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Abstract

In this paper, we consider an automatic-repeat-request (ARQ) retransmission protocol signaling

over a block-fading multiple-input, multiple-output (MIMO) channel. Unlike previous work, we allow

for multiple fading blocks within each transmission (ARQ round), and we constrain the transmitter to

fixed rate codes constructed over complex signal constellations. In particular, we examine the general

case of average input-power-constrained constellations as well as the practically important case of finite

discrete constellations. This scenario is a suitable modelfor practical wireless communications systems

employing orthogonal frequency division multiplexing techniques over a MIMO ARQ channel. Two

cases of fading dynamics are considered, namely short-termstatic fading where channel fading gains

change randomly for each ARQ round, and long-term static fading where channel fading gains remain

constant over all ARQ rounds pertaining to a given message. As our main result, we prove that for

the block-fading MIMO ARQ channel with discrete input signal constellation satisfying a short-term

power constraint, the optimal signal-to-noise ratio (SNR)exponent is given by a modified Singleton

bound, relating all the system parameters. To demonstrate the practical significance of the theoretical

analysis, we present numerical results showing that practical Singleton-bound-achieving maximum

distance separable codes achieve the optimal SNR exponent.
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I. INTRODUCTION

In 1957 multi-carrier transmission was first proposed by Doelz et al. [1] as a way to increase

data rate by transmitting multiple bits streams in parallelover multiple carriers. Originally, multi-

carrier transmission was implemented using banks of sinusoidal generators. The use of discrete

Fourier transforms for modulation and demodulation was first suggested by Weinstein and Ebert

in 1971 [2], significantly reducing implementation complexity, and leading to what we now

know asorthogonal frequency division multiplexing(OFDM). A review of the development of

multi-carrier and OFDM systems can be found in [3].

Almost fifty years after the invention of multi-carrier transmission [1, 2], the use of OFDM

has been adopted for broadband wireless communications systems as a means to significantly

increase transmission rates [4]. Standards such as IEEE 802.11 (WiFi) [5, 6] and IEEE 802.16

(WiMax) [7, 8] have now been extended to include OFDM techniques. Further improvements of

data rate and reliability are promised through the use of multiple transmit and receive antennas

[9, 10]. Multiple-input, multiple-output (MIMO) antenna systems are now being introduced into

the IEEE 802 standards [6, 8], as well as being integral partsof fourth-generation mobile

cellular communication systems proposals [11, 12]. In addition, adaptive coding and modulation,

combined with automatic-repeat-request (ARQ) retransmission protocols, are becoming integral

parts of data transmission services in the Universal MobileTelecommunications System (UMTS)

[13], and in WiMax [8].

Practical wireless communication systems will therefore soon feature MIMO OFDM modu-

lation with overlaying ARQ protocols. It is thus important to obtain a thorough understanding

of the fundamental characteristics of such systems. In thispaper, we model a practical point-

to-point MIMO OFDM ARQ wireless communication system as a system transmitting signals

from a complex signal constellation over a block-fading MIMO ARQ channel. In the following

subsections, we first review prior art and technical concepts relevant to our work. We then for-

mulate our problem and summarize contributions, before outlining the organization and defining

notation of the paper.

A. Prior Art

1) Fundamental Tradeoff:The work of Teletar [14], and Foschini and Gans [15], has inspired

a flurry of research activities in MIMO antenna systems for wireless communications. Previously,
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multiple-antenna systems were primarily used for providing receiver diversity, thus combatting

random amplitude fluctuations due to fading [16]. In contrast, the prevailing thesis for MIMO

systems is that fading can increase channel capacity by providing a set of well-behaved parallel

channels [14, 15]. In fact, in the high signal-to-noise (SNR) regime it has been shown that the

capacity of a channel withNt transmit antennas,Nr receive antennas, and independent, identical

distributed (i.i.d.) complex Gaussian channel gains between each antenna pair is given by

C(SNR) = min{Nt, Nr} log SNR +O(1),

suggesting that capacity increases linearly with the minimum number of transmit and receive

antennas. Therefore, the use of multiple-antenna systems can improve both reliability and data

rate, when transmitting over a quasi-static MIMO channel where channel gains are i.i.d. complex

Gaussian and fixed during the transmission.

Zheng and Tse described the fundamental tradeoff between diversity gain and multiplexing

gain1 for quasi-static MIMO channels in the high SNR regime in [17], assuming Gaussian dis-

tributed input signals. The fundamental tradeoff developed in [17] has since become a benchmark

for the performance evaluation of space-time coding schemes, and the corresponding framework

has become a preferred approach for characterizing classesof MIMO channels. For example, in

[18] the fundamental diversity-multiplexing-delay tradeoff is characterized for the MIMO ARQ

channel, and the fundamental diversity-multiplexing tradeoff for MIMO channels with resolution-

constrained feedback is determined in [19], both under the assumption that Gaussian distributed

input signals are used.

2) OFDM and the Block-Fading Channel:The block-fading channel model was introduced in

[20], with the purpose of modelling slowly varying fading channels where the duration of a block-

fading period is determined by the channel coherence time. Within a block-fading period, the

1The diversity gain (or SNR exponent) is defined as

d , − lim
SNR→∞

logPe(SNR)

log SNR
,

wherePe(SNR) denotes the probability that the transmitted message is decoded incorrectly. The multiplexing gain is defined

as

rm , lim
SNR→∞

R(SNR)

log SNR
,

whereR(SNR) is the code rate. The multiplexing gain essentially quantifies how close the code rate is to the capacity of a

single-input single-output link at high SNR [17].
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channel fading gain remains constant, while between periods the channel gains change randomly

according to a fading distribution. In this setting, transmission typically extends over multiple

block-fading periods. A thorough treatment of fading channels is found in [21].

The block-fading channel model is a reasonable model for OFDM transmission over frequency-

selective wireless channels, as an OFDM system is typicallydesigned such that each sub-carrier

experiences flat fading. Despite its simplicity, the model captures important aspects of OFDM

modulation over frequency-selective fading channels and proves useful for developing coding

design criteria.

The definition of multiplexing gain, fundamental in the formulation presented in [17, 18], relies

on coding schemes with transmission rates that increase linearly with the logarithm of the SNR.

Non-zero multiplexing gains can only be achieved with continuous input constellations or discrete

constellations with cardinalities scaling with the SNR. From a practical perspective, it is desirable

to operate at a fixed code rate and deal with small alphabet sizes. We are therefore interested

in the performance of such practical schemes, which effectively operates at zero multiplexing

gain. Under this scenario, the general diversity-multiplexing tradeoff can only provide a coarse

characterization of therate-diversitytradeoff. The rate-diversity tradeoff for fixed-rate space-time

codes constructed over discrete signal constellations, and transmitted across a quasi-static MIMO

channel, was presented in [22].

Union-bound arguments [23] and error exponent calculations [24] were used to show that the

diversity gain of a block-fading channel with an arbitrary,but fixed number of fading blocks,

fixed code rate, and a discrete input signal constellation, is described by a modified version of

the Singleton bound [25]. The same problem is considered in [26], where outage probability

arguments are used to formally prove that the optimal rate-diversity tradeoff is indeed the

modified form of the Singleton bound presented in [24, 25], which is achieved using maximum

distance separable (MDS) codes.

The block-fading ARQ channel model has recently been considered in [27, 28] for discrete

input signal constellations. In [27] the Singleton bound ispresented as an upper bound to the

SNR exponent, while the optimality of the Singleton bound isformally proven for the ARQ case

in [28]. In [28] it is also demonstrated that asymptoticallyoptimal throughput can be achieved

by MDS codes.
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B. Problem Formulation and Contributions

In this paper, we consider an ARQ system signaling over a block-fading MIMO channel with

L maximum number of allowable ARQ rounds andB fading blocks per ARQ round. In contrast

to the work in [17, 18], we allow for multiple fading blocks within each transmission (ARQ

round), and we constrain the transmitter to fixed rate codes constructed over complex signal

constellations. In particular, we examine the general caseof average input-power-constrained

constellations as well as the practically important case ofdiscrete constellations of finite car-

dinality. The receiver is able to generate a finite number of one-bit repeat-requests, subject to

a latency constraint, whenever an error is detected in the decoded message. A maximum ofL

transmissions pertaining to each information message is allowed.

As in [18], we consider two cases of fading statistics; for the short-term static fading case,

the channel fading gains change randomly for each ARQ round,while for the long-term static

fading case, the channel fading gains remain constant over all ARQ rounds pertaining to a given

message, but change randomly for each message and corresponding suite of ARQ rounds. This

scenario is a suitable model for practical wireless communications systems employing OFDM

modulation over a MIMO ARQ channel.

The main focus of our work is to derive the optimal tradeoff between throughput, diversity

gain and delay of ARQ schemes signaling over block-fading MIMO channels. In particular, we

show that the tradeoff highlights the roles of the complex-plane signal constellation, the rate of

the first ARQ roundR1, the maximum number of ARQ roundsL, and the number of fading

blocks per ARQ roundB.

As a first result, we prove that for the block-fading MIMO ARQ channel with the input

constellation satisfying a short-term power constraint, the optimal SNR exponent is given by

NtNrLB for short-term static fading andNtNrB for long-term static fading, which is achieved

by Gaussian codes of any positive rate. This is, however, notthe case with discrete signal

constellations. In order to attain full diversity the signal constellations must feature certain

properties. In general, due to the discrete nature of these signal sets, a tradeoff between rate,

diversity and delay arises.

As our main result, we prove that for the block-fading MIMO ARQ channel with discrete

input signal constellation of cardinality2QNt satisfying a short-term power constraint, the optimal
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SNR exponent is given by a modified Singleton bound, relatingall the system parameters. Note,

however, that modulating across all fading blocks increases the dimensionality of the decoding

problem by a factor ofB [29]. For further flexibility in terms of decoding complexity, we

consider the case where modulation is performed over a number 1 ≤M ≤ B of fading blocks,

such thatB =MD. The resulting optimal SNR exponent is then expressed as

d⋆D(R1) =





MNtNr

(
1 +

⌊
LB

M

(
1− R1

LQNt

)⌋)
for short-term static fading

MNtNr

(
1 +

⌊
B

M

(
1− R1

LQNt

)⌋)
for long-term static fading

(1)

The expression in (1) implies that as the target rateR1 increases, the achievable optimal diversity

orderd⋆D(R1) decreases in steps. Our main result generalizes the result of [22] for the quasi-static

MIMO channel to the ARQ block-fading case with encoding acrossM fading blocks.

