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Abstract

In this paper, we consider an automatic-repeat-requestjARtransmission protocol signaling
over a block-fading multiple-input, multiple-output (MI®) channel. Unlike previous work, we allow
for multiple fading blocks within each transmission (ARQunal), and we constrain the transmitter to
fixed rate codes constructed over complex signal consteitin particular, we examine the general
case of average input-power-constrained constellatisvgedl as the practically important case of finite
discrete constellations. This scenario is a suitable mfmtgiractical wireless communications systems
employing orthogonal frequency division multiplexing he@ques over a MIMO ARQ channel. Two
cases of fading dynamics are considered, namely short-géatit fading where channel fading gains
change randomly for each ARQ round, and long-term statiméadihere channel fading gains remain
constant over all ARQ rounds pertaining to a given messageodt main result, we prove that for
the block-fading MIMO ARQ channel with discrete input sigjcanstellation satisfying a short-term
power constraint, the optimal signal-to-noise ratio (SNfRponent is given by a modified Singleton
bound, relating all the system parameters. To demonstnatgiactical significance of the theoretical
analysis, we present numerical results showing that macingleton-bound-achieving maximum

distance separable codes achieve the optimal SNR exponent.
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. INTRODUCTION

In 1957 multi-carrier transmission was first proposed by |De¢ al. [1] as a way to increase
data rate by transmitting multiple bits streams in paralier multiple carriers. Originally, multi-
carrier transmission was implemented using banks of sidakgenerators. The use of discrete
Fourier transforms for modulation and demodulation was $ugigested by Weinstein and Ebert
in 1971 [2], significantly reducing implementation comptgxand leading to what we now
know asorthogonal frequency division multiplexif@FDM). A review of the development of
multi-carrier and OFDM systems can be found in [3].

Almost fifty years after the invention of multi-carrier tismission [1, 2], the use of OFDM
has been adopted for broadband wireless communicationsnsysas a means to significantly
increase transmission rates [4]. Standards such as IEEEBQ®iFi) [5, 6] and IEEE 802.16
(WiMax) [7, 8] have now been extended to include OFDM teche&y Further improvements of
data rate and reliability are promised through the use otiplaltransmit and receive antennas
[9, 10]. Multiple-input, multiple-output (MIMO) antenng/stems are now being introduced into
the IEEE 802 standards [6,8], as well as being integral paft$ourth-generation mobile
cellular communication systems proposals [11, 12]. In @aldi adaptive coding and modulation,
combined with automatic-repeat-request (ARQ) retransimmsprotocols, are becoming integral
parts of data transmission services in the Universal Molelecommunications System (UMTS)
[13], and in WiMax [8].

Practical wireless communication systems will therefaensfeature MIMO OFDM modu-
lation with overlaying ARQ protocols. It is thus importamt obtain a thorough understanding
of the fundamental characteristics of such systems. Inghger, we model a practical point-
to-point MIMO OFDM ARQ wireless communication system as ateyn transmitting signals
from a complex signal constellation over a block-fading MOMARQ channel. In the following
subsections, we first review prior art and technical corsceglevant to our work. We then for-
mulate our problem and summarize contributions, beforénog the organization and defining

notation of the paper.

A. Prior Art
1) Fundamental TradeoffThe work of Teletar [14], and Foschini and Gans [15], hasinesp

a flurry of research activities in MIMO antenna systems farel@ss communications. Previously,
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multiple-antenna systems were primarily used for progdiaceiver diversity, thus combatting
random amplitude fluctuations due to fading [16]. In cortirdse prevailing thesis for MIMO
systems is that fading can increase channel capacity bydiungva set of well-behaved parallel
channels [14, 15]. In fact, in the high signal-to-noise (§N&jime it has been shown that the
capacity of a channel withV; transmit antennasy, receive antennas, and independent, identical

distributed (i.i.d.) complex Gaussian channel gains betweach antenna pair is given by
C(SNR) = min{ N, N, } log SNR + O(1),

suggesting that capacity increases linearly with the mimmmumber of transmit and receive
antennas. Therefore, the use of multiple-antenna systamsntprove both reliability and data
rate, when transmitting over a quasi-static MIMO channegrglchannel gains are i.i.d. complex
Gaussian and fixed during the transmission.

Zheng and Tse described the fundamental tradeoff betwaamsdy gain and multiplexing
gairH for quasi-static MIMO channels in the high SNR regime in [1&3suming Gaussian dis-
tributed input signals. The fundamental tradeoff devetbipgd17] has since become a benchmark
for the performance evaluation of space-time coding sceeara the corresponding framework
has become a preferred approach for characterizing clas3BMO channels. For example, in
[18] the fundamental diversity-multiplexing-delay tradieis characterized for the MIMO ARQ
channel, and the fundamental diversity-multiplexing éwififor MIMO channels with resolution-
constrained feedback is determined in [19], both under fiseraption that Gaussian distributed
input signals are used.

2) OFDM and the Block-Fading ChanneThe block-fading channel model was introduced in
[20], with the purpose of modelling slowly varying fadingasinels where the duration of a block-

fading period is determined by the channel coherence tim#iWa block-fading period, the

1The diversity gain (or SNR exponent) is defined as

log P.(SNR)

d& — lim
SNR—oo  log SNR

)

where P.(SNR) denotes the probability that the transmitted message isdéecincorrectly. The multiplexing gain is defined

as
L R(SNR)
SNR—oo log SNR’

L
Tm =

where R(SNR) is the code rate. The multiplexing gain essentially quatifiow close the code rate is to the capacity of a

single-input single-output link at high SNR [17].
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channel fading gain remains constant, while between pgtioel channel gains change randomly
according to a fading distribution. In this setting, traission typically extends over multiple
block-fading periods. A thorough treatment of fading chalans found in [21].

The block-fading channel model is a reasonable model for @ERansmission over frequency-
selective wireless channels, as an OFDM system is typicabigned such that each sub-carrier
experiences flat fading. Despite its simplicity, the modsgbtares important aspects of OFDM
modulation over frequency-selective fading channels amygs useful for developing coding
design criteria.

The definition of multiplexing gain, fundamental in the fariation presented in [17, 18], relies
on coding schemes with transmission rates that increasarlinwith the logarithm of the SNR.
Non-zero multiplexing gains can only be achieved with aumbius input constellations or discrete
constellations with cardinalities scaling with the SNRoffara practical perspective, it is desirable
to operate at a fixed code rate and deal with small alphabes.si¥/e are therefore interested
in the performance of such practical schemes, which effelgtioperates at zero multiplexing
gain. Under this scenario, the general diversity-muliijplg tradeoff can only provide a coarse
characterization of theate-diversitytradeoff. The rate-diversity tradeoff for fixed-rate spéicee
codes constructed over discrete signal constellatiomstransmitted across a quasi-static MIMO
channel, was presented in [22].

Union-bound arguments [23] and error exponent calculat{@d] were used to show that the
diversity gain of a block-fading channel with an arbitraoyt fixed number of fading blocks,
fixed code rate, and a discrete input signal constellat®ulescribed by a modified version of
the Singleton bound [25]. The same problem is considere®&j, [where outage probability
arguments are used to formally prove that the optimal ratersity tradeoff is indeed the
modified form of the Singleton bound presented in [24, 25]iciwhs achieved using maximum
distance separable (MDS) codes.

The block-fading ARQ channel model has recently been censilin [27, 28] for discrete
input signal constellations. In [27] the Singleton boundgissented as an upper bound to the
SNR exponent, while the optimality of the Singleton bountbrsnally proven for the ARQ case
in [28]. In [28] it is also demonstrated that asymptoticadigtimal throughput can be achieved
by MDS codes.
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B. Problem Formulation and Contributions

In this paper, we consider an ARQ system signaling over akblading MIMO channel with
L maximum number of allowable ARQ rounds afdfading blocks per ARQ round. In contrast
to the work in [17,18], we allow for multiple fading blocks tin each transmission (ARQ
round), and we constrain the transmitter to fixed rate codestoucted over complex signal
constellations. In particular, we examine the general adsaverage input-power-constrained
constellations as well as the practically important caselistrete constellations of finite car-
dinality. The receiver is able to generate a finite humber rd-bit repeat-requests, subject to
a latency constraint, whenever an error is detected in ticeddEl message. A maximum af
transmissions pertaining to each information messagdawedl.

As in [18], we consider two cases of fading statistics; fag #8hort-term static fading case,
the channel fading gains change randomly for each ARQ rowhde for the long-term static
fading case, the channel fading gains remain constant ¢v&R& rounds pertaining to a given
message, but change randomly for each message and coulggpsnite of ARQ rounds. This
scenario is a suitable model for practical wireless comeations systems employing OFDM
modulation over a MIMO ARQ channel.

