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Eliminating Trapping Sets in Low-Density Parity Check is given by Forneet al. in [16]. Some results on LDPC codes over

Codes by using Tanner Graph Covers the BSC appear in [13], as well.
A significant part of the research on error floor analysis has
Milo$ Ivkovié, Shashi Kiran Chilappagari also focused on methods for lowering the error floor. The two
and Bane VasicFellow, IEEE distinct approaches taken to tackle this problem are (1)ifyind

the decoding algorithm and (2) constructing codes avoidiedain

topological structures. Numerous modifications of the quoduct
1l decoding algorithm were proposed, see, for example, [18][4€],
| among others.

_ Abst!’actE We d;SCUSS efforfﬂIOOT 3sym_?0tics _t’;md Efeie?i Spngthog for  Among the methods from the second group, there have beeh nove
improving the performance of low-density parity chec codes . - . -

in the high SNR (error floor) region_. The method is be;s_ed on Taner F:onstrucgons o(: Cr?des :;Vlth hllghthann.erh grapdh glr:]h [leil," ES
graph covers that do not have trapping sets from the originalcode. The It was 0 served that codes with low g”'_t tend to have higlorerr
advantages of the method are that it is universal, as it can bapplied to  floors. While it is true that known trapping sets have shoxley
any LDPC code/channel/decoding algorithm and it improves prformance  [10], [17], the example of projective geometry codes, thatenshort
at the expense of increasing the code length, without losinthe code cycles, but perform well under (hard decision) iterativeeatiing
regularity, without changing the decoding algorithm, and, under certain ’ h — he qirth i h imal d ’
conditions, without lowering the code rate. The proposed nthod can suggests that maXImIZIng the girth is not the optima p.ruce.AS
be modified to construct convolutional LDPC codes also. The sthod is the understanding of the error floor phenomena and its ctionec
illustrated by modifying Tanner, MacKay and Margulis codes to improve  with trapping sets grows, avoiding the trapping sets dyeather
performance on the binary symmetric channel (BSC) under theGallager  than short cycles) seems to be a more efficient way (in terncedé

B decoding algorithm. Decoding results on AWGN channel are lao . .
presented to illustrate that optimizing codes for one chanal/decoding rate and decoding complexity), to suppress error floors.

algorithm can lead to performance improvement on other chanels. Code modification for improving the performance on the binar
Index Terms— convolutional LDPC codes, error floor, Gallager B, erasure channel (B,EC,:) was ,StUdied by Wang in [20],', TO, the t,)GSt
LDPC codes, min-sum decoding algorithm, Tanner code, trapipg sets.  Of our knowledge, it is the first paper on code modificationhwit
maximizing the size of stopping (or trapping) sets as theabje.
Edge swapping within the code was suggested as a way to break
. INTRODUCTION the stopping sets. The method that we propose is similargRgu

The error-floor problem is arguably the most important peabl SPeaking, it consists of taking two (or more) copies of thees@ode
in the theory of low-density parity check (LDPC) codes amadtive and swapping edges between the code copies in such a way¢hat t
decoding algorithms. Roughly, error floor is an abrupt cleaimgthe Most dominant trapping sets are broken. It is also similahéocode
frame error rate (FER) performance of an iterative decodethe Constructions that appear in Smarandaehel. [14], Thorpe [24],
high signal-to-noise ratio (SNR) region (see [9] for mor¢ails and Divsalar and Jones [25] and Kelley, Sridhara and Roseng€! [
[1], [2], [3] for general theory of LDPC codes). The advantages of the method are: (a) it is universal as it can

The error floor problem for iterative decoding on the binagsare be applied to any code/channel model/decoding algorithoh (@i

channel (BEC) is now well understood, see [7], [8] and theneices it improves performance at the expense of increasing thee cod

therein. length only, without losing the code regularity, withoutadlging the

decoding algorithm, and, under certain conditions, witHowering

MacKay and Postol in [4] pointed out a weakness in the coostn the COd_e rate. If the Ieng;h of the code is fixedsiothe method can
be applied by taking copies of a (good) cod€' of lengthn/t and

of the Margulis code [22] which led to high error floors. Rioftson - R - )
eliminating the most dominant trapping sets@f The method can

[9] presented a method to estimate error floors of LDPC codes . i -
presented results on the ANGN channel. He pointed out thet athe slightly modified to construct convolutional LDPC codesnell.

decoder performance is governed by a small number of likedyre The details are given in Sectignlill.