Directly following from the results, we demonstrate that while the optimal SNR exponent of

the system is an increasing function of the maximum number ofallowed ARQ roundsL, the

throughput of the system becomes independent ofL for sufficiently high SNR, and is determined

by the rate of the first ARQ round. We therefore denote our mainresult as theoptimal throughput-

diversity-delay tradeoff. This result provides strong incentive to use ARQ as a way to increase

reliability without suffering code rate penalties.

To demonstrate the practical coding aspects of our results,some examples are presented with

corresponding error rate and throughput performances. Thediversity tradeoff function can be

viewed as a modified version of the Singleton bound [25], which naturally leads us to investigate

the role of Singleton-bound-achieving MDS codes. Our examples illustrate that the optimal SNR

exponent can be achieved with practical MDS coding schemes.

C. Organization and Notation

The paper is organized as follows. In Section II we define the system model, and in Section

III we review relevant ARQ performance measures, namely, error probability, throughput and

average latency. In Section IV we review the concepts of information accumulation and out-

age probability, while the main theorems of the paper, detailing the throughput-diversity-delay

tradeoff, are presented in Section V. A thorough discussionis included in Section V, where

the results are interpreted and related to existing resultsin the literature. To demonstrate the
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practical relevance of the results, numerical examples areincluded in Section VI, showing that

MDS codes achieve the tradeoff. Concluding remarks are summarized in Section VII, while the

details of the proofs have been collected in the appendices.

The following notation is used in the paper. Sets are denotedby calligraphic fonts with

the complement denoted by superscriptc. The exponential equalityf(z)
.
= zd indicates that

limz→∞
log f(z)
log z

= d. The exponential inequality
.

≤,
.

≥ are similarly defined.≻ and ≺ denote

component-wise inequality of> and<, respectively.I denotes the identity matrix, vector/matrix

transpose is denoted by′ (e.g.v′) and‖·‖F is the Frobenius norm.1{·} is the indicator function,

and⌈x⌉ (⌊x⌋) denotes the smallest (largest) integer greater (smaller) thanx.

II. SYSTEM MODEL

In this section we describe the block-fading MIMO ARQ channel model and coded modulation

schemes under consideration.

A. Channel Model

Consider a block-fading MIMO ARQ system withNt transmit antennas andNr receive

antennas. We investigate the use of a simple stop-and-wait ARQ protocol where the maximum

number of ARQ rounds is denoted byL. Each ARQ round consists ofB independent block-

fading periods, each of lengthT (coherence time/bandwidth) in channel uses. Hence each ARQ

round spansBT channel uses. Figure 1 shows the overall system model. We write the received

signal at thebth block andℓth ARQ round as

Yℓ,b =

√
ρ

Nt

Hℓ,bXℓ,b +Wℓ,b, (2)

whereXℓ,b ∈ CNt×T ,Yℓ,b,Wℓ,b ∈ CNr×T and Hℓ,b ∈ CNr×Nt denote the transmitted signal

matrix, received signal matrix, the noise matrix and the channel fading gain matrix, respectively.

We definexℓ,b,t ∈ C
Nt as the vectors containing the transmitted symbols of each antenna at

ARQ roundℓ, block b and timet, which are such thatXℓ,b = [xℓ,b,1, . . . ,xℓ,b,T ].

Both the elements of the channel fading gain matrixHℓ,b and the elements of the noise

matrix Wℓ,b are assumed i.i.d. zero mean complex circularly symmetric complex Gaussian with

varianceσ2 = 0.5 per dimension. We assume perfect receiver-side channel state information

(CSI), namely, the channel coefficients are assumed to be perfectly known to the receiver.
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We obtain thelong-term staticmodel of [18] by lettingHℓ,b = Hℓ′,b for all ℓ 6= ℓ′ in (2),

namely, all ARQ rounds undergo the same MIMO block-fading channel. This models well

a slowly varying MIMO OFDM ARQ system withB subcarriers orB groups of correlated

subcarriers. On the other hand, when the matricesHℓ,b are i.i.d. from block to block and from

ARQ round to ARQ round, (2) corresponds to theshort-term staticmodel of [18]. In order to

keep the presentation general, and since (2) encompasses both models, we will index the channel

matrices according to ARQ round and block as in the short-term static model. We will outline

the changes for the long-term static model whenever necessary.

Therefore, the channel modelcorresponding to ARQ roundℓ becomes

Yℓ =

√
ρ

Nt

HℓXℓ +Wℓ, (3)

where

Yℓ =
[
Y′

ℓ,1, . . . ,Y
′
ℓ,B

]′ ∈ C
BNr×T

Xℓ =
[
X′

ℓ,1, . . . ,X
′
ℓ,B

]′ ∈ C
BNt×T

Wℓ =
[
W′

ℓ,1, . . . ,W
′
ℓ,B

]′ ∈ C
BNt×T

Hℓ = diag(Hℓ,1, . . . ,Hℓ,B) ∈ C
BNr×BNt .

One channel use of the equivalent model (3) corresponds toBT channel uses of thereal channel

(2). In a similar way to the previous model, we define the vectors xℓ,t ∈ CBNt for t = 1, . . . , T

as

Xℓ = [xℓ,1, . . . ,xℓ,T ] ∈ C
BNt×T .

The receiver attempts to decode following the reception of an ARQ round. If the received

codeword can be decoded, the receiver sends back a one-bit acknowledgement signal to the

transmitter via a zero-delay and error-free feedback link.The transmission of the current code-

word ends immediately following the acknowledgment signaland the transmission of the next

message in the queue starts. If an error is detected in the received codeword before theLth

ARQ round, then the receiver requests another ARQ round by sending back a one-bit negative

acknowledgment along the perfect feedback path. However, adecision must be made at the end

of theLth ARQ round regardless of whether errors are detected.

In general, the optimal ARQ decoder makes use of all available coded blocks and correspond-

ing channel state information up to the current ARQ round in the decoding process. This leads
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to the concept of information accumulation, where individual ARQ rounds are combined, along

with any other side information. We hence introduce the ARQ channel modelup to theℓth ARQ

round, completely analagous to (2), but allowing for a more concise notation. In particular, we

have that

Ỹℓ =

√
ρ

Nt

H̃ℓX̃ℓ + W̃ℓ, (4)

where

Ỹℓ = [Y′
1, . . . ,Y

′
ℓ]
′ ∈ C

ℓBNr×T ,

X̃ℓ = [X′
1, . . . ,X

′
ℓ]
′ ∈ C

ℓBNt×T ,

W̃ℓ = [W′
1, . . . ,W

′
ℓ]
′ ∈ C

ℓBNr×T ,

H̃ℓ = diag(H1, . . . ,Hℓ) ∈ C
ℓBNr×ℓBNt .

That is, Ỹℓ, X̃ℓ and W̃ℓ are simply collections of the received, code and noise matrices, re-

spectively, available at the end of theℓth ARQ round, concatenated into block column matrices.

The new channel matrix̃Hℓ ∈ CℓBNr×ℓBNt is a block diagonal matrix with the diagonal blocks

composed of the respective channel state during each block-fading period up to ARQ roundℓ.

In the case of long-term static model,̃Hℓ = diag(H, . . . ,H)︸ ︷︷ ︸
ℓ times

. Note that a channel use of the

equivalent model (4) corresponds toℓBT channel uses of thereal channel (2).

B. Encoding

In this section we discuss the specific construction of the space-time ARQ codewords. The

information messagem to be transmitted is passed through a space-time coded modulation

encoder with codebookC ⊂ CLBNt×T and code rateR0, whereR0 ,
R1

L
and

R1 ,
1

BT
log2 |C|

is the code rate of the first ARQ round. Therefore,|C| = 2R0LBT andm ∈ M, whereM ∆
=

{1, 2, . . . , 2R0LBT } is the set of possible information messages. We denote the codeword corre-

sponding to information messagem by X(m). The rateR0 codeword can be partitioned into a

sequence ofLB space-time coded matrices, denotedXℓ,b ∈ CNt×T . According to the previously
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described model, we have that

X(m) =
[
X′

1(m), . . . ,X′
L(m)

]′

=
[
X′

1,1(m), . . . ,X′
1,B(m), . . . ,X′

L,1(m), . . . ,X′
L,B(m)

]′ ∈ C
LBNt×T

We consider ashort term average power constraint, namely, the transmitted codewords are

normalized in energy such that∀X ∈ C, 1
LBT

E[‖X‖2F ] = Nt. Therefore, together with the

model assumptions in the previous section,ρ in (2), (3) and (4) represents the average SNR per

receive antenna.

In this paper we analyze space-time coded modulation schemes constructed over discrete

signal sets. In particular, we consider thatC is obtained as the concatenation of aclassical

coded modulation schemeCQ ⊆ QLBTNt constructed over a complex-plane signal setQ =

{q1, . . . , q|Q|} ⊂ C [30] with a unit rate linear dispersion space-time modulator [31]. Let cQ ∈ CQ
denote a codeword ofCQ of lengthLBTNt andQ = log2 |Q| the number of bits conveyed in

one symbol ofQ, namely,|Q| = 2Q. Since the linear dispersion space-time modulator has unit

rate we have that0 ≤ R1 ≤ NtQL.

