δ ≤ 2n[H(ρ)+cδ] (12)

for some constantc. For t ∈ τδ and for sufficiently largen,
the dimension of the type projectorΠnt is lower bounded as

TrΠnt ≥ 2n[H(ρ)−η(δ)] (13)

and the functionη(δ) → 0 asδ → 0.
For a multipartite stateρABC , we writeH(A)ρ = H(ρA),

etc. We omit the subscript if the state is clear from the context.
Define the quantum mutual information by

I(A;B) = H(A) +H(B)−H(AB)

and the quantum conditional mutual information by

I(A;C|B) = H(AB) +H(BC)−H(ABC)−H(B).

These are non-negative by strong subadditivity [20]. If
I(A;B) = 0 then

I(A;C|B) = I(A;CB)

is easy to verify.
The set of generalized Pauli matrices{Um}m∈[d2] is defined

by Ul·d+k = Ẑd(l)X̂d(k) for k, l = 0, 1, · · · , d− 1 and

X̂d(k) =
∑

s

|s〉〈s+ k| = X̂d(1)
k,

Ẑd(l) =
∑

s

ei2πsl/d|s〉〈s| = Ẑd(1)
l.

(14)

The+ sign denotes addition modulod.
We will always use|Φ〉 to represent the maximally entan-

gled state. Then the maximally entangled state|Φ〉AB on a
pair of d-dimensional quantum systemsA andB is given as:

|Φ〉AB =
1√
d

d∑

i=1

|i〉A|i〉B. (15)

We have the following result (see [11] for a proof):

1

d2

d2∑

m=1

(Um ⊗ I)ΦAB(U †
m ⊗ I) = πA ⊗ πB, (16)

where πA = πB = I
d . We will also need the following

equality:
(I ⊗ U)|Φ〉 = (U tr ⊗ I)|Φ〉 (17)

for any operatorU , andU tr denotes transposition ofU .
Next is a coherent version of the gentle operator lemma

([21], Lemma 9). It states that a measurement which is likely
to be successful in identifying a state tends not to significantly
disturb the state.

Lemma 1 (Gentle coherent measurement): Let {ρAk }k∈[K]

be a collection of density operators and{Λk}k∈[K] be a set
of POVMs on quantum systemA such that

Tr ρkΛk ≥ 1− ǫ

for all k. Let |φk〉RA be a purification ofρAk . Then there exists
an isometric quantum operationD : A→ AJ such that

‖(IR ⊗D)(φRAk )− φRAk ⊗ |k〉〈k|J‖ ≤
√
8ǫ.

Proof: Every POVM can be written as an isometry
followed by projective measurement on a subsystem. In par-
ticular, there exists an isometryD : A→ AJ such that

(IR ⊗D)|φ〉RA =
∑

j

[(IR ⊗
√
Λj)|φ〉RA]|j〉J .

Thus

〈k|〈φk|(I ⊗D)|φk〉 = 〈φk|(I ⊗
√
Λk)|φk〉

≥ 〈φk|(I ⊗ Λk)|φk〉
= Tr ρkΛk

≥ 1− ǫ.

(18)

The first inequality uses thatΛk ≤ √
Λk when 0 ≤ Λk ≤ I.

The statement of the lemma follows from the fact that for pure
states|ζ〉 and |ψ〉,

‖ζ − ψ‖ = 2
√
1− |〈ζ|ψ〉|2.
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The packing lemma below will prove to be a powerful tool
in quantum information theory. The technique used here is
simple, directly analogous to the classical coding theorem.

Lemma 2 (Packing): We are given an ensemble
{λm, σm}m∈S with average density operator

σ =
∑

m∈S
λmσm.

Assume the existence of projectorsΠ and{Πm}m∈S with the
following properties:

TrσmΠm ≥ 1− ǫ, (19)

TrσmΠ ≥ 1− ǫ, (20)

TrΠm ≤ d, (21)

ΠσΠ ≤ D−1Π (22)

for all m ∈ S and some positive integersD andd. Let N =
⌊γD/d⌋ for some0 < γ < 1 where⌊r⌋ represents the largest
integer less thanr. Then there exists a mapf : [N ] → S,
and a corresponding set of POVMs{Λk}k∈[N ] which reliably
distinguishes between the states{σf(k)}k∈[N ] in the sense that

Trσf(k)Λk ≥ 1− 4(ǫ+
√
8ǫ)− 8γ

for all k ∈ [N ].
Proof: See Appendix A.

Lemma 3: If |ψ〉ABE is a pure state then

H(B|E)ψ = −H(B|A)ψ.
Proof: Since |ψ〉ABE is pure, we haveH(A)ψ =

H(BE)ψ andH(E)ψ = H(AB)ψ . Then

H(B|E)ψ = H(BE)ψ −H(E)ψ

= H(A)ψ −H(AB)ψ

= −H(B|A)ψ.
(23)

Lemma 4: For any stateσABE ,

I(A;B)σ ≤ H(B)σ +H(B|E)σ .

Proof: Introduce a reference systemR that purifies the
stateσABE , then

I(A;B)σ = H(B)σ −H(B|A)σ
= H(B)σ +H(B|ER)σ
≤ H(B)σ +H(B|E)σ.

(24)

The first equality follows from the definition of quantum
mutual information. The second equality follows from Lemma
3. The first inequality uses the fact that conditioning reduces
entropy [20].

III. M AIN RESULT

A. Two party entanglement-assisted coding

Before attacking the multiuser problem we give a new proof
of the two-party entanglement-assisted direct coding theorem.
This theorem was first proved in [11] and subsequently in
[12]. Both proofs invoke the HSW theorem. The HSW theorem
uses the method of conditionally typical subspaces. We givea

Fig. 1. Two-party entanglement-assisted communication

direct proof based on the packing lemma which only uses
typical subspaces. The proof perhaps sheds more light on
why achievable rates take on the form of mutual information.
Furthermore, our proof provides new properties ( ii) and iii)
below) that serve as a bridge to the proof of multiparty coding
theorem.

