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Eliminating Trapping Sets in Low-Density Parity Check
Codes by using Tanner Graph Covers
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Abstract— We discuss error floor asympotics and present a method for
improving the performance of low-density parity check (LDPC) codes
in the high SNR (error floor) region. The method is based on Tanner
graph covers that do not have trapping sets from the originalcode. The
advantages of the method are that it is universal, as it can beapplied to
any LDPC code/channel/decoding algorithm and it improves performance
at the expense of increasing the code length, without losingthe code
regularity, without changing the decoding algorithm, and, under certain
conditions, without lowering the code rate. The proposed method can
be modified to construct convolutional LDPC codes also. The method is
illustrated by modifying Tanner, MacKay and Margulis codes to improve
performance on the binary symmetric channel (BSC) under theGallager
B decoding algorithm. Decoding results on AWGN channel are also
presented to illustrate that optimizing codes for one channel/decoding
algorithm can lead to performance improvement on other channels.

Index Terms— convolutional LDPC codes, error floor, Gallager B,
LDPC codes, min-sum decoding algorithm, Tanner code, trapping sets.

I. I NTRODUCTION

The error-floor problem is arguably the most important problem
in the theory of low-density parity check (LDPC) codes and iterative
decoding algorithms. Roughly, error floor is an abrupt change in the
frame error rate (FER) performance of an iterative decoder in the
high signal-to-noise ratio (SNR) region (see [9] for more details and
[1], [2], [3] for general theory of LDPC codes).

The error floor problem for iterative decoding on the binary erasure
channel (BEC) is now well understood, see [7], [8] and the references
therein.

In the case of the additive white Gaussian noise (AWGN) channel,
MacKay and Postol in [4] pointed out a weakness in the construction
of the Margulis code [22] which led to high error floors. Richardson
[9] presented a method to estimate error floors of LDPC codes and
presented results on the AWGN channel. He pointed out that the
decoder performance is governed by a small number of likely error
events related to certain topological structures in the Tanner graph
of the code, calledtrapping sets(or stopping setson BEC [7]).1

The approach from [9] was further refined by Stepanovet al. in
[10]. Zhanget al. [11] presented similar results based on hardware
decoder implementation. Vontobel and Koetter [12] established a
theoretical framework for finite length analysis of messagepassing
iterative decoding based on graph covers. This approach wasused
by Smarandacheet al. in [13] to analyze the performance of LDPC
codes from projective geometries [13] and for LDPC convolutional
codes [14].

An early account on the most likely error events on the binary
symmetric channel (BSC) for codes which Tanner graphs have cycles
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1The necessary definitions will be given in the next section.

is given by Forneyet al. in [16]. Some results on LDPC codes over
the BSC appear in [13], as well.

A significant part of the research on error floor analysis has
also focused on methods for lowering the error floor. The two
distinct approaches taken to tackle this problem are (1) modifying
the decoding algorithm and (2) constructing codes avoidingcertain
topological structures. Numerous modifications of the sum-product
decoding algorithm were proposed, see, for example, [18] and [19],
among others.

Among the methods from the second group, there have been novel
constructions of codes with high Tanner graph girth [21], [6], as
it was observed that codes with low girth tend to have high error
floors. While it is true that known trapping sets have short cycles
[10], [17], the example of projective geometry codes, that have short
cycles, but perform well under (hard decision) iterative decoding,
suggests that maximizing the girth is not the optimal procedure. As
the understanding of the error floor phenomena and its connection
with trapping sets grows, avoiding the trapping sets directly (rather
than short cycles) seems to be a more efficient way (in terms ofcode
rate and decoding complexity), to suppress error floors.

Code modification for improving the performance on the binary
erasure channel (BEC) was studied by Wang in [20]. To the best
of our knowledge, it is the first paper on code modification with
maximizing the size of stopping (or trapping) sets as the objective.
Edge swapping within the code was suggested as a way to break
the stopping sets. The method that we propose is similar. Roughly
speaking, it consists of taking two (or more) copies of the same code
and swapping edges between the code copies in such a way that the
most dominant trapping sets are broken. It is also similar tothe code
constructions that appear in Smarandacheet al. [14], Thorpe [24],
Divsalar and Jones [25] and Kelley, Sridhara and Rosenthal [26].

The advantages of the method are: (a) it is universal as it can
be applied to any code/channel model/decoding algorithm and (b)
it improves performance at the expense of increasing the code
length only, without losing the code regularity, without changing the
decoding algorithm, and, under certain conditions, without lowering
the code rate. If the length of the code is fixed ton, the method can
be applied by takingt copies of a (good) codeC of lengthn/t and
eliminating the most dominant trapping sets ofC. The method can
be slightly modified to construct convolutional LDPC codes as well.
The details are given in Section III.

