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Tardos fingerprinting is better than we thought

B. Škorić, T.U. Vladimirova, M. Celik, J.C. Talstra

Abstract

Tardos has proposed a randomized fingerprinting code that is provably secure against collusion attacks.

We revisit his scheme and show that it has significantly better performance than suggested in the orig-

inal paper. First, we introduce variables in place of Tardos’ hard-coded constants and we allow for an

independent choice of the desired false positive and false negative error rates. Following through Tardos’

proofs with these modifications, we show that the code length can be reduced by more than a factor of two

in typical content distribution applications where high false negative rates can be tolerated. Second, we

study the statistical properties of the code. Under some reasonable assumptions, the accusation sums can

be regarded as Gaussian-distributed stochastic variables. In this approximation, the desired error rates

are achieved by a code length twice shorter than in the first approach. Overall, typical false positive and

false negative error rates may be achieved with a code length approximately 5 times shorter than in the

original construction.
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1 Introduction

1.1 Digital fingerprinting

Digital content, such as songs, photographs or movies, can be copied inexpensively without any
loss of quality. Moreover, these copies can be easily redistributed without permission from the
original rights holders. According to [RW2004], unauthorized sharing of music on peer-to-peer
(P2P) networks in college campuses reduces the potential revenue of the recoding industry by as
much as 20%.

One way of countering unauthorized redistribution is to uniquely mark each individual instance
of the originally distributed content, so that the recipient (‘user’) can be identified if that content
appears on a P2P network. The authorized distributor (or the content owner) embeds a unique
mark, also called a ‘forensic watermark’ or a ‘fingerprint’, into each instance of the content before
transmitting it to the user. The embedding algorithm ensures that the mark is imperceptible, i.e.
the quality of the content is not degraded by the mark. Moreover, the location and nature of the
mark is kept secret from the user to prevent him from locating and altering the mark. Typically
the mark consists of a set of symbols from a q-ary alphabet, where each symbol is embedded
into a different part of the content, e.g. different scenes in a movie. When an unauthorized
copy is found, the content owner, knowing all the details, can detect the mark and identify the
source of the unauthorized copy. Forensic watermarking has already been successfully applied in
practice [CNN2004].

1.2 Collusion resistance

A group of recipients (called ‘colluders’ or ‘a coalition’) can collaborate to escape identification.
Comparing their content copies, they can find the locations where their content, and thus their
marks, differ. These locations are called the ‘detectable positions’. By cleverly manipulating the
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content at those locations, the colluders can attempt to create a version of the content that cannot
be traced back to any of them. Such an attack is called a collusion attack.

Collusion attacks and fingerprinting schemes that show resistance to these attacks have been
studied since the late 1990’s. The often used marking condition assumes that the colluders are
unable to change the symbols (marks) in undetectable positions. Under the marking condition,
one can distinguish between the following attack models, which differ in the type of manipulation
the attackers are allowed to perform:

• The restricted digit model or narrow-case model allows the colluders only to ‘mix and match’,
i.e. to replace a symbol in a detectable position by any of the symbols they have received in
that position.

• The unreadable digit model allows for slightly stronger attacks. The attackers can also
introduce an unreadable symbol ‘?’ in detectable positions.

• The arbitrary digit model allows for even stronger attacks. The attackers can put any (arbi-
trary) q-ary symbol (but not the unreadable symbol ‘?’) in the detectable positions.

• The general digit model allows the attackers to put any symbol, including the unreadable
symbol ‘?’, in the detectable positions.

In the case of a binary alphabet all four attack models are equivalent. The content owner can map
the unreadable symbol ‘?’ to either of the binary symbols without loss of generality.

Video fingerprinting applications face a number of severe constraints in practice. First of all,
there is a limit on the number of locations (m) suitable for watermark embedding. A typical
fingerprinting system can reliably extract approximately seven bits per minute of video con-
tent [DCI2007]. Furthermore, constraints on decoding complexity and perceptual quality limit
the number of different symbols that can be embedded in each location. Hence, the alphabet size
q for a fingerprint code is limited (typically q ≤ 16). Finally, mass market content distribution
systems need to accommodate a very large number of users (e.g. millions or even hundreds of
millions). Under these constraints, the authorized distributor is interested in the fingerprint code
which can resist the largest coalition size (c0).

In the last decade, various fingerprint codes have been proposed. Some of these codes are
deterministic, i.e. they can identify at least one member of the coalition with certainty, without
the danger of accusing an innocent user. For instance, Identifiable Parent Property (IPP) codes
proposed in [HvLLT1998] are deterministic. However, the scheme is limited to a coalition size
of two. In [SSW2001], Staddon et al. proved the existence of a deterministic fingerprinting code
which is resistant against c0 colluders. The code is of length m = c20 logq(n), where n is the
number of users. However, it requires an impractically large alphabet size, q ≥ m − 1. Another
deterministic scheme, presented in [CFNB2000], has a similar length m = 4c20 logn with a smaller
alphabet size q = 2c20. Still, the alphabet size quickly becomes prohibitive for mass market content
distribution systems.

When the application can tolerate a nonzero probability of error, randomized fingerprinting
codes with smaller, even binary, alphabets can be used. In a typical fingerprinting application,
the most important type of error is the False Positive (FP) error, where an innocent user gets
accused. The probability of such an event must be extremely small; otherwise all accusations
become dubious, making the whole fingerprinting scheme unworkable. We will denote by ε1 the
probability that a specific innocent user gets accused. The notation η is used for the probability
that there exist innocent users among the accused. The second type of error is the False Negative
(FN) error, where the scheme fails to accuse any of the colluders. In practical content distribution
applications, fairly large FN error probabilities can be tolerated, as the content owner can collect
evidence from multiple pieces of content over a period of time. We denote the FN error probability
by ε2.

In [BS1998], Boneh and Shaw presented a binary (q = 2) randomized code with length m =
O(c40 ln

n
η ln 1

η ), which uses concatenation of a partly randomized inner code with an outer code.
They also proved a lower bound on the required length for any binary code that is resistant against
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c0 colluders: m ≥ 1
2 (c0 − 3) ln 1

c0η
. In [PSS2003], Peikert et al. proved a tighter lower bound for a

restricted class of codes with a limited number of ‘column types’: m = Ω(c20 ln
1

c0η
).

In [Tar2003], Tardos further tightened the lower bound for the arbitrary digit model and the
unreadable digit model: m = Ω(c20 ln

1
ε1
) for arbitrary alphabets. In the same paper, he described

a fully randomized binary fingerprinting code achieving this lower bound. This code has length
m = 100c20⌈ln 1

ε1
⌉.

While [Tar2003] proposed a practical code with optimal behavior for large c0, it leaves a number
of open questions:

• The author uses a number of arbitrary-looking constants in his proofs, such as 20, 1
10c0

1
20c0

, 1
300c0

. Similarly, the constant 100 appears in the minimum code length expression

m = 100c20⌈ln 1
ε1
⌉. While these numbers allow for important properties to be proven, it is

not at all clear if they have been chosen in an optimal way.

• He also makes seemingly arbitrary choices for the accusation weight function—which specifies
how strongly to accuse a user per symbol if his symbol is equal to the symbol found in a
pirated copy—and the distribution function—which specifies probabilities used in generating
the random code words,—hinting that they are optimal, but not providing a proof.

• In the proofs, the FN error probability ε2 is coupled to the FP probability ε1. While Tardos
remarks that they can be decoupled, it is not clear how each exactly influences the code
length on its own. Furthermore, the coupling is such that FN rate is much smaller than the
FP rate, ε2 ≪ ε1. As mentioned earlier, in practical applications the opposite ε2 ≫ ε1 may
be desirable. This opposite case is not studied.

1.3 Contributions and outline

In this paper, we provide answers to the aforementioned issues with Tardos’ construction, which
were left open in [Tar2003].

• In Section 2.2, we generalize the Tardos’ construction, introducing variables in place of
numerical constants and generic functions instead of the functions specified in [Tar2003].
We state ‘Soundness’ and ‘Completeness’ properties, which specify the desired FP and FN
error conditions. Our approach is similar in spirit to Hagiwara et al.’s in [HHI2006], but our
results are not restricted to small coalitions.

• In Section 3.1, we state the conditions on the construction parameters for a scheme that
satisfies both the ‘Soundness’ and ‘Completeness’ properties. These conditions are derived
in Sections 3.2 and 3.3, respectively. We employ a proof method very similar to [Tar2003],
but we specifically do not couple FP and FN error rates. In Section 3.4, the results of the
preceding subsections are combined to arrive at a condition for the code length.

• In Section 3.5, we show that Tardos’ choice for the accusation weight function is optimal.
In Section 3.6, we show that his choice for the distribution function used in generating the
random code words is optimal within a limited class of functions.