As shown in Fig. 1, Alice and Bob are connected by a large
numbern uses of the quantum channelN : A′ → B. Alice
controls the channel input systemA′ and Bob has access to
the channel outputB. They also have entanglement in the
form of n copies of some pure bipartite stateϕA

′B′

. Any
such state is determined upto a local unitary transformation by
the local density operatorρA

′

= TrB′ϕA
′B′

. Alice and Bob
use these resources to communicate, in analogy to superdense
coding [22]. Based on her message Alice performs a quantum
operation on her share of the entanglement. She then sends
it through the quantum channel. Bob performs a decoding
measurement on the channel output plus his share of the
entanglement. They endeavor to maximize the communication
rate.

We formalize the above information processing task. Define
an [n,R, ρ, ǫ] entanglement-assisted code by

• a set of unitary encoding maps{Ek}k∈[2nR] acting on
A′n := A′

1 . . . A
′
n for Alice;

• Bob’s decoding instrumentD = {Dk}k∈[2nR] acting on
BnB′n.

such that for allk ∈ [2nR]

i) Tr {[Dk ◦ ((N⊗n ◦ Ek)⊗ I)](ϕ⊗n)} ≥ 1− ǫ;
ii) the encoded density operator satisfiesEk(ρ⊗n) = ρ⊗n;
iii)

∥∥∥[(D ⊗ IE
n

) ◦ ((UN
⊗n ◦ Ek)⊗ I)− (UN

⊗n ⊗ I)](ϕ⊗n)
∥∥∥

≤ ǫ

where◦ represents composition of two maps.
Condition i) means that Bob correctly decodes Alice’s

message with high probability. This condition suffices for two-
party entanglement-assisted communication. The remaining
two properties, which were not shown in [11], [12], are im-
portant for the multiparty generalization. Condition ii) means
that Alice always inputs a tensor power state into the channel.
Condition iii) says that the encoding and decoding operations
in effect cancel each other out. So it is as if Alice just sent
the stateρ⊗n down the channel without any coding. In reality,
she has also managed to convey the message to Bob.
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Theorem 5: Define θAB = (I ⊗ N )ϕAA
′

and R =
I(A;B)θ. For everyǫ, δ > 0 and n sufficiently large, there
exists an[n,R− δ, ρ, ǫ] entanglement-assisted code.

Proof: Let t(1), . . . , t(a) be an ordering of the distinct
typestx

n

. Define the maximally mixed stateπnα = 1/dαΠ
n
t(α),

where dα = TrΠnt(α). Define |Φα〉 to be the maximally
entangled state on a pair ofdα-dimensional quantum systems
A′n andB′n

|Φα〉A
′nB′n

=
1√
dα

∑

xn∈T n
t(α)

|xn〉A′n |xn〉B′n

. (25)

In the beginning Alice and Bob share the entangled state

|Ψ〉A′nB′n

= |ϕ〉⊗n

=
∑

α

√
pα|Φα〉, (26)

where pα =
∑

xn∈T n
t(α)

pn(xn). The type projectorsΠnt(α)
induce a decomposition of the Hilbert spaceH⊗n of A′n

(correspondingly ofB′n) into a direct sum

H⊗n =

a⊕

α=1

Ht(α).

Let G = {(g1, g2, · · · , ga) : gα ∈ [d2α], α ∈ [a]}, B =
{(b1, b2, · · · , ba) : bα ∈ {0, 1}}, and S = G × B. Every
elementsa ∈ S is uniquely determined byga ∈ G andba ∈ B.
Given an elementsa ∈ S, define a unitary operationUsa to
be

Usa ≡ Uga,ba =
a⊕

α=1

(−1)bαUgα (27)

where {Ugα} are the d2α generalized Pauli operators (14)
defined onHt(α). Define

σB
nB′n

sa := (N⊗n ⊗ I)
[
(Usa ⊗ I)ΨA

′nB′n

(U †
sa ⊗ I)

]

= (I ⊗ U trsa)θ
⊗n(I ⊗ U∗

sa).
(28)

The last equality follows from (17). Letσ to be the average
of σsa overS, then we get (29). The last equality comes from
(30) and (31) below. Whenα = α′,

1

|B||G|
∑

ga∈G

∑

ba∈B
pα(N⊗n ⊗ I)

[
(Uga,ba ⊗ I)Φα(U

†
ga,ba ⊗ I)

]

= (N⊗n ⊗ I)
1

|G|
∑

g1

· · ·
∑

ga

pα(Ugα ⊗ I)Φα(U
†
gα ⊗ I)

= (N⊗n ⊗ I)pα(π
n
α ⊗ πnα). (30)

The last equality follows from (16). Whenα 6= α′, we get
(31). Define the projectors onB′nBn

Πsa = (I ⊗ U trsa)Π
n
θ,δ (I ⊗ U∗

sa),

Π = ΠnN (ρ),δ ⊗Πnρ,δ.
(32)

The following properties are proved in Appendix B. For all
ǫ > 0, δ > 0 and all sufficiently largen,

TrσsaΠ ≥ 1− ǫ (33)

TrσsaΠsa ≥ 1− ǫ (34)

TrΠsa ≤ 2n[H(AB)θ+cδ] (35)

ΠσΠ ≤ 2n[H(A)θ+H(B)θ+cδ]Π. (36)

Let λsa = 1
|S| and R = I(A;B)θ − (2c + 1)δ. We now

apply the packing lemma to the ensemble{λsa , σsa}sa∈S and
projectorsΠ andΠsa . Thus there exist a mapf : [2nR] → S
and a POVM{Λk}k∈[2nR] such that

Trσf(k)Λk ≥ 1− ǫ′, (37)

with
ǫ′ = 4(ǫ+

√
8ǫ) + 16× 2−nδ.

Define the encoding operation byEk = Uf(k). Including
the environment system, the state ofBnB′nEn after the
application of the channelUN is

|Υk〉B
nB′nEn

= (UN
⊗n ⊗ I)(Uf(k) ⊗ I)|Ψ〉A′nB′n

= (UN
⊗n ⊗ U trf(k))|Ψ〉A′nB′n

.
(38)

|Υk〉 is a purification ofσf(k). By Lemma 1, there exists an
isometryD′ : BnB′n → BnB′nJ such that

‖(I ⊗D′)(Υk)−Υk ⊗ |k〉〈k|J‖ ≤
√
8ǫ′.