We apply our method and construct codes based on Margulis [22],
Tanner [21] and MacKay [23] codes and present results on the BSC
when decoded using the Gallager B algorithm [1]. It is worth noting
that the error floor on the AWGN channel depends not only on the
structure of the code but also on implementation nuances of the
decoding algorithm, such as numerical precision of messages [9].
Since the Gallager B algorithm operates by passing binary messages
along the edges of a graph, any concern about the numerical precision
of messages does not arise.

The rest of the paper is organized as follows. In Section II
we introduce the notion of trapping sets and their relation to the
performance of the code. We explain the proposed method in Section
III. We present numerical results in Section IV and concludein
Section V.

II. BASIC CONCEPTS

The Tanner graph of an LDPC code,G, is a bipartite graph with
two sets of nodes: variable (bit) nodes and check (constraint) nodes.
The nodes connected to a certain node are referred to as its neighbors.
The degree of a node is the number of its neighbors. The girthg is the
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length of the shortest cycle inG. In this paper,• represents a variable
node,� represents an even degree check node and� represents an
odd degree check node.

The notion of trapping sets was first introduced in [4], but here we
follow the formalism from [19].

Definition 1: For a givenm×n matrix U = (Ui,j) with 1 6 i 6
m, 1 6 j 6 n, the projectionof a set ofh columns indexed by
j1, j2, . . . , jh is an m × h matrix consisting of the elementsui,j ,
1 6 i 6 m, j = j1, j2, . . . , jh.

Definition 2: Let H be a parity check matrix of an LDPC code.
An (a, b) trapping setT is a set ofa columns ofH with a projection
that containsb > 0 odd weight rows.

The definition of the trapping set above is purely topological,
that is, a trapping set can be seen as a subgraph of the Tanner
graph. In other words, an(a, b) trapping setT is a subgraph with
a variable nodes andb odd degree checks. The most probable noise
realizations that lead to decoding failure are related to trapping sets
([9], [10]). A measure of noise realization probability is referred to as
pseudo-weight.Following the terminology in [10], aninstantoncan
be defined as the most likely noise realization that leads to decoding
failure.

The instantons on the BSC consist of the received bit configurations
with minimal number of erroneous bits that lead to decoding failure.
Following [17], the notion specific to BSC, analogous to pseudo-
weight, can be defined as:

Definition 3: The minimal number of variable nodes that have to
be initially in error for the decoder to end up in the trappingsetT
will be referred to asthe critical numberk for that trapping set.

Remark:To “end up” in a trapping setT means that, after a finite
number of iterations, the decoder will be in error, on at least one
variable node fromT, at every iteration. Note that the variable nodes
that are initially in error do not have to be within the trapping set.

We illustrate the above concepts with an example.

(a) (5,3) trapping set(b) (4,4) trapping set

Fig. 1. Trapping sets

Example 1:The (5, 3) trapping set in Fig. 1(a). appears (among
other codes) in the Tanner (155, 64) code [17] (see also the examples
of irreducible closed walksin the chapter 6.1 of [5]) . This trapping
set has critical numberk = 3 under the Gallager B decoding
algorithm (for the definition of the algorithm see [2]), meaning that,
if three variable nodes, on the diagonal from bottom left to top right,
are initially in error, the decoder will fail to correct the errors.

Fig. 1(b) illustrates a(4, 4) trapping set. This trapping set, although
smaller, has critical numberk = 4, (all the variable nodes have to be
in error initially for the decoder to fail). So, if a code has both (5, 3)
and (4, 4) trapping sets, the FER performance is dominated by the
(5, 3) trapping set.

At the end of this example, we note that the(5, 3) trapping set
above is an example of anoscillatory trapping set,i.e, if three variable
nodes on the diagonal are initially in error, after the first iteration
those three nodes will be decoded correctly, but the remaining two
will be in error. In the decoding attempt after the second iteration

those two will be correct, but the initial three will be in error again,
and so on.

Remark:Note that on the BEC the critical number is just the size of
the stopping set, see [20].

We now clarify what “the most dominant trapping sets” means and
how these effect code performance.

Letα be the transition probability of the BSC andck be the number
of configurations of received bits for whichk channel errors lead to
a codeword (frame) error. The frame error rate (FER) is givenby:

FER(α) =
n

X

k=i

ckα
k(1− α)(n−k)

wherei is the minimal number of channel errors that can lead to a
decoding error (size of instantons) andn is the length of the code.