• In Section 3.7, we arrive at the smallest possible code length parameter value, specific for
our proof method, that allows for Soundness and Completeness. In the case of large c0, this
value lies slightly above 4π2, which is a significant improvement over the original value ‘100’.

• In Section 4, we present the results of a numerical search for model parameters that yield
the shortest possible code length. For certain realistic choices of n, c0, ε1 and ε2, we find
that the code length can be reduced by a factor of two or more. For large ε2 our theoretical
large-c0 result seems to be approached.
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• In Section 4, we further see that the code length depends only weakly on ε2, as was also
mentioned by Tardos. Nonetheless, we observe a significant advantage for decoupling the FP

and FN error probabilities. When Tardos’ coupling of ε2 = ε
c0/4
1 is enforced, the code length

constant ‘100’ can be reduced only to approximately 90. When the rates are decoupled and
the FN rate is allowed to increase, for fixed ε1 and c0 values, the constant can be reduced
to approximately 45.

We also study the statistical properties of the scheme. The results give us an insight into the
‘average’ behavior of the scheme and are much simpler than the expressions involved in the formal
proofs.

• In Section 5.1, by modeling the accusation sums as normally distributed stochastic variables
(an approximation motivated by the Central Limit Theorem), we state a simple approximate
condition for the code length based on the coalition size, FP and FN error rates.

• In Sections 5.2 and 5.3, we compute the mean and the variance of the accusation sums for
innocent users and the coalition, without any assumptions on their distribution. Similarly,
we derive conditions on the code length and the accusation threshold based on the desired
false positive and false negative error rates, in Section 5.4.

• In Section 5.5, we identify an ‘extremal’ colluder strategy. It maximizes our expression for
the minimally required code length. The strategy is to output a ‘1’ whenever this is allowed
by the marking condition.

• In Section 5.6, we assume that the probability distributions of the accusation sums are
perfectly Gaussian. Using this approximation, we show that (for large c0) error rates ε1, ε2
can be achieved with code length m ≈ 2π2c20 ln

1
ε1
. The Gaussian approximation is justified

in Appendix C.

2 Tardos revisited

2.1 Generalization

In [Tar2003], Tardos proposed a randomized fingerprinting code resilient against collusion attacks.
His fingerprinting scheme is particularly known for its short code length. Nonetheless, due to a
number of implicit parameter choices in [Tar2003], it is not clear if his explicit construction achieves
the shortest possible code length allowed by the scheme. In this section, we generalize Tardos’
construction in anticipation of our study in the following section. In particular, we make three
generalizations. First, we replace various fixed numerical parameters by variables and investigate
the conditions on these variables that allows us to still carry out the security proofs. This helps us
to modify the system parameters so as to obtain even shorter code lengths. Second, we allow for the
desired false positive and false negative error probabilities to be chosen independently. As opposed
to the original construction where these probabilities were coupled, this generalization allows us to
better align the scheme to practical content fingerprinting requirements. Third, we do not assume
any specific form for the functions f , g1 and g0 (see Section 2.2) in Tardos’ construction. The
introduction of arbitrary functions f , g1, g0 leads to a lot of extra effort in carrying out the proofs.
However, with this generalization, we can show that Tardos’ choices for g1, g0 are optimal (for
the proof technique employed in [Tar2003]), and that his choice for f is likewise optimal within a
specific class of smooth functions.

2.2 Notation and definitions

We describe our generalized version of the binary Tardos fingerprinting scheme below. We adhere
to the notation in [Tar2003] whenever possible. Moreover, we denote the explicit parameter choices
made by Tardos by the superscript ‘T’ to avoid confusion.



2 Tardos revisited 5

The fingerprinting scheme has n recipients (‘users’). Each user is assigned a codeword of
length m. The set of colluders (the coalition) is denoted as C, whereas the number of colluders
is denoted as c. The coalition size up to which the scheme has to be resistant is denoted as c0.
The content owner generates an n ×m matrix X ; the j-th row of X is the codeword embedded
in the content of user j. The part of X received by the coalition is denoted as XC . The colluders
use a ‘C-strategy’ ρ to produce an m-bit string y = ρ(XC) which ends up in the unauthorized
copy. The strategy ρ can be deterministic or stochastic. The content owner uses an accusation
algorithm σ. The output of the algorithm is a list of accused users.

The matrix X is constructed in two phases. In the first phase a list of random numbers
p = {pi}mi=1 is generated, where pi ∈ [t, 1 − t], with t a small parameter satisfying c0t ≪ 1. The
pi are independent and identically distributed according to a probability distribution function f .
The function f is symmetric around pi =

1
2 and heavily biased towards values of pi close to 0 and

1. In the second phase, the columns of X are filled by independently drawing random numbers
Xji ∈ {0, 1} with P[Xji = 1] = pi.

Having spotted a copy with embedded mark y, the content owner computes an ‘accusation
sum’ Sj for each user j according to

Sj =

m
∑

i=1

yiU(Xji, pi) ; U(Xji, pi) =

{

g1(pi) if Xji = 1
g0(pi) if Xji = 0

(1)

where g0 and g1 are the ‘accusation functions’, and yi denotes the i’th bit of y. The decision
whether to accuse a user is taken as follows: if Sj > Z, then accuse user j. Hence

σ(X, y, p) = {j | Sj > Z}. (2)

We note some properties of this construction. If the received mark yi is zero, the accusation of
user j due to column i is neutral. If yi = 1, the accusation sum is updated by gXji

(pi), which is a
measure of how much suspicion arises from observing yi for a given Xji and pi. The function g1(p)
is positive and monotonically decreasing. The fact that user j has received a ‘1’ in that position, i.e.
Xji = 1, adds to the suspicion. Moreover, the amount of suspicion decreases with increasing pi, as
the symbol becomes more probable. The function g0(p) is negative and monotonically decreasing.
Therefore, the fact that Xji = 0 detracts from the suspicion, and this becomes more pronounced
for large pi. We impose two properties on the accusation functions g0 and g1, which become handy
during our proofs. First, we want to have the expectation value of the accusation in each column
to be zero. Therefore, the functions should satisfy pg1(p) + (1 − p)g0(p) = 0. Furthermore, we
want the weights of the accusation for X = 0 and X = 1 to be symmetric, since the function f(p)
also has 0 ↔ 1 symmetry. This is achieved by setting g0(p) = −g1(1 − p). These two properties
together imply that (a) g0 can be computed from g1 according to g0(p) = −g1(p) · p/(1 − p)
and (b) g1 on the interval (12 , 1 − t) can be derived from g1 on the interval (t, 12 ) according to
g1(p) = g1(1− p) · (1− p)/p. Hence it is necessary only to specify g1(p) for p ∈ (t, 12 ).

1

The FP parameter ε1, chosen by the content owner, denotes the desired bound on the probabil-
ity of having j ∈ σ(X, y, p) when a fixed user j is innocent. The FN parameter ε2, also chosen by
the content owner, denotes the desired bound on the probability that σ(X, y, p) does not contain
any guilty user.

The Tardos fingerprinting scheme uses a code length m and a threshold Z with the following
scaling behavior2 as a function of n, ε1 and c0:

m = Ac20 ⌈ln 1/ε1⌉ ; Z = Bc0 ⌈ln 1/ε1⌉ . (3)

Here we have introduced the parameters A and B, replacing Tardos’ constants 100 and 20, re-
spectively. We want the scheme to satisfy the following properties.

1 The constraint g′1(p) < 0 on the whole interval (t, 1− t) gives the additional condition g′1(p) > −
g1(p)
p(1−p)

. This

can be satisfied by writing g1(p) = exp
R

p dp′ Q(p′) with − 1
p(1−p)

< Q(p) < 0.
2 Note that (3) has no explicit ε2-dependence. The dependence enters implicitly through A and B. However,

as will be shown in Section 4, the ε2-dependence vanishes in the limit of large c0.
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Definition 1: ‘Soundness’
Let ε1 ∈ (0, 1) be a fixed constant and let j be an arbitrary innocent user. We say that the
above described fingerprinting scheme is ε1-sound if, for all coalitions C ⊆ [n]\{j}, and for all
C-strategies ρ,

P[False positive] = P[j ∈ σ] < ε1. (4)

Definition 2: ‘Completeness’
Let ε2 ∈ (0, 1) and c0 ∈ N

+ be fixed constants. We say that the fingerprinting scheme is (c0, ε2)-
complete if, for all coalitions C of size c ≤ c0, and all C-strategies ρ,

P[False negative] = P[C ∩ σ = ∅] < ε2. (5)

Tardos proved (for c0 ≥ 7) that his scheme is Sound and Complete for the following very specific
choice of parameters:3

fT(p) =
1

π − 4t′
1

√

p(1− p)
; gT1 (p) =

√

1−p
p ; gT0 (p) = −

√

p

1− p

AT = 100; BT = 20; tT =
1

300c0

εT2 = ε
c0/4
1 (6)

where t′ = arcsin
√
t.