Bob performs the controlled unitary

W JB′n

=
∑

k

|k〉〈k|J ⊗ (U∗
f(k))

B′n

.

DefiningD′′ = (W ⊗ IB
n

) ◦ D′, this implies
∥∥(I ⊗D′′)(Υk)− [(U⊗n

N ⊗ I)(ϕ⊗n)]⊗ |k〉〈k|
∥∥ ≤

√
8ǫ′.

(39)
The instrumentD = {Dk} is defined byD′′ followed by a
von Neumann measurement of the systemJ . Equation (39)
expresses the fact that the classical communication being
performed is almost decoupled from all the quantum systems
involved in the protocol, including ancillas and the inaccessible
environmnent. We remark that this guarantees the ability to
“coherify” the protocol in the sense of [23].

Condition i) in the form

Tr
{[

Dk ◦ ((N⊗n ◦ Ek)⊗ I)
]
(ϕ⊗n)

}
≥ 1− ǫ′

is immediate from (37). Condition ii) follows from the con-
struction (27). Condition iii) in the form
∥∥∥[(D ⊗ IE

n

) ◦ ((U⊗n
N ◦ Ek)⊗ I)− (U⊗n

N ⊗ I)](ϕ⊗n)
∥∥∥ ≤

√
8ǫ′

follows from (39).

B. Remark on the HSW theorem

Suppose that Alice and Bob are connected by a specialcq
channel of the form

N = N ′ ◦∆,
where∆ is the dephasing channel

∆ : ρ→
∑

x

|x〉〈x|ρ|x〉〈x|.

A {c → q} channel is equivalent to one with classical inputs
and quantum outputs. The HSW coding theorem states that
ratesR = I(A;B)θ, θ

AB = (I ⊗ N )ϕAA
′

are achievable
even without entanglement assistance. We show that this fact
follows from our construction in two steps.
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σ =
1

|S|
∑

sa∈S
σsa

=
1

|B||G|
∑

ga∈G

∑

ba∈B

∑

α,α′

√
pαpα′(N⊗n ⊗ I)

[
(Uga,ba ⊗ I)|Φα〉〈Φα′ |(U †

ga,ba ⊗ I)
]
.

=
∑

α

pα

(
N⊗n(πnα)⊗ πnα

)
.

(29)

1

|B||G|
∑

ga∈G

∑

ba∈B

√
pαpα′(N⊗n ⊗ I)

[
(Uga,ba ⊗ I)|Φα〉〈Φα′ |(U †

ga,ba ⊗ I)
]

=
1

d2αd
2
α′

√
pαpα′

∑

bαbα′

(−1)bα+bα′

4





∑

gαgα′

(N⊗n ⊗ I)
[
(Ugα ⊗ I)|Φα〉〈Φα′ |(U †

gα′
⊗ I)

]




= 0.

(31)

The first step is to replace the entanglement used by classical
common randomness. Observe that the encoding operations
Usa all satisfy

∆⊗n ◦ Usa = ∆⊗n ◦ Usa ◦∆⊗n.

This follows from the corresponding property of the general-
ized Pauli operators (14). Hence for cq channelsN

σf(k) = [(N⊗n ◦ Ek)⊗ I](ϕ⊗n)

= [(N⊗n ◦ Ek ◦∆⊗n)⊗ I](ϕ⊗n)

= [(N⊗n ◦ Ek)⊗ I](ϕ⊗n),

(40)

where
ϕ = (∆⊗ I)ϕ =

∑

x

px|x〉〈x| ⊗ |x〉〈x|

is the dephased version ofϕ. The stateϕ⊗n can be constructed
from classical common randomness like that used in Shan-
non’s original coding theorem.

The second step is showing that common randomness is not
needed. The argument parallels the derandomization step from
the proof of the packing lemma (Appendix A). We have thus
recovered the HSW coding theorem.

The benefit of the above proof is its close analogy to
Shannon’s joint typicality decoding. We only made use of
typical subspaces and not conditionally typical subspaces.

C. Multiple-Access Channel

We turn to the communication scenario with two senders,
Alice and Bob, and one receiver, Charlie. They are connected
by a large numbern of uses of themultiple-access quantum
channelM : A′B′ → C. Alice and Bob control the channel
input systemsA′ and B′, respectively. Charlie has access
to the channel outputC. Each sender also shares unlimited
entanglement with the receiver, in the form of arbitrary pure
states|Γ1〉ACA and |Γ2〉BCB . The systemA is held by Alice,
B by Bob, andCACB by Charlie. Based on her message
Alice performs a quantum operation on her share of the
entanglement, and likewise for Bob. These are then sent
through the quantum channel. Charlie performs a decoding

measurement on the channel output plus his share of the
entanglement. Now both Alice’s and Bob’s communication
rates need to be optimized.

We formalize the above information processing task. Define
an (n,R1, R2, ǫ) entanglement-assisted code by

• two sets of encoding cptp maps:{E1
k}k∈[2nR1 ] takingA

to A′n for Alice, and{E2
l }l∈[2nR2 ] takingB to B′n for

Bob ;
• Charlie’s decoding POVM{Λk,l}k∈[2nR1 ],l∈[2nR2 ] on
CACBC,

such that

Tr {Λk,l[((M⊗n ◦ (E1
k ⊗ E2

l ))⊗ ICACB )(ΓACA

1 ⊗ΓBCB

2 )]}
≥ 1− ǫ. (41)

We say that(R1, R2) is an achievable rate pair if for all
ǫ > 0, δ > 0 and sufficiently largen there exists an(n,R1 −
δ, R2 − δ, ǫ) entanglement-assisted code. The entanglement-
assistedcapacity region CE(M) is defined to be the closure
of the set of all achievable rate pairs.