On a semilog scale the FER is given by the expression

log(FER(α)) = log
`

n
X

k=i

ckα
k(1− α)n−k

´

(1)

= log(ci) + i log(α) + log((1− α)n−i) (2)

+ log

„

1 +
ci+1

ci
α(1− α)−1 + . . .+

cn
ci

αn−i(1− α)i−n

«

(3)

In the limit α → 0 we note that

lim
α→0

h

log((1− α)n−i)
i

= 0

and

lim
α→0

h

log
“

1 +
ci+1

ci
α(1− α)−1 . . .+

cn
ci

αn−i(1− α)i−n
”i

= 0

So, the behavior of the FER curve for smallα is dominated by

log(FER(α)) ≈ log(ci) + i log(α)

The log(FER) vs log(α) graph is close to a straight line with
slope equal toi -the minimal critical number or cardinality of the
instantons.

Therefore, if two codesC1 and C2 have instanton sizesi1 and
i2, such thati1 < i2, then the codeC2 will perform better thanC1

for small enoughα, independent of the number of instantons, just
becauselog(α) → −∞ asα → 0. Note also that the critical number
of the most dominant trapping sets cannot be greater than half the
minimum distance. If it is the case, the performance of the decoder
is dominated by the minimum weight codewords.

III. T HE METHOD FORELIMINATING TRAPPINGSETS

In this section we present a method to construct an LDPC code
C(2) of length 2n from a given codeC of lengthn and discuss a
modification of the method that gives a convolutional LDPC code
based onC.

Let H andH(2) represent the parity check matrices ofC andC(2)

respectively.H(2) is initialized to

H(2) =

»

H 0
0 H

–

.

Stated simply,H(2) is formed by taking two copies ofH sayC1 and
C2. It can be seen that ifH has dimensionsm × n, thenH(2) has
dimensions2m × 2n. Every edgee in the Tanner graphG of C is
associated with a nonzero entryHt,k. The operation of changing the
value ofH(2)

t,k andH
(2)
m+t,n+k to “0”, and H

(2)
m+t,k andH(2)

m,n+k to
“1” is termed as swapping the edgee. Fig. 2 illustrates edge swapping
in two copies of a(5, 3) trapping set. We assume that the most
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Fig. 2. Trapping set elimination

dominant trapping sets forC are known. The method can be described
in the following steps.

Algorithm:

1) Take two copiesC1 and C2 of the same code. Since the
codes are identical they have the same trapping sets. Initialize
SwappedEdges=φ; FrozenEdges=φ;

2) Order the trapping sets by their critical numbers.
3) Choose a trapping setT1 in the Tanner graph ofC1, with

minimal critical number. LetET1
denote the set of all edges

in T1 . If (ET1
∩ SwappedEdges6= φ) goto 5. Else goto 4.

4) Swap an arbitrarily chosen edgee ∈ ET1
\ FrozenEdges(if it

exists). SetSwappedEdges= SwappedEdges∪ e.
5) “Freeze” the edgesET1

from T1 so that they cannot
be swapped in the following steps. SetFrozenEdges =
FrozenEdges∪ET1

.
6) Repeat steps 2 to 4 until it is possible to remove the trapping

sets of the desired size.

Step 5 is needed because swapping additional edges from the (former)
trapping sets might introduce trapping sets with a same critical
number again. Fig. 3 illustrates such a swapping which corresponds
to just interchanging the check nodes.

Fig. 3. Reintroducing trapping set by swapping two edges

The Tanner graph of the newly made code is a special double cover
of the original code’s Tanner graph, interested readers arereferred to
[12].

Remark: There are several approaches which may improve the
efficiency of the algorithm. Firstly, instead of swapping the edges
at random at step 3, edges could be swapped based on the numberof
trapping sets they participate in, or by using some other schedule
that would (potentially) lead to the highest number of trapping
sets eliminated. The structure of the code can also be exploited.
For example, the Margulis(2640, 1320) code [22], has1320 (4, 4)
minimal trapping sets with the property that each trapping set has one
edge that does not participate in any other minimal trappingset. So,
instead of swapping edges at random, the edges appearing in only
one trapping set can be swapped, and such a procedure is guaranteed
to eliminate all the minimal trapping sets. Also, there is a possibility
not to freeze all the edges from the (former) trapping sets, but only
those that would, if swapped, introduce the trapping sets with the
same critical number.

Note, however, that any edge swapping schedule can be seen asa
particular realization of the random edge swapping. For allthe codes
that we considered, all trapping sets with minimal criticalnumber
were eliminated by the algorithm with random edge swapping.

The following theorem shows how this method affects the code
rate.