3 Proving a shorter code length through parametrization

3.1 Main result

The main aim of this paper is to show that it is possible to satisfy Soundness and Completeness
in Tardos’ scheme also with different choices, especially with a smaller parameter A and hence
shorter code length m. While the choice AT = 100 does the job for c0 ≥ 7, we will show that it
can be reduced to a number slightly larger than 4π2 in the limit of large c0, when ε2 is not coupled
to ε1. Our results can be summarized in the form of the following theorem.

Theorem 1: Let ε1, ε2 ∈ (0, 1) be fixed parameters. Let the cutoff parameter t be parametrized
as t = τ/c0, with 0 < τ ≪ 1. Let c0 satisfy

c0 ≥ 1

τ(3.4π)2
. (7)

Let ω ≪ 1 be a positive constant. Let the quantities D, δ and ξ be defined as

D := e(ω/1.7)2

δ := 2τ + πω + e1.7
πc0

ω(1−D)
Dτ+ 1.7

√
τ

ω

√
c0−τ

ξ :=

√

1 +
1− δ

πωc0
· ln ε2
ln ε1

− 1. (8)

Let the length m and the threshold Z in the generalized Tardos scheme be parametrized according
to (3). Then it is possible to find functions f(p), g1(p) such that the parameter setting

A = 4π2 (1 + ξ)2

(1− δ)2
; B = 4π

1 + ξ

1− δ
. (9)

achieves ε1-soundness and (c0, ε2)-completeness.

3 In [Tar2003] the distribution f was given in terms of a uniform random variable r, defined according to
p = sin2 r.
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Corollary 1: In the limit of large c0, ε1-soundness and (c0, ε2)-completeness can be achieved by
a code of length

m = 4π2 1

(1− 2τ − πω)2
[1 +O(

1

c0
)] · c20 ln

1

ε1
. (10)

The proof of Theorem 1 is given in the coming sections; we follow Tardos’ proof method
wherever possible. We derive the conditions for Soundness and Completeness in Sections 3.2
and 3.3, respectively. We combine these conditions in Section 3.4 and obtain the lowest possible
value of A that allows for Soundness and Completeness, depending on the specific choice of the
functions f and g1. In Section 3.5, we prove that g1 = gT1 is the ‘optimal’ choice, independent
of f , in the sense that this choice minimizes this lowest value of A (given the proof method). In
Section 3.6, we argue that, given g1 = gT1 , the choice f = fT is ‘optimal’ (in the same sense) within
a limited class of functions. Finally, in Section 3.7, we set f = fT and g1 = gT1 and complete the
last step of the proof.

3.2 Condition for Soundness

This section follows the lines of Tardos’ proof of Theorem 1 in [Tar2003]. We derive an inequality
for the scheme parameters from the requirement that the Soundness property holds.

First, an auxiliary variable α1 > 0 is introduced for the purpose of applying the Markov
inequality. (Tardos uses αT

1 = 1/(10c0).)

P[j ∈ σ] = P[Sj > Z] = P[eα1Sj > eα1Z ] <
EyXp[e

α1Sj ]

eα1Z
. (11)

Here the notation EyXp denotes the expectation value computed by averaging over all stochastic
degrees of freedom: the (possibly stochastic) yi, all the entries in X and the parameters pi. The
expectation value in (11) is bounded by using the inequality4 eu ≤ 1 + u + u2, which holds for
u < 1.7. Using the notation ui = gXji

(pi), we can write

EXj
[eα1Sj ] =

∏

i:yi=1

EXji
[eα1ui ] ≤

∏

i:yi=1

(

1 + α1EXji
[ui] + α2

1EXji
[u2i ]

)

(12)

Here EXj
stands for the expectation value over the j’th row of X , keeping the rest of X fixed, and

keeping {yi} and {pi} fixed. Note that y is independent of Xj since the user j is innocent. The
inequality (12) holds as long as α1 is so small that α1ui < 1.7 for all i for which yi = 1. This is
automatically true for those columns where Xji = 0, since g0 is negative. In the other columns, we
need α1g1(pi) < 1.7. Since pi ≥ t and g1 is monotonously decreasing, we can satisfy the inequality
for all X by setting α1 < αmax

1 := 1.7/g1(t).
Next we further bound (12). Due to the property pg1(p)+(1−p)g0(p) = 0 we have EXji

[ui] = 0.
Thus we can write

EXj
[eα1Sj ] ≤

∏

i:yi=1

(

1 + α2
1EXji

[u2i ]
)

≤
m
∏

i=1

(

1 + α2
1EXji

[u2i ]
)

. (13)

Note that all dependence on the coalition strategy has disappeared in the last expression.
Next we take the expectation value of (13), for fixed {pi}, over the remaining degrees of freedom

in X (all rows except j) and over {yi}mi=1. This has no effect on the last expression in (13). Finally
we take the expectation value Ep w.r.t. the pi degrees of freedom. We remind the reader that this
amounts to multiplying with the distribution function

∏m
i=1 f(pi) and integrating over all pi. For

ease of notation, we introduce the functional ν, defined as

ν := Ep

[

EXji
[u2i ]

]

=

∫ 1−t

t

dp f(p)

{

p[g1(p)]
2 + (1 − p)[g0(p)]

2

}

= 2

∫ 1/2

t

dp f(p)
p

1− p
[g1(p)]

2. (14)

4 One may ask why this crude inequality is used when our purpose is to squeeze the scheme’s parameters as
tightly as possible. The answer is that we do not want to deviate from [Tar2003] too much in this paper, as it would
lead to even more bookkeeping than is already the case. It would be interesting to determine the consequences of
using an inequality of the more general form eu < 1 + ru+ su2, with r ≥ 1.
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(With Tardos’ choice for g1, this evaluates to ν =
∫ 1−t

t
dpf(p) = 1). We can then write

EyXp[e
α1Sj ] ≤

m
∏

i=1

(1 + να2
1) ≤ emνα2

1 . (15)

In the last step we have used 1 + u ≤ eu, which holds for all u. Substitution of (15) into (11)
finally gives

P[Sj > Z] < exp(mνα2
1 − α1Z). (16)

As (16) holds for all α1 in the allowed range, we can write

P[Sj > Z] < min
α1∈(0,αmax

1
)
exp(mνα2

1 − α1Z). (17)

The minimum of the parabola in the exponent lies at α∗
1 := Z/(2mν). Hence, the minimum in

(17) is obtained by setting α1 = α∗
1. Note that this is allowed only if αmax

1 ≥ α∗
1; this condition

can be rewritten as

c0 ≥ Bg1(t)

3.4νA
. (18)

If c0 is large enough for the condition to be satisfied, then it holds that

P[Sj > Z] < exp(mν[α∗
1]

2 − α∗
1Z) < ε

B2/(4νA)
1 . (19)

In the last inequality we have used α∗
1 = Z/(2mν) and the parametrization (3). From (19) and

Definition 1 we conclude that, for c0 large enough so that (18) holds, ε1-soundness can only be
obtained if

A ≤ B2

4ν
. (20)

3.3 Condition for Completeness

This section closely follows the proof of Theorem 2 in [Tar2003]. We derive an inequality for the
scheme parameters from the Completeness requirement. First, the coalition’s accusation sum S is
defined,

S =
∑

j∈C

Sj =

m
∑

i=1

yi{xig1(pi) + [c− xi]g0(pi)}. (21)

Here xi =
∑

j∈C Xji denotes the number of colluders that have a ‘1’ at the i-th position of their
codeword. (The size of the coalition is c = |C|. We consider the case c ≤ c0.) Since S > cZ would
imply that at least one colluder gets accused, the false negative error probability can be bounded
by

P[C ∩ σ = ∅] ≤ P[S ≤ cZ]. (22)

An auxiliary constant α2 > 0 is introduced for the purpose of using the Markov inequality (Tardos
chooses αT

2 = 1/(20c0)),

P[S ≤ cZ] = P[e−α2S ≥ e−α2cZ ] ≤ EyXp[e
−α2S ]

e−α2cZ
. (23)

Upper bounding the expectation value EyXp[e
−α2S ] is an arduous job. The derivation is given in

Appendix A. It turns out that EyXp[e
−α2S ] < exp(−α2m/L), with L > 0 a numerical constant,

provided that c, L, t and α2 satisfy a complicated condition (88). (Tardos has LT = 4). Thus we
can bound the false negative probability as

P[C ∩ σ = ∅] < exp(α2cZ − α2m/L) ≤ exp(α2c0Z − α2m/L). (24)

Substituting the parametrization (3) into (24), and restricting ourselves to the regime A > LB,
we get

P[C ∩ σ = ∅] < ε
α2c

2

0
[A/L−B]

1 . (25)
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Next we demand Completeness, P[C ∩ σ = ∅] < ε2. This yields the following inequality,

A ≥ LB +
L

α2c20

ln ε2
ln ε1

. (26)

Note that (26) is valid only if the complicated condition (88) is satisfied.