Theorem 6: Consider a quantum multiple access channel
M : A′B′ → C. For some statesρA

′

1 andρB
′

2 define

θABC = (IAB ⊗M)(ϕAA
′

1 ⊗ ϕBB
′

2 ) (42)

where |ϕ1〉AA
′

and |ϕ2〉BB
′

are purifications of ρA
′

1

and ρB
′

2 respectively. Define the two-dimensional region
CE(M, ρ1, ρ2), shown in Fig. 2, by the set of pairs of
nonnegative rates(R1, R2) satisfying

R1 ≤ I(A;C|B)θ

R2 ≤ I(B;C|A)θ
R1 +R2 ≤ I(AB;C)θ .

(43)

Define C̃E(M) as the union of theCE(M, ρ1, ρ2) regions
taken over all statesρ1, ρ2. Then the entanglement-assisted
capacity regionCE(M) is given by the regularized expression

CE(M) =

∞⋃

n=1

1

n
C̃E(M⊗n) (44)
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Fig. 2. Capacity region of multiple access channel for fixed input statesρ1
andρ2

where the bar indicates taking closure. There is an additional
single-letter upper bound on the sum rate

R1 +R2 ≤ max
ρ1,ρ2

I(AB;C)θ. (45)

Proof: (direct coding theorem) Let the entanglement be
given in a tensor power form, as in Theorem 1. Define a
[n,R1, R2, ρ1, ρ2, ǫ] entanglement-assisted code as a special
case of an(n,R1, R2, ǫ) code: specifyΓ1 = φ⊗n1 and
Γ2 = φ⊗n2 , and identifyA := A′n andB := B′n.

To show the achievability of every rate pair(R1, R2) in
the convex hull of theCE(M, ρ1, ρ2), it suffices to show
that the corner points are achievable. Once we show that, the
non-corner points can be achieved by time-sharing (see, e.g.,
[24]). Consider the corner point Q. For allǫ > 0, δ > 0
and n sufficiently large, we show below that there exists
a [n, I(A;C)θ − δ, I(B;C|A)θ − δ, ρ1, ρ2, ǫ] entanglement-
assisted code(E1, E2,D).

The point Q corresponds to the maximum rate that at
which Alice can send as long as Bob sends at his maximum
rate. This is the rate that is achieved when Bob’s input is
considered as noise for the channel from Alice to Charlie.
From the two party direct coding theorem, Alice can send
at a rateI(A;C) and Charlie can decode the message with
arbitrarily low probability. Charlie then knows which encoding
operation Alice used and can subtract its effect from the
channel. Therefore, Bob can achieve the rateI(B;C|A). This
outlines the proof of the achievability of point Q.

Define the channelN1 : A′ → C by

N1 : ω 7→ M(ω ⊗ ρ2).

N⊗n
1 is the effective channel from Alice to Charlie when

Bob’s input toM⊗n is ρ⊗n2 . DefineN̂1 : A′ → CBC by

N̂1 : ω 7→ (I ⊗M)(ω ⊗ ϕ2).

Observe that̂N1 is an extension ofN1. Hence it is a restriction
of UN1 .

Define the channelN2 : B′ → CAC by

N2 : ω 7→ (I ⊗M)(ϕ1 ⊗ ω).

N⊗n
2 is effective the channel from Bob to Charlie if Alice

simply inputs theA′ part of the entangled state/purification
(ϕA

′CA

1 )⊗n without encoding.
Fix ǫ > 0, δ > 0. Define R1 = I(A;C)θ − δ

and R2 = I(B;C|A)θ − δ, with θ defined in (42).
By Theorem 1, for sufficiently largen there exists an
[n,R1, ρ1, ǫ] entanglement-assisted code(E1,D1) for N1 and
an [n,R2, ρ2, ǫ] entanglement-assisted code(E2,D2) for N2

such that for allk ∈ [2nR1 ], l ∈ [2nR2 ],

i) Tr {[D1
k ◦ ((N⊗n

1 ◦ E1
k )⊗ ICA)](ϕ⊗n

1 )} ≥ 1− ǫ;
ii)

∥∥∥[(D1 ⊗ I) ◦ ((N̂⊗n
1 ◦ E1

k )⊗ ICA)− (N̂⊗n
1 ⊗ ICA)](ϕ⊗n

1 )
∥∥∥

≤ ǫ;

iii) Tr {[D2
l ◦ ((N⊗n

2 ◦ E2
l )⊗ ICB )](ϕ⊗n

2 )} ≥ 1− ǫ;
iv) the encoded density operator satisfiesE2

l (ρ
⊗n
2 ) = ρ⊗n2 .

We now define our code for the multiple access channel
M. Alice and Bob encode according to{E1

k} and {E2
l },

respectively. Define the instrumentD = {Dk,l} on CCACB
by

Dk,l = D2
l ◦ (D1

k ⊗ ICB ).

Then Charlie’s decoding POVM{Λk,l} is the restriction of
{Dk,l}. Examining the success probability of decoding Alice’s
messagek:

Tr {(D1
k ⊗ ICB ) ◦ ((M⊗n ◦ (E1

k ⊗ E2
l ))⊗ ICACB )(ϕ⊗n

1 ⊗ ϕ⊗n
2 )}

= Tr {D1
k ◦ ((M⊗n ◦ (E1

k ⊗ E2
l ))⊗ ICA)(ϕ⊗n

1 ⊗ ρ⊗n2 )}
= Tr {D1

k ◦ ((M⊗n ◦ (E1
k ⊗ IB

′n

))⊗ ICA)(ϕ⊗n
1 ⊗ ρ⊗n2 )}

= Tr {[D1
k ◦ ((N⊗n

1 ◦ E1
k )⊗ I)](ϕ⊗n

1 )}
≥ 1− ǫ.

(46)

The second equality follows from iv) and the third from i).
Next examining the success probability of decoding Bob’s

messagel: Rewrite ii) in terms ofM:

‖[(D1 ⊗ ICB ) ◦ ((M⊗n ◦ (E1
k ⊗ IB

′n

))⊗ ICACB )

− (M⊗n ⊗ ICACB )](ϕ⊗n
1 ⊗ ϕ⊗n

2 )‖ ≤ ǫ;

SinceE2
l is unitary and satisfies iv),

‖[(D1 ⊗ ICB ) ◦ ((M⊗n ◦ (E1
k ⊗ E2

l ))⊗ ICACB )

− ((M⊗n ◦ (IA′n ⊗ E2
l ))⊗ ICACB )](ϕ⊗n

1 ⊗ ϕ⊗n
2 )‖ ≤ ǫ;

Rewrite iii) in terms ofM

Tr {[D2
l ◦ ((M⊗n ◦ (IA′n ⊗E2

l ))⊗ ICACB )](ϕ⊗n
1 ⊗ ϕ⊗n

2 )}
≥ 1− ǫ.