To allow for a general case, we consider that the linear dispersion space-time modulator

spreads the symbols ofcQ over theNt transmit antennas and theB fading blocks. In particular,

we consider that the codewordscQ of CQ, of length LBTNt are partitioned intoL vectors

of lengthBTNt each, denoted bycQ,ℓ ∈ QBTNt such thatcQ =
[
c′Q,1, . . . , c

′
Q,L

]′
. For every

ℓ = 1, . . . , L, the vectorscQ,ℓ are multiplied by the unit rate generator matrix of the linear

dispersion space-time modulatorR ∈ CBTNt×BTNt to form

xℓ = RcQ,ℓ (5)

wherexℓ = vec(Xℓ) ∈ CBNtT is the vector representation of the portion of codeword ofC ∈ CQ
transmitted at ARQ roundℓ. Without any loss in generality we consider thatR is a rotation

matrix [32–35], i.e.,R is unitary [36]. Note that introduction of the linear dispersion space-time

modulator rotation matrixR increases the decoding complexity compared to the unrotated case

whereR = I. This is due to the fact that now the components ofxℓ depend on each other, since

R induces a change of the reference axis for detection [32–35]. This implies that the detection

problem is of dimensionBTNt.
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To allow for further flexibility, we consider the case where the linear dispersion space-time

modulator spreads the symbols ofcQ ∈ CQ over theNt transmit antennas and a number1 ≤
M ≤ B of fading blocks, such that

D
∆
=
B

M

is an integer representing the number of rotations used in anARQ round. In this case, we have

that the rotation matrixR becomes block-diagonal, namely

R = diag
(
RM , . . . ,RM︸ ︷︷ ︸

D times

)
(6)

whereRM ∈ CMNtT×MNtT is the rotation matrix of dimensionMNtT ×MNtT . According to

(6) we can definêxℓ,d ∈ CMNtT , such that̂xℓ = [x̂ℓ,1, . . . , x̂ℓ,D]
′. We define the multidimensional

constellationXM as

XM
∆
=
{
x ∈ C

MNtT : ∀c ∈ QMNtT , x = RM c
}

(7)

Due to the block-diagonal structure ofR, the detection problem reduces toD detection problems

overXM each of dimensionMTNt. This formulation encompasses many cases of interest, as for

example the unrotated case, for whichR = I, the general threaded algebraic space-time (TAST)

modulation structure for MIMO block-fading channels [29],or perfect space-time modulation

[37]. As we shall see in Section V, the parameterM plays a key role in the reliability of

the overall system. Intuitively, the largerM , the larger the space-time symbol spreading, and

hence, the larger the diversity [29]. On the other hand, using largeM implies larger decoding

complexity, as the detection problem is exponential inM . Using the previous discussion, we

introduce the following equivalent channel matrix

Ĥℓ,d = diag
(
Hℓ,(d−1)M+1, . . . ,Hℓ,(d−1)M+1︸ ︷︷ ︸

T times

, . . . ,Hℓ,dM , . . . ,Hℓ,dM︸ ︷︷ ︸
T times

)
∈ C

MNrT×MNtT (8)

for d = 1, . . . , D. These matrices correspond to the channels seen by rotationd within ARQ

roundℓ. The equivalent channel defined by (8) induces the followingchannel model

ŷℓ,d =

√
ρ

Nt

Ĥℓ,dx̂ℓ,d + ŵℓ,d (9)

wherex̂ℓ,d ∈ CMNtT , ŷℓ,d, ŵℓ,d ∈ CMNrT are the corresponding input, output and noise vectors.

This model describes the relationship between the output ofone of theD rotations of the

linear dispersion space-time modulator and the output of the channel. One use of channel (9)

corresponds toMT uses of thereal model (2).
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C. Decoding

We will make use of the ARQ decoder proposed in [18], which behaves as a typical set

decoder for the firstL − 1 ARQ round and finally performs ML decoding at the last ARQ

round. The decoding function at ARQ roundℓ, for ℓ = 1, . . . , L− 1, denotedψℓ(Ỹℓ, H̃ℓ), gives

the following output

ψℓ(Ỹℓ, H̃ℓ) =




m̂ if X̃(m̂) is the unique codeword inC jointly typical with Ỹℓ given H̃ℓ

0 otherwise,
(10)

which implies that message indexψℓ(Ỹℓ, H̃ℓ) = m̂ ∈ M whenever the received matrix can be

decoded andψℓ(Ỹℓ, H̃ℓ) = 0 whenever errors are detected.

III. ARQ PERFORMANCE METRICS

In this section we introduce a few performance metrics relevant to ARQ systems, namely, the

error probability, average latency and throughput. For ease of notation, we define three relevant

decoder events as follows. Let,

Dℓ ,

{
ψ1(Ỹ1, H̃1) = 0, . . . , ψℓ(Ỹℓ, H̃ℓ) = 0

}

denote the event of error detection up to and including ARQ round ℓ, let

Aℓ ,




⋃

bm6=0

ψℓ(Ỹℓ, H̃ℓ) = m̂



 ,

denote the event of decoding a valid message at ARQ roundℓ, and let

Eℓ ,




⋃

bm6=m

ψℓ(Ỹℓ, H̃ℓ) = m̂





denote the event of a decoding error at ARQ roundℓ, given that messagem was transmitted.

Based on the events defined above, the probability of errorPe(ρ) is given by

Pe(ρ) = E




Pr(A1, E1) +
L−1∑

ℓ=2

Pr(Dℓ−1,Aℓ, Eℓ)
︸ ︷︷ ︸

undetected errors

+Pr(DL−1, EL)︸ ︷︷ ︸
ML decoding errors



, (11)

where the expectation is with respect to the joint distribution of the fading gain matrix and

received signal matrix. From the error expression in (11) itis clear that the ARQ decoder suffers
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from undetected errorsand ML decoding errors. Undetected errors occur during ARQ rounds

ℓ = 1 . . . L−1 and reflects the inability of the decoder to identify erroneous frames. ML decoding

errors occur at the last ARQ round and reflects the inability of the decoder to resolve atypical

channel and noise realizations. We shall see later that the probability of undetected errors can

be made arbitrarily small using appropriate codebooks, leaving ML decoding errors to dominate

the error probability. In terms of error probability, the effectiveness of an ideal ARQ decoder is

therefore almost exclusively limited by the error probability at the last ARQ round.

The expected latencyκ of the system is determined by the probability of error detection, and

it is given by

κ = 1 +

L−1∑

ℓ=1

Pr(Dℓ) , (12)

whereκ is expressed in terms of number of ARQ rounds. The corresponding transmit throughput

of the system in terms of the average effective code rate is simply obtained by

η(R1, L) =
R1

1 +
∑L−1

ℓ=1 Pr(Dℓ)
, (13)

whereη(R1, L) is expressed in bits per channel use2.

IV. I NFORMATION ACCUMULATION AND OUTAGE PROBABILITY

In this section, we expand on the idea of mutual information accumulation in ARQ systems

as well as introduce the commonly used concept of information outage.

The instantaneous input-output mutual information of the channel (4) up to ARQ roundℓ, for

the channel realizatioñHℓ = G̃ℓ can be written as

I
(
ρ|G̃ℓ

) ∆
=

1

T
I(X̃ℓ ; Ỹℓ | H̃ℓ = G̃ℓ). (14)

=
1

T

ℓ∑

k=1

I(ρ|Gℓ) (15)

where I(ρ|Gℓ) is the instantaneous input-output mutual information corresponding to ARQ

roundℓ. Following (15) we will refer toI
(
ρ|G̃ℓ

)
as theaccumulatedmutual information up to

ARQ roundℓ. The accumulated mutual informationI
(
ρ|G̃ℓ

)
measures the normalized mutual

2Note that our definition of transmit throughput here is purely a measure of the average code rate at the sender’s side, as it

does not take into account whether or not messages are correctly decoded at the receiver’s side.
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information between the accumulated received matrixỸℓ and the coded blocks̃Xℓ, given the

instantaneous channel state matrixG̃ℓ. SinceG̃ℓ is a random matrix,I
(
ρ|G̃ℓ

)
is a non-negative

random variable. Further, from (15) it is clear that the accumulated mutual information is an

increasing function of the ARQ round indexℓ, for a given realization of̃Gℓ.

Following [38, Lemma 1], we get that for|M| = 2R1BT , there exists a codebookC such

that the conditional probability of errorPe(ρ|G̃ℓ) < ǫ for any ǫ > 0 whenever the accumulated

instantaneous mutual information satisfiesI
(
ρ|G̃ℓ

)
≥ R1 for any ℓ = 1, . . . , L, provided that

the block lengthℓBT is sufficiently large. We hence define information outage as the event that

occurs when the accumulated mutual information is belowR1, namely

Oℓ ,

{
G̃ℓ ∈ C

ℓBTNr×ℓBTNt : I
(
ρ|G̃ℓ

)
< R1

}
. (16)

For any finiteB andL, the channel defined in (4) is not information stable and the channel

capacity in the strict Shannon sense is zero [39], since the probability of the outage event is

nonzero. The corresponding outage probability is defined as[20, 21]

Pout(ρ, ℓ, R1)
∆
= Pr (Oℓ) (17)

= Pr
(
I
(
ρ|G̃ℓ

)
< R1

)
. (18)

The accumulated mutual informationI
(
ρ|G̃ℓ

)
, and hence the corresponding outage probability,

depends on the SNRρ and the input distributionPX(X) with the constraint that 1
LBT

E[‖X‖2F ] =
Nt. When no other constraints are imposed on the input distribution, the input distribution that

maximizesI
(
ρ|G̃ℓ

)
and therefore minimizesPout(ρ, ℓ, R1) is the Gaussian distribution, namely,

the entries ofX are i.i.d. complex circularly symmetric random variables with zero mean and

unit variance. This leads to,

I(ρ|Gℓ) =
1

B
log2 det

(
I+

ρ

Nt

GℓG
†
ℓ

)
(19)

=
1

B

B∑

b=1

log2 det

(
I+

ρ

Nt

Gℓ,bG
†
ℓ,b

)
. (20)

In practice, Gaussian codebooks are not feasible, and we will resort to discrete signal constella-

tions. In this work, we are mostly interested in studying therole of the discrete nature of practical

constellations, and the impact this further system constraint has on the outage probability. In
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particular, we can write the mutual information for the scheme described in Section II-B as,

I(ρ|Gℓ) =
1

D

D∑

d=1

I(ρ|Ĝℓ,d) (21)

where

I(ρ|Ĝℓ,d) =
log2 |XM |
MT

− 1

MT
Ex,w

[
log2

(
∑

x′∈XM

e
−

‚‚‚
√

ρ
Nt

bGℓ,d(x−x′)+w

‚‚‚
2
+‖w‖2

)]
(22)

= QNt −
1

(MT )2QNt

∑

x∈XM

Ew

[
log2

(
1 +

∑

x′ 6=x

e
−

‚‚‚
√

ρ
Nt

bGℓ,d(x−x′)+w

‚‚‚
2
+‖w‖2

)]
(23)

is the input-output mutual information corresponding to the realizationĤℓ,d = Ĝℓ,d given in (8)

of the channel described in (9), assuming a uniform distribution over theMNtT multidimensional

constellationXM defined in (7). Since0 ≤ I(ρ|Ĝℓ,d) ≤ QNt, it is not difficult to show that (21)

can be bounded as follows

I(ρ|Gℓ) ≤
1

D

D∑

d=1

min

{
QNt,

1

M

M∑

m=1

log2 det

(
I+

ρ

Nt

Gℓ,(d−1)M+mG
†
ℓ,(d−1)M+m

)}
. (24)

This relationship will prove useful in proving our main results.