3.4 Conditions on the code length

By combining the results of Sections 3.2 and 3.3, we derive a condition on the length parameter
A that is sufficient for proving Soundness and Completeness using the current proof technique.

Lemma 1: Let ε1, ε2 ∈ (0, 1) be fixed parameters. Let the code length m and the threshold Z
in the generalized Tardos scheme be parametrized in terms of the A and B parameters according
to (3). Let the threshold t be set as t = τ/c0, with τ ≪ 1 a positive constant. Let c0 be a fixed
integer, satisfying

c0 ≥ 1

τ(3.4νπ)2
. (27)

Let α2 be the auxiliary parameter introduced in Section 3.3. Let L be the parameter introduced
in Section 3.3, chosen such that the condition (88) can be satisfied by some value α2. Let ν be
the functional of f and g1 as defined by (14). Let ψ be defined as

ψ =

√

1 +
1

νLα2c20

ln ε2
ln ε1

− 1. (28)

Then the generalized Tardos scheme with

A = 4νL2(1 + ψ)2 ; B = 4νL(1 + ψ) (29)

is ε1-sound and (c0, ε2)-complete.

Corollary 2: Let α2 be parametrized as α2 = ω/c0, with ω < 1 a positive constant. Let the
function g1(p) be such that it has the asymptotic behavior g1(p) ∝ p−γ at p = t, with γ < 1. Then
for large c0, it is possible to achieve Soundness and Completeness with A = 4νL2[1 +O(1/c0)].

Proof of Lemma 1: The value of c0 in (27) is specifically set such that (18) is satisfied, and
hence we are allowed to use the inequality (20). By combining the results (20) and (26) we obtain
a ‘window’ for A in which Soundness and Completeness are both satisfied,

A ∈
[

LB +
L

α2c20

ln ε2
ln ε1

,
B2

4ν

]

. (30)

We choose B such that (i) this window exists, and (ii) the left boundary is as small as possible.
It turns out that the optimal choice for B is the smallest value for which the window still exists.
Setting the left and right boundary in (30) equal to each other and solving for B gives

Bopt = 4νL(1 + ψ), (31)

with ψ as defined in (28). The corresponding value for A is Aopt = B2
opt/(4ν) = 4νL2(1 + ψ)2. �

Proof of Corollary 2: First we show that the quantity L > 0 is well defined in the limit
of large c0. To this end we inspect (88), setting c = c0. We start with the term involving
∆ = e[ω/1.7]1/(1−β) < 1, (with ω < 1 and 1

1−β > 1). The exponent c0 − xmax, with xmax defined

in (82), satisfies

c0 − xmax ≥ τ +
1.7(1− t)c0
ωg1(τ/c0)

. (32)
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From the choice g1(t) ∝ t−γ , with γ < 1, it follows that c0 − xmax = O(c1−γ
0 ), i.e. an increasing

function of c0. Hence the expression ∆c0−xmax/(1−∆) decreases as exp[−λc1−γ
0 ] for some positive

constant λ. For large c0, this is much faster than the term α2/L = ω/c0L.
Next we look at the term νc0α

2
2. This can be written as α2νω. Hence, the factor multiplying

α2 is a small constant independent of c0.
In the term α2c0Ep[p

c0g1(p)], the factor multiplying α2 can be written in the form

c0Ep[p
c0g1(p)] = [pf(p)g1(p)p

c0 ]
1−τ/c0
p=τ/c0

−
∫ 1−τ/c0

τ/c0

dp pc0
d

dp
[pf(p)g1(p)]. (33)

In this form, it is clear that the expression is finite for c0 → ∞, provided that the product f(p)g1(p)
is non-pathological near p = 1− t.

The remaining term in (88) is α2 ·
∑c0−1

x=1

(

c0
x

)

Kbound
x , whereKbound

x is some nonnegative number
that upper bounds the expression K1,x as defined in (75). From (75) it follows that

K1,x ≤ tf(t)g1(t)t
x(1− t)c0−x +

∫

J

dp px(1− p)c0−x d

dp
(pfg1), (34)

where J is defined as the interval (or set of intervals) on which d
dp (pfg1) > 0. Using the expression

(34) as our bound Kbound
x and computing the x-sum we obtain

c0−1
∑

x=1

(

c0
x

)

Kbound
x = tf(t)g1(t)[1− (1 − t)c0 − tc0 ] +

∫

J

dp [1− (1− p)c0 − pc0 ]
d

dp
(pfg1). (35)

Expressed in this form, it is clear that this contribution is of order 1− (1− t)c0 = O(τ) for c0 ≫ 1.
The smallness of all the expressions in (88) implies that L is well-defined.

The last step in the proof of Corollary 2 is the asymptotic behavior of the factor (1 + ψ)2 in
(29). The fraction 1/(α2c

2
0) in the definition (28) of ψ is equal to 1/(ωc0), i.e. of order O(1/c0).

Consequently, (1 + ψ)2 = 1 +O(1/c0). �
Note that the expression 4νL2 in Lemma 1 originates from the specific proof technique.
The next step in the proof of Theorem 1 is to choose f and g1 such that the product νL2 is

minimized. We refer to this choice as ‘optimal’, but it should be clear that it represents optimality
only with respect to the proof technique that we employ in Section 3.

3.5 Finding the optimal g1 function

Lemma 2: For all distributions f , Tardos’ choice g1 = gT1 is optimal in the sense that it minimizes
the factor νL2 appearing in the length parameter A in Lemma 1. This choice yields ν = 1.

Proof: We have to solve an optimization problem and determine where the functional derivative
of 4νL2 is zero. This is easiest to accomplish by choosing as the independent degrees of freedom
f(p) and s(p) := pf(p)g1(p) on the interval p ∈ (t, 1/2), instead of f and g1.

From (88) it can be seen that L depends on f and g1 only through s(p): The expression
Ep[p

cg1] involves only the product fg1; and K
bound
x is a bound on (75), which also depends on f

and g1 solely through the product fg1.
The parameter ν, on the other hand, depends on both the s(p) and f(p) degrees of freedom;

Eq.(14) can be rewritten as

ν[s, f ] = 2

∫ 1/2

t

dp
s2(p)

p(1− p)f(p)
. (36)

The functional that we have to minimize is

F [s, f ] = 4ν[s, f ]L2[s] + λ

[

∫ 1/2

t

dp f(p)− 1/2

]

, (37)
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where λ is a Lagrange multiplier for the normalization constraint on f . Setting the functional
derivative with respect to f(p) equal to zero gives

0 =
δF
δf(p)

= −8L2 s2(p)

p(1− p)f2(p)
+ λ =⇒ g1(p) ∝

√

1− p

p
. (38)

Hence, since the normalization of g1 is arbitrary
5 , it turns out that Tardos’ choice g1(p) = gT1 (p) =

√

(1− p)/p is optimal.
From the optimal g1 the value of ν follows directly, without dependence on f : Substituting gT1

into (14) and using the fact that f is a normalized probability distribution, we get ν = 1. �

3.6 The choice f = fT seems to be optimal

Having found the optimal g1, we can next search for the optimal distribution function f . The terms
proportional to α2 in the left hand side of (88) are the most important in determining the allowed
values of L: we want to tune f such that the number multiplying α2 is as negative as possible. We
have looked at a class of smooth functions of the form f(p) = 1

2p
a−1(1−p)b−1/[B1/2(a, b)−Bt(a, b)]

on the interval p ∈ (t, 1/2), where B is the incomplete Beta function. Numerical inspection shows
that Tardos’ choice a = b = 1

2 is the best choice for a, b. Of course, as we have not investigated
the full function space of f , this does not prove that fT is the best possible choice.

In the rest of this paper we will work with f = fT.