Define

ΩCCACB

= (D1⊗ICB )◦((M⊗n◦(E1
k⊗E2

l ))⊗ICACB )(ϕ⊗n
1 ⊗ϕ⊗n

2 )

Hence
Tr [D2

l Ω
CCACB ] ≥ 1− 2ǫ.
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Fig. 3. A general protocol for multiple-access entanglement-assisted classical
communication

Now (41) follows. This concludes the achievability of point
Q.

Corner point P can be shown in the same manner. Corner
point R corresponds to the maximum rate achievable from Bob
to Charlie when Alice is not sending any information. The
proof is obvious since we can assume that Alice is throwing
the same state into the channel all the time. The corner point
O follows from the same reasoning. This concludes the proof
of direct coding theorem.

Remark. The entanglement assistance may be phrased in
terms of tensor powers of ebit states|Φ+〉 = 1√

2
(|0〉|0〉 +

|1〉|1〉) instead of the arbitrary|Γ1〉 and |Γ2〉. The protocol
achieving the corner points of the regionCE(M, ρ1, ρ2)
uses |Γ1〉 = |φ1〉⊗n and |Γ2〉 = |φ2〉⊗n. By entanglement
dilution [25], |Γ1〉 may be asymptotically obtained from an
ebit rate ofE1 = H(A)θ shared between Alice and Charlie.
Likewise |Γ2〉 may be asymptotically obtained from an ebit
rate of E2 = H(B)θ shared between Bob and Charlie.
Entanglement dilution additionally requires an arbitrarily small
rate of classical communication. This resource is obtainedby
applying the HSW theorem to an arbitrarily small fraction of
the n channelsM. Doing so has no effect on the capacity
region.

Proof: (converse) Start with some(n,R1, R2, ǫ)
entanglement-assisted code (see Fig. 3). Assume Alice’s
messagek and Bob’s messagel are picked according to
the uniform distributions on[2nR1 ] and [2nR2 ], respectively.
These correspond to random variablesK and L. Alice
performs the encoding operationE1

k on theA part of |Γ1〉ACA

conditioned onK = k. Bob performs the encoding operation
E2
l on theB part of |Γ2〉BCB conditioned onL = l. The

output ofE1
k ⊗E2

l is sent through the multiple access channel
M⊗n just after timet0 . The channel outputCn is acquired
by Charlie at timet. Charlie performs a POVM on the
channel output and his part of the entanglementCACB. The
measurement outcome is a random variableW = (K̂, L̂). By
the condition (41),

Pr{K 6= K̂ andL 6= L̂} ≤ ǫ. (47)

The protocol ends at timetf . We first obtain an upper bound
on the sum rateR1 +R2. At this time

n(R1 +R2) = H(KL) ≤ I(KL; K̂L̂) + nη(n, ǫ), (48)

where the functionη(n, ǫ) tends to0 asǫ tends to0 andn tends
to infinity. The inequality is standard in classical information
theory [2]. It is obtained by applying Fano’s inequality [2]to
(47). Denote the state of the system at timet by

ωKLCACBC
nEn

= (IKLCACB ⊗ U⊗n
M )(ξ1 ⊗ ξ2),

ξA
′nKCA

1 = 2−nR1

∑

k

|k〉〈k|K ⊗ (E1
k ⊗ ICA)(ΓACA

1 ),

ξB
′nLCB

2 = 2−nR2

∑

l

|l〉〈l|L ⊗ (E2
l ⊗ ICB )(ΓBCB

2 ).

Denote byAn the system which purifies the restriction of the
A′n parts of the stateξ1 at timet0. ThenAn containsK and
CA as subsystems. DefineBn in a similar fashion.

The Holevo bound reads

I(KL; K̂L̂) ≤ I(KL;CACBC
n)ω . (49)

The entropic quantities below refer to the stateω

I(KL;CACBC
n)

= I(Cn;CACBKL)− I(CACB;C
n) + I(KL;CACB)

≤ I(Cn;CACBKL)

≤ H(Cn) +H(Cn|En)
= H(Cn)−H(Cn|AnBn)
= I(Cn;AnBn).

(50)

The first inequality follows fromI(KL;CACB) = 0 and
I(CACB ;C

n) ≥ 0. The second inequality holds because of
Lemma 4. The second equality is from Lemma 3.

Putting everything together gives

R1 +R2 ≤ η(n, ǫ) +
1

n
I(Cn;AnBn). (51)

Observe that

1

n
H(Cn) +H(Cn|En)

≤ 1

n

∑

i

[H(Ci) +H(Ci|Ei)]

≤ max
ρ1,ρ2

[H(C)θ +H(C|E)θ]

= max
ρ1,ρ2

[H(C)θ −H(C|AB)θ ]

= max
ρ1,ρ2

I(AB;C)θ .

(52)

The stateθ is defined in (42).
An upper bound on Alice’s rateR1 is obtained in a similar

fashion. Equations

nR1 = H(K) ≤ I(K; K̂) + nη(n, ǫ), (53)

and

I(K; K̂) ≤ I(K;CACBC
n)ω (54)
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are obtained as above. With respect toω:

I(K;CACBC
n)

= I(CBC
n;CAK)− I(CA;CBC

n) + I(K;CA)

≤ I(CBC
n;CAK)

≤ I(BnCn;CAK)

≤ H(BnCn) +H(BnCn|En)
= H(BnCn)−H(BnCn|An)
= I(An;BnCn)

= I(An;Cn|Bn).