The main focus of our work is to derive the optimal tradeoftwren throughput, diversity
gain and delay of ARQ schemes signaling over block-fadingi&Ichannels. In particular, we
show that the tradeoff highlights the roles of the compliaap signal constellation, the rate of
the first ARQ roundR;, the maximum number of ARQ rounds, and the number of fading
blocks per ARQ rounds.

As a first result, we prove that for the block-fading MIMO AR®amnel with the input
constellation satisfying a short-term power constraing optimal SNR exponent is given by
NN, LB for short-term static fading any; N, B for long-term static fading, which is achieved
by Gaussian codes of any positive rate. This is, however,tmotcase with discrete signal
constellations. In order to attain full diversity the sigm@nstellations must feature certain
properties. In general, due to the discrete nature of thiggmlssets, a tradeoff between rate,
diversity and delay arises.

As our main result, we prove that for the block-fading MIMO @Rchannel with discrete

input signal constellation of cardinalif#"t satisfying a short-term power constraint, the optimal
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SNR exponent is given by a modified Singleton bound, relagihthe system parameters. Note,
however, that modulating across all fading blocks incredabe dimensionality of the decoding
problem by a factor ofB [29]. For further flexibility in terms of decoding compleyitwe
consider the case where modulation is performed over a nuinkeM < B of fading blocks,

such thatB = M D. The resulting optimal SNR exponent is then expressed as

MN,N, <1 + {§ <1 — i )J) for short-term static fading

(R) T e ®
dp(Ry) = 1
MN;N, <1 + {% (1 — LSEV )D for long-term static fading
t

The expression in{1) implies that as the target faténcreases, the achievable optimal diversity
orderd},(R;) decreases in steps. Our main result generalizes the ré$pR]dor the quasi-static
MIMO channel to the ARQ block-fading case with encoding asrd/ fading blocks.

Directly following from the results, we demonstrate thatilhhe optimal SNR exponent of
the system is an increasing function of the maximum numbeallofved ARQ roundsl, the
throughput of the system becomes independeiit fafr sufficiently high SNR, and is determined
by the rate of the first ARQ round. We therefore denote our mesalt as th@ptimal throughput-
diversity-delay tradeoffThis result provides strong incentive to use ARQ as a wayntoease
reliability without suffering code rate penalties.

To demonstrate the practical coding aspects of our readtae examples are presented with
corresponding error rate and throughput performances.divegsity tradeoff function can be
viewed as a modified version of the Singleton bound [25], Wimaturally leads us to investigate
the role of Singleton-bound-achieving MDS codes. Our eXamplustrate that the optimal SNR

exponent can be achieved with practical MDS coding schemes.

C. Organization and Notation

The paper is organized as follows. In Sectidn Il we define ffsesn model, and in Section
[Twe review relevant ARQ performance measures, namelgresrobability, throughput and
average latency. In Sectidn ]IV we review the concepts ofrinfidion accumulation and out-
age probability, while the main theorems of the paper, tetpthe throughput-diversity-delay
tradeoff, are presented in Sectibn V. A thorough discusgoimcluded in Sectio V, where

the results are interpreted and related to existing resultbe literature. To demonstrate the
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practical relevance of the results, numerical examplesrenladed in Sectiofn VI, showing that
MDS codes achieve the tradeoff. Concluding remarks are sanmed in Sectiof V]I, while the
details of the proofs have been collected in the appendices.

The following notation is used in the paper. Sets are denbiedalligraphic fonts with

the complement denoted by superscriptThe exponential equality’(z) = z? indicates that

lim. o °e2Z) = d. The exponential inequalityc, > are similarly defineds>- and < denote
component-wise inequality af and <, respectivelyl denotes the identity matrix, vector/matrix
transpose is denoted bye.g.v’) and||- || » is the Frobenius normi{-} is the indicator function,

and[z] (|z]) denotes the smallest (largest) integer greater (smaliar)t.

II. SYSTEM MODEL

In this section we describe the block-fading MIMO ARQ chdmedel and coded modulation

schemes under consideration.

A. Channel Model

Consider a block-fading MIMO ARQ system with/; transmit antennas and/. receive
antennas. We investigate the use of a simple stop-and-viR@ Arotocol where the maximum
number of ARQ rounds is denoted dy Each ARQ round consists d¥ independent block-
fading periods, each of length (coherence time/bandwidth) in channel uses. Hence each ARQ
round spans3T channel uses. Figute 1 shows the overall system model. We the received
signal at thebth block and/th ARQ round as

Yo, = %HZ,bXZ,b + Wy, (2)
t

where X,, € C**TY,,,W,;, € C"*T and H,;, € C"*M denote the transmitted signal
matrix, received signal matrix, the noise matrix and thencteh fading gain matrix, respectively.
We definex,;; € C" as the vectors containing the transmitted symbols of eaténaa at
ARQ round/, block b and timet, which are such thaX,, = [x¢41, ..., Xep1]-

Both the elements of the channel fading gain malix, and the elements of the noise
matrix W, are assumed i.i.d. zero mean complex circularly symmetmopex Gaussian with
varianceo? = 0.5 per dimension. We assume perfect receiver-side channe istirmation

(CsI), namely, the channel coefficients are assumed to begilgrknown to the receiver.
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We obtain thelong-term staticmodel of [18] by lettingH,, = H, for all ¢ # ¢ in (2),
namely, all ARQ rounds undergo the same MIMO block-fadingrotel. This models well
a slowly varying MIMO OFDM ARQ system withB subcarriers orB groups of correlated
subcarriers. On the other hand, when the matrides are i.i.d. from block to block and from
ARQ round to ARQ round,[{2) corresponds to tsi@ort-term stationodel of [18]. In order to
keep the presentation general, and sinte (2) encompassesibdels, we will index the channel
matrices according to ARQ round and block as in the shont-tgtiatic model. We will outline
the changes for the long-term static model whenever negessa

Therefore, the channel modebrresponding to ARQ rounél becomes

Y, = ﬁHzXe +W,, 3)
Ny

where
Y, =[Y,,.... Y, 5] e CPVT
Xy = [X},, ..., X} 5] € CBNT
W= [W,...,W, 5] e CBNT
H, = diag(Hy,, ..., H, ) € CBN*BNe,

One channel use of the equivalent modeél (3) correspond&tehannel uses of theal channel
@). In a similar way to the previous model, we define the vectg, € CZ for t =1,...,T
as

Xg = [Xg,l, A ,Xg’T] € CBNtXT.

The receiver attempts to decode following the receptionrmARQ round. If the received
codeword can be decoded, the receiver sends back a onekbibvdedgement signal to the
transmitter via a zero-delay and error-free feedback lirtle transmission of the current code-
word ends immediately following the acknowledgment sigaadl the transmission of the next
message in the queue starts. If an error is detected in tleveelccodeword before théth
ARQ round, then the receiver requests another ARQ round bgliisg back a one-bit negative
acknowledgment along the perfect feedback path. Howewdecesion must be made at the end
of the Lth ARQ round regardless of whether errors are detected.

In general, the optimal ARQ decoder makes use of all avalabtled blocks and correspond-

ing channel state information up to the current ARQ roundchim decoding process. This leads
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to the concept of information accumulation, where indigdARQ rounds are combined, along
with any other side information. We hence introduce the AR@nmel modelp to the/th ARQ
round, completely analagous t6](2), but allowing for a more comcistation. In particular, we
have that
Y, = ﬁﬁziz + Wz, (4)
Ny

where

Y, =[Y],...,Y)) e CBNT

X, = [X],...,X|] € CPNAT

W, =W/, ... W] € CBNT,

H, = diag(Hy, ..., H,) € C/BN-xBNe,

That is,?g,f(g and VVZ are simply collections of the received, code and noise oedrire-
spectively, available at the end of th#n ARQ round, concatenated into block column matrices.
The new channel matrifl, € C/3N-<¢BN: is a block diagonal matrix with the diagonal blocks
composed of the respective channel state during each Kfdolikg period up to ARQ round.

In the case of long-term static modéﬁ[z = diag(H, ..., H). Note that a channel use of the
——

£t
equivalent model{4) corresponds #8717 channel uses of theeal channel [(R).

B. Encoding

In this section we discuss the specific construction of thecegime ARQ codewords. The
information messagen to be transmitted is passed through a space-time coded atmatul

encoder with codebook ¢ CX5Y*T and code rateR,, whereR, = %1 and

1
) —
' BT

is the code rate of the first ARQ round. Therefoj@|, = 27LBT andm € M, where M 2

{1,2,...,28LBTY is the set of possible information messages. We denote ttewayd corre-

log, |C|

sponding to information message by X (m). The rateR, codeword can be partitioned into a

sequence of. B space-time coded matrices, denobg, € CV**7. According to the previously
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described model, we have that
X(m) = [X|(m),..., X} (m)]
= [Xllvl(m)""7X,17B(m)7'"7X,L,1(m>>"'7XIL7B(m)]/ ¢ CLBNxT

We consider ashort termaverage power constraint, namely, the transmitted codisvare
normalized in energy such thatX € C, £-E[|X|%] = N,. Therefore, together with the
model assumptions in the previous sectiprin (@), (3) and[(#) represents the average SNR per
receive antenna.