3.7 Last step in the proof of Theorem 1

We are now finally in a position to prove Theorem 1. We show that Theorem 1 follows from
Lemma 1 in the special case f = fT and g1 = gT1 . In this special case, we have ν = 1 as shown
by Lemma 2. Hence the condition on c0 (27) reduces to (7). Furthermore, the choice g1 = gT1
gives β = 1

2 (see App. A), whereby ∆ reduces to D, as defined in (8). Next we use the property
d
dp [pf

TgT1 ] = 0 to explicitly evaluate the Ep expectation and the Kbound
x term in (88). We make

use of expression (35) for Kbound
x and get

c0Ep[p
c0g1(p)] =

(1 − t)c0 − tc0

π − 4t′
;

c0−1
∑

x=1

(

c0
x

)

Kbound
x =

1− (1− t)c0 − tc0

π − 4t′
. (39)

This allows us to rewrite (88) as

1− α2

{

2(1− t)c0 − 1

π − 4t′
− ω − e1.7

c0
ω(1−D)

Dτ+1.7ω−1
√
τ
√
c0−τ

}

< 1− α2

L
. (40)

The quantity δ in Theorem 1 is specifically chosen such that L = π/(1 − δ) satisfies (40). The ξ
in Theorem 1 is given by ψ (28) after the substitution ν = 1, α2c0 = ω, L = π/(1− δ). Thus, (29)
reduces to (9). �

4 Numerical evaluation

In the preceding section, we proved a result for large coalition sizes. In this section, we numerically
investigate how quickly convergence to this behavior occurs.

4.1 Method

Given that fT and gT1 are the optimal functions, we determine the optimal values for the remaining
parameters. For fixed (c0, ε1, ε2), our task is to find (t, α1, α2, L,B) such that we obtain the
smallest possible A. We mean ‘smallest’ in the sense that Soundness and Completeness can be

5 As can be seen from the accusation rule (2), rescaling g1 and Z by the same factor leaves the scheme invariant.
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proven using the technique in Section 3, but without the assumption that c0 is large. The following
constraints must be satisfied:

• From (16), (3) and the required property P[false positive] < ε1 we get the constraint

−Ac20α
2
1 +Bc0α1 < 1. (41)

• Similarly, from (24), (3) and the required property P[false negative] < ε2 we get the con-
straint

(−B +A/L)c20α2 ln ε1 < ln ε2. (42)

• In Section 3.2 the parameter α1 was introduced such that α1 < 1.7/g1(t). This gives

α1 < 1.7
√

t/(1− t). (43)

• In Appendix A, it is assumed that α2 is so small that the function (1 − p)c−x exp[α2(cp −
x)/

√

p(1− p)] is a decreasing function of p in the vicinity of p = 1−t for all x ∈ {1, . . . , c−1}.
Let’s denote this function as z(p). Its derivative near p = 1 − t is approximately given by
dz/dp ≈ −z · (c − x)(1 − p)−1[1 − α2

2
√
1−p

]. Hence, in order to ensure a negative sign of the

derivative, α2 has to satisfy
α2 / 2

√
t. (44)

• In condition (88) with f = fT, g1 = gT1 the Kbound
x term is easily evaluated. The resulting

condition is

1− α2
2(1− t)c0 − 1

π − 4t′
+ c0α

2
2 + e1.7

Dc0−xmax

1−D
< 1− α2

L
(45)

with D = e(c0α2/1.7)
2 and c0 − xmax = ⌈c0t+ 1.7

√

t(1− t)/α2⌉ ≥ 1.

The complicated α2-dependence of (45), containing a term of the form α
1/α2

2 , prevents us from
finding an optimum analytically. Instead, we have searched for optimum parameter values numer-
ically, using a randomized method following these steps:

1. Choose a random t uniformly from the interval (0, 1
2c0

).

2. Choose α1 uniformly from (0,min
{

1.7
√

t/(1− t), 1
c0

2(1−t)c0−1
π−4t′

}

).

3. Choose L uniformly from ( π−4t′

2(1−t)c0−1 ,
1

c0α1
).

4. Find the largest possible value of α2 in the interval
(

0,min
{

2
√
t, 1

c0

[

2(1−t)c0−1
π−4t′ − 1

L

]})

that

satisfies condition (45).

5. Compute A = L(c0α1)
−1

(c0α1)−1−L

[

(c0α1)
−1 + 1

c2
0
α2

ln ε2
ln ε1

]

.

Note that the optimal choice of B (in terms of achieving small A) follows from (30). When the
optimal value for B is used, the interval (30) consists of a single point seen in the last step. We
repeat steps 1–5 multiple times and select the set of parameter values that yield the lowest value
of A, i.e. the shortest code length.
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4.2 Numerical results

As the parameter A depends on ε1 and ε2 only through the ratio of their logarithms, we define
the parameter R = ln ε2

ln ε1
to display our results. This allows us to represent dependence on three

parameters using only two variables, namely Abest = Abest(c0, R). As we are primarily concerned
with content distribution applications, we have chosen 10−15 ≤ ε1 ≤ 10−9 and 0.1 ≤ ε2 ≤ 0.5 as
plausible values. This gives 0.02 / R / 0.1. We further consider 10 ≤ c0 ≤ 80.

We plot the best code length parameter A as a function of c0 (for constant R) and as a function
of R (for constant c0) in Fig. 1 and Fig. 2, respectively. Note that these figures are derived from
the same dataset. In Appendix B, we give the corresponding values of the t and B parameters,
which are necessary to implement the fingerprinting scheme. The numerical results indicate that
the result A ≈ 4π2 ≈ 39.5 (see Corollary 1) seems to be approached for large c0 and small R.
Moreover, The R-dependence of A is slightly sublinear. Note that there is not much variation in
the value of A, only of the order of 15%.

In Fig. 3, we also plot the results when the false positive and false negative rates are coupled as

in [Tar2003], i.e. ε2 = ε
c0/4
1 or R = c0/4. In this case, it is possible to reduce A to approximately

90, which is not much of an improvement with respect to Tardos’ AT = 100. This result further
emphasizes the importance of decoupling FP and FN rates. When we allow for high FN rates
ε1 ≪ ε2, the code can be safely made more than a factor two shorter than suggested in Tardos’
original construction.

Finally, the figures in this section, together with Appendix B, give a system parameter recipe
for content owners who wish to implement a provably ε1-sound and (c0, ε2)-complete fingerprinting
scheme with a code length A(R, c0)c

2
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for various values of R = ln ε2

ln ε1
.

0.02 0.04 0.06 0.08 0.1
40

41

42

43

44

45

46

R

B
es

t A

c=10

15

20

30

40
60

c=80

Fig. 2: Smallest obtained A as a function of

R = ln ε2
ln ε1

for various values of c0.

5 Statistical approach

5.1 Motivation and main result of the statistical approach

In this section, we put aside the provable properties of the Tardos fingerprinting scheme. Instead
we study the statistical behavior of the accusation sums Sj (1) for the innocent user and S (21)
for the coalition. The advantage of the statistical approach is that we get more insight into the
‘true’ behavior of the scheme (actual FP and FN probabilities as a function of m, c0, n, Z) than
provided by the provable result (Theorem 1) based on the Markov inequality.

The accusation sums Sj and S are defined as the sum of a large number of stochastic vari-
ables. We expect Sj and S to have an approximately Gaussian probability distribution. (This is
motivated in Appendix C.) The Central Limit Theorem states that a variable which is created by
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Fig. 3: Smallest obtained A as a function of c0
in the coupled case R = c0/4.

adding up many independent stochastic variables will have a Gaussian distribution in the vicinity
of the distribution’s peak. The exact size of this ‘vicinity’ depends on the distribution of the
individual variables and on the total number of variables in the sum. In Appendix C, we argue
that the Gaussian approximation is valid for some realistic values of ε1 and m.

Our main result can be formulated as follows.

Theorem 2: Let ε1, ε2 ∈ (0, 1) be fixed parameters. Let c0 ∈ N
+ be a fixed parameter. Let the

functions f(p) and g1(p) be given by f = fT, g1 = gT1 . Let the cutoff parameter t be parametrized
as t = τ/c0. Let the accusation sums Sj (1) and S (21) obey Gaussian statistics. Then the
fingerprinting scheme with code length m and threshold Z set according to

m ≥ 2π2

(1− 2τ)2
c20

[

Erfcinv(2ε1) +
1√
c0
Erfcinv(2ε2)

]2

(46)

Z ∈
[

√
2m Erfcinv(2ε1),

1− 2τ

πc0
m−

√
2m√
c0

Erfcinv(2ε2)

]

(47)

is ε1-sound and (c0, ε2)-complete.

Here Erfc stands for the complementary error function 1 − Erf, with the definition Erf(x) =

(2/
√
π)

∫ x

0 dy e−y2

. The superscript ‘inv’ denotes the inverse function.

Corollary 3: Let (ε1, ε2) ∈ (0, 1) be independent fixed parameters. Then for c0 ≫ 1 the param-
eter choice

m =
2π2

(1− 2τ)2
c20 ln

1

ε1
√
2π

; Z =
2π

1− 2τ
c0 ln

1

ε1
√
2π

(48)

achieves ε1-soundness and (c0, ε2)-completeness.