(55)

Hence

R1 ≤ η(n, ǫ) +
1

n
I(An;Cn|Bn). (56)

By the same argument

R2 ≤ η(n, ǫ) +
1

n
I(Bn;Cn|An). (57)

The reason that we do not single-letterize the ratesR1 andR2

using arguments in (51) is due to the definition of systemsAn

andBn, which contain the classical informationK andL as
subsystems, respectively. At the same time, the channel output
Cn also contains information regardingK andL. Therefore,
it is not trivial that chain rule is applicable to systemsBnCn

(likewiseAnCn).
Now assume that(R1, R2) is achievable. This means that

for all ǫ > 0, δ > 0, there exists an(n,R1−δ, R2−δ, ǫ) code,
and hence

R1 ≤ η(n, ǫ) + δ +
1

n
I(An;Cn|Bn)

R2 ≤ η(n, ǫ) + δ +
1

n
I(Bn;Cn|An)

R1 +R2 ≤ η(n, ǫ) + 2δ +
1

n
I(Cn;AnBn).

(58)

It follows that (R1, R2) is in the ν(n, ǫ, δ) neighborhood of
the 1

n C̃E(M⊗n) region, withν(n, ǫ, δ) → 0 as ǫ → 0, δ →
0, n → ∞. Hence (R1, R2) is in CE(M), concluding the
proof of the converse.

IV. T HE COLLECTIVE PHASE-FLIP CHANNEL EXAMPLE

Consider the case that|A′| = |B′| = d ≥ 2. The collective
phase-flip channel [14]Mp : A

′B′ → C is defined as

Mp(ρ) =

d−1∑

k=0

pk(Ẑ(k)⊗ Ẑ(k))ρ(Ẑ(k)⊗ Ẑ(k))† (59)

where Ẑ(k) is the generalized Pauli phase operator from
(14). We will show that the capacity region for the multiple
access phase-flip channelMp assisted by entanglement is the
collection of all pairs of nonnegative rates(R1, R2) which
satisfy

R1 ≤ 2 log d

R2 ≤ 2 log d

R1 +R2 ≤ 4 log d−H(p).

(60)

Proof: First we show that (60) is precisely the region
CE(M, π, π), proving achievability. The correspondingθ state
is

θABC = (IAB ⊗Mp)(Φ
AA′ ⊗ ΦBB

′

)

where|Φ〉 is the maximally entangled state (15). It is easy to
see that

H(A) = H(B) = H(π) = log d

H(AC) = H(BC) = log d+H(p)

H(ABC) = H(p).

(61)

Hence we reach our conclusion

I(A;C|B) = 2 log d

I(B;C|A) = 2 log d

I(AB;C) = 4 log d−H(p).

(62)

It remains to show that (60) is an upper bound on the
capacity region. It is clear from (43) thatR1 ≤ 2H(A)
andR2 ≤ 2H(B). Hence the first two inequalities in (60).
The third makes use of the single-letter upper bound (45) on
R1 +R2. It suffices to show that

max
ρ
I(AB;C)θ = 4 log d−H(p), (63)

where
θABC = (IAB ⊗M)(ϕABA

′B′

), (64)

and ϕABA
′B′

is a purification ofρA
′B′

. 1 We need three
ingredients. The first is that the maximum in (63) is attained
for statesρA

′B′

diagonal in the{|jl〉} basis (see Appendix
C for a proof of this fact). Define a Stinespring dilation
UMp

: A′B′ → CE of Mp as

UMp
=

∑

jl

|jl〉C |φjl〉E〈jl|A
′B′

(65)

where

|φjl〉E =
d−1∑

k=0

√
pk|k〉ei2πk(j+l)/d.

By the results of Appendix C

I(AB;C)θ = 2H({rjl})−H(
∑

jl

rjlφjl), (66)

whereρ =
∑

jl rjl|jl〉〈jl|.
The second ingredient is thatI(AB;C)θ is a concave

function of ρ and hence has a unique local optimum. This
is because fordegradable channels [24] such asMp, the
coherent informationI(AB〉C) := I(AB;C) − H(A) is a
concave function of input density matrixρ [14]. SinceH(A)
is also concave we conclude thatI(AB;C) is concave.

The third ingredient is to use the method of Lagrange
multipliers to find a local optimum forI(AB;C)θ. We need
to optimize

f({rjl}) = 2H({rjl})−H(
∑

jl

rjlφjl)− λ
∑

jl

rjl,

1we have already shown that this maximum is achieved for the product
stateρA

′
B

′

= π
A

′

⊗ π
B

′

.
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with Lagrange multiplierλ. Differentiating with respect to the
rjl givesd2 simultaneous equations. By inspection,rjl = 1/d2

is a solution to this system of equations. The second ingredient
ensures that this is in fact the global maximum. Thus

max
ρ

I(AB;C)θ = 2H({ 1

d2
})−H(

1

d2

∑

m

φm)

= 4 log d−H(p)

as claimed.

V. A HIERARCHY OF QMAC RESOURCE INEQUALITIES

In this section we phrase our result using the theory of
resource inequalities developed in [23]. The multiple access
channelM : A′B′ → C assisted by some rateE1 of ebits
shared between Alice and Charlie and some rateE2 of ebits
shared between Bob and Charlie, was used to enable a rateR1

bits of communication between Alice and Charlie and a rate
R2 bits of communication between Bob and Charlie. This is
written as

〈M〉+ E1 [q q]AC + E2 [q q]BC

≥ R1 [c→ c]AC +R2 [c→ c]BC .

Without accounting for entanglement consumption (i.e. setting
E1 = E2 = ∞) the above resource inequality holds iff
(R1, R2) ∈ CE(M), with CE(M) given by Theorem 6. The
“if” direction, i.e. the direct coding theorem, followed from
the “corner points”

〈M〉+H(A) [q q]AC +H(B) [q q]BC

≥ I(A;C) [c → c]AC + I(B;CA) [c → c]BC (67)

and

〈M〉+H(A) [q q]AC +H(B) [q q]BC

≥ I(A;CB) [c → c]AC + I(B;C) [c → c]BC . (68)

All the entropic quantities are defined relative to the state
θABC defined in (42).