V. THROUGHPUT-DIVERSITY-DELAY TRADEOFF

In this section, we derive the optimal tradeoff between throughput, diversity gain and delay

of ARQ schemes signaling over MIMO block-fading channels. In particular, we show that the

tradeoff highlights the roles of the complex-plane signal constellation throughQ, the rate of the

first ARQ roundR1, the maximum number of ARQ roundsL and the number of fading blocks

per ARQ roundB. As we shall see, for large SNR, the tradeoff expression highlights the role

of the asymptotic throughput throughR1. Furthermore, the optimal tradeoff expression includes

the effect of the space-time spreading dimension of the linear dispersion modulator, providing

also a reference of decoding complexity.

We now present the main results of this paper concerning the optimal SNR exponent of ARQ

systems.

Theorem 1:Consider the channel model (4) with input constellation satisfying the short term

average power constraint1
LBT

E[‖X‖2F ] ≤ Nt. The optimal SNR exponentd⋆(R1) is given by

d⋆(R1) =




NtNrLB for short-term static fading

NtNrB for long-term static fading
(25)
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Further, this is achieved by Gaussian random codes of rateR1 > 0, provided that the block

length is sufficiently long.

Proof: Theorem 1 follows immediately as a corollary of [18, Theorem2] after taking into

account the introduction ofB in the system.

Theorem 1 states that Gaussian codes achieve maximal diversity gain for any positive rate. As

we show in the following, this is not the case with discrete signal constellationsXM . In particular,

full diversity is achievable by discrete signal sets provided the rates satisfy0 ≤ R1 ≤ QNtL.

However, in order to attain full diversity we must restrict the signal constellations to certain

properties. In general, due to the discrete nature of these signal sets, a tradeoff between rate,

diversity and delay arises. This relationship is expressedin the next theorem.

Theorem 2:Consider the channel model (4) satisfying the short term average power constraint
1

LBT
E[‖X‖2F ] ≤ Nt, with discrete input signal constellations of cardinality2QNt. The optimal

SNR exponent is given by

d⋆D(R1) =





MNtNr

(
1 +

⌊
LB

M

(
1− R1

LQNt

)⌋)
for short-term static fading

MNtNr

(
1 +

⌊
B

M

(
1− R1

LQNt

)⌋)
for long-term static fading

(26)

over the full range of0 ≤ R1 ≤ QNtL where (26) is continuous.

Proof (Sketch):A sketch of the proof is provided here, with the technical details left to

Appendix. We first prove the converse and show that the diversity gain d⋆D(R1) is upper-

bounded by (26). We can use Fano’s inequality to show that theoutage probabilityPout(ρ, ℓ, R1)

lower-bounds the error probabilityPe(ρ) for a sufficiently large block length. Then we bound

the maximum SNR exponent by considering the diversity gain of the outage probability. For

large SNR, the instantaneous mutual information is either zero orQNt bits per channel use,

corresponding to when the channel is in deep fade and when thechannel is not in deep fade,

respectively [26]. Achievability is proved by bounding theerror probability of the typical set

decoder [18] for ARQ roundsℓ = 1, . . . , L−1, and that of the ML decoder at roundL, using the

union Bhattacharyya bound [40] on a random coded modulationscheme overQ concatenated

with linear dispersion space-time modulation. For finiteT , we obtain similar conditions to those

in [26]. Finally, asT → ∞, we show that the SNR exponent of random codes is given by the

Singleton bound for all values ofR1 where (26) is continuous.
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Theorem 2 states that optimal diversity gain ofNtNrLB andNtNrB for short- and long-term

models, respectively, can also be achieved by discrete signal sets coupled with linear dispersion

space-time modulators with constellationXB (D = 1), namely, space-time modulators that spread

the symbols ofQ over theB fading blocks at each ARQ round. Under this scenario3, full diversity

is maintained for all rates0 ≤ R1 ≤ QNt. However, as anticipated in Section II-B, there is one

drawback of practical concern, namely, complexity. In order to achieve full diversity, the linear

dispersion space-time modulator needs to spread the symbols of Q over theB blocks, which

implies that the size of the constellation of each ARQ round is |XB| = QNtBT . We may,

however, choose a modulator that spreads symbols overM blocks whereM < B in order to

reduce the complexity of the ML decoder. In this case, there is a tradeoff between the parameters

of (26). This can be seen as a manifestation of the discrete nature of the input constellation,

which limits the performance of the outage probability at high SNR. Theorem 2 generalizes the

result of [22] for the quasi-static MIMO channel to the ARQ block-fading case.

The upper bound (26) is also applicable to any systems using block codes overLB independent

block-fading periods. The significance of the ARQ frameworkis that it provides a way of

achieving the optimal SNR exponent attained by a block code with LB coded blocks, without

always having to transmit allLB code blocks. Indeed, following [18], observe that

Pr(Dℓ) , Pr(Ac
1, . . . ,Ac

ℓ)

≤ Pr(Ac
ℓ)

= Pr(ψℓ(ỹℓ, H̃ℓ) = 0)

≤ Pout(ρ, ℓ, R1) + ǫ

.
= ρ−d⋆

D
(R1). (27)

3Within our framework, it would also be possible to modulate over 1 ≤ M ≤ BL periods in the short-term case, namely,

spreading the modulation symbols also across ARQ rounds and(26) would remain valid. In particular, lettingM = LB, we

could achieve full diversity over the full range ofR1, namely,0 < R1 < QNtL, which is the same exponent of the Gaussian

input. However, generalizing our model to this case, would compress key concepts such as information accumulation in a single

formula, rather than the more natural sum expression in (15). In particular, one could define the equivalent channel model up

to roundℓ as

eHℓ = diag(H1, . . . ,Hℓ,0, . . . , 0) ∈ C
LBNr×LBNt .

where0 is the zero matrix, and obtain the result.
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On substitution of (27) into (13), we find

η(R1, L)
.

≥ R1

1 +
∑L−1

ℓ=1 ρ
−d⋆

D
(R1)

.
= R1, (28)

which shows that the transmit throughput is asymptoticallyequal toR1 (sinceR1 ≥ η(R1, L)),

the rate of a single ARQ round. In other words, provided the SNR is sufficiently high, ARQ

systems which sendon averageB coded blocks can achieve the same diversity gain as that

achieved by a block code system which sendsLB coded blocksevery time. This is because in

the high SNR regime, most frames can be decoded correctly with high probability based only on

the first transmitted code block. ARQ retransmissions are used to correct the rare errors which

occur almost exclusively whenever the channel is in outage.While the throughputη(R1, L) is

a function ofL at mid to low SNR, it converges towardsR1 independent ofL at sufficiently

high SNR. Since the optimal diversity gain is an increasing function ofL, this behavior can be

exploited to increase reliability without suffering code rate losses. However, as noted in [18], this

behavior is exhibited only by decoders capable of near perfect error detection (PED). Therefore,

the performance of practical error detection schemes can beexpected to significantly influence

the throughput of ARQ systems.

Since equation (28) relates the asymptotic throughput withthe coding parameterR1, the

optimal SNR exponent given in (26) gives theoptimal throughput-diversity-delaytradeoff of

MIMO ARQ block-fading channels4. Examining the optimal throughput-diversity-delay tradeoff

(26) in more detail, we first note that

R1

NtLQ
=

R0

QNt

= r

is the code rate of a binary code. i.e.0 ≤ r ≤ 1, as if the coded modulation schemeCQ was

obtained itself as the concatenation of a binary code of rater and lengthNtLQBT . Expression

(26) implies that the higher we set the target rateR1 (equivalently,R0), the lower the achievable

diversity order. In particular,uncodedsequences (i.e.R1 = QNtL) such as the full diversity

modulations [37, 41], achieve optimal diversity gain ofMNtNr, while any code with non-zero

R1 ≤ QNtL will achieve optimal diversity less than or equal toMNtNrLB or MNtNrB in the

4We stress the fact that the coded modulation schemes considered in this paper have afixedrate, and therefore zero multiplexing

gain as defined in [17, 18]. However, it is not difficult to showthat allowingQ = ξ log ρ would imply the achievability of the

diversity-multiplexing-delay tradeoff of [18].
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short- and long-term static models, respectively. This is an intuitively satisfying result asLB

andB are precisely the number of independent fading periods in the short- and long-term static

models, respectively, each with inherent diversityMNtNr.

Figures 2, 3, 4 and 5 are graphs of the tradeoff function (26) with varyingQ, B, L andM

plotted against the rate of a single ARQ roundR1. We show the tradeoff function (26) for both

short- and long-term static fading models, respectively.