In this paper we analyze space-time coded modulation schemmestructed over discrete
signal sets. In particular, we consider th@tis obtained as the concatenation ofclassical
coded modulation schem@, C QLBT™ constructed over a complex-plane signal gkt=
{a1,..., 990/} C C[30] with a unit rate linear dispersion space-time modul{@d]. Letco € Co
denote a codeword afy of length LBT'N; and @ = log, |Q| the number of bits conveyed in
one symbol of@, namely,|Q| = 2. Since the linear dispersion space-time modulator has unit
rate we have that < R, < N;QL.

To allow for a general case, we consider that the linear dispe space-time modulator
spreads the symbols @}, over theN, transmit antennas and ttie fading blocks. In particular,
we consider that the codewords of Co, of length LBT N, are partitioned intol vectors
of length BTN, each, denoted byo, € Q" such thatcg = [cj;.....c, ]’ For every
¢ =1,...,L, the vectorscg, are multiplied by the unit rate generator matrix of the linea

dispersion space-time modulatBr e CBTNtxBTNt g form
Xy = RCQ’E (5)

wherex, = vec(X,) € CBMT s the vector representation of the portion of codeword &f Co
transmitted at ARQ round. Without any loss in generality we consider tHatis a rotation
matrix [32—-35], i.e.,R is unitary [36]. Note that introduction of the linear disp@n space-time
modulator rotation matrixR increases the decoding complexity compared to the unbtztse
whereR = I. This is due to the fact that now the componentsptiepend on each other, since
R induces a change of the reference axis for detection [32938$ implies that the detection

problem is of dimensioBT N;.
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To allow for further flexibility, we consider the case whele tlinear dispersion space-time
modulator spreads the symbols @ € Co over the N; transmit antennas and a numhberK

M < B of fading blocks, such that

A B

M

is an integer representing the number of rotations used IARM round. In this case, we have

D

that the rotation matriR. becomes block-diagonal, namely

—
D times
whereR,,, ¢ CMNT>MNT s the rotation matrix of dimension/ N,T" x M N,T. According to

) we can defin&, , € CMNT| such thak, = [X,4,...,%.p]. We define the multidimensional

constellationX,; as
X é {X c (CMNtT . Ve e QMNtT, x =Ry C} (7)

Due to the block-diagonal structure Bf, the detection problem reducesfbdetection problems
over X, each of dimensiod/T N;. This formulation encompasses many cases of interestyas fo
example the unrotated case, for whiBh= I, the general threaded algebraic space-time (TAST)
modulation structure for MIMO block-fading channels [298}, perfect space-time modulation
[37]. As we shall see in Sectidn]V, the paramefer plays a key role in the reliability of
the overall system. Intuitively, the largéd, the larger the space-time symbol spreading, and
hence, the larger the diversity [29]. On the other hand,gutnge M implies larger decoding
complexity, as the detection problem is exponentiallin Using the previous discussion, we

introduce the following equivalent channel matrix

ﬁe,d = diag(HZ,(d—l)M+la o He@genms, - Heans - 7HZ,dM) € CMNrT>MNT - (g)

T times T times

ford = 1,...,D. These matrices correspond to the channels seen by rotatwathin ARQ

round/. The equivalent channel defined thy (8) induces the followvahgnnel model

v
Ny

wherex, ; € CMNT |y, ; W, € CYNT are the corresponding input, output and noise vectors.

Yed = H) Xoq+ Wi 9)

This model describes the relationship between the outputnef of the D rotations of the
linear dispersion space-time modulator and the output efctannel. One use of channkel (9)

corresponds td/T uses of thaeal model (2).
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C. Decoding

We will make use of the ARQ decoder proposed in [18], whichdvels as a typical set
decoder for the first. — 1 ARQ round and finally performs ML decoding at the last ARQ
round. The decoding function at ARQ rouddfor / =1,..., L —1, denotedng(?g, ﬁg), gives

the following output

-~ m if X(m) is the unique codeword i6 jointly typical with Y, given H,
w@(qu HZ) -
0 otherwise

(10)

which implies that message index(Y,, H,) = 7 € M whenever the received matrix can be

decoded and),(Y,, H,) = 0 whenever errors are detected.

I1l. ARQ PERFORMANCEMETRICS

In this section we introduce a few performance metrics mleto ARQ systems, namely, the
error probability, average latency and throughput. Foeedsotation, we define three relevant

decoder events as follows. Let,

DZ = {wl(?lvﬁl) = 07 cee 7¢é(?évﬁ5) = 0}

denote the event of error detection up to and including AR@dY, let

A £ U V(Yo Hy) = p

M0

denote the event of decoding a valid message at ARQ réuadd let

&2 | Yo, Hy) =

m#m
denote the event of a decoding error at ARQ rodndiven that message was transmitted.

Based on the events defined above, the probability of dergr) is given by

L—1
P.(p) =E |Pr(A;, &)+ Y Pr(De_y, Ay, &) +Pr(Dy1,E1L) | (11)
—_—— ——
(=2
undetegtred errors ML decoding error

where the expectation is with respect to the joint distrdoutof the fading gain matrix and

received signal matrix. From the error expressioriid (1i9 dear that the ARQ decoder suffers
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from undetected errorand ML decoding errors Undetected errors occur during ARQ rounds
¢=1...L—1 and reflects the inability of the decoder to identify erraeframes. ML decoding
errors occur at the last ARQ round and reflects the inabilitthe decoder to resolve atypical
channel and noise realizations. We shall see later that ribleapility of undetected errors can
be made arbitrarily small using appropriate codebooksjngaML decoding errors to dominate
the error probability. In terms of error probability, thefegftiveness of an ideal ARQ decoder is
therefore almost exclusively limited by the error probipiat the last ARQ round.
The expected latency of the system is determined by the probability of error dibde¢ and

it is given by
L-1

k=1+Y Pr(D,), (12)

(=1
wherex is expressed in terms of number of ARQ rounds. The correspgrichnsmit throughput

of the system in terms of the average effective code ratamglgiobtained by

Ry
R, L) = ,
1) = S e,

wheren(R;, L) is expressed in bits per channel fise

(13)

IV. INFORMATION ACCUMULATION AND OUTAGE PROBABILITY

In this section, we expand on the idea of mutual informatiocuanulation in ARQ systems
as well as introduce the commonly used concept of informatiatage.
The instantaneous input-output mutual information of thanmel [(4) up to ARQ round, for

the channel realizatioﬁg = éz can be written as

I(P|éé) = %](iz; Y, | H, = G)). (14)
¢
= > 161G (15)
k=1

where I(p|Gy) is the instantaneous input-output mutual information esponding to ARQ
round /. Following (15) we will refer tO](p‘ég) as theaccumulatednutual information up to

ARQ round/. The accumulated mutual informatidr(p\(}g) measures the normalized mutual

Note that our definition of transmit throughput here is pyr@lmeasure of the average code rate at the sender’s side, as it

does not take into account whether or not messages are ttpmiecoded at the receiver’s side.
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information between the accumulated received ma"fﬂxand the coded blockig, given the
instantaneous channel state ma@x. Sinceéz is a random matrix/ (p|ég) iS a hon-negative
random variable. Further, frond_({L5) it is clear that the acolated mutual information is an
increasing function of the ARQ round indéxfor a given realization o3,

Following [38, Lemma 1], we get that focM| = 27157, there exists a codeboak such
that the conditional probability of erraf,(p|G,) < e for any ¢ > 0 whenever the accumulated
instantaneous mutual information satisfile($3|(~}g) > Ry forany /¢ = 1,..., L, provided that
the block lengti/ BT is sufficiently large. We hence define information outagehasevent that

occurs when the accumulated mutual information is belownamely
0,2 {ée € C!BTN:x(BTN; | ](p|é£)< R1} _ (16)

For any finite B and L, the channel defined inl(4) is not information stable and thanoel
capacity in the strict Shannon sense is zero [39], since thbapility of the outage event is

nonzero. The corresponding outage probability is define[2@21]
Pout(p, £, Ry) 2 Pr(Oy) (17)
— Pr (I(p|ég) < Rl) . (18)