Just as in the single user case (cf. rule O in [23]),
the protocol can be made coherent, replacing[c → c] by
1
2 ([q q]+[q → q]). Canceling terms on both sides gives “father”
protocols for the QMAC

〈M〉+ 1

2
I(A;BE) [q q]AC +

1

2
I(B;E) [q q]BC

≥ 1

2
I(A;C) [q → q]AC +

1

2
I(B;CA) [q → q]BC (69)

and

〈M〉+ 1

2
I(A;E) [q q]AC +

1

2
I(B;AE) [q q]BC

≥ 1

2
I(A;CB) [q → q]AC +

1

2
I(B;C) [q → q]BC , (70)

where the entropic quantities are now defined with respect to
a purificationθABCE of θABC .

Applying [q → q] ≥ [qq] to the above equations gives

〈M〉 ≥ I(A〉C) [q → q]AC +
1

2
I(B〉CA) [q → q]BC (71)

and

〈M〉 ≥ I(A〉BC) [q → q]AC +
1

2
I(B〉C) [q → q]BC . (72)

These equations are of the form

〈M〉 ≥ Q1 [q → q]AC +Q2 [q → q]BC . (73)

The optimal set of pairs(Q1, Q2) satisfying (73) was found in
[14], [15]. Equations (71) and (72) recover the “corner points”
of the corresponding capacity region.

Coherifying only Bob’s resources in equation (67) gives

〈M〉+H(A) [q q]AC

≥ I(A;C) [c → c]AC + I(B〉CA) [q → q]BC .

ConsiderM of a special{cq → q} form in which Alice’s
input is dephased before being sent though the channel. The
arguments from Section III-B apply here to show that the
Alice-Charlie entanglement is not needed. Thus we recover
another coding theorem proven in [14] which characterizes
the pairs(R1, Q2) for which

〈M〉 ≥ R1 [c→ c]AC +Q2 [q → q]BC .

We can also recover the result of Winter [13] which solves

〈M〉 ≥ R1 [c→ c]AC +R2 [c→ c]BC .

for {cc → q} channelsM. We just apply the argument
from Section III-B to remove the need for any entanglement
assistance.

Ultimately we would like to solve

〈M〉 ≥ Q1 [q → q]AC + E1 [q q]AC +R1 [c→ c]AC

+Q2 [q → q]BC + E2 [q q]BC +R2 [c→ c]BC ,

where the 6 rates may be positive or negative. The single user
caseQ2 = E2 = R2 = 0 was solved in [26].

VI. CONCLUSION

We derived a regularized formula for the entanglement-
assisted capacity region for quantum multiple access channels.
This expression parallels the capacity region for classical
multiple access channels. We leave it as an open problem to
single-letterize the above capacity region. We do not know if
the regularization in our main theorem is actually necessary.
Indications that it might not be are the successful single-
letterization of the two-user entanglement-assisted capacity in
[11] which we have used to obtain the single-letter bound on
the rate-sum above, and the fact that the regularization is not
necessary in the classical case.

Though the issue with more than 2 inputs was not addressed,
we expect it to be an easy extension. Suppose we have a
QMAC M with s senders and 1 receiver such thatM :
A1A2 · · ·As → B. We conjecture the following statement to
be true [13]:
The entanglement-assisted capacity region of the quantum
multiple access channel M is the regularized version of the
convex closure of all nonnegative {R1, · · · , Rs} satisfying

∑

i∈J
Ri ≤ I(A[J ];B|A[Jc]) ∀J ⊂ [s],
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where A[J ] = {Ai|i ∈ [J ]} and [Jc] = [s]\J .

The difficult problem would be to consider the quantum
multiway channel which hass senders andr receivers. We
believe a different approach might be needed.

APPENDIX A
PROOF OFPACKING LEMMA

We need the following lemma from [27].
Lemma 7 (Hayashi, Nagaoka): For any operators0 ≤ S ≤

I andT ≥ 0, we have

I −
√
S + T

−1
S
√
S + T

−1 ≤ 2(I − S) + 4T.

We are now ready to prove the packing lemma, along lines
suggested by the work [27].

Proof: Let XN denote a sequence of random variables
X1, X2, . . . , XN , where each random variableXk takes values
from S and is distributed according toλ. Set f(k) = Xk.
Each random codeC = {σxk

}k∈[N ] is generated according to
Xk = xk. Define pe(k) to be the probability of error for a
single codewordσxk

:

pe(k) = Trσxk
(I − Λk),

where the POVM elements{Λk} are constructed by the so-
called square root measurement[6], [7]

Λk =
( N∑

l=1

Υxl

)− 1
2

Υxk

( N∑

l=1

Υxl

)− 1
2

with
Υm = ΠΠmΠ.

Definepe(C) to be the average probability of error, averaged
over all codewords inC:

pe(C) =
1

N

N∑

k=1

pe(k).

Definepe to be the average probability of error, averaged over
all possible random codesC to be:

pe = EXN [pe(C)] .

The idea here is that if the average probability of errorpe is
small enough, we can then show the existence of at least one
good code. In what follows, we will first show thatpe ≤ ǫ′

for someǫ′ → 0 whenn→ ∞.

Invoking Lemma 7, we can now place an upper bound on
pe(C):

pe(C) ≤
1

N

N∑

k=1


2(1− Trσxk

Υxk
) + 4

∑

l 6=k
Trσxk

Υxl


 .

(74)
The gentle operator lemma in [21] and property (20) give

‖ΠσmΠ− σm‖ ≤
√
8ǫ. (75)

By property (19) and (75)

Tr σmΥm ≥ TrσmΠm − ‖ΠσmΠ− σm‖
≥ 1− ǫ−

√
8ǫ. (76)

For k 6= l, the random variablesXk andXl are independent.
Thus

EXN [TrσXk
ΥXl

] = Tr (ΠEσXk
Π EΠXl

)

≤ D−1
ETrΠΠXl

≤ d/D. (77)

The first inequality follows fromEσXk
= σ and property (21).

The second follows fromΠ ≤ I and property (22). Taking the
expectation of (74), and incorporating (76) and (77) gives

pe ≤ 2(ǫ+
√
8ǫ) + 4(N − 1)d/D,

≤ 2(ǫ+
√
8ǫ) + 4Nd/D

= 2(ǫ+
√
8ǫ) + 4γ =: ǫ′.