First we examine the effect of the constellation sizeQ on the optimal diversity tradeoff

function. Figure 2 shows the tradeoff curve for three different values ofQ. We can see from the

plot that the tradeoff curves for higherQ are strictly better than lowerQ in terms of achievable

diversity gain. This implies that a high order modulation scheme always outperform lower order

modulation schemes in the limit of high SNR in terms of error rate performance, for any code

rate. Alternatively, a system with highQ can choose to operate at higher code rates than a low

Q system and still maintain the same diversity gain.

Figure 3 shows the diversity tradeoff curve for different values ofB. Similar to the previous

tradeoff curve with constellation sizeQ, we observe that systems with high values ofB are

strictly better than systems with lowB (in terms of diversity gain). In addition, we notice thatB

corresponds to the number of “steps” in the tradeoff function of (26). Systems with low values

of B maintain the same diversity gain over wider intervals of rates than systems with highB.

Relatively, the penalty for using codes with high spectral efficiency is much higher for systems

with largeB (although these systems will still achieve higher diversity gains than systems with

low B).

Figure 4 illustrates the effect of the maximum number of allowed ARQ roundsL on the

diversity of the system. It is clear from the plot that in the short-term static case the effect of

L is to simply shift tradeoff curves upwards. This is intuitively satisfying, since each additional

ARQ round represents incremental redundancy, which can be considered as a form of advanced

repetition coding. Each additional ARQ round containsB additional independent fading blocks

and hence the diversity gain withL ARQ rounds is simply the diversity gain withL− 1 rounds

plusB. On the other hand, in the case of long-term static fading, since the different ARQ rounds

use the same channel realization, largerL implies a broader range ofR1 for which maximum

diversity can be achieved.

Figure 5 shows the impact ofM on the tradeoff curve. As anticipated in Section II-B, we
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observe that the largerM , the larger the optimal SNR exponent. AsM increases, larger diversity

is maintained over a larger range ofR1. A careful look to (26) reveals that forM > 1, each

ARQ round behaves as a MIMO block-fading channel withB
M

= D blocks, each with inherent

diversityMNtNr, reducing the number of steps of the tradeoff curve. Unfortunately, however,

increasingM implies an exponential (inM) increase in the overall decoding complexity.

Remark 1: In [29, 42], the authors examined the performance of codes over MIMO block-

fading channels without ARQ. Using the notation in this paper, the diversity gain based on the

worst pairwise error rate performance was shown to be upper-bounded by

dPEP(R) ≤ Nr

(
1 +

⌊
B

(
Nt −

R

Q

)⌋)
. (29)

The bound in (29) is based on the fact that the rank of a the codeword difference matrix of a

given pairwise error event cannot be larger than the minimumnumber of non-zero rows. The

application of the Singleton bound [25] to the minimum number of non-zero rows (interpreted as

the Hamming distance of the code) leads the result shown in (29) [29, 42–44]. Since the bound

(29) was derived for the non-ARQ case, we will compare it withour results by lettingL = 1

in (26). An important assumption made in the derivation of (29) is that a signal constellation

of cardinality 2Q is used for signaling at each transmit antenna. Under this assumption, the

Singleton bound and the rank criterion give rise to the PEP diversity bound (29). In our case,

we do not restrict the signals out of each transmit antenna tobelong to a constellation of size

2Q, but rather, allow for more freedom in the system by linearlymodulating (combining)MNtT

2Q-ary symbols to be transmitted overMT channel uses. Figure 6 compares the Singleton bound

(29) with our main result (26). As we see, even in the case ofM = 1 our bound yields a larger

exponent. This effect was also observed in [22] for the quasi-static MIMO channel.

VI. M AXIMUM DISTANCE SEPARABLE SPACE-TIME CODES

Having established the main effects of each parameter in (26), we now consider the practical

coding aspects of Theorem 2. The diversity tradeoff function (26) can be viewed as a modified

version of the Singleton bound [25] with the diversity gain corresponding to the Hamming

distance of our codeC, viewed as a code of lengthLB
M

= LD constructed over an alphabet

of size 2QMNtT . This is a useful interpretation and naturally leads us to investigate the role of

Singleton-bound-achieving MDS codes. The role of MDS codesas block codes in block-fading

channel has been examined extensively in [23, 24, 26, 45].
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In this section, we illustrate that the optimal SNR exponentshown in (26) can be achieved with

practical MDS coding schemes. The block diagram of the concatenated MIMO ARQ transmitter

structure considered in the numerical examples is shown in Figure 7. A codeword of the MDS

outer encoder is partitioned intoLB blocks. Each such block is then passed through a pseudo-

random interleaver, subsequently mapped onto a block of complex symbols according to the

signal constellation, and passed through a linear dispersive modulator. In the ARQ transmitter,

B blocks ofT channel uses are transmitted in each ARQ round. For simplicity, we make use of

the MDS convolutional codes presented in [23] to illustratethe practical meaning and importance

of the diversity tradeoff curve5. The ARQ decoder defined in Section II-C is impractical due to

the complexity of the typical set decoder. Instead we develop a bounded-distance ARQ decoder

and a sub-optimal iterativea posteriori probability (APP) based ARQ decoder, respectively,

approximating the behavior of the typical set decoder.

For the numerical examples, we consider two systems. The first system has a maximum

number of ARQ rounds ofL = 2, B = 1, and is using the 4-state[5, 7]8 outer convolutional

code, while the second system has a maximum number of ARQ rounds ofL = 4, B = 1, and

is using the 4-state[5, 5, 7, 7]8 outer convolutional code. The rate of the first ARQ round,R1, is

the same for both systems. The two systems are investigated for both single-input, single-output

(SISO) and MIMO block-fading channels, subject to short-term static fading and long-term static

fading, respectively.

We first consider the use of a bounded-distance ARQ decoder. Define the set of messages

Vℓ ⊆ M, where the corresponding received codeword hypothesesH̃ℓX̃ℓ(m), m ∈ M are within

a bounded distance from the received matrixỸℓ,

Vℓ ,

{
m ∈ M :

∣∣∣Ỹℓ − H̃ℓX̃ℓ(m)
∣∣∣
2

F
≤ ℓBTNr(1 + δ)

}
, (30)

whereδ > 0. For 1 ≤ ℓ ≤ L−1, the output of the bounded-distance ARQ decoder is then given

5The main goal of these examples is not to approach the outage probability of the channel, but rather to illustrate the meaning

and significance of the results presented in the previous section. If one wants to approach the outage probability, more powerful

codes should be employed. For details on outage approachingcode ensembles for SISO and MIMO channels the reader is

referred to [26, 46–48].
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by

ψℓ(Ỹℓ, H̃ℓ) =




m̃ if Vℓ = {m̃}

0 otherwise
. (31)

Denoting the true messagêm, the undetected error probability is bounded as

Pr(Aℓ, Eℓ) = Pr

(
⋃

m̃ 6=m̂

(Vℓ = {m̃})
)

(32)

≤ Pr
(
|W̃ℓ|2F ≥ ℓBTNr(1 + δ)

)
(33)

(a)

≤ (1 + δ)ℓBTNr exp(−ℓBTNrδ), (34)

where (a) follows from bounding the chi-squared distribution of |W̃ℓ|2F with the Chernoff bound.

Finally, letting δ = β log ρ for β > 0, we have

Pr(Aℓ, Eℓ)
.

≤ ρ−BTNrβ. (35)

This result implies that arbitrarily low undetected error probability can be achieved by the new

decoder, at the cost of additional delay. In particular,β should be chosen such thatBTNrβ ≥
d⋆(R1) in order to achieve the optimal ML exponentd⋆(R1).

Figure 8 illustrates the performance of the two ARQ systems in the short-term SISO static

channel. We choose the pseudo-random interleaver to be the trivial identity interleaver, i.e. no

interleaving is applied between the outer encoder and the inner modulator. The mapper overQ
is set to be BPSK, the space-time modulation rotation matrixR = I, andT = 100 channel uses.

We apply the list Viterbi decoder proposed in [49] to implement the ARQ decoder outlined in

(30) and (31). In particular, we chooseβ = d⋆(R1)
BTNr

to minimize the number of retransmissions.

Considering theL = 2 system, the top three curves in Figure 8 show the corresponding

outage probability, FER with list decoding and FER with PED.The FER curves are parallel to

the outage curve at high SNR, which show that the convolutional MDS codes indeed achieve

the optimal diversity gain. TheL = 4 system corresponds to the bottom three curves of Fig. 8,

where again we see that the optimal diversity gain is achieved by the MDS convolutional code.

Comparing the two ARQ systems, it is clear that significant performance gains can be obtained

at the expense of higher delays. At FER of10−2, the gain of theL = 4 system over theL = 2

system is already 5 dB. The performance gap increases even more dramatically at higher SNR.
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Figure 9 shows the average number of ARQ rounds of the two ARQ systems considered

above. For each system, we plot the average number of ARQ rounds with PED, with the list

decoder and the lower bound given by (12), respectively. It is clear from the plot that at medium

to low SNR, significant loss in throughput is incurred by codes that do not approach the outage

probability limit, like convolutional code. Even more lossin throughput is observed when list

decoding is used as the error detection mechanism.

Finally, note that the average ARQ round curves converge towards one at high SNR. This

agrees with (28) and shows that regardless of the maximum number of allowed ARQ roundsL,

no spectral efficiency penalties are incurred at sufficiently high SNR. In the limit of high SNR,

the transmit throughputη(R1, L) = R1.

Figure 10 and Figure 11 correspond to the error rate and average latency of the same two ARQ

systems, under long-term static fading. As predicted by thetheoretical results of the previous

section, under long-term static fading both schemes have the same SNR exponent. As a matter

of fact, despite a 1 dB difference in outage probability, both schemes show virtually the same

error probability. As already mentioned in the previous section, in the long-term static case, the

ARQ gain translates in a larger range ofR1 supported with optimal SNR exponent.