events related to certain topological structures in then@amgraph ~ We apply our method and construct codes based on Margulls [22
of the code, calledrapping sets(or stopping seton BEC [7])] ~Tanner [21] and MacKay [23] codes and present results on 8@ B
The approach from [9] was further refined by Stepamtval. in When decoded using the Gallager B algorithm [1]. It is worttimg
[10]. Zhanget al. [11] presented similar results based on hardwari@at the error floor on the AWGN channel depends not only on the
decoder implementation. Vontobel and Koetter [12] esshiglii a Structure of the code but also on implementation nuanceshef t
theoretical framework for finite length analysis of messagesing decoding algorithm, such as numerical precision of mess¢gke
iterative decoding based on graph covers. This approachused Since the Gallager B algorithm operates by passing binaigsates
by Smarandachet al. in [13] to analyze the performance of LDPcalong the edges of a graph, any concern about the numergeijon
codes from projective geometries [13] and for LDPC comiohal ©Of messages does not arise.

codes [14]. The rest of the paper is organized as follows. In Secfidn I

An early account on the most likely error events on the binatye introduce the notion of trapping sets and their relatiorttte

symmetric channel (BSC) for codes which Tanner graphs hgsless  Performance of the code. We explain the proposed methoddticBe
M we present numerical results in Sectin] IV and conclide
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An earlier version of this work was presented at the 2007 |H&Em. . . . .
Symposium on Information Theory (ISIT'07). The Tanner graph of an LDPC codg, is a bipartite graph with

This work was supported by grants from INSIC-EHDR and NSFRcc fWo sets of nodes: variable (bit) nodes and check (consraotes.
(Grant no. 0634969). The nodes connected to a certain node are referred to asgtdoes.
1The necessary definitions will be given in the next section. The degree of a node is the number of its neighbors. The gidtihe

In the case of the additive white Gaussian noise (AWGN) chinn
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length of the shortest cycle i&. In this papers represents a variable those two will be correct, but the initial three will be in erragain,
node,] represents an even degree check nodeBndpresents an and so on.

odd degree check node. Remark:Note that on the BEC the critical number is just the size of
The notion of trapping sets was first introduced in [4], butehee the stopping set, see [20].
follow the formalism from [19]. We now clarify what “the most dominant trapping sets” meams a

Definition 1: For a givenm x n matrix U = (Us ;) with 1 < i< how these effect code performance.

m, 1 < j < n, the projectionof a set ofh, columns indexed by | etq be the transition probability of the BSC angdbe the number

J1:J2;- -+ Jn 18 @nm x h matrix consisting of the elementsi;,  of configurations of received bits for whidh channel errors lead to

I1<is<m, j=J1,02,---5Jn a codeword (frame) error. The frame error rate (FER) is givgn
Definition 2: Let H be a parity check matrix of an LDPC code.

An (a,b) trapping set? is a set ofa columns of H with a projection FER(a Z cnal <" k)

that containg > 0 odd weight rows.

The definition of the trapping set above is purely topololgicawheres is the minimal number of channel errors that can lead to a
that is, a trapping set can be seen as a subgraph of the Tand@toding error (size of instantons) ands the length of the code.
graph. In other words, afu, b) trapping set7" is a subgraph with - 5, 5 semilog scale the FER is given by the expression
a variable nodes anél odd degree checks. The most probable noise
realizations that lead to decoding failure are related dpping sets
([9], [10]). A measure of noise realization probability eferred to as —
pseudo-weightFollowing the terminology in [10], amnstantoncan . _ . N _\n—i
be defined as the most likely noise realization that leadetmding = log(ci) +ilog(e) +log((1 —a)™")  (2)
failure. +log (1 + a1 —a) T T (- a)i*") 3)

The instantons on the BSC consist of the received bit corstgns o “ ’
with minimal number of erroneous bits that lead to decodaityfe. In the limit « — 0 we note that
Following [17], the notion specific to BSC, analogous to pkeu 1 ] T—a)™ ] =0
weight, can be defined as: o [ og((1—a) )]

Definition 3: The minimal number of variable nodes that have tand
be initially in error for the decoder to end up in the trappses T . Cit1 _ Cn i — o)) =
will be referred to aghe critical numberk for that trapping set. (13310 [IOg (1 + Ci a(l—a)™ ...+ Ci (1-a) )]* 0

log(FER(a) =log (Y _exa®(1—a)"™") (1)

Remark:To “end up” in a trapping seE means that, after a finite So, the behavior of the FER curve for smallis dominated by
number of iterations, the decoder will be in error, on at lemse log(FER ~1 1
variable node fronE, at every iteration. Note that the variable nodes og( (@) & log(c:) + ilog(a)

that are initially in error do not have to be within the trapgpiset. The log(FER) vs log(a) graph is close to a straight line with

We illustrate the above concepts with an example. slope equal ta -the minimal critical number or cardinality of the
instantons.