(78)

Two more standard steps are needed.

i) Derandomization. There exists at least one particular
value xN of the stringXN such that this codeC∗ =
{σxN} for which pe(C

∗) is at least as small as the
expectation value. Thus

pe(C
∗) ≤ ǫ′. (79)

ii) Average to maximal error probability. Since

pe(C
∗) =

1

N

∑

k∈N
pe(k) ≤ ǫ′,

thenpe(k) ≤ 2ǫ′ for at least half the indicesk. Throw the
others away and redefinef , N and γ accordingly. This
further changes the error estimate to4(ǫ+

√
8ǫ) + 8γ.

Remark 8: The major difference between the proof of pack-
ing lemma and the proof of HSW theorem is that the ensemble
in HSW theorem is assumed to be of the tensor power ofn
copies of{λj , ρj}. This is where the conditional typicality
comes into play in order to bound the probability of correctly
identifying the classical message. However, in packing lemma,
the ensemble is assumed to be some general states inH⊗n.
Even thought the projectorsΠm indeed conditioned onm, but
they are not necessary projectors onto conditionally typical
subspace, Therefore, as we have claimed before, the proof of
packing lemma only requires typicality.

APPENDIX B
PROOFS OF PROPERTIES(33)-(36)

I. Proof of property (33).
DefineP̌ to be the complement of the projectorP . That
is P̌ = I − P .

Π = ΠnN (ρ),δ ⊗Πnρ,δ

= (I − Π̌nN (ρ),δ)⊗ (I − Π̌nρ,δ)

= I ⊗ I − I ⊗ Π̌nρ,δ − Π̌nN (ρ),δ ⊗ I + Π̌nN (ρ),δ ⊗ Π̌nρ,δ

≥ I ⊗ I − I ⊗ Π̌nρ,δ − Π̌nN (ρ),δ ⊗ I.

(80)
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Therefore

TrσBB
′

sa Π

≥ Tr σsa − Tr σsa(I ⊗ Π̌nρ,δ)− Tr σsa(Π̌
n
N (ρ),δ ⊗ I)

= 1− Tr [σB
′

sa Π̌
n
ρ,δ]− Tr [σBsaΠ̌

n
N (ρ),δ]

≥ 1− 2ǫ,
(81)

the last line by a double application of (10).
II. Proof of property (34).

By (28) and (32),

Tr σsaΠsa = Tr θ⊗nΠnθ,δ
≥ 1− ǫ.

(82)

The last line follows from (10).
III. Proof of property (35).

TrΠsa = TrΠnθ,δ ≤ 2n[H(AB)θ+cδ]. (83)

The inequality follows from (12).
IV. Proof of property (36).

Because of (13), we can bound the density operatorπnα
by

πnα =
Πnt(α)

TrΠnt(α)
≤ 2−n[H(ρ)−η(δ)]Πnρ,δ. (84)

Then
ΠσΠ

= (ΠnN (ρ),δ ⊗Πnρ,δ)

[
∑

α

pα(N⊗n(πnα)⊗ πnα)

]
(ΠnN (ρ),δ ⊗Πnρ,δ)

=
∑

α

pα

[
(ΠnN (ρ),δN⊗n(πnα)Π

n
N (ρ),δ)⊗ (Πnρ,δπ

n
αΠ

n
ρ,δ)

]

≤
(
ΠnN (ρ),δN⊗n(

∑

α

pαπ
n
α)Π

n
N (ρ),δ

)
⊗ (2−n[H(ρ)−η(δ)]Πnρ,δ)

≤
(
2−n[H(N (ρ))−cδ]ΠnN (ρ),δ

)
⊗
(
2−n[H(ρ)−η(δ)]Πnρ,δ

)

= 2−n[H(ρ)+H(N (ρ))−cδ−η(δ)] Π

= 2−n[H(A)θ+H(B)θ−cδ−η(δ)] Π,
(85)

where the first inequality follows from (84) and the second
from (11).

APPENDIX C
GENERALIZED DEPHASING CHANNELS

We follow the techniques of [14], [28], [24]. LetA′ and
B be quantum systems of dimensiond with respective bases
{|i〉A′} and{|i〉B}.

A channelN : A′ → B is called a generalized dephasing
channel if

N (|i〉〈i|A′

) = |i〉〈i|B.

We can write down a Stinespring dilationUN : A′ → BE for
N :

UN =
∑

i

|i〉B|φi〉E〈i|A
′

,

where the{|φi〉E} are not necessarily orthogonal. GivenUN ,
the complementary channelN c : A′ → E = TrB ◦ UN acts
on some input stateρA

′

as

N c(ρ) = TrBUN (ρ)

=
∑

i

〈i|B
(∑

i′′i′

|i′′〉B |φi′′ 〉E〈i′′|A
′

ρ|i′〉A′〈i′|B〈φi′ |E
)
|i〉B

=
∑

i

〈i|ρ|i〉φEi

=:
∑

i

riφ
E
i .

(86)

It depends only on the diagonal elements{ri} of ρ expressed
in the dephasing basis. When the{|φi〉E} are also orthogonal,
the channelN is calledcompletely dephasing and is denoted
by △. It corresponds to performing a projective measurement
in the dephasing basis and ignoring the result. The following
properties hold [28]:

N c = N c ◦ △
N ◦△ = △ ◦N

H(△(ρ)) ≥ H(ρ).

(87)

DefineθAB = (IA⊗N )φAA
′

, whereφAA
′

is a purification
of the input stateρA

′

.
Lemma 9: Given a dephasing channelN : A′ → B, the

mutual informationI(A;B)θ is maximal when the input state
ρA

′

is diagonal in the dephasing basis.
Proof: Since

I(A;B) = H(A) +H(B)−H(BA)

= H(A) +H(B)−H(E)

= H(ρ) +H(N (ρ)) −H(N c(ρ))

≤ H(△(ρ)) +H((△ ◦N (ρ)) −H(N c ◦ △(ρ))

= H(△(ρ)) +H(N ◦△(ρ))−H(N c ◦ △(ρ))
(88)

The inequality is saturated whenρ = △(ρ) =
∑
ri|i〉〈i|, in

which case

I(A;B) = 2H({ri})−H(
∑

i

riφi).
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