We now consider2 × 2 MIMO systems withL = 2 andL = 4 using the4-state[5, 7]8 and

[5, 5, 7, 7]8 convolutional codes, concatenated with the optimal2× 2 linear dispersive modulator

suggested in [29]. In this example, the channel coherence time is T = 32 channel uses and

the mapper overQ is set to 4QAM. In this case, the bounded-distance ARQ decoder in (31)

also becomes impractical, and we therefore resort to sub-optimal iterative error detection and

decoding schemes. As a benchmark, we consider an iterative scheme based on the full-complexity

APP detector, recursively exchanging code symbol extrinsics with an outer APP decoder, thus

generating estimates of the information sequence. Applying the max-log APP detector in place

of the full-complexity APP detector provides a low-complexity alternative. For the examples

considered here, the full-complexity iterative decoder isroughly twice as complex as the max-

log APP alternative. For the full-complexity iterative decoder, we only consider PED as the

target benchmark, while for the max-log APP based iterativedecoder we consider PED, as well

as a non-ideal error detection scheme. At each ARQ round, we run the accumulated received

signal through six iterations of the respective iterative detection and decoding algorithms before

examining the decoder output.
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In the non-ideal error-detection case, errors are detectedby examining the soft output of the

decoder at each ARQ round. Specifically, we use the minimum bit-reliability criterion [50],

checking at the end of each ARQ decoding round whether the minimum bit-wise log-likelihood

ratio (LLR) of the information sequence exceeds a threshold, i.e.,

min
0<i≤K

{|Lℓ
d,i|} ≥ θ, (36)

whereLℓ
d,i denotes theith element of the information LLR sequence at theℓth ARQ round and

K denotes the length of the LLR vector. If (36) holds, decodingis considered successful, and

the information sequence corresponding to the LLR vector isdelivered to the sink. The choice

of θ affects both the average latency as well as the error rate of the system. In general, choosing

a highθ encourages the receiver to request additional retransmissions, which in turn reduces the

error rate. However, ifθ is set too high, the system behaves as a block coded system andthe

spectral efficiency advantage of ARQ systems is not realized. Further, it is necessary to increase

θ as a function of SNR in order to achieve error rate performance comparable to that of perfect

error detection. To this end, we adjust the threshold as

θ = max{1, β log ρ}, (37)

where we have lower boundedθ in order to encourage retransmissions at low SNR. This choice

of θ was found to perform well when the growth parameterβ is carefully selected. In the

examples shown here,β is determined experimentally.

Figure 12 compares the error rate performance of theL = 2 system andL = 4 system

under the short-term fading dynamics. For each system, we plot four curves, corresponding to

the lower outage probability bound, obtained by using (24),the PED performance for the two

iterative decoders, as well as the minimum bit-reliabilitycriterion (MinLLR) performance for the

max-log APP based iterative decoder. In this case we haveβ = 16 andβ = 32 for the MinLLR

scheme whenL = 2 andL = 4, respectively. We notice that additional retransmissionslead to

an appreciable decrease in error rates, and, equally important, the MinLLR criterion performs

virtually as good as perfect error detection. Also, we observe no appreciable loss in performance

of the max-log APP based iterative decoder as compared to thefull-complexity case, confirming

the use of the max-log APP approximation is well justified.

Figure 13 compares the average latency (measured in number of ARQ rounds) of the two

ARQ systems under the short-term fading scenario. Again, weplot four curves per system,
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corresponding to the lower bound of expected latency, using(24) and (12), as well as the PED

and MinLLR performances. In this case, we observe that the cost of using the MinLLR criterion

is mainly an increase in latency, caused by requesting superfluous retransmissions, and again

there is no appreciable loss in performance by applying the max-log APP approximation.

Figure 14 and Figure 15 correspond to the error rate and average latency of the same two

ARQ systems, under long-term static fading. In this case we have β = 12 and β = 24 for

the MinLLR scheme whenL = 2 and L = 4, respectively. Once again, as predicted by the

theoretical results of the previous section, the error ratecurves have the same exponent and,

moreover, have very similar gains. Similarly, the advantage of ARQ in this case is that larger

throughput can be supported with optimal SNR exponent.

VII. CONCLUSIONS

The focus of this paper is to derive the optimal tradeoff between throughput, diversity gain,

and delay for the block-fading MIMO ARQ channel. We prove that for the block-fading MIMO

ARQ channel with input constellation satisfying a short-term power constraint, the optimal SNR

exponent is given byNtNrLB for short-term static fading andNtNrB for long-term static fading,

which is achieved by Gaussian codes of any positive rate.

When the input signal constellations are constrained to be discrete, this is no longer the case.

Due to the discrete nature of these signal sets, a tradeoff between rate, diversity and delay arises.

As our main result, we prove that for the block-fading MIMO ARQ channel with discrete input

signal constellation of cardinality2QNt satisfying a short-term power constraint, the optimal SNR

exponent is given by a modified Singleton bound, relating allthe system parameters. In particular,

we show that the tradeoff highlights the roles of the complex-plane signal constellation through

Q, the rate of the first ARQ roundR1, the maximum number of ARQ roundsL, and the number

of fading blocks per ARQ roundB. Furthermore, the optimal tradeoff expression includes the

effect of the space-time spreading dimensionM of the linear dispersion modulator, providing

also a reference of decoding complexity.

Finally, we present numerical results demonstrating the practical significance of the theoreti-

cal analysis, showing that practical MDS codes achieve the optimal throughput-diversity-delay

tradeoff.
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APPENDIX

In this Appendix, we show the details of the proof of Theorem 2. In particular, we detail the

proof for the short-term static model. The proof corresponding to the long-term static model

follows exactly the same steps, and it is thus omitted.

PROOF OFTHEOREM 2: CONVERSE

To prove Theorem 2, we first establish the converse and show that the diversity gain is upper-

bounded by (26). We assumeNt ≥ Nr throughout the analysis with no loss in generality6.

We start following the arguments in [18, Appendix I] and conclude that by Fano’s inequality

we can obtain a lower bound to the error probability of the ARQdecoder at any ARQ roundℓ

by using an ML decoder that operates over theL ARQ rounds. Therefore,

Pe (ρ) ≥ E

[∣∣∣∣∣1−
I(ρ|G̃L)

R0L
− 1

R0LBT

∣∣∣∣∣
+

]
(38)

where|x|+ = max{0, x}. Hence, for sufficiently largeT , we have that [17, 18]

Pe(ρ)≥̇Pout(ρ, L,R1). (39)

Therefore, it follows that we can upper-bound the SNR exponent of the ARQ system by

considering the outage probability up to ARQ roundL.

Now, we study in more detail the properties ofPout(ρ, L,R1) when discrete signal constella-

tions are used. In particular, we recall that (24) states that

I(ρ|Gℓ) ≤
1

D

D∑

d=1

min

{
QNt,

1

M

M∑

m=1

log2 det

(
I+

ρ

Nt

Gℓ,(d−1)M+mG
†
ℓ,(d−1)M+m

)}
(40)

and therefore,

Pout(ρ, L,R1)

≥ Pr

(
L∑

ℓ=1

1

D

D∑

d=1

min

{
QNt,

1

M

M∑

m=1

log2 det

(
I+

ρ

Nt

Gℓ,(d−1)M+mG
†
ℓ,(d−1)M+m

)}
< R1

)

(41)

= Pr

(
L∑

ℓ=1

D∑

d=1

min

{
QNt,

1

M

M∑

m=1

Nr∑

i=1

log2

(
1 +

ρ

Nt

λℓ,(d−1)M+m,i

)}
< DR1

)
(42)

6If Nt < Nr, it suffices to replacedet
“
I+Gℓ,bG

†
ℓ,b

”
by det

“
I+G

†
ℓ,bGℓ,b

”
in the computation of the input-output mutual

information with Gaussian inputs and all the arguments still follow.
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whereλℓ,(d−1)M+m,1 ≤ . . . ≤ λℓ,(d−1)M+m,Nr
are the orderedNr eigenvalues of theNr×Nr matrix

Gℓ,(d−1)M+mG
†
ℓ,(d−1)M+m

corresponding to ARQ roundℓ and fading block(d− 1)M +m.

We now characterize the behavior of the outage probability at high SNR. Following [17] we

define theSNR normalizedeigenvalues as

αℓ,b,i , − log λℓ,b,i
log ρ

. (43)

The joint probability distribution ofαℓ,b = (αℓ,b,1, . . . , αℓ,b,M), can be described using a result

in [17, Lemma 3]

f(αℓ,b) = K−1
Nt,Nr

(log ρ)Nr

Nr∏

i=1

ρ−(Nt−Nr+1)αℓ,b,i

∏

i<j

(
ρ−αℓ,b,i − ρ−αℓ,b,j

)2
exp

(
−

Nr∑

i=1

ρ−αℓ,b,i

)
,

(44)

whereKNt,Nr
is a normalizing constant. Then it follows that

Pout(ρ, L,R1)

≥ Pr

(
L∑

ℓ=1

D∑

d=1

min

{
QNt,

1

M

M∑

m=1

Nr∑

i=1

log2

(
1 +

ρ

Nt

λℓ,(d−1)M+m,i

)}
< DR1

)
(45)

.
= Pr

(
L∑

ℓ=1

D∑

d=1

min

{
QNt,

1

M

M∑

m=1

Nr∑

i=1

log2 ρ
|1−αℓ,(d−1)M+m,i|+

}
< DR1

)
(46)

.
= Pr

(
L∑

ℓ=1

D∑

d=1

min

{
QNt,

log2 ρ

M

M∑

m=1

Nr∑

i=1

∣∣1− αℓ,(d−1)M+m,i

∣∣
+

}
< DR1

)
. (47)

If we now define

α̃ℓ,d
∆
=
(
α

′
ℓ,(d−1)M+1, . . . ,α

′
ℓ,dM

)′ ∈ R
MNr (48)