Theorem 1:If the codeC, with parity check matrixH, and rate
r (and lengthn) is used in the algorithm above, the resulting code
C(2) will have rater(2) (and length2n), such thatr(2) 6 r.

Proof: Each edge swapping operation in the algorithm can be seen
as matrix modification. At the end of the algorithm, codeC(2) is
determined by

H(2) =

»

H ′ B
B H ′

–

whereH ′ andB are matrices such thatH ′ +B = H, andH ′

t,k (or
Bt,k) can be equal to “1” only ifHt,k = 1.

If the second block row is added to the first inH(2), and then the
the first block column is added to the second, we end up with

»

H ′ B
B H ′

–

→

»

H H
B H ′

–

→

»

H 0
B H

–

(4)

The last matrix in (4) has rank which is greater than or equal to twice
the rank ofH . Therefore, the codeC(2) has rater(2) 6 r wherer
is the rate ofC.�

Note, thatr(2) = r if B = CH +HD, for some matricesC and
D, so thatCH corresponds to linear combinations of rows ofH and
HD corresponds to linear combinations of columns ofH. We also
have a following corollary.

Corollary 1: If the matrixH has full rank, thenr(2) = r.

Proof: This follows from the fact that ifH has full rank, then the
last matrix in (4) has full rank also.�

At the end of this section, we briefly discuss the minimal distance
of the modified code.

Theorem 2:If the codeC has minimal distancedmin, the modified
codeC(2), will have the minimal distanced(2)min, such that,2dmin ≥

d
(2)
min ≥ dmin.

Proof: We first prove thatd(2)min ≥ dmin. Suppose that the minimal
weight codeword ofC(2) is c(2), where c(2) is a column vector
consisting of two vectorsc1 andc2 of lengthn. ThenH(2)c(2) = 0
is equivalent to

»

H ′ B
B H ′

– »

c1
c2

–

=

»

H ′c1 +Bc2
Bc1 +H ′c2

–

= 0 (5)

Note that c1 + c2 = c is a column vector of lengthn, with
Hamming weightwh(c) ≤ wh

“

c(2)
”

, where wh

“

c(2)
”

is the

Hamming weight of thec(2). Now:

Hc=(H ′+B)(c1+c2) = H ′c1+Bc1+H ′c2+Bc2=0 (6)

because the last expression in Eq. (6) is equal to the sum of entries
of the last column vector in Eq. 5. So,c is a codeword ofC.

If c 6= 0, from wh(c) ≤ wh

“

c(2)
”

it follows that d(2)min ≥ dmin.
If c = 0 then c1 = c2, and from Eq. (5) follows thatHc1 = 0, so
c1 is a codeword ofC and againd(2)min ≥ dmin.

The proof that2dmin ≥ d
(2)
min is similar. If we assume thatc1 is

a minimal weight codeword ofC, we have:
»

H ′ B
B H ′

– »

c1
c1

–

= 0 (7)

so 2dmin ≥ d
(2)
min.

We finish this proof by mentioning that it is not difficult to
construct examples where2dmin = d

(2)
min or d(2)min = dmin, so the

statement of the theorem is “sharp”.�
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We described the algorithm in its basic form.H(2) can be initial-
ized by interleaving the copiesC1 andC2 in an arbitrary order, but
we choose concatenation to keep the notation simple. The method,
as well as all the proofs, will hold for any interleaving. It is also
possible to consider more than two copies of the code to further
eliminate trapping sets with higher critical number.

The splitting of parity check matrixH into H ′ andB can be seen
as a way to construct convolutional LDPC codes, that is, as a way
to unwrapthe original LDPC codeC. For details on unwrapping see
[15] and the references therein. The (infinite) parity checkmatrix can
be can be constructed as:

Hconv =

2

6

6

6

4

H ′

B H ′

B H ′

B
. . .
. . .

3

7

7

7

5

(8)

Note that by construction the resulting convolutional codehas
pseudo-codewords with higher pseudo-weights than original LDPC
code. In this light, Theorem 2 can be seen as a generalizationof
Lemma 2.4 from [14]. We refer readers interested in convolutional
LDPC codes to that paper.

IV. N UMERICAL RESULTS

In this section we illustrate the proposed method by modifying
the Margulis [22], Tanner [21] and MacKay [23] codes to eliminate
trapping sets under the Gallager B decoding algorithm. We use the
trapping sets reported in [17].

Example 2: (Margulis(2640, 1320) code)The parity check of this
matrix has full rank, so the modified code is an(5280, 2640) code,
and has the same rate as the original code, i.e.,r(2) = r = 0.5.