The proof of Theorem 2 is given in the coming sections and has the following outline. First, in
Sections 5.2 and 5.3, we compute the lowest moments of the distributions of the accusation sums,

µj := EyXp[Sj ] ; σ2
j := EyXp[S

2
j ]− µ2

j where j is not a colluder

µ := EyXp[S] ; σ2 := EyXp[S
2]− µ2. (49)

Then, in Section 5.4, we compute the false positive and false negative error probabilities as a
function of m, Z and c0. We derive conditions on m and Z from the Soundness and Completeness
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requirements. In Section 5.5, we identify an ‘extremal’ strategy which leads to a maximum value of
σj and σ. In Section 5.6, we assume that the probability distributions are Gaussian (a motivation
for this step is given in Appendix C) and we combine all the ingredients to complete the final step
in the proof of Theorem 2. We prove Corollary 3 in Section 5.7.

5.2 Statistics of an innocent user’s accusation

Even without knowing the colluders’ strategy, we can derive a number of useful properties of
the expectation values listed in (49). We start by looking at Sj , where user j is not a colluder.
In Section 2.2, the functions g1, g0 were introduced such that pg1(p) + (1 − p)g0(p) = 0. This
immediately yields

EXj
[Sj ] =

m
∑

i=1

yi EXji
[U(Xji, pi)] = 0, (50)

where yi is shifted out of the expectation value because j is not part of the coalition. From (50)
it immediately follows that µj = 0.

The standard deviation σj is computed as follows. Substitution of the definition (1) into (49)
gives

σ2
j = EyXp[S

2
j ] =

m
∑

i=1

m
∑

k=1

EyXp[yiyk U(Xji, pi)U(Xjk, pk)]. (51)

All terms with i 6= k vanish, since then the expectation value factorizes into two parts that are
both zero due to (50). Hence we can write

σ2
j =

m
∑

i=1

EyXp[yi U
2(Xji, pi)] =

m
∑

i=1

EyXCp

[

yi EXji
[U2(Xji, pi)]

]

. (52)

(Here the expectation EyXCp involves only those entries in X that are visible to the colluders.)
Again we have used the fact that yi does not depend on Xji when user j is innocent. Next we
make use of the property EXji

[U2(Xji, pi)] = 1 which holds for g1 = gT1 . This finally yields

σ2
j =

m
∑

i=1

EyXCp[yi] < m. (53)

5.3 Statistics of the coalition accusation S

Next we look at the collective accusation sum S defined in (21). Now we have to keep in mind
that yi depends on Xji when j is a colluder. Taking the expectation of (21) we get

µ = EyXp[S] =
m
∑

i=1

Ep

[

EX [Ey[yi]{xig1(pi) + [c− xi]g0(pi)}]
]

. (54)

The notation Ey stands for the expectation value over the y degrees of freedom for fixed p and
X . In (54) the expectation value over X , for fixed p, reduces to a binomial distribution on the
integers xi [Tar2003]:

P[#‘1’ entries in column i is xi] =

(

c

xi

)

pxi

i (1− pi)
c−xi . (55)

We now evaluate (54) as follows. We express the EX expectation in the form (55). We define
a quantity ψi(xi) := EXCp\i[Ey [yi]]. Here the notation EXCp\i means the expectation value over
all degrees of freedom in XC and p except column i. The quantity ψi depends on xi and the
colluder strategy (and possibly explicitly on i, if the colluders choose to apply different strategies
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in different positions); it does not depend on pi, as the colluders do not have access to pi. Finally
we substitute Tardos’ functions gT1 , g

T
0 and fT. In this way we obtain, after some algebra,

µ =
1

π − 4t′

m
∑

i=1

c
∑

xi=0

(

c

xi

)

ψi(xi)

{

(1− t)xitc−xi − txi(1 − t)c−xi

}

. (56)

We now make use of the marking condition, giving ψi(0) = 0 and ψi(c) = 1. This allows us to
rewrite (56) as

µ =
1

π − 4t′

m
∑

i=1

[

(1− t)c − tc +

c−1
∑

xi=1

(

c

xi

)

ψi(xi)

{

(1− t)xitc−xi − txi(1− t)c−xi

}

]

. (57)

Note that the coalition strategy has an almost negligible effect on µ. The terms
(

c
x

)

tx(1 − t)c−x

add up to 1 when the full sum is taken, but only the x = 0 term is of order 1. All the other
terms summed together are only of order c0t = τ ≪ 1. The same argument holds for the other
summand, but there the x = c term is dominant.

We use the same methods as above to evaluate σ. Without showing the details of the compu-
tation, we give the result,

σ2 =
1

π − 4t′

m
∑

i=1

c
∑

xi=1

(

c

xi

)

ψi(xi)

∫ 1−t

t

dp (xi − cp)2pxi−3/2(1− p)c−xi−3/2 − µ2

m
. (58)

5.4 Relating m and Z to the error probabilities

In (53,57,58) we see from the i-summations that the m-dependence becomes very simple if the
colluders apply the same strategy in each column; namely, the quantities σ2

j , µ and σ2 then all
become proportional to m. This motivates us to define ‘scaled’ quantities as follows,

σ2
j = mσ̃2

j µ = mµ̃ σ2 = mσ̃2. (59)

Let us introduce the notation ρ1 and ρ2 for the probability distribution functions of Sj and S,
respectively. These functions are unknown to us, but we normalize them so that they have zero
mean and unit variance,

P[Sj ∈ [s, s+△s]] = ρ1(
s

σj
)
△s
σj

; P[S ∈ [s, s+△s]] = ρ2(
s− µ

σ
)
△s
σ
, (60)

with
∫∞
−∞ dx ρ1(x) = 1 and

∫∞
−∞ dx ρ2(x) = 1. We introduce the cumulative ‘tail’ functions as

G1(x) =

∫ ∞

x

dx′ρ1(x
′) ; G2(x) =

∫ x

−∞
dx′ρ2(x

′). (61)

With this notation, the error probabilities are expressed as

FP error prob. = G1(
Z

σj
) ; FN error prob. = G2(

c0Z − µ

σ
). (62)

This is sketched in Fig. 4. The left curve is the probability density of the quantity Sj/
√
m. It has

mean µ̃j = 0 and variance σ̃j ≈ 1 (this will be shown in Section 5.5). The FP error rate (which
should be less than ε1) is given by the area to the right of the (rescaled) threshold Z/

√
m. The

right curve is the probability density of the quantity 1
cS/

√
m. It has average 1

c µ̃
√
m and variance

σ̃/c. The FN error rate is given by the area to the left of Z/
√
m. The horizontal axis is scaled

such that the Sj-curve does not depend on c and m. Several important properties follow from this
picture:
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Fig. 4: Sketch of the probability density of Sj/
√
m (left) and 1

cS/
√
m (right). The accusation

threshold Z and the desired error rates ε1 and ε2 are also shown.

• For fixed m and Z, increasing c beyond c0 affects only the distribution of S. The left curve
remains unchanged and hence the FP rate is independent of the coalition size. This is
compatible with the definition of ε1-soundness (Definition 1).

• The FP error rate is determined by one parameter: Z/
√
m. Hence Z must be chosen as

Z ∝ √
m as far as the dependence on c0 is concerned.

• When c increases, the rightmost curve becomes narrower and shifts to the left. In order to
prevent the center of this curve (∝ √

m/c) from crossing the threshold line, we need m =
Ω(c2). Together with the previous point, this illustrates the need for the proportionalities
m ∝ c20, Z ∝ c0 in the Tardos scheme.

More precise results are derived next.

Lemma 3: A sufficient condition for ε1-soundness and (c0, ε2)-completeness is given by

Z ∈
[

σ̃j
√
m Ginv

1 (ε1),
µ̃

c0
m+

σ̃

c0

√
m Ginv

2 (ε2)

]

. (63)

Proof of Lemma 3: The left boundary directly follows from the requirement G1(Z/σj) ≤ ε1, using
the notation (59). The right boundary follows from the requirement G2([c0Z − µ]/σ) ≤ ε2. �

Note that Ginv
2 (ε2) is negative on the interval ε2 < 1/2 for symmetric G2, and that it mono-

tonically increases as a function of ε2.
The Z-interval (63) exists only for sufficiently large m. One can think of a region in the (u, v)-

plane, with u =
√
m and v = Z, bounded on the lower side by a line v ∝ u and on the upper side

by a quadratic function of u. The linear and quadratic curve meet each other at m = mmin,

mmin = µ̃−2c20

[

σ̃j G
inv
1 (ε1)−

σ̃

c0
Ginv

2 (ε2)

]2

. (64)

This represents the smallest possible code length for which the interval (63) exists, and hence, by
Lemma 3, the smallest possible code length for which the code is properly collusion resistant.
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5.5 ‘Extremal’ colluder strategy

Eq. (64) allows us to find the ‘worst case’ or ‘extremal’ colluder strategy. We define this as
the strategy that causes the highest possible value of mmin. Even though the colluders do not
necessarily use this strategy, the content owner has to take into account that they might and has
to adjust m accordingly. We make the following observations:

• One way of increasingmmin would be to make µ̃ as small as possible. However, in Section 5.3
it was shown that the choice of strategy has negligible effect on µ̃.