=
(
αℓ,(d−1)M+1,1, . . . , αℓ,(d−1)M+1,Nr

, . . . , αℓ,dM,1, . . . , αℓ,dM,Nr

)′
(49)

equation (47) becomes

Pout(ρ, L,R1)≥̇Pr

(
L∑

ℓ=1

D∑

d=1

(1− 11{α̃ℓ,d � 1}) < DR1

QNt

)
(50)

wherea � b denotes componentwise inequality, i.e.,ai ≥ bi, ∀i = 1, . . . , n for somea,b ∈ Rn

and1 is the all-one vector, since

min

{
QNt,

log2 ρ

M

M∑

m=1

Nr∑

i=1

∣∣1− αℓ,(d−1)M+m,i

∣∣
+

}
.
=




0 whenαℓ,d � 1

QNt otherwise.
(51)
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This means that asymptotically for large SNR, when all the components ofα̃k,d are larger or

equal than one (deep fades) the mutual information tends to0, and toQNt otherwise. Following

similar steps as in [17] we can write that

Pout(ρ, L,R1)≥̇
∫

α∈ eOL∩R
LDMNr
+

exp

(
− log ρ

L∑

ℓ=1

D∑

d=1

M∑

m=1

Nr∑

i=1

(2i− 1 +Nt −Nr)αℓ,(d−1)M+m,i

)
dα

(52)

where the large SNR outage event is given by

ÕL =

{
α ∈ R

LDMNr :
L∑

ℓ=1

D∑

d=1

(1− 11{α̃ℓ,d � 1}) < DR1

QNt

}
(53)

=

{
α ∈ R

LDMNr :

L∑

ℓ=1

D∑

d=1

11{α̃ℓ,d � 1} > D

(
L− R1

QNt

)}
(54)

andα
∆
=
(
α̃

′
1,1, . . . , α̃

′
L,D

)′ ∈ RLDMNr . Applying Varadhan’s lemma [51] we have that

d⋆D(R1) ≤ inf
α∈ eOL∩R

LDMNr
+

{
L∑

ℓ=1

D∑

d=1

M∑

m=1

Nr∑

i=1

(2i− 1 +Nt −Nr)αℓ,(d−1)M+m,i

}
. (55)

The infimum (55) is solved by considering two cases. IfR1 > LQNt, then the infimum is satisfied

by α̃ℓ,d = 0 for all ℓ andd, hence the diversity gain is zero. Alternatively, ifR1 ≤ LQNt, then

among all possible vectors̃αℓ,d, for ℓ = 1, . . . , L andd = 1, . . . , D, we need to havek vectors

equal to the all-ones vector (α̃ℓ,d = 1), for somek ∈ Z in order to satisfy the infimum. The

condition to be met is written

k > D

(
L− R1

QNt

)
, (56)

which implies that in order to achieve the infimumk should be

k = 1 +

⌊
D

(
L− R1

QNt

)⌋
. (57)

Since
∑M

m=1

∑Nr

i=1 2i− 1 +Nt −Nr =MNtNr, we upper-bound the optimal SNR exponent as

d⋆D(R1) ≤MNtNr

(
1 +

⌊
LB

M

(
1− R1

LQNt

)⌋)
, (58)

which proves the desired converse result.
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PROOF OFTHEOREM 2: ACHIEVABILITY

To prove the achievability of the upper-bound on the SNR exponent in (58), we examine

the average frame error rate obtained using random codes andthe ARQ decoder described in

Section II-C. This decoder behaves like a typical set decoder for ARQ roundsℓ = 1, . . . , L− 1,

and as an ML decoder at roundL [38]. Since the channel matrix̃HL encompasses the channel

realizations of all ARQ rounds, with a slight abuse of notation we can express the error probability

conditioned on the fading realization as

Pe(ρ|H̃L) =

L−1∑

ℓ=1

Pr


Dℓ−1,

⋃

m̂ 6=m
m̂6=0

ψℓ(Ỹℓ, H̃ℓ) = m̂


 + Pr

(
DL−1,

⋃

m̂ 6=m

ψL(ỸL, H̃L) = m̂

)

(59)

where all parameters are defined in Section III. As shown in [18, 38, Appendix I],∀δ > 0 and

sufficiently largeT , there exists a code for which the error probability corresponding to the first

L− 1 rounds can be bounded as

L−1∑

ℓ=1

Pr


Dℓ−1,

⋃

m̂ 6=m
m̂6=0

ψℓ(Ỹℓ, H̃ℓ) = m̂


 < δ. (60)

Therefore,

Pe(ρ|HL) ≤ (L− 1)δ + Pml
e (ρ|HL) (61)

where

Pml
e (ρ|HL)

∆
= Pr

(
DL−1,

⋃

m̂6=m

ψL(ỸL, H̃L) = m̂

)
(62)

is the error probability of an ML decoding error at theLth ARQ round. We now characterize the

behavior ofPml
e (ρ|HL) for a particular code construction7, namely, random codes constructed

7We could simply conclude the proof by following the same arguments of the proof in [18, Appendix I], namely, using

P
ml
e (ρ|HL) < δ + 11{HL ∈ OL}

to argue thatPe(ρ)≤̇ρd
⋆

D
(R1) (see [18, Appendix I] for details). However, the specific analysis of the ML decoding error

probability for roundL using random codes encompasses the standard quasistatic and block-fading MIMO channels with no

ARQ as special cases, and therefore is of broader interest.
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overQ, concatenated with random linear dispersion space-time modulators described in Section

II-B.

Following the steps of [22] we consider that the2R0LBT codewords ofCQ are generated with

the uniform probability distribution overQ, namely,∀cQ ∈ CQ,

p(cQ) =
LBTNt∏

k=1

1

|Q| =
1

2QLBTNt
. (63)

Each codewordcQ ∈ CQ is partitioned intoLD vectors, denotedcQ,ℓ,d ∈ QMTNt , whereℓ =

1, . . . , L andd = 1, . . . , D, such thatcQ = [cQ,1,1, . . . , cQ,L,D]
′. Now let

R =
{
R ∈ R

MTNt×MTNt : RR′ = R′R = I
}

(64)

denote the set of orthogonal matrices of dimensionMTNt ×MTNt. As outlined in Section

II-B, the modulated signals are given by

x̂ℓ,d = RcQ,ℓ,d. (65)

Then, if we define

X̂ℓ,d
∆
= matMNt×T (x̂ℓ,d) (66)

where the operatorA = matn×m(a) formats vectora ∈ Cnm into an n × m matrix, we have

that the portion of codeword transmitted over ARQ roundℓ can be written as

Xℓ =
[
X̂′

ℓ,1, . . . , X̂
′
ℓ,D

]′
. (67)

Then we have that the conditional pairwise error probability is given by

P
(
X(n) → X(k) | H̃L = G̃L

)
= Q

(√
ρ

2Nt

∥∥∥G̃L(X(n)−X(k))
∥∥∥
2

F

)
(68)

≤ exp

(
− ρ

4Nt

∥∥∥G̃L(X(n)−X(k))
∥∥∥
2

F

)
. (69)

It follows from the structure of̃GL that

P
(
X(n) → X(k) | H̃L = G̃L

)
≤

L∏

ℓ=1

D∏

d=1

exp

(
− ρ

4Nt

∥∥∥Ĝℓ,d(x̂ℓ,d(n)− x̂ℓ,d(k))
∥∥∥
2
)

(70)

=

L∏

ℓ=1

D∏

d=1

exp

(
− ρ

4Nt

M∑

m=1

∥∥Gℓ,(d−1)M+m(Xℓ,(d−1)M+m(n)−Xℓ,(d−1)M+m(k))
∥∥2
F

)
. (71)

If the elements ofR are drawn with the uniform probability distribution, it follows from [52,

Theorem 1] thatR has full diversity with probability one, namely, the matricesXℓ,(d−1)M+m(n)−
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Xℓ,(d−1)M+m(k) have full rank8. We now apply the singular value decomposition (SVD) [36] to

both channel and difference matrices

Gℓ,(d−1)M+m = UΛ
1
2

ℓ,(d−1)M+m
V† (72)

and

Xℓ,(d−1)M+m(n)−Xℓ,(d−1)M+m(k) = AD
1
2

ℓ,(d−1)M+m
B† (73)

and get that

P
(
X(n) → X(k) | H̃L = G̃L

)

≤
L∏

ℓ=1

D∏

d=1

exp

(
− ρ

4Nt

M∑

m=1

∥∥Gℓ,(d−1)M+m(Xℓ,(d−1)M+m(n)−Xℓ,(d−1)M+m(k))
∥∥2
F

)
(74)

=
L∏

ℓ=1

D∏

d=1

exp

(
− ρ

4Nt

M∑

m=1

∥∥∥UΛ
1
2

ℓ,(d−1)M+m
V†AD

1
2

ℓ,(d−1)M+m
B†
∥∥∥
2

F

)
(75)

=

L∏

ℓ=1

D∏

d=1

exp

(
− ρ

4Nt

M∑

m=1

∥∥∥Λ
1
2

ℓ,(d−1)M+m
PD

1
2

ℓ,(d−1)M+m

∥∥∥
2

F

)
, (76)

whereP = V†A is unitary. The diagonal matricesΛ
1
2

ℓ,(d−1)M+m
andD

1
2

ℓ,(d−1)M+m
are composed

of the singular values of the channel matrixGℓ,(d−1)M+m and codeword difference matrix

Xℓ,(d−1)M+m(n)−Xℓ,(d−1)M+m(k), respectively. As mentioned earlier, the matricesXℓ,(d−1)M+m(n)−
Xℓ,(d−1)M+m(k) have full rank with probability one, which implies that the theMNr singular

values inD
1
2

ℓ,(d−1)M+m
are all non-zero form = 1, . . . ,M , d = 1, . . . , D and ℓ = 1, . . . , L. If

we now define

Γℓ,(d−1)M+m
∆
= PDℓ,(d−1)M+mP

† (77)

and

γℓ,(d−1)M+m

∆
= diag

(
Γℓ,(d−1)M+m

)
(78)

= (γℓ,(d−1)M+m,1, . . . , γℓ,(d−1)M+m,Nr
), (79)

8As it will be clear in the following, random rotations are notessential in the proof. It is sufficient to rely on the existence

of a particularR with full diversity [29, 32–35, 37, 41].
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we can rewrite (76) as

P
(
X(n) → X(k) | H̃L = G̃L

)
≤

L∏

ℓ=1

D∏

d=1

exp

(
−

M∑

m=1

Nr∑

i=1

γℓ,(d−1)M+m,i

4Nt

ρ1−αℓ,(d−1)M+m,i

)
.