Therefore, if two codes”; and C> have instanton sizes and
i2, such thati; < iz, then the code”; will perform better thanC
for small enougha, independent of the number of instantons, just
becauséog(a) — —oo asa — 0. Note also that the critical number
of the most dominant trapping sets cannot be greater thdnthel
(a) (5,3) trapping setb) (4,4) trapping set minimum distance. If it is the case, the performance of theoder

is dominated by the minimum weight codewords.
Fig. 1. Trapping sets

Example 1: The (573) trapping set in Figm). appears (among Ill. THE METHOD FORELIMINATING TRAPPINGSETS

other codes) in the Tanner (155, 64) code [17] (see also thegbes In this section we present a method to construct an LDPC code
of irreducible closed walk#n the chapter 6.1 of [5]) . This trapping C(® of length 2n from a given codeC of lengthn and discuss a
set has critical numbek = 3 under the Gallager B decoding modification of the method that gives a convolutional LDP@eo
algorithm (for the definition of the algorithm see [2]), m@anthat, based orC.
if thr_eg_variable nodes, on the diag_onal_ from bottom leftajo tight, Let H and H® represent the parity check matricest@and C®)
are initially in error, the decoder will fail to correct therers. respectively.H(Q) is initialized to

Fig.[I(b] illustrates &4, 4) trapping set. This trapping set, although
smaller, has critical numbér = 4, (all the variable nodes have to be H® = { g0 ] .
in error initially for the decoder to fail). So, if a code hastlb (5, 3) 0 H

and (4, 4) trapping sets, the FER performance is dominated by tR&ated simplyH (2 is formed by taking two copies af sayC; and
(5,3) trapping set. Cs,. It can be seen that if has dimensionsn x n, then H® has
At the end of this example, we note that tf 3) trapping set dimensions2m x 2n. Every edgee in the Tanner grapl$ of C' is
above is an example of arscillatory trapping seti.e, if three variable associated with a nonzero entHj, ;. The operation of changing the
nodes on the diagonal are initially in error, after the fitsration value ofH<2? and Hff}rt nyk 1007 and Hff) ., @nd Hm ‘nik 1O
those three nodes will be decoded correctly, but the remgitiwo  “1”is termed as swapping the edgeFig.[2 illustrates edge swapping

will be in error. In the decoding attempt after the secondatien in two copies of a(5,3) trapping set. We assume that the most



Fig. 2. Trapping set elimination

dominant trapping sets far are known. The method can be described

in the following steps.
Algorithm:

1) Take two copiesC; and C> of the same code. Since the
codes are identical they have the same trapping sets.lilrétia

SwappedEdge®); FrozenEdgese;

The following theorem shows how this method affects the code
rate.

Theorem 1:If the codeC, with parity check matrixH, and rate
r (and lengthn) is used in the algorithm above, the resulting code
C@ will have rater™® (and length2n), such that-® < r.

Proof: Each edge swapping operation in the algorithm can be seen
as matrix modification. At the end of the algorithm, codé? is
determined by

where H' and B are matrices such thdf’ + B = H, and H; ;, (or
By 1) can be equal to “1” only ifH, , = 1.

If the second block row is added to the firstif®, and then the
the first block column is added to the second, we end up with

2) Order the trapping sets by their critical numbers. H B H H H 0

3) Choose a trapping séf, in the Tanner graph of’;, with { B H } - { B H' } - { B H } (4)
minimal critical number. LetFz, denote the set of all edges o o
in T,. If (Ex, N SwappedEdgeg ¢) goto[5. Else got§l4. The last matrix in[(#) has rank whlcfg;)s greater tk:Qa)n or equéahice

4) Swap an arbitrarily chosen edgec Ex, \ FrozenEdgesif it Fhe rank of H. Therefore, the codé€"'“’ has rater'® < r wherer
exists). SeSwappedEdges: SwappedEdges) e. is the rate ofC'.[J

5) “Freeze” the edgesEr, from T, so that they cannot Note, thatr® =r if B =CH + HD, for some matrice€’ and
be swapped in the following steps. SEtozenEdges = D, so thatC'H corresponds to linear combinations of rowsIdfand
FrozenEdges) Ex , . H D corresponds to linear combinations of columnsFf We also

6) Repeat steps 2 to 4 until it is possible to remove the trappi have a following corollary.

sets of the desired size. Corollary 1: If the matrix H has full rank, then-® = r.