• Another way of increasing mmin is to make σ̃j and σ̃ as large as possible. Here the choice of
strategy has a big impact. Both σ̃j and σ̃ are maximally large if the coalition outputs a ‘1’
whenever possible.

We see that the ‘extremal’ strategy is to set ψi(xi) = 1 for xi 6= 0. (The marking condition
enforces ψi(0) = 0.) It looks as if the colluders are incriminating themselves in those columns
where pi < 1/2. However, for each symbol they equally incriminate a fraction pi of all the other
users. The strategy derives its effectiveness from the large number of users who get accused along
with the colluders.

Substitution of the extremal strategy into (53) and (58) with c = c0 gives

σ̃2
j = 1− 1

π − 4t′

∫ 1−t

t

dp p−1/2(1− p)c0−1/2 = 1− 1√
πc0

+O(c−1
0 )

σ̃2 + µ̃2 = c0 −
c20

π − 4t′

∫ 1−t

t

dp p1/2(1− p)c0−3/2 = c0[1−
1

2
√
πc0

+O(
1

c0
)] (65)

5.6 Final step in the proof of Theorem 2

If Sj and S have a Gaussian distribution, then the functions G1, G2 become error functions, and
we have

Ginv
1 (ε1) =

√
2 Erfcinv(2ε1) ; Ginv

2 (ε2) = −
√
2 Erfcinv(2ε2). (66)

We obtain the following inequalities from (65),

σ̃j < 1, ; σ̃ <
√
c0. (67)

These are independent of the choice of strategy function ψi. Likewise, from (57) we also obtain an
inequality that is independent of ψi. This is done by taking only the negative part of the summand
in (57) and setting ψi = 1. The result is

µ̃ >
1− 2τ

π
. (68)

We substitute (66) into (63) and (64), and then use the inequalities (67,68). This exercise shows
that the choice (46) for m is larger than mmin, as it should indeed be, and that the Z-interval (47)
lies within the interval (63). This completes the proof of Theorem 2. �

5.7 Proof of Corollary 3

We use the inequality [Wol]

ln
1

x

√

2

π
>

[

Erfcinvx
]2

(69)

to prove that the expression ln(1/ε1
√
2π) in (48) is larger than [Erfcinv(2ε1)]

2. Thus the following
code length achieves Soundness and Completeness,

m =
2π2

(1 − 2τ)2
c20 ln

1

ε1
√
2π



1 +
1√
c0

√

ln ε2
√
2π

ln ε1
√
2π





2

. (70)
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We then neglect the term containing ε2 with respect to 1, since it is of order O(1/
√
c0). This

yields the value of m in Corollary 3. Finally, the value of Z in Corollary 3 follows by substituting
this m into the left boundary in (47). �

Remarks: In the regime ε1 ≪ ε2, the fraction of logarithms in (70) is typically smaller than 0.1
(see Section 4). Hence, the asymptotic result is already approached for relatively small values
of c0.

In the case where ε2 and ε1 are coupled according to ε2 = ε
c0/4
1 , as was done in Tardos’

original construction, Corollary 3 does not hold, as we get ln ε2 = (c0/4) ln ε1. Here the fraction
of logarithms is not negligible and leads to a factor (9/2)π2 in m instead of 2π2.

6 Summary

We have reevaluated the performance of the Tardos fingerprinting scheme by parameterizing its
numerical constants and fixed functions. We have further modified the scheme by decoupling the
desired false negative and false positive error probabilities. Using a proof technique similar to the
one in [Tar2003], we have shown how short the code length can be with provable ε1-soundness and
(c0, ε2)-completeness. The main results of our study can be summarized as follows:

• Tardos’ accusation function gT1 is ‘optimal’ in the sense that it minimizes the provably
sufficient code length for our particular choice of proof method.

• Tardos’ probability distribution function f(p) is ‘optimal’ in the same sense within a limited
class of functions which has the form pa−1(1 − p)b−1.

• For sufficiently large c0 values, and ε2 independent of ε1, the code length can be reduced
from Tardos’ 100c20 ln ε

−1
1 to approximately 4π2c20 ln ε

−1
1 .

• When ε2 ≫ ε1, for instance for content distribution applications, our numerical results show
that a code length m < 46c20 ln ε

−1
1 is achievable already for c0 > 9.

• For sufficiently large c0 ≫ 1, the accusation sums Sj for the innocent user and S for the
coalition have probability distributions which are very close to Gaussian—due to the Central
Limit Theorem. If these distributions are perfectly Gaussian, then, in the case of independent
ε1, ε2, a code length of m ≈ 2π2c20 ln ε

−1
1 is sufficient for achieving ε1-soundness and (c0, ε2)-

completeness.

A Condition for Completeness

In this appendix we derive an upper bound on the expression EyXp[e
−α2S ]. The first part of the

derivation is directly copied from [Tar2003], so we will not repeat it here. We start our analysis
at the earliest point where the approach with general A, B, f and g deviates from [Tar2003].

From partial evaluation of the X-average (which involves the binomial distribution for each
column of X separately) and from |i : yi = 1| ≤ m, it can be shown that

EyXp[e
−α2S ] ≤

[

E0,0 + E1,c +

c−1
∑

x=1

(

c

x

)

max(E0,x, E1,x)

]m

(71)

E0,x := Ep[p
x(1− p)c−x]

E1,x := Ep

[

px(1− p)c−x exp
(

−α2{xg1(p) + [c− x]g0(p)}
)]

= Ep

[

px(1− p)c−x exp

(

α2g1(p)
cp− x

1− p

)]

.

The term E1,c is easily bounded,

E1,c = Ep[p
ce−cα2g1 ] ≤ E0,c − cα2Ep[p

cg1] + c2α2
2Ep[p

cg21 ]. (72)
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Next it is proven that (for x = 1 . . . c− 1) max(E1,x, E0,x) ≤ E0,x+ some positive expression. To
this end the inequality eu ≤ 1 + u+ u2 is again used, which holds for u < 1.7.

px(1− p)c−x exp

(

α2g1(p)
cp− x

1− p

)

≤ px(1 − p)c−x

{

1 + α2g1(p)
cp− x

1− p
+ α2

2

[

g1(p)
cp− x

1− p

]2
}

+Θ

(

α2g1(p)
cp− x

1− p
− 1.7

)

(1− p)c−x exp

[

α2g1(p)
cp− x

1− p

]

. (73)

Here the term with the step function Θ ensures that the right-hand side is always larger than
the left-hand side, even if the expression in the exponent exceeds 1.7, which may happen for
p ∈ (x/c, 1− t) if α2 is not very small. Taking the expectation value of (73), we get

E1,x ≤ E0,x + α2K1,x + α2
2K2,x +Rx (74)

with

K1,x := Ep

[

px(1− p)c−xg1
cp− x

1− p

]

= − pfg1 · px(1 − p)c−x

∣

∣

∣

∣

1−t

p=t

+

∫ 1−t

t

dp px(1− p)c−x d

dp
(pfg1) (75)

K2,x := Ep

[

px(1− p)c−x

{

g1(p)
cp− x

1− p

}2
]

≥ 0 (76)

Rx := Ep

[

Θ

(

α2g1(p)
cp− x

1− p
− 1.7

)

(1− p)c−x exp

[

α2g1(p)
cp− x

1− p

]]

≥ 0. (77)

Now we have to upper bound K1,x by a nonnegative expression. Here we depart from [Tar2003].
Tardos makes a very specific choice for the f and g1 function, namely pf(p)g1(p) =constant. We
keep the derivation as general as we can. For the moment we simply assume that we can find tight
bounds Kbound

x ≥ 0 such that
K1,x ≤ Kbound

x . (78)

Then we have
max(E0,x, E1,x) ≤ E0,x + α2K

bound
x + α2

2K2,x +Rx. (79)

Substituting (79) and (72) into (71) we get

EyXp[e
−α2S ] ≤

[

c
∑

x=0

(

c

x

)

E0,x − cα2Ep[p
cg1] + α2

c−1
∑

x=1

(

c

x

)

Kbound
x + α2

2

c
∑

x=1

(

c

x

)

K2,x

+
c−1
∑

x=1

(

c

x

)

Rx

]m

. (80)

The E0,x term contains a sum over the binomial distribution and simply yields Ep[1] = 1. The
K2,x term is bounded as follows,

c
∑

x=1

(

c

x

)

K2,x ≤ Ep

[

g21
(1− p)2

c
∑

x=0

(

c

x

)

px(1− p)c−x(x − cp)2

]