(80)

Averaging (80) over the code ensemble, namelyX(n),X(k) andR, we get that

P (X(n) → X(k)|α) =

L∏

ℓ=1

D∏

d=1

1

2QMTNt

[
1

+
1

2QMTNt

∑

cQ,ℓ,d(n)6=cQ,ℓ,d(k)

ER

[
exp

(
−

M∑

m=1

Nr∑

i=1

γℓ,(d−1)M+m,i

4Nt

ρ1−αℓ,(d−1)M+m,i

)]]
. (81)

If we now sum over the2R0BLT codewords, we have the union bound

Pe(ρ|α) ≤ 2R0BLT

L∏

ℓ=1

D∏

d=1

1

2QMTNt

[
1

+
1

2QMTNt

∑

cQ,ℓ,d(n)6=cQ,ℓ,d(k)

ER

[
exp

(
−

M∑

m=1

Nr∑

i=1

γℓ,(d−1)M+m,i

4Nt

ρ1−αℓ,(d−1)M+m,i

)]]

(82)

= exp

(
−LDMTQNt log(2)

[
1− R0

QNt

− 1

LDMTQNt

L∑

ℓ=1

D∑

d=1

log2

(
1 (83)

+
1

2QMTNt

∑

cQ,ℓ,d(n)6=cQ,ℓ,d(k)

ER

[
exp

(
−

M∑

m=1

Nr∑

i=1

γℓ,(d−1)M+m,i

4Nt

ρ1−αℓ,(d−1)M+m,i

)])])

(84)

= exp (−LDMTQNt log(2)E(ρ,α)) (85)

where we have defined the union bound exponent as

E(ρ,α)
∆
= 1− R0

QNt

− 1

LDMTQNt

L∑

ℓ=1

D∑

d=1

log2

(
1 (86)

+
1

2QMTNt

∑

cQ,ℓ,d(n)6=cQ,ℓ,d(k)

ER

[
exp

(
−

M∑

m=1

Nr∑

i=1

γℓ,(d−1)M+m,i

4Nt

ρ1−αℓ,(d−1)M+m,i

)])
.

(87)

Following similar arguments to those in [22, 26], we use the dominated convergence theorem
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[53] to obtain that

lim
ρ→∞

ER

[
exp

(
−

M∑

m=1

Nr∑

i=1

γℓ,(d−1)M+m,i

4Nt

ρ1−αℓ,(d−1)M+m,i

)]

= ER

[
lim
ρ→∞

exp

(
−

M∑

m=1

Nr∑

i=1

γℓ,(d−1)M+m,i

4Nt

ρ1−αℓ,(d−1)M+m,i

)]
(88)

= 1− 11{α̃ℓ,d ≻ 1}, (89)

sinceγℓ,(d−1)M+m,i > 0 with probability one. Forǫ > 0 and large SNR, the union bound exponent

E(ρ,α) can be lower-bounded by

Eǫ(ρ,α)
∆
= 1− R0

QNt

− 1

LD

L∑

ℓ=1

D∑

d=1

11{α̃ℓ,d � 1− ǫ}. (90)

Let now

Eǫ =
{
α ∈ R

LDMNr : Eǫ(ρ,α) ≤ 0
}

(91)

=

{
α ∈ R

LDMNr :
L∑

ℓ=1

D∑

d=1

11{α̃ℓ,d � 1− ǫ} ≥ LD

(
1− R0

QNt

)}
. (92)

Then we can bound the overall error probability as

Pe(ρ)≤̇
∫

α∈RLDMNr

min {1, exp (−LDMTQNt log(2)Eǫ(ρ,α))} p(α)dα. (93)

In a similar way to what it is done in [26], we consider codes with block lengthT (ρ) such that

τ
∆
= lim

ρ→∞

T (ρ)

log ρ
. (94)

That is, we consider sufficiently long codewords large SNR such that the error probability is

never dominated by the event when two codewords coincide. Thus, we can write that,

Pe(ρ)≤̇
∫

α∈Eǫ∩R
LDMNr
+

exp

(
− log ρ

L∑

ℓ=1

D∑

d=1

M∑

m=1

Nr∑

i=1

(2i− 1 +Nt −Nr)αℓ,(d−1)M+m,i

)
dα

+

∫

α∈Ec
ǫ∩R

LDMNr
+

exp

(
− log ρ

L∑

ℓ=1

D∑

d=1

M∑

m=1

Nr∑

i=1

(2i− 1 +Nt −Nr)αℓ,(d−1)M+m,i

+ τLDMQNt log(2)Eǫ(ρ,α)

)
dα (95)

and therefore, the random coding exponent is lower-boundedby

d(r)(R1) ≥ sup
ǫ>0

min{d1, d2} (96)
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where

d1 = inf
α∈Eǫ∩R

LDMNr
+

{
L∑

ℓ=1

D∑

d=1

M∑

m=1

Nr∑

i=1

(2i− 1 +Nt −Nr)αℓ,(d−1)M+m,i

}
(97)

is the exponent for large enough codewords and

d2 = inf
α∈Ec

ǫ∩R
LDMNr
+

{
L∑

ℓ=1

D∑

d=1

M∑

m=1

Nr∑

i=1

(2i− 1 +Nt −Nr)αℓ,(d−1)M+m,i

+ τLDMQNt log(2)Eǫ(ρ,α)

}
(98)

= inf
α∈Ec

ǫ∩R
LDMNr
+

{
τLDMQNt log(2)

(
1− R0

QNt

)

+M(NtNr − τQNt log(2))
L∑

ℓ=1

D∑

d=1

1{αℓ,d � 1− ǫ}
}

(99)

is the exponent that characterizes the finite block length.

Following similar steps to those in the converse, the SNR exponent of the first componentd1

can be written

d1 ≥ (1− ǫ)MNtNr

⌈
LB

M

(
1− R1

LQNt

)⌉
. (100)

Following similar arguments as in [26], we see that if0 ≤ τQNt log(2) < NtNr then the infimum

(99) is given by

LDMτQNt log(2)

(
1− R0

QNt

)
. (101)

Otherwise, ifτQNt log(2) ≥ NtNr, then the infimum is

τLDMQNt log(2)

(
1− R0

QNt

)
+M(NtNr(1− ǫ)− τQNt log(2))

(⌈
LD

(
1− R0

QNt

)⌉
− 1

)
.

(102)

The random coding SNR exponent lower-bound can be tightenedby lettingǫ→ 0. By collecting

the results together, we see that for sufficiently largeτ , d2 coincides withd1. In fact, one observes

that forT → ∞, the overall error probability is given by the probability of the eventEǫ, since the

second integral in (95) vanishes. Hence the diversity lower-bound coincides with the diversity

upper-bound (26) for all rates except at the discontinuities.
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Fig. 1. MIMO ARQ system model.
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(b) Long-term static fading.

Fig. 2. Optimal diversity tradeoff curve corresponding toL = 2, B = 4,M = 1 for a 2× 2 MIMO channel.
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(b) Long-term static fading.

Fig. 3. Optimal diversity tradeoff curve corresponding toL = 2, Q = 2,M = 1 for a 2× 2 MIMO channel.
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(b) Long-term static fading.

Fig. 4. Optimal diversity tradeoff curve corresponding toB = 2, Q = 2,M = 1 for a 2× 2 MIMO channel.
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(b) Long-term static fading.

Fig. 5. Optimal diversity tradeoff curve corresponding toB = 4, Q = 2, L = 2 for a 2× 2 MIMO channel. The curves with

8 steps correspond toM = 1, those with4 to M = 2 and those with2 to M = B = 2.
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B = 1, Q = 1 andT = 100.
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Fig. 12. FER with MDS convolutional code over a short-term static 2×2 MIMO channel corresponding toB = 1, Q = 2 and

T = 32. The thick solid lines are the lower outage probability bounds. ForL = 2, diamonds correspond to full-complexity APP

detection with PED, while squares and crosses correspond tomax-log APP detection with PED and MinLLR, respectively. For

L = 4, pentagrams correspond to full-complexity APP detection with PED, while circles and asterisks correspond to max-log

APP detection with PED and MinLLR, respectively.
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Fig. 13. Average number of ARQ rounds for MDS convolutional codes over a short-term static2 × 2 MIMO channel

corresponding toB = 1, Q = 2 and T = 32. The thick solid lines are the lower bounds on expected latency. For L = 2,

diamonds correspond to full-complexity APP detection withPED, while squares and crosses correspond to max-log APP detection

with PED and MinLLR, respectively. ForL = 4, pentagrams correspond to full-complexity APP detection with PED, while

circles and asterisks correspond to max-log APP detection with PED and MinLLR, respectively.
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Fig. 14. FER with MDS convolutional code over a long-term static 2× 2 MIMO channel corresponding toB = 1, Q = 2 and

T = 32. The thick solid lines are the lower outage probability bounds. ForL = 2, diamonds correspond to full-complexity APP

detection with PED, while squares and crosses correspond tomax-log APP detection with PED and MinLLR, respectively. For

L = 4, pentagrams correspond to full-complexity APP detection with PED, while circles and asterisks correspond to max-log

APP detection with PED and MinLLR, respectively.
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Fig. 15. Average number of ARQ rounds for MDS convolutional codes over a long-term static2 × 2 MIMO channel

corresponding toB = 1, Q = 2 and T = 32. The thick solid lines are the lower bounds on expected latency. For L = 2,

diamonds correspond to full-complexity APP detection withPED, while squares and crosses correspond to max-log APP detection

with PED and MinLLR, respectively. ForL = 4, pentagrams correspond to full-complexity APP detection with PED, while

circles and asterisks correspond to max-log APP detection with PED and MinLLR, respectively.
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