The accumulated mutual informatidvﬁp@g), and hence the corresponding outage probability,
depends on the SNRand the input distributioPx (X)) with the constraint thaj=E[||X||7] =
N;. When no other constraints are imposed on the input distoibuthe input distribution that
maximizes](p|ég) and therefore minimizeg&, . (p, ¢, R1) is the Gaussian distribution, namely,
the entries ofX are i.i.d. complex circularly symmetric random variableshweero mean and

unit variance. This leads to,

1
I(p|Gy) = 5 log, det (I + %GEGZ) (19)
B
_ 1 Y log, det <I + ﬁGg,ngl) . (20)
B £~ N,

In practice, Gaussian codebooks are not feasible, and Weestrt to discrete signal constella-
tions. In this work, we are mostly interested in studyingrible of the discrete nature of practical

constellations, and the impact this further system coimétteas on the outage probability. In
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particular, we can write the mutual information for the stleedescribed in Sectidn 1I!'B as,

I(p|Ge) = ZI (p|Gea) (21)
where
~ 1 X 1 — G x—x")4+w : w
1plGra) = 222 g o, ( S eG4 ')] (22)
X’EX]V[
_ S NG I
= QN - (MT)2QN, 2QN X;XME log, (1 + z?;x N (23)

is the input-output mutual information corresponding te tbalizationﬁg,d = (A}M given in (8)
of the channel described inl(9), assuming a uniform distidoover thelM N, T multidimensional
constellationt),,; defined in[(¥). Sincé® < I(p|ag7d) < QN, it is not difficult to show that[(21)

can be bounded as follows

D M
1 . 1 p t
](p|G’g) S 5 dE:1 min {QNt7 M mEZI 10g2 det <I + EGév(d_l)M"'mGé,(d—l)M—i—m) } . (24)

This relationship will prove useful in proving our main résu

V. THROUGHPUFDIVERSITY-DELAY TRADEOFF

In this section, we derive the optimal tradeoff between uligut, diversity gain and delay
of ARQ schemes signaling over MIMO block-fading channetsparticular, we show that the
tradeoff highlights the roles of the complex-plane sigraistellation througl®), the rate of the
first ARQ roundR;, the maximum number of ARQ roundsand the number of fading blocks
per ARQ roundB. As we shall see, for large SNR, the tradeoff expressionligigts the role
of the asymptotic throughput throughy. Furthermore, the optimal tradeoff expression includes
the effect of the space-time spreading dimension of thafimgspersion modulator, providing
also a reference of decoding complexity.

We now present the main results of this paper concerning phiemal SNR exponent of ARQ
systems.

Theorem 1:Consider the channel modél (4) with input constellationisfgng the short term
average power constraigtt=E[||X||%] < N,. The optimal SNR exponent(R,) is given by

N:N, LB for short-term static fading

d*(Ry) = (25)
N:N,B  for long-term static fading
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Further, this is achieved by Gaussian random codes of Rate- 0, provided that the block
length is sufficiently long.
Proof: Theorem 1 follows immediately as a corollary of [18, Theor2hafter taking into

account the introduction oB in the system. [ |

Theorem 1 states that Gaussian codes achieve maximalitivgas for any positive rate. As
we show in the following, this is not the case with discretmal constellationg’y;. In particular,
full diversity is achievable by discrete signal sets preddhe rates satisf§ < R; < QN,L.
However, in order to attain full diversity we must restritietsignal constellations to certain
properties. In general, due to the discrete nature of thiggmlssets, a tradeoff between rate,
diversity and delay arises. This relationship is expressdtie next theorem.

Theorem 2:Consider the channel modél (4) satisfying the short termaaespower constraint
L_E[||X]||2] < N;, with discrete input signal constellations of cardinal®y":. The optimal

LBT
SNR exponent is given by

M N, N, (1 + {ﬁ (1 — I )D for short-term static fading

M LQN;
dh(Ry) = . . (26)
MNN, (1+ | = (1-—2 for long-t tatic fadi
t 7»( + {M( LQM)D or long-term static fading

over the full range of) < R; < QN,L where [26) is continuous.

Proof (Sketch):A sketch of the proof is provided here, with the technicaladstleft to
Appendix. We first prove the converse and show that the diyegmin d3,(R;) is upper-
bounded by[(26). We can use Fano’s inequality to show thaptiege probabilityP,(p, ¢, R1)
lower-bounds the error probabilit¥.(p) for a sufficiently large block length. Then we bound
the maximum SNR exponent by considering the diversity gdithe outage probability. For
large SNR, the instantaneous mutual information is eitlego or QN; bits per channel use,
corresponding to when the channel is in deep fade and whenhidwenel is not in deep fade,
respectively [26]. Achievability is proved by bounding teeor probability of the typical set
decoder [18] for ARQ roundé=1,..., L—1, and that of the ML decoder at rourid using the
union Bhattacharyya bound [40] on a random coded modulaehreme ovel©® concatenated
with linear dispersion space-time modulation. For firfitewe obtain similar conditions to those
in [26]. Finally, asT — oo, we show that the SNR exponent of random codes is given by the

Singleton bound for all values a®, where [26) is continuous. [ |
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Theoreni 2 states that optimal diversity gaingfV, LB and N, N, B for short- and long-term
models, respectively, can also be achieved by discretalssgts coupled with linear dispersion
space-time modulators with constellatidia (D = 1), namely, space-time modulators that spread
the symbols o over theB fading blocks at each ARQ round. Under this scerE’JaﬁdI diversity
is maintained for all rate8 < R; < QN;. However, as anticipated in Sectibn 11-B, there is one
drawback of practical concern, namely, complexity. In oreachieve full diversity, the linear
dispersion space-time modulator needs to spread the sgnalb@ over the B blocks, which
implies that the size of the constellation of each ARQ rousdAiz| = QN,BT. We may,
however, choose a modulator that spreads symbols bidrlocks whereM < B in order to
reduce the complexity of the ML decoder. In this case, theetradeoff between the parameters
of (268). This can be seen as a manifestation of the discretgenaf the input constellation,
which limits the performance of the outage probability afthBENR. Theorerhl2 generalizes the
result of [22] for the quasi-static MIMO channel to the AR¢k-fading case.

The upper bound (26) is also applicable to any systems usingf bodes ovel.B independent
block-fading periods. The significance of the ARQ framewdaskthat it provides a way of
achieving the optimal SNR exponent attained by a block coitle wB coded blocks, without

always having to transmit all B code blocks. Indeed, following [18], observe that
Pr(D,) £ Pr(Af, ..., A
< Pr(A7)
= Pr(¢by(§¢, Hy) = 0)
< Pout(p, €, Ry) + ¢

= p b, (27)

Swithin our framework, it would also be possible to modulateml < M < BL periods in the short-term case, namely,
spreading the modulation symbols also across ARQ rounds(Z@)dwould remain valid. In particular, letting/ = LB, we
could achieve full diversity over the full range &, namely,0 < R1 < QN.L, which is the same exponent of the Gaussian
input. However, generalizing our model to this case, wouldhgress key concepts such as information accumulation iimgtes
formula, rather than the more natural sum expressiofih. (b5particular, one could define the equivalent channel magde
to round? as

H, = diag(H,...,H,,0,...,0) € CFBNr*LBEN:,

where0 is the zero matrix, and obtain the result.
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On substitution of[{27) intd (13), we find

. Rl
R.L)>
77( 1 ) - 1+E£L:—11 p—d*D(R1)

which shows that the transmit throughput is asymptoticatjyal toR; (since Ry, > n(Ry, L)),
the rate of a single ARQ round. In other words, provided theRSal sufficiently high, ARQ

= Ry, (28)

systems which sendn averageB coded blocks can achieve the same diversity gain as that
achieved by a block code system which seids coded blocksvery time This is because in
the high SNR regime, most frames can be decoded correctiyhigh probability based only on
the first transmitted code block. ARQ retransmissions aesl s correct the rare errors which
occur almost exclusively whenever the channel is in outsgeile the throughpuy)(R;, L) is

a function of L at mid to low SNR, it converges towards, independent ofl. at sufficiently
high SNR. Since the optimal diversity gain is an increasimgcfion of L, this behavior can be
exploited to increase reliability without suffering codee losses. However, as noted in [18], this
behavior is exhibited only by decoders capable of near peeieor detection (PED). Therefore,
the performance of practical error detection schemes casxpected to significantly influence
the throughput of ARQ systems.

Since equation[(28) relates the asymptotic throughput With coding parametef;, the
optimal SNR exponent given in_(R6) gives tlptimal throughput-diversity-delagradeoff of
MIMO ARQ block-fading channefs Examining the optimal throughput-diversity-delay trafie
(26) in more detail, we first note that

Ry _ R
NLQ QN

is the code rate of a binary code. i< r < 1, as if the coded modulation scherGg was

obtained itself as the concatenation of a binary code ofrraed length/V,LQ BT'. Expression
(28) implies that the higher we set the target r&te(equivalently,R,), the lower the achievable
diversity order. In particularuncodedsequences (i.eR; = @N,L) such as the full diversity
modulations [37,41], achieve optimal diversity gain dfN; N,, while any code with non-zero
R < QN,L will achieve optimal diversity less than or equal¥N;N,.LB or M N;N,. B in the

“We stress the fact that the coded modulation schemes coediitethis paper havefixedrate, and therefore zero multiplexing
gain as defined in [17, 18]. However, it is not difficult to shtwat allowing@ = £ log p would imply the achievability of the
diversity-multiplexing-delay tradeoff of [18].
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short- and long-term static models, respectively. Thisnisrduitively satisfying result ad.B
and B are precisely the number of independent fading periodserstiort- and long-term static
models, respectively, each with inherent diversityV, N,.