Sted® is needed because swapping additional edges frofothee()

trapping sets might introduce trapping sets with a samecatit
number again. Fid]3 illustrates such a swapping which spmads
to just interchanging the check nodes.

Proof: This follows from the fact that ifZ has full rank, then the
last matrix in [4) has full rank alsd.l

At the end of this section, we briefly discuss the minimalatise
of the modified code.

Theorem 2:If the codeC' has minimal distancé,..,, the modified
codeC'® | will have the minimal distance'?), , such that2d,.n >
d(z) > dmin~

min —
Proof: We first prove thad?),, > dmin. Suppose that the minimal
weight codeword ofC® is ¢?, where ¢'® is a column vector
consisting of two vectors; andc, of lengthn. Then H® ¢ =0

is equivalent to
] { s } N { } =0
C2

B
Note thatc; + c2 c is a column vector of lengtlm, with

Fig. 3. Reintroducing trapping set by swapping two edges

H’Cl + Beo

Ber + H,CQ (5)

HI
The Tanner graph of the newly made code is a special doubks cov { B H'
of the original code’s Tanner graph, interested readersedegred to

121 Hammi ightwn(c) < @ h @) is th
Remark: There are several approaches which may improve theammfng We_'g wn(e) (5 Wh (C )’ WRETe w (C ) s the

efficiency of the algorithm. Firstly, instead of swapping tadges Hamming weight of the-*’. Now:

at random at step 3, edges could be swapped based on the noimber He=(H'+B)(c1+¢2) = H'e1 4+ Bei+H'ea+ Bea =0 ©)

trapping sets they participate in, or by using some otheecule
that would (potentially) lead to the highest number of tiagp because the last expression in Hd. (6) is equal to the sumtoé€n
sets eliminated. The structure of the code can also be eggloi of the last column vector in E@l 5. Se,is a codeword of”.
F(.)r.example,.the Marggli$2640, 1320) code [22], ha51§20 (4,4) If ¢ # 0, from wy(c) < wy (CQQ it follows that dfifn > dyin.
minimal trapping sets Wl.th the property that eaph trappe@as one 1« . _ 0 then ¢1 = ¢, and from Eq. [(5) follows thatfc; — 0, so
edge that does not participate in any other minimal trapgitg So, . L o(2)
. . 277" ¢1 is a codeword of” and againd,) > dmin.
instead of swapping edges at random, the edges appearingyin o @) men - )
one trapping set can be swapped, and such a procedure isigeata  1he proof thatdin > d,;,, is similar. If we assume that, is
to eliminate all the minimal trapping sets. Also, there isosgibility & Minimal weight codeword of’, we have:
not to freeze all the edges from the (former) trapping satsobly H B
those that would, if swapped, introduce the trapping setf tie { B H } { ] =0
same critical number.

Note, however, that any edge swapping schedule can be seen 89 2dmin
particular realization of the random edge swapping. Fothallcodes  We finish this proof by mentioning that it is not difficult to
that we considered, all trapping sets with minimal criticaimber construct examples whet®i,,;, = d? ord? = dmin, SO the

min min
were eliminated by the algorithm with random edge swapping. statement of the theorem is “sharp’.

C1
C1

@)

> d(z)

min”®



We described the algorithm in its basic for#i(? can be initial- A |
ized by interleaving the copieS; and C> in an arbitrary order, but 0 #4
we choose concatenation to keep the notation simple. Thaauet 1

as well as all the proofs, will hold for any interleaving. & also Ew el
possible to consider more than two copies of the code to durth B 0 ',.-'
eliminate trapping sets with higher critical number. gm / N ot
& 107 hd o
The splitting of parity check matri# into H' and B can be seen b

as a way to construct convolutional LDPC codes, that is, agy w 107k, S
to unwrapthe original LDPC code&”. For details on unwrapping see 0t * e
[15] and the references therein. The (infinite) parity chekrix can Transiton prebasity ()
be can be constructed as: Fig. 5. Tanner code performance for a longer rangex of

