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Abstract

The Gilbert-Varshamov bound states that the maximum size A2(n, d)
of a binary code of length n and minimum distance d satisfies A2(n, d) ≥
2n/V (n, d− 1) where V (n, d) =

∑

d

i=0

(

n

i

)

stands for the volume of a Ham-
ming ball of radius d. Recently Jiang and Vardy showed that for binary
non-linear codes this bound can be improved to

A2(n, d) ≥ cn
2n

V (n, d− 1)

for c a constant and d/n ≤ 0.499. In this paper we show that certain
asymptotic families of linear binary [n, n/2] random double circulant codes
satisfy the same improved Gilbert-Varshamov bound. These results were
partially presented at ISIT 2006 [3].

Index terms: Double circulant codes, Gilbert-Varshamov bound, linear
codes, random coding.

1 Introduction

The Gilbert-Varshamov bound asserts that the maximum size Aq(n, d) of a
q-ary code of length n and minimum Hamming distance d satisfies

Aq(n, d) ≥
qn

∑d−1
i=0

(

n
i

)

(q − 1)i
. (1)

This result is certainly one of the most well-known in coding theory, it was
originally stated in 1952 by Gilbert [5] and improved by Varshamov in [15]. In
1982 Tsfasman, Vladuts and Zink [14] improved the GV bound on the number
of codewords by an exponential factor in the block length, but this spectacular
result only holds for some classes of non-binary codes. Recently Jiang and

∗XLIM, Université de Limoges, 123, Av. Albert Thomas, 87000 Limoges, France.

gaborit@unilim.fr
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Vardy [6] improved the GV bound for non-linear binary codes by a linear factor
in the block length n to

A2(n, d) ≥ cn
2n

V (n, d− 1)
, (2)

for d/n ≤ 0.499, for a constant c that depends only on the ratio d/n and
where V (n, d) =

∑d
i=0

(n
i

)

stands for the volume of a Hamming ball of radius d.
This new bound asymptotically surpasses previous improvements of the binary
Gilbert-Varshamov bound which only managed to multiply the right hand side
in (1) by a constant (see [6] for references). The method used by Jiang and
Vardy relies on a graph-theoretic framework and more specifically on locally
sparse graphs which are used to yield families of non-linear codes (their result
was later slighlty improved in [16]). In this paper we also improve on the the
Gilbert-Varshamov bound by a linear factor in the block length but for linear
codes, thereby solving one of the open problems of [6]. The method we use is
not related to graph theory and relies on double circulant random codes.

Double circulant codes are [2n, n] codes which are stable under the action
of permutations composed of two circular permutations of order n acting si-
multaneously on two differents halves of the coordinate set. These codes can
also be seen as quasi-cyclic codes, a natural generalization of cyclic codes [13].
Their study started in 1969 in [8] and since they gave some very good codes
it was natural to wonder whether they could be made to satisfy the Gilbert-
Varshamov bound. A first step in that direction was made by Chen, Peterson
and Weldon in [1] who prove that when 2 is a primitive root of the ring Z/pZ for
p a prime, double circulant [2p, p] random codes satisfy the Gilbert-Varshamov
bound; unfortunately it is still unknown (this is Artin’s celebrated conjecture,
1927) whether an infinity of such p exists. Later Kasami [9], building on this
idea, extended the result of [1] to the case of powers of such p, and obtained
a bound which is worse than the Gilbert-Varshamov bound by an exponential
factor in the block length (though a very small one). Later Kasami’s work
was generalized to other cases in [7, 11, 12], and, in particular in [2], bounds
were proven for certain classes of quasi-cyclic codes that are worse than the
Gilbert-Varshamov bound only by a subexponential factor in the block length.
In this paper, building anew on Kasami’s idea we prove, by using a proba-
bilistic approach, that randomly chosen double circulant codes not only satisfy
the Gilbert-Varshamov bound with high probability, but also the same linear
improvement as that of Jiang and Vardy (2).

The paper is organized as follows: in Section 2 we cover the main ideas
involved. We start by recalling the probabilistic method for deriving lower
bounds on the minimum distance of linear codes (section 2.0), then we introduce
double circulant codes in section 2.1 and derive (5) an upperbound on the
probability that a random double circulant code contains a non-zero vector of
weight not more than a given w. In section 2.2 we study the probability that
a given vector belongs to a randomly chosen double circulant code. Finally in
section 2.3 we derive our improved lower bound on the minimum distance in
the simple case when the codelength is 2p and 2 is a primitive root of Z/pZ:
the result is given in Theorem 4.
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in Section 3, we develop our method in the more complicated case of block-
lengths 2pm, p a “Kasami” prime, in order to obtain an infinite family of double
circulant codes with an improved minimum distance. Section 3.1 starts by giv-
ing an informal sketch of the content of section 3, which is intended to give some
guidance to the reader and discuss the technical issues involved. Section 3.2
shows how to derive our main result, which is Theorem 8, from a proposition
on the weight distribution of a certain class of cyclic codes. Finally section 3.3
is devoted to a proof of this last proposition.

Section 4 concludes by some comments and side results.

2 Overview of the method, the simple cases

2.0 The Gilbert Varshamov bound for linear codes and its im-

provement

To put the rest of the paper into perspective and introduce notation, let us
recall how the probabilistic method derives the Gilbert Varshamov bound for
linear codes. Rather than bounding the code size from below by a function of
the minimum distance, as in (2), we fix a lower bound on the code rate and
find a lower bound on the minimum distance. We limit ourselves to the rate
1/2 case because it will be our main object of study.