FiguresL2[ B[4 an]5 are graphs of the tradeoff functioh (2€) warying @, B, L and M
plotted against the rate of a single ARQ rouRd We show the tradeoff function_(26) for both
short- and long-term static fading models, respectively.

First we examine the effect of the constellation sigeon the optimal diversity tradeoff
function. Figuré 2 shows the tradeoff curve for three défervalues of). We can see from the
plot that the tradeoff curves for highér are strictly better than lowep in terms of achievable
diversity gain. This implies that a high order modulatiohesme always outperform lower order
modulation schemes in the limit of high SNR in terms of erraterperformance, for any code
rate. Alternatively, a system with high can choose to operate at higher code rates than a low
@ system and still maintain the same diversity gain.

Figure[3 shows the diversity tradeoff curve for differentues of B. Similar to the previous
tradeoff curve with constellation siz@, we observe that systems with high values®fare
strictly better than systems with lo® (in terms of diversity gain). In addition, we notice that
corresponds to the number of “steps” in the tradeoff fumcté (26). Systems with low values
of B maintain the same diversity gain over wider intervals oésathan systems with higB.
Relatively, the penalty for using codes with high spectfatiency is much higher for systems
with large B (although these systems will still achieve higher divgrgains than systems with
low B).

Figure[4 illustrates the effect of the maximum number of vald ARQ roundsL on the
diversity of the system. It is clear from the plot that in tHeg-term static case the effect of
L is to simply shift tradeoff curves upwards. This is intudlly satisfying, since each additional
ARQ round represents incremental redundancy, which carobsidered as a form of advanced
repetition coding. Each additional ARQ round contaisdditional independent fading blocks
and hence the diversity gain with ARQ rounds is simply the diversity gain with— 1 rounds
plus B. On the other hand, in the case of long-term static fadingzesthe different ARQ rounds
use the same channel realization, largeimplies a broader range a®; for which maximum
diversity can be achieved.

Figure[® shows the impact of/ on the tradeoff curve. As anticipated in Sectlon1I-B, we
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observe that the large¥/, the larger the optimal SNR exponent. A& increases, larger diversity
is maintained over a larger range &f. A careful look to [26) reveals that far/ > 1, each
ARQ round behaves as a MIMO block-fading channel V\,@h: D blocks, each with inherent
diversity M N; N,., reducing the number of steps of the tradeoff curve. Unfately, however,
increasingM implies an exponential (id/) increase in the overall decoding complexity.
Remark 1:In [29,42], the authors examined the performance of codes MIMO block-
fading channels without ARQ. Using the notation in this papiee diversity gain based on the

worst pairwise error rate performance was shown to be uppended by

dpes(R) < N, (1 + {B (Nt - S)D . (29)

The bound in[(29) is based on the fact that the rank of a thevomdedifference matrix of a
given pairwise error event cannot be larger than the mininmumber of non-zero rows. The
application of the Singleton bound [25] to the minimum numdsenon-zero rows (interpreted as
the Hamming distance of the code) leads the result shown9n[e®, 42—44]. Since the bound
(29) was derived for the non-ARQ case, we will compare it vatir results by lettingl = 1

in (26). An important assumption made in the derivation[d) (% that a signal constellation
of cardinality 29 is used for signaling at each transmit antenna. Under ttssnagtion, the
Singleton bound and the rank criterion give rise to the PBRrdity bound[(29). In our case,
we do not restrict the signals out of each transmit antenr@etong to a constellation of size
29, but rather, allow for more freedom in the system by lineanlydulating (combining)/ N,T
2@-ary symbols to be transmitted ov&fT channel uses. Figuké 6 compares the Singleton bound
(29) with our main result (26). As we see, even in the cas&/of 1 our bound yields a larger

exponent. This effect was also observed in [22] for the ga&ic MIMO channel.

VI. MAXIMUM DISTANCE SEPARABLE SPACE-TIME CODES

Having established the main effects of each parametér i {@6 now consider the practical
coding aspects of Theorem 2. The diversity tradeoff fumc{®) can be viewed as a modified
version of the Singleton bound [25] with the diversity gaiorresponding to the Hamming
distance of our cod€, viewed as a code of Iengtfﬁ = LD constructed over an alphabet
of size 29MMT  This is a useful interpretation and naturally leads us t@stigate the role of
Singleton-bound-achieving MDS codes. The role of MDS caateblock codes in block-fading

channel has been examined extensively in [23, 24, 26, 45].
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In this section, we illustrate that the optimal SNR exporstrawn in [26) can be achieved with
practical MDS coding schemes. The block diagram of the demeaed MIMO ARQ transmitter
structure considered in the numerical examples is showrigaré[{. A codeword of the MDS
outer encoder is partitioned intbB blocks. Each such block is then passed through a pseudo-
random interleaver, subsequently mapped onto a block ofpl@rsymbols according to the
signal constellation, and passed through a linear disgeraodulator. In the ARQ transmitter,
B blocks of T' channel uses are transmitted in each ARQ round. For sirmphee make use of
the MDS convolutional codes presented in [23] to illusttaee practical meaning and importance
of the diversity tradeoff cur& The ARQ decoder defined in Section II-C is impractical due to
the complexity of the typical set decoder. Instead we dgvaltwounded-distance ARQ decoder
and a sub-optimal iterativa posteriori probability (APP) based ARQ decoder, respectively,
approximating the behavior of the typical set decoder.

For the numerical examples, we consider two systems. The dystem has a maximum
number of ARQ rounds of. = 2, B = 1, and is using the 4-staf§, 7|3 outer convolutional
code, while the second system has a maximum number of ARQsoahl = 4, B = 1, and
is using the 4-staté, 5, 7, 7]s outer convolutional code. The rate of the first ARQ roufyd, is
the same for both systems. The two systems are investigatdubth single-input, single-output
(S1SO) and MIMO block-fading channels, subject to shorrtstatic fading and long-term static
fading, respectively.

We first consider the use of a bounded-distance ARQ decoddméddthe set of messages
V, C M, where the corresponding received codeword hypothﬁs@éé(m), m € M are within

a bounded distance from the received maﬁ’lgg
~ ~ o~ 2
Ve = {m eM : )Yg — Hng(m) - < fBTN,»(l -+ 5)} , (30)

whered > 0. For1 < ¢ < L — 1, the output of the bounded-distance ARQ decoder is themgive
5The main goal of these examples is not to approach the outapelglity of the channel, but rather to illustrate the niagn
and significance of the results presented in the previousosedf one wants to approach the outage probability, manegyful

codes should be employed. For details on outage approachidg ensembles for SISO and MIMO channels the reader is
referred to [26, 46—48].
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-~ mif Vo= {m}
V(Yo Hy) = : (31)
0 otherwise
Denoting the true message, the undetected error probability is bounded as
Pr(A, &) = Pr( U we= {m})) (32)
A<M

< Pr(IWif} > (BTN,(1+9)) (33)

(a)
< (14 6)PN exp(—LBTN,9), (34)

where (a) follows from bounding the chi-squared distribntof |VA\7@|% with the Chernoff bound.

Finally, lettingd = Slogp for g > 0, we have
Pr(Ay, &) < p BTN5, (35)

This result implies that arbitrarily low undetected erraolpability can be achieved by the new
decoder, at the cost of additional delay. In particutashould be chosen such thBI'N, 5 >
d*(Ry) in order to achieve the optimal ML exponefft( ;).

Figure[8 illustrates the performance of the two ARQ systemthe short-term SISO static
channel. We choose the pseudo-random interleaver to beivied tdentity interleaver, i.e. no
interleaving is applied between the outer encoder and therimodulator. The mapper ov&}
is set to be BPSK, the space-time modulation rotation m&rix I, and7 = 100 channel uses.
We apply the list Viterbi decoder proposed in [49] to impleththe ARQ decoder outlined in
(30) and [(31). In particular, we chooge= % to minimize the number of retransmissions.

Considering thel, = 2 system, the top three curves in Figure 8 show the correspgndi
outage probability, FER with list decoding and FER with PHIDe FER curves are parallel to
the outage curve at high SNR, which show that the convolatiddDS codes indeed achieve
the optimal diversity gain. Thé = 4 system corresponds to the bottom three curves of[Fig. 8,
where again we see that the optimal diversity gain is ackidyethe MDS convolutional code.