= cEp[g
2
1

p

1− p
] = cν. (81)

Next we bound the Rx term. Note that the step function in (77) for fixed p is nonzero only if
x ≤ xmax, where

xmax :=

⌊

c(1− t)− 1.7
1− t

α2g1(t)

⌋

< c. (82)

Furthermore, we note that the function multiplying the step function in (77) is monotonically
decreasing as a function of p, provided that α2 is ‘small enough’. (This statement is made more
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accurate in Section 4). This means that the expectation value Ep[·] can be upper bounded by
evaluating the integrand at the point p = p∗x, the smallest value of p where the step function is
nonzero,

Rx ≤ (1 − p∗x)
c−x exp

[

α2(cp
∗
x − x)

g1(p
∗
x)

1− p∗x

]

with α2(cp
∗
x − x)

g1(p
∗
x)

1 − p∗x
= 1.7. (83)

We introduce a numerical constant β such that g1(p
∗
x) ≥ (1 − p∗x)

β . (In Tardos’ case β = 1/2).
From the definition of p∗x (83) it then follows that

(1 − p∗x) ≤
[ α2

1.7
(cp∗x − x)

]1/(1−β)

<
[ α2

1.7
(c− x)

]1/(1−β)

. (84)

This gives us the following bound on Rx for x < c:

Rx < e1.7
[ α2

1.7
(c− x)

]

c−x
1−β

. (85)

The Rx-sum in (80) can then be bounded as

c−1
∑

x=1

(

c

x

)

Rx ≤
c−1
∑

x=0

(

c

x

)

Rx < e1.7
xmax
∑

x=0

(

c

x

)

[ α2

1.7
(c− x)

]

c−x
1−β ≤ e1.7

xmax
∑

x=0

(
ce

c− x
)c−x

[ α2

1.7
(c− x)

]

c−x
1−β

= e1.7
c

∑

x=c−xmax

(
ce

x
)x

[ α2

1.7
x
]

x
1−β

< e1.7
c

∑

x=c−xmax

[

e(α2c/1.7)
1

1−β

]x

= e1.7
[

e(α2c/1.7)
1

1−β

]c−xmax
1−

[

e(α2c/1.7)
1

1−β

]xmax+1

1−
[

e(α2c/1.7)
1

1−β

]

=: e1.7∆c−xmax
1−∆xmax+1

1−∆
< e1.7∆c−xmax

1

1−∆
(86)

where we have introduced the abbreviation ∆ for the small6 value e(α2c/1.7)
1/(1−β). Summarizing,

from (80) we obtain

EyXp[e
−α2S ] <

[

1− cα2Ep[p
cg1] + α2

c−1
∑

x=1

(

c

x

)

Kbound
x + νcα2

2 + e1.7∆c−xmax
1

1− δ

]m

. (87)

Finally we impose the following condition on the parameters t, α2:

1− cα2Ep[p
cg1] + α2

c−1
∑

x=1

(

c

x

)

Kbound
x + νcα2

2 + e1.7∆c−xmax
1

1−∆
< 1− α2

L
, (88)

where L > 0 is a numerical constant. The satisfiability of this condition depends on the choice of
f , g1 and L. Given that the condition is satisfied, we have the upper bound

EyXp[e
−α2S ] < [1− α2/L]

m ≤ exp(−α2
m

L
). (89)

For given f and g1, we will be interested in the smallest value of L that can be achieved. Tardos
chose t and α2 such that L = 4.

6 As long as β does not deviate too much from the Tardos case, ∆ is of order > 1 in the small parameter α2.
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B Numerical results

Table 1 shows the results of the numerical experiments described in Section 4. The values A,
B and t parametrize the code length, accusation threshold and p-axis cutoff, respectively. We
also note, for the sake of completeness, that the auxiliary variables take the following values for
the parameter sets indicated in the table: 1.001 ≤ L/π ≤ 1.026, 1.48 ≤ α1/α

T
1 ≤ 1.58 and

0.05 ≤ α2/α
T
2 ≤ 0.30.

Table 1: Numerical results
R ↓ → c0 10 15 20 30 40 60 80
0.02 A 41.31 41.26 41.16 40.99 40.85 40.66 40.54

B 12.86 12.85 12.83 12.80 12.78 12.75 12.73
t/tT 3.26 2.25 1.72 1.00 0.88 0.50 0.27

0.04 A 42.80 42.47 42.21 41.85 41.59 41.27 41.06
B 13.08 13.03 13.00 12.94 12.90 12.85 12.82
t/tT 2.96 2.17 1.44 1.14 0.77 0.52 0.43

0.06 A 43.95 43.41 43.03 42.50 42.17 41.73 41.46
B 13.26 13.18 13.12 13.04 12.99 12.92 12.88
t/tT 3.41 2.28 1.53 1.04 0.65 0.49 0.37

0.08 A 44.93 44.22 43.72 43.07 42.65 42.13 41.80
B 13.41 13.30 13.22 13.13 13.06 12.98 12.93
t/tT 3.16 2.27 1.71 1.04 0.77 0.62 0.33

0.10 A 45.80 44.93 44.34 43.58 43.09 42.48 42.11
B 13.54 13.41 13.32 13.20 13.13 13.04 12.98
t/tT 3.31 1.94 1.60 1.23 0.77 0.46 0.39

C The Gaussian approximation

Under some reasonable assumptions, we can regard the accusation sums as Gaussian-distributed
stochastic variables. Here, we outline our assumptions and show that the Central Limit Theorem
(CLT) is applicable under these conditions. We first note the complete column symmetry and
column independence of both the code generation process and the accusation method. Given this
symmetry, we argue (without providing a proof) that the best colluder strategy for generating
the colluded copy is also symmetric, i.e. their output yi is independent of the column index i
and independent of the XC entries in the other columns (6= i). Note that the ‘extremal’ colluder
strategy of Section 5.5 also complies with this assumption. Given column symmetry and mutual
independence of the accusation values, under the assumption of a symmetric colluder strategy,
the accusation sums S, Sj are sums of i.i.d. variables, and the Central Limit Theorem (CLT) is
applicable.

We show that the domain of applicability of the CLT is large enough to encompass a sufficient
part of the tail of the Sj and S distributions, so that the approximations made in Section 5.6
are justified. The error probability ε1 ≥ 10−15 represents at most an ‘8-sigma’ event, i.e. we are
interested in the region of 8 standard deviations σj around the average of Sj .

First we determine the probability distribution of each separate accusation U(Xji, pi), for
innocent j, given that yi = 1. We define, for infinitesimal △u,

P[u ≤ U ≤ u+△u] = ϕ(u)△u. (90)

We compute the conditional probability that U = u given Xji = 1. We write ϕ(u|X = 1)du =
f(p)dp, from which it follows that ϕ(u|X = 1) = f(p)dp/du. Using u = g1(p), with g1 defined
in (1), we get ϕ(u|X = 1) ∝ 1/(1 + u2). Applying the same reasoning to the case Xji = 0, with
u = g0(p), yields ϕ(u|X = 0) ∝ 1/(1 + u2). From the conditional probability we obtain ϕ(u) by



C The Gaussian approximation 23

multiplying with the probability that the event X = 1 (or X = 0) occurs,

ϕ(u) = pϕ(u|X = 1) = (1− p)ϕ(u|X = 0) ∝ 1

(1 + u2)2
. (91)

Here we have used the fact that p = 1/(1 + u2) for X = 1 and p = u2/(1 + u2) for X = 0. Thus
the tail of the probability distribution has a 1/u4 power law behavior.

Next we argue that the number of contributing terms to Sj (almost m terms for the optimal
colluder strategy) is sufficiently large for the CLT to cover 8 sigmas. For a distribution with
vanishing third cumulant and with E[u4] <∞, it is known (see e.g. [Baz2005]) that the region of
convergence for the CLT, expressed in sigmas, is given by

#sigmas =

(

24κ22
κ4

)1/4

N1/4, (92)

where N is the number of variables summed, and κj stands for the j′th cumulant. Our distri-
bution (91) satisfies the requirement E[u4] < ∞ because ϕ(u) is defined on the finite interval

(−
√

1−t
t ,−

√

t
1−t ) ∪ (

√

t
1−t ,

√

1−t
t ). We have κ2 = 1 + O(

√
t) and κ4/κ

2
2 = 4/(π

√
t) + O(1).

Substitution into (92), with N = m = 2π2c20 ln ε
−1
1 , gives

#sigmas = (12π3 ln ε−1
1 )1/4t1/8

√
c0 ≈ 5.2c

3/8
0 , (93)

where we have used ε1 ≈ 10−15 and tT = 1/(300c0). Hence, the 8-sigma point of the tail is
correctly approximated by a Gaussian already at c0 ≥ 4.
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