This code has1320 (4, 4) trapping sets with critical number4
as the most dominant ones. The modified(5280, 2640) code has
no (4, 4) trapping sets and the performance is governed by(5, 5)
trapping sets (ten cycles), that have critical numberk = 5, Fig. 4.

Fig. 4. Margulis code performance

Example 3: (Tanner (155, 64) code)This code has(5, 3) trapping
sets (Fig. 1(a)) with critical numberi = 3 as the most dominant
ones. There are 155 such trapping sets [17], [21]. In this case we
used a version of the method in which it is possible to swap edges
from the (former) trapping sets, if no trapping set of the same or
smaller critical number is introduced. The result was a (310, 126)
code for which the minimal trapping sets are type (4,4) (eight cycles)
with critical numberk = 4 (see Fig 1(b)). This was confirmed by
numerical simulations in Fig. 5. The FER curve changes the slope,
for higherα, where FER contribution from the expression (3) is not
negligible. Note that there was a small rate penalty to this procedure.
The original Tanner code has rate 0.4129, whereas the modified code
has rate 0.4065.

Fig. 5. Tanner code performance for a longer range ofα

Example 4: (MacKay’s (1008, 504) codes)This is an example of
how the method can be used to produce better codes of a fixed length.
We have taken a 504 length MacKay code and constructed a 1008
(2 ∗ 504) length code. The new code performs better than MacKay
codes of length 1008.

Both original 504 and 1008 length codes have two types of trapping
sets with critical numberk = 3, (5,3) and (3,3) (six cycles). We ran
the algorithm so that all (3,3) trapping sets are eliminatedfrom the
newly constructed, but none of the (5,3) trapping sets. The results are
shown in Fig. 6. It can be seen that, although the FER performance

Fig. 6. MacKay’s codes performance

is improved, the slope of the FER curve is approximately the same.2

Example 5: (AWGN channel)This example illustrates two points.
First is that optimizing code for one decoding algorithm canlead to
performance improvement for other decoding algorithms. The second
point is that the use of an appropriate axis scaling can greatly help
in error floor analysis and code performance prediction.

We present FER results over AWGN channel and min-sum algo-
rithm after 500 iterations for three codes, the original Tanner (155,
64) code, our modified Tanner (310, 126) from the Example 3 anda
random (310, 127) code with column weight 3 and row weight 5.

In the low SNR region, where all kinds of error events are
likely, the length (and rate) of a code govern the performance.
In this region codes of length 310 have similar performance.For
high SNRs, however, code optimization in terms of trapping sets
becomes important and random code performance becomes much
worse than performance of the modified Tanner (310, 126) code.
Notice a pronounced error floor for the random code.

What is even more illustrative is Fig. 7(b) where we plot
log(FER) versus SNR (not in dB) on the x-axis. This is because
for high SNRs on the AWGN channel, similarly to Eq. (3),FER ∝
exp(−ωin ∗ SNR/2), wheredin is pseudo-weight of the most likely

2It is possible that a more sophisticated algorithm would also eliminate
the (5,3) trapping sets. However, our goal with this examplewas to show the
performance when some, but not all, of the trapping sets withminimal critical
number are eliminated.
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error event. So on the graph with SNR on the x-axis which is notin
dB, log(FER) curve will approach (from above) a straight line with
slope equal to−ωin/2 as SNR→ ∞. See [5] and [12] for further
details. Using these observations and numerical results obtained by
simulations we can estimate that our modified code has the slope
approximately equal to 20, better than the original Tanner (155, 64)
code with the slope of≈ 14.3

Further more, considering that the slope for the random codeis
≈ 12, we can claim that, for SNR values higher than those on the
plots, the Tanner code will perform better than the random code.

(a) log(FER) versus SNR in dB

(b) log(FER) versus SNR asE
N

(not in dB)

Fig. 7. FER performance under min-sum decoding

V. CONCLUSION

The proposed method allows the construction of codes with
good FER performance, but low row/column weight (as opposed
to projective geometry codes) and therefore relatively lowdecoding
complexity. Although numerical results for the Gallager B decoder
are presented, we reiterate that the method can be used for code
optimization based on the trapping sets of an arbitrary decoder.

The algorithm can also be used to determine the pseudo-weight
spectrum of a code as follows. Once the most likely trapping sets
(those with the smallest pseudo-weight) are determined andelimi-
nated by the method, the numerically obtained decoding performance
of a modified code, i.e., the slope of the FER curve with appropriate
axis, gives an estimate of the pseudo-weight of the next mostlikely
trapping sets -just as it was done in the Example 5 with the Tanner
code and the modified Tanner code.
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