Comparing the two ARQ systems, it is clear that significamtqenance gains can be obtained
at the expense of higher delays. At FER16f 2, the gain of thel. = 4 system over thd. = 2

system is already 5 dB. The performance gap increases evendramatically at higher SNR.
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Figure[9 shows the average number of ARQ rounds of the two ARems considered
above. For each system, we plot the average number of ARQsowith PED, with the list
decoder and the lower bound given byl(12), respectivelg tear from the plot that at medium
to low SNR, significant loss in throughput is incurred by codeat do not approach the outage
probability limit, like convolutional code. Even more loss throughput is observed when list
decoding is used as the error detection mechanism.

Finally, note that the average ARQ round curves convergarasvone at high SNR. This
agrees with[(28) and shows that regardless of the maximunbeuof allowed ARQ rounds,,
no spectral efficiency penalties are incurred at sufficgenifjh SNR. In the limit of high SNR,
the transmit throughpui(R;, L) = R;.

Figure[10 and Figure 11 correspond to the error rate and geéatency of the same two ARQ
systems, under long-term static fading. As predicted byttie®retical results of the previous
section, under long-term static fading both schemes havesdme SNR exponent. As a matter
of fact, despite a 1 dB difference in outage probability,fosthemes show virtually the same
error probability. As already mentioned in the previoustiseg in the long-term static case, the
ARQ gain translates in a larger range B®f supported with optimal SNR exponent.

We now consideR x 2 MIMO systems withL = 2 and L = 4 using the4-state[5, 7]s and
[5,5,7,7]s convolutional codes, concatenated with the optithal2 linear dispersive modulator
suggested in [29]. In this example, the channel coheremse i 7" = 32 channel uses and
the mapper oveR is set to 4QAM. In this case, the bounded-distance ARQ decod{1)
also becomes impractical, and we therefore resort to stibrapiterative error detection and
decoding schemes. As a benchmark, we consider an iteratieere based on the full-complexity
APP detector, recursively exchanging code symbol extringiith an outer APP decoder, thus
generating estimates of the information sequence. Apglitie max-log APP detector in place
of the full-complexity APP detector provides a low-comptgxalternative. For the examples
considered here, the full-complexity iterative decoderoigghly twice as complex as the max-
log APP alternative. For the full-complexity iterative deler, we only consider PED as the
target benchmark, while for the max-log APP based iterateeoder we consider PED, as well
as a non-ideal error detection scheme. At each ARQ round,uwehe accumulated received
signal through six iterations of the respective iteratie¢edtion and decoding algorithms before

examining the decoder output.
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In the non-ideal error-detection case, errors are detdnfeekamining the soft output of the
decoder at each ARQ round. Specifically, we use the minimurnebability criterion [50],
checking at the end of each ARQ decoding round whether th@mam bit-wise log-likelihood

ratio (LLR) of the information sequence exceeds a threshad

min {|Lg,[} >0, (36)

0<i<K

where L), ; denotes theth element of the information LLR sequence at fitie ARQ round and
K denotes the length of the LLR vector. [f {(36) holds, decodmgonsidered successful, and
the information sequence corresponding to the LLR vectaleis/ered to the sink. The choice
of # affects both the average latency as well as the error rateea$ystem. In general, choosing
a highé encourages the receiver to request additional retranemsssvhich in turn reduces the
error rate. However, if is set too high, the system behaves as a block coded systerthand
spectral efficiency advantage of ARQ systems is not realiZadher, it is necessary to increase
6 as a function of SNR in order to achieve error rate perforraasmnparable to that of perfect

error detection. To this end, we adjust the threshold as
0 = max{1, 8log p}, (37)

where we have lower boundédn order to encourage retransmissions at low SNR. This ehoic
of # was found to perform well when the growth parameteis carefully selected. In the
examples shown herg, is determined experimentally.

Figure[12 compares the error rate performance of the- 2 system andl = 4 system
under the short-term fading dynamics. For each system, wotef@lir curves, corresponding to
the lower outage probability bound, obtained by using (24¢, PED performance for the two
iterative decoders, as well as the minimum bit-reliabitititerion (MinLLR) performance for the
max-log APP based iterative decoder. In this case we flavel6 and 5 = 32 for the MinLLR
scheme wherl. = 2 and L = 4, respectively. We notice that additional retransmissieasl to
an appreciable decrease in error rates, and, equally iamgothe MInLLR criterion performs
virtually as good as perfect error detection. Also, we os&o appreciable loss in performance
of the max-log APP based iterative decoder as compared tiullh@omplexity case, confirming
the use of the max-log APP approximation is well justified.

Figure[1I3 compares the average latency (measured in nunib®R@ rounds) of the two

ARQ systems under the short-term fading scenario. Againpleé four curves per system,
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corresponding to the lower bound of expected latency, u@dy and [(1R), as well as the PED

and MinLLR performances. In this case, we observe that tlse afousing the MinLLR criterion

is mainly an increase in latency, caused by requesting Bupaes retransmissions, and again

there is no appreciable loss in performance by applying thg-lmg APP approximation.
Figure[14 and Figure_15 correspond to the error rate and gededency of the same two

ARQ systems, under long-term static fading. In this case aeely = 12 and § = 24 for

the MIinLLR scheme wherl. = 2 and L = 4, respectively. Once again, as predicted by the

theoretical results of the previous section, the error cateres have the same exponent and,

moreover, have very similar gains. Similarly, the advaata§ ARQ in this case is that larger

throughput can be supported with optimal SNR exponent.

VIlI. CONCLUSIONS

The focus of this paper is to derive the optimal tradeoff lestwv throughput, diversity gain,
and delay for the block-fading MIMO ARQ channel. We provettfa the block-fading MIMO
ARQ channel with input constellation satisfying a shortxiggower constraint, the optimal SNR
exponent is given by, N,.L B for short-term static fading anl; V,. B for long-term static fading,
which is achieved by Gaussian codes of any positive rate.

When the input signal constellations are constrained toid&eate, this is no longer the case.
Due to the discrete nature of these signal sets, a tradeikla rate, diversity and delay arises.
As our main result, we prove that for the block-fading MIMO @Rchannel with discrete input
signal constellation of cardinality?V* satisfying a short-term power constraint, the optimal SNR
exponent is given by a modified Singleton bound, relatinghallsystem parameters. In particular,
we show that the tradeoff highlights the roles of the comygiene signal constellation through
@, the rate of the first ARQ roun&;, the maximum number of ARQ rounds and the number
of fading blocks per ARQ round. Furthermore, the optimal tradeoff expression includes th
effect of the space-time spreading dimensignof the linear dispersion modulator, providing
also a reference of decoding complexity.

Finally, we present numerical results demonstrating tleetpral significance of the theoreti-
cal analysis, showing that practical MDS codes achieve fitanal throughput-diversity-delay

tradeoff.
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APPENDIX

In this Appendix, we show the details of the proof of Theofénin2particular, we detail the
proof for the short-term static model. The proof correspogdo the long-term static model

follows exactly the same steps, and it is thus omitted.

PROOF OFTHEOREM[Z2: CONVERSE

To prove Theorerhl2, we first establish the converse and shawitta diversity gain is upper-
bounded by[(26). We assumé > N, throughout the analysis with no loss in generdality

We start following the arguments in [18, Appendix I] and code that by Fano’s inequality
we can obtain a lower bound to the error probability of the AB€goder at any ARQ rouné

by using an ML decoder that operates over th&RQ rounds. Therefore,

I(p|Gy) 1
> — _
Pe(p) ZE |1 Rl RoLBT|, (38)
where|z|, = max{0,z}. Hence, for sufficiently largd’, we have that [17, 18]
Pe(p)épout(p7L7Rl)' (39)

Therefore, it follows that we can upper-bound the SNR expbrad the ARQ system by
considering the outage probability up to ARQ rouhd

Now, we study in more detail the properties Bf,.(p, L, R1) when discrete signal constella-
tions are used. In particular, we recall thatl(24) states tha

D
1 .
I(plG) < ; min {QNt, Z log, det <I + —Gg (d-1 M+mG2(d_1)M+m) } (40)

m=1

and therefore,

Pout(p; L7 Rl)

L D
1 .
> Pr < 5 5 E min {QNt, E log2 det <I + —Gg (d—1 M"‘mGZ,(d—l)Mﬂ—m)} < R1>

=1 d=1
(41)

L D | M
= Pr (Z Zmin {QNt, i Z ZlogQ (1 + —)\z (d—1 M+mz) } < DR1> (42)

m=1 i=1

®If N; < N,., it suffices to replaceet (I + Ge,bGZ,b) by det (I + GZ,bGe,b) in the computation of the input-output mutual

information with Gaussian inputs and all the arguments fetilow.
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wherel, q—1)nm4ma < - - < Aga—1)m+m,n, are the orderedv, eigenvalues of thév, x N, matrix
Gg’(d_l)]\/j+mGZ’(d_1)J\/l+m corresponding to ARQ round and fading block(d — 1)M + m.