HI

B H

Heonw = B H’ (8) Example 4:(MacKay’s (1008, 504) codeg)his is an example of

B . how the method can be used to produce better codes of a fixgithlen
K We have taken a 504 length MacKay code and constructed a 1008
Note that by construction the resulting convolutional cdudes 5:20; eS SO ng ﬁggm i%gz The new code performs better than MacKay
pseudo-codewords with higher pseudo-weights than oflidibd C '

code. In this light, Theorem 2 can be seen as a generalizafion BOth original 504 and 1008 length codes have two types optrap
Lemma 2.4 from [14]. We refer readers interested in conimhal S€tS With critical numbek = 3, (5,3) and (3,3) (six cycles). We ran

LDPC codes to that paper. the algorithm so that all (3,3) trapping sets are elimindtech the
newly constructed, but none of the (5,3) trapping sets. €kalts are
IV. NUMERICAL RESULTS shown in Fig[®. It can be seen that, although the FER perfocama
In this section we illustrate the proposed method by moddyi 10
the Margulis [22], Tanner [21] and MacKay [23] codes to eliate T Mook iaccay e o omgth 1008)
trapping sets under the Gallager B decoding algorithm. Veéethe @10’2* .
trapping sets reported in [17]. 3 ﬁwf_'x'
Example 2: (Margulig2640, 1320) code)The parity check of this E“’J’ ///V:: -
matrix has full rank, so the modified code is €280, 2640) code, ¢ f,"
and has the same rate as the original code,®.,= r = 0.5. = 105/;#’{//
This code hasl320 (4,4) trapping sets with critical numbet e
as the most dominant ones. The modifi€&80, 2640) code has 10° f; e
no (4,4) trapping sets and the performance is governed(hys) Transtion probablty )
trapping sets (ten cycles), that have critical numbet 5, Fig.[4. Fig. 6. MacKay's codes performance
1 gt cods . is improved, the slope of the FER curve is approximately trae
R . ** Example 5: (AWGN channeljhis example illustrates two points.
Ew,ﬁ ** . First is that optimizing code for one decoding algorithm ¢=ed to
3 * performance improvement for other decoding algorithms 3écond
s point is that the use of an appropriate axis scaling can lgréatp
E 10° *“_.-“"" . in error floor analysis and code performance prediction.
o “Tstope 4] We present FER results over AWGN channel and min-sum algo-
rithm after 500 iterations for three codes, the original riem(155,
107 64) code, our modified Tanner (310, 126) from the Example 3and
Transion probabllty (o) random (310, 127) code with column weight 3 and row weight 5.

In the low SNR region, where all kinds of error events are
likely, the length (and rate) of a code govern the performreanc

Example 3: (Tanner (155, 64) cod&his code hag5, 3) trapping lr_' this region codes of length 310 h_ave_similar performarﬁm.
sets (Fig[1(@)) with critical number = 3 as the most dominant high SNR_S' however, code optimization in terms of trappings s
ones. There are 155 such trapping sets [17], [21]. In thig ces becomes important and random cod_e_ performance becomes much
used a version of the method in which it is possible to swapeedgworfse than performance of the modified Tanner (310, 126) .code
from the (former) trapping sets, if no trapping set of the saon Notice a pronounced error floor for the random code.
smaller critical number is introduced. The result was a (31#6)  What is even more illustrative is Fid. 7[b) where we plot
code for which the minimal trapping sets are type (4,4) (etysles) log(F’ER) versus SNR (not in dB) on the x-axis. This is because
with critical numberk = 4 (see Fig{I(H)). This was confirmed byfor high SNRs on the AWGN channel, similarly to EQ] ()ER o
numerical simulations in Figl]5. The FER curve changes thpesl exp(—win * SNR/2), whered;, is pseudo-weight of the most likely
for higher a,, where FER contribution from the expressih (3) is not
”egl'g'P',e- Note that there was a small rate penalty to tm&‘,epx:l.u.re. the (5,3) trapping sets. However, our goal with this exanwds to show the
The original Tanner code has rate 0.4129, whereas the mbadifide performance when some, but not all, of the trapping sets mittimal critical
has rate 0.4065. number are eliminated.

Fig. 4. Margulis code performance

2|t is possible that a more sophisticated algorithm wouldb atiminate



error event. So on the graph with SNR on the x-axis which isimot
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