We now characterize the behavior of the outage probabitityigh SNR. Following [17] we
define theSNR normalizeeigenvalues as

ons A _log Aebi
£,b,i logp .

The joint probability distribution ol , = (cwp1,- .., aep ), Can be described using a result
in [17, Lemma 3]

Ny
= Kt o s LS.

i=1 i<j

(43)

(44)

where Ky, n, is a normalizing constant. Then it follows that

Pout(pa L, Rl)

L D M N,

>Pr (Y ) min {QNt, > log, (1 + —Ag (a1 M+m,) } < DR1> (45)
/=1 d=1 m=1 i=1
L D Ny

=Pr(> > min {QNt, ZZlog ,o|1 Fe(d=)MEm.i]y } < DR1> (46)
/=1 d=1 m=1 i=1
L D log M Ny

= Pr ZZml {QJ\Q, ZPZZ‘l—Oéud 1)M+mz‘ }<D31>- (47)
(=1 d=1 m=1 i=1

If we now define

[

~ / MN,

Qg = (g yprrs - Qpapr) € R (48)
/

= (af,(d—l)M+1,17 <o O (d—1)M+1,Nps -+ -5 XL dM 15 - - - OKZ,dM,NT) (49)

equation [(4]7) becomes

L D DR
Pou(p, L, R))>P (1 -1, =1}) < =2 50
«(p 1 r <Z1 ; {anq = 1}) QM) (50)
wherea > b denotes componentwise inequality, i.€.,> b;,Vi = 1,...,n for somea,b € R”
and1 is the all-one vector, since
M N,
lo - ) 0 when Qg =1
mm{@m, 5205 S 1 - e 1)M+m\+} R 51
m=1 i=1 QN; otherwise
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This means that asymptotically for large SNR, when all themponents ofa ; are larger or
equal than one (deep fades) the mutual information tendsaad toQ) N; otherwise. Following

similar steps as in [17] we can write that

L D M N,
Poui(p, L, Ry)> /Oze@LmRiDMNT exp (— logp; ; mZ:l 3 (20 — 1+ Ny — Nr)az,(d—1)M+m,i> da
(52)
where the large SNR outage event is given by
~ . DR
O, = {a e REPMN NN (1 - Uy = 1}) < Nl} (53)
(=1 d=1 QN:
L D R
_ LDMN; . e _
{ae]R ZZﬂ{ag,d_1}>D<L QM)} (54)
/=1 d=1
anda 2 (afy,- -, &’LD)/ € REPMN: - Applying Varadhan's lemma [51] we have that
L D M N,
dy(Ry) < inf 20— 1+ N, — N,)ay (q— mi ¢ - 55
SEOESURTINR 3 ) 3) DUTIES R AT

The infimum [55) is solved by considering two casesz|If> LQN;, then the infimum is satisfied
by a4 = 0 for all £ andd, hence the diversity gain is zero. Alternatively,Af < LQN;, then
among all possible vectoig, 4, for ¢ =1,...,L andd =1,..., D, we need to havé vectors
equal to the all-ones vectoty(, = 1), for somek € Z in order to satisfy the infimum. The

condition to be met is written

R, )
k>D|(L— , 56
(2= o (56)
which implies that in order to achieve the infimuimshould be
)
k=1+|D|(L—- . 57
(e on &0
Since>"M SN 2i — 14 N, — N, = MN,N,, we upper-bound the optimal SNR exponent as
LB Ry
* < == .
d5(Ry) < M NN, (1 + {M (1 LCWW)J) , (58)

which proves the desired converse result.
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PROOF OFTHEOREMI[Z: ACHIEVABILITY

To prove the achievability of the upper-bound on the SNR agpt in [58), we examine
the average frame error rate obtained using random codeshandRQ decoder described in
Sectior II-C. This decoder behaves like a typical set dectmeARQ rounds/ =1,..., L —1,
and as an ML decoder at rourid[38]. Since the channel matrikd; encompasses the channel
realizations of all ARQ rounds, with a slight abuse of na@tative can express the error probability

conditioned on the fading realization as

L-1
P.(plHy) =Y Pr| Doy, | ¢e(Ye, Hy) =10 | +Pr (DH, U ¢u(Yr,Hy) =m>
=1 m#Em
A0

m#m
(59)
where all parameters are defined in Secfioh Ill. As shown 8) 38, Appendix 1],v5 > 0 and

sufficiently largeT’, there exists a code for which the error probability coroeging to the first

L — 1 rounds can be bounded as

L—1
> Pr| Dy, | (Yo, He) =mn | <6 (60)
(=1 m#m
M#0
Therefore,
P.(pHy) < (L —1)0 + P™(p|H,) (61)
where
ml A v 7 A
P (p|HL) = Pr <DL_1, U ¢u(YL, Hy) :m> (62)
m#m

is the error probability of an ML decoding error at théh ARQ round. We now characterize the

behavior of P™(p|H}) for a particular code constructa\nnamely, random codes constructed

"We could simply conclude the proof by following the same angats of the proof in [18, Appendix 1], namely, using
PP (pHL) <6+ L{H, € O}

to argue thatPe(p)épdfﬂRl) (see [18, Appendix 1] for details). However, the specific lgsia of the ML decoding error
probability for roundL using random codes encompasses the standard quasistitidogk-fading MIMO channels with no

ARQ as special cases, and therefore is of broader interest.
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over Q, concatenated with random linear dispersion space-timdutators described in Section
M-BI
Following the steps of [22] we consider that t&XPT codewords of’, are generated with

the uniform probability distribution ove®, namely,Vco € Co,

LBT N 1 1
p(co) = ]}i[l TG = zarE (63)
Each codeword:g € Cq is partitioned intoLD vectors, denotedo (, € OV, where( =
1,....,Landd =1,...,D, such thatcg = [cg11,.--,Cor.p] . Now let
R = {R e RYWMIN . RR' = R'R =1} (64)

denote the set of orthogonal matrices of dimensidfi’ N; x MTN,;. As outlined in Section

[-B] the modulated signals are given by
Xrd = Reg - (65)

Then, if we define

s A .
Xya = matyn, «7(Xe,d) (66)

where the operatoA = mat,,,(a) formats vectora € C"™ into ann x m matrix, we have

that the portion of codeword transmitted over ARQ rouncan be written as

X = [Xpp X - (67)

Then we have that the conditional pairwise error probabisitgiven by
P (X0 = X0 | T = @) = @ (/5 | Guix H ) o
<o (~ o [Gxm-xm)}). @9

It follows from the structure oﬁL that

P (X(n) = X(k) | Hy = Gy ) < ﬁﬁexp (—4%@ GralRea(n) — Realk))| ) (70)

{=1d=1

L D M
= HHeXp <_4L;Vt Z |G, a—1)ar4m (Xe@@—1)ar4m (1) — XZ,(d—l)M-ﬁ-m(k))}}i) - (71)

If the elements ofR are drawn with the uniform probability distribution, it folvs from [52,

Theorem 1] thaR has full diversity with probability one, namely, the ma&$X,, q—1)rr4+m(n)—
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Xy (a-1)m+m (k) have full ranB. We now apply the singular value decomposition (SVD) [36] to

both channel and difference matrices

1

Gy a-nymem = UA]

Z,(d—l)M—i—mVT (72)

and
X, (d=1)M4m (1) — Xy @—1)pm4m(k) = ADZ(d_l)M+mBT (73)

and get that

P (X(n) =X (k) | iy = Gy

L D M
P 2

< H Hexp —4—M Z HGe,(d—1)M+m(XZ,(d—l)M+m(”) - XZ,(d—l)M+m(k))HF> (74)
(=1d=1 m=1
L D p M ) )

=[I1]ew |15 22 HUAZQ,(d—l)M—i-mV AD2 (d— 1)M—|—mBTH (75)
=1 d=1 ANy 2= F
L D s )

- HHexp 4Nt Z HAZ (@M +mPDE a1y 4m R (76)
(=1d=1

whereP = VTA is unitary. The diagonal matrlcem2 (d—1)M4m andD2 are composed

(d—1)M+m
of the singular values of the channel mat, 1)+, and codeword difference matrix
X (d—1)m+m(n) =Xy a—1m+m (), respectively. As mentioned earlier, the matridg@s—1)as-m (1) —
Xy, (d— 1)M+m(k) have full rank with probability one, which implies that theetd/ N, singular
values |nD ((d—1)Mm aT€ all non-zero form=1,..., M,d=1,....,.Dand¢=1,...,L. If

we now define

A
T a-1mem = PDya1yaremP! (77)
and
A .
Ye(d-1)M+m = diag (Fé,(d—l)M+m) (78)
= (Ve,(d=1)M+m,1s - - - > Ve,(d=1)M+m,N, ) (79)

8As it will be clear in the following, random rotations are restsential in the proof. It is sufficient to rely on the existen
of a particularR with full diversity [29, 32-35, 37, 41].
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we can rewrite[(76) as

L D
P (X(n) — X(k) | ﬁL = éL> < HHeXp ( ZZ 7, (d ) M'HT” plmoe - 1)Mf+7nz> )
m=1 i=1
(80)
Averaging [(80) over the code ensemble, nam¥ly:), X(k) andR, we get that

L D
1
P = X0 - [[T] o [1
/=1 d=1
L & Ye,(d—1)M
1) m,i a
exp <_ E E (Terl 0,(d— 1)M/+mz>]]. (81)

m=1 i=1

1
+ 9QMT Ny Z ER

cg,r,da(n)#cg,r,d(k)

If we now sum over th@BLT codewords, we have the union bound

A <20 T ] gt ST

{=1d=1

1
+ QQMTN; Z Er

cg,e,a(n)#cg e a(k)

M N,
exp E E (d— 1M+"” 1 Qg (d—1)M+m,i

m=1 i=1

(82)
R D
— exp| —LDMTQN,log(2) |1 — — o 83
p( QN log(2) ON, LDMTQNt;; g2< (83)
71 R Ye,(d-1)
DM+mai 1—q ) i
T 5QMTN, Z Er |exp <_ZZ4—MP e(d-1)M+ )])])
co.e.d(n)#cg ¢,qa(k) m=1 i=1
(84)
= exp (—LDMTQN;log(2)E(p, x)) (85)
where we have defined the union bound exponent as
A R() 1
Bloa)=1- lo 86
(62 QN, LDMTQN, ;; g?( (86)
1 Ve, (d—1)M+m,i 1M+mz PO
+ 72QMTNt Z ER exp ( Z Z £,(d—1)M+ )]) )
co,¢,d(n)#cg,e,qa(k) m=1 i=1
(87)

Following similar arguments to those in [22,26], we use tlenthated convergence theorem
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[53] to obtain that

M N,
. Ye,(d—1D)M~+myi  1—q,,, .
lim Egr |exp | — LA )T €,(d—1) M+m,i
oo R | XD ( mZ::l N, )]
o V()
. L(d=1)M+mi 1_q P
=E lim exp | — ARSIl ,(d—1) M+m,i 88
. P g ( mz::l i=1 AN, g >] (88)
=1—- ﬂ.{ag,d - ]_}, (89)

sincey,,—1)am+m,; > 0 With probability one. Foe > 0 and large SNR, the union bound exponent

E(p, ) can be lower-bounded by

Bp o) 21— L0 % ZZ e, = 1—e). (90)

Let now

E={aeR"MY 1 E (p,a) <0} (91)

:{aERLDMM ZZﬂ.{aM>—1—e}>LD (1—QRNt>} (92)

(=1 d=1

Then we can bound the overall error probability as

P.(p)< / min {1, exp (~LDMTQN, log(2)E.(p, @)} pla)de.  (93)
ae]RLDMNr
In a similar way to what it is done in [26], we consider codeshwilock lengthT'(p) such that
p—>oo log p

That is, we consider sufficiently long codewords large SNRhsthat the error probability is

never dominated by the event when two codewords coincidas,TiWwe can write that,

D M N,
Fo [ xp [ —1og S 35S 20— 14 N N Janprons | da
Quesnry P (=1 d=1 m=1 i=1
L D M N,
- / LDMN P <_ logp Z Z Z 2i—1+ Nt - Nr)a&(d—l)M—i-m,i
QrefenR T (=1 d=1 m=1 i=1
+ 7LDMQN;log(2)E.(p, a)) do (95)

and therefore, the random coding exponent is lower-bouibged

d"™(Ry) > supmin{d,, d} (96)

e>0
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where
L D M N,
dl = aegerl]ggDMNr {; ;n;l ;(21 — 14 Nt — NT)OQ,(C[—I)J\/[—Fm,i} (97)
is the exponent for large enough codewords and

LDMN.
QegenREPMN

M N,
Z 20— 1+ N; — Nr)OéZ,(d—l)M-i-m,i
=1 i=1

+ 7LDMQN,log(2)E.(p, a)} (98)

LDMN,
QegenrEPMNT

—  inf {TLDMQNtlog@) <1— RO)

L

+ M(N,N, = 7QN, 1og(2) Y ° ) 1{apa = 1 - e}} (99)

(=1 d=1
is the exponent that characterizes the finite block length.

Following similar steps to those in the converse, the SNRoegpt of the first componenf;

d; > (1 — €)MN,N, [% (1 - Lng ﬂ . (100)

Following similar arguments as in [26], we see thdl £ 7Q N, log(2) < N, N, then the infimum
(@9) is given by

can be written

LDM7QN, log(2) (1 - QR]th) . (101)

Otherwise, ifTQ N, log(2) > N,;N,, then the infimum is

) (o=l
TLDMQ@N;log(2) [ 1— + M(N;N,.(1—¢€) — 1QN;log(2 LD1-— —1].
QN lox(2) (1= )+ MONN(1 = ) ~ QN log(2) s

The random coding SNR exponent lower-bound can be tightbypéektinge — 0. By collecting
the results together, we see that for sufficiently largeé, coincides withd;. In fact, one observes
that forT" — oo, the overall error probability is given by the probabilitiitbe eventf,, since the
second integral in((95) vanishes. Hence the diversity ldveemd coincides with the diversity

upper-bound[(26) for all rates except at the discontinsiitie
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Fig. 1. MIMO ARQ system model.
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Fig. 3. Optimal diversity tradeoff curve correspondinglic= 2,Q = 2, M = 1 for a2 x 2 MIMO channel.
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Fig. 4. Optimal diversity tradeoff curve correspondingBo=2,Q = 2, M = 1 for a2 x 2 MIMO channel.
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Fig. 5. Optimal diversity tradeoff curve correspondingBo= 4,Q = 2, L = 2 for a2 x 2 MIMO channel. The curves with
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Fig. 7. Block diagram of the concatenated MIMO ARQ architeet The interleaver corresponding to ARQ rouhaind fading
block b is denoted by, 5.
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FER with MDS convolutional code over a short-terntistd1SO channel corresponding =1, Q@ = 1 andT = 100.
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Fig. 9. Average number of ARQ rounds for MDS convolutionaties over a short-term static SISO channel corresponding to

B=1,Q=1andT = 100.
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Fig. 10. FER with MDS convolutional code over a long-termtist®&ISO channel corresponding # = 1, Q = 1 and

T = 100.
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Fig. 11. Average number of ARQ rounds for MDS convolutionaties over a long-term static SISO channel corresponding

toB=1,Q=1andT = 100.
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Fig. 12. FER with MDS convolutional code over a short-teratist2 x 2 MIMO channel corresponding t& = 1, Q = 2 and
T = 32. The thick solid lines are the lower outage probability basinForL = 2, diamonds correspond to full-complexity APP
detection with PED, while squares and crosses corresponthtelog APP detection with PED and MIinLLR, respectivelyr Fo

L = 4, pentagrams correspond to full-complexity APP detectidth WED, while circles and asterisks correspond to max-log
APP detection with PED and MiInLLR, respectively.
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Fig. 13. Average number of ARQ rounds for MDS convolutionables over a short-term statit x 2 MIMO channel
corresponding taB = 1, @ = 2 and T = 32. The thick solid lines are the lower bounds on expected tgtefor L = 2,
diamonds correspond to full-complexity APP detection ViAEED, while squares and crosses correspond to max-log ARPtidet
with PED and MInLLR, respectively. Fof. = 4, pentagrams correspond to full-complexity APP detectidgth WED, while

circles and asterisks correspond to max-log APP detectitihn RED and MinLLR, respectively.
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Fig. 14. FER with MDS convolutional code over a long-termtista x 2 MIMO channel corresponding t8 = 1, Q = 2 and

T = 32. The thick solid lines are the lower outage probability basinForL = 2, diamonds correspond to full-complexity APP
detection with PED, while squares and crosses corresponthtelog APP detection with PED and MIinLLR, respectivelyr Fo
L = 4, pentagrams correspond to full-complexity APP detectidtn WED, while circles and asterisks correspond to max-log
APP detection with PED and MiInLLR, respectively.
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Fig. 15. Average number of ARQ rounds for MDS convolutionades over a long-term statiz x 2 MIMO channel
corresponding taB = 1, @ = 2 andT" = 32. The thick solid lines are the lower bounds on expected tgtefor L = 2,
diamonds correspond to full-complexity APP detection ViAEED, while squares and crosses correspond to max-log AREtidet
with PED and MInLLR, respectively. Fof. = 4, pentagrams correspond to full-complexity APP detectidgth WED, while

circles and asterisks correspond to max-log APP detectitihn RED and MinLLR, respectively.
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