Let Crand be the random code of length 2n and dimension k ≥ n obtained by
choosing randomly and uniformly a n × 2n parity-check matrix in {0, 1}n×2n.
The probability that a given nonzero vector x = (x1 . . . x2n) is a codeword
is clearly 1/2n. Let w be a positive number, not necessarily an integer. We
are interested in the random variable X(w) equal to the number of nonzero
codewords of Crand of weight not more than w. In other words

X(w) =
∑

x∈B2n(w)

Xx (3)

where B2n(w) denotes the set of nonzero vectors x of V2n = {0, 1}2n of weight
at most w, and Xx is the Bernoulli random variable equal to 1 if x ∈ Crand

and equal to zero otherwise. Now whenever we prove that the probability
P(X(w) > 0) is less than 1, we prove the existence of a [2n, k, d] code with
k ≥ n and d > w. Since the variable X(w) is integer valued we have

P(X(w) > 0) ≤ E [X(w)] =
∑

x∈B2n(w)

E [Xx] = |B2n(w)|P(x ∈ Crand)

= |B2n(w)|
1

2n
.

Hence, for every positive integers n and w satisfying |B2n(w)| < 2n there exists
a linear code of parameters [2n, n, d > w]. Reworded, we have the following
lower bound on d, essentially equivalent to (1).

Theorem 1 (GV bound) For every positive integer n there exists a linear

code of parameters [2n, n, d] satisfying

|B2n(d)| ≥ 2n.

3



In the present paper we shall prove :

Theorem 2 There exists a positive constant b and an infinite sequence of in-

tegers n and [2n, n, d] linear codes satisfying

|B2n(d)| ≥ bn2n.

This result, equivalent to (2) for rate 1/2, will be obtained by again choosing
random matrices, but from a restricted class, namely the set of parity-check
matrices of double circulant codes.

2.1 Double circulant codes

A binary double circulant code is a [2n, n] linear code C with a parity-check
matrix of the form H = [In |A] where In is the n× n identity matrix and

A =













a0 an−1 . . . a1
a1 a0 . . . a2
a2 a1 . . . a3

. . . . . . . . . . . . . . . . . . . .
an−1 an−2 . . . a0













.

There is a natural action of the group Z/nZ on the space V2n = {0, 1}2n of
vectors x = (x1 . . . xn, xn+1 . . . x2n) namely,

Z/nZ× V2n → V2n

(j,x) 7→ j · x

where
1 · x = (xn, x1 . . . xn−1, x2n, xn+1, . . . x2n−1)

and j · x = (j − 1) · (1 · x). The double circulant code C is clearly invariant
under this group action. Consider now C to be the random code Crand obtained
by choosing the vector a = (a0 . . . an−1) randomly and uniformly in {0, 1}n.
As before, we are interested in the random variable X(w) defined by (3) and
equal to the number of nonzero codewords of Crand of weight not more than
w. We are interested in the maximum value of w for which we can claim
that P(X(w) > 0) < 1, for this will prove the existence of codes of parameters
[2n, n, d > w]. The core remark is now that, if y = j · x, then

Xy = Xx

where Xx (Xx) is the Bernoulli random variable equal to 1 if x ∈ Crand (y ∈
Crand) and equal to zero otherwise. Let now B′

2n(w) be a set of representatives
of the orbits of the elements of B2n(w), i.e. for any x ∈ B2n(w), |{j · x, j ∈
Z/nZ} ∩ B′

2n(w)| = 1. We clearly have X(w) > 0 if and only if X ′(w) > 0
where

X ′(w) =
∑

x∈B′
2n(w)

Xx.
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Denote by ℓ(x) the length (size) of the orbit of x, i.e. ℓ(x) = #{j ·x, j ∈ Z/nZ}.
We have

X ′(w) =
∑

x∈B2n(w)

Xx

ℓ(x)
(4)

By writing P(X(w) > 0) = P(X ′(w) > 0) ≤ E [X ′(w)], together with (4) we
obtain

P(X(w) > 0) ≤
∑

d|n

∑

wt(x)≤w
ℓ(x)=d

E [Xx]

d
. (5)

Suppose in particular that n is a prime, in that case orbits are of size 1 or n,
and if w < n then clearly the orbit of x has size n for any x ∈ B2n(w), so that
(5) becomes

P(X(w) > 0) ≤ E [X(w)] /n.

If we can manage to prove that

E [X(w)] ≤ |B2n(w)|
c

2n
(6)

for constant c, then we will have proved the existence of double circulant codes
of parameters [2n, n, d > w], for any w such that |B2n(w)| < 1

cn2
n.

2.2 The behaviour of P(x ∈ Crand)

To prove equality (6) we need to study carefully the quantities E [Xx], for
x ∈ B2n(w), since

E [X(w)] =
∑

x∈B2n(w)

E [Xx] .

For x ∈ V2n, let us write x = (xL,xR) with xL,xR ∈ {0, 1}n. Consider the
syndrome function σ

σ : V2n → Vn

x 7→ σ(x) = x tH = σL(x) + σR(x)

where σL(x) = xL and σR(x) = xR
tA.

For any binary vector of length n, u = (u0, . . . , un−1), denote by u(Z) = u0+
u1Z+ · · ·+un−1Z

n−1 its polynomial representation in the ring F2[Z]/(Zn+1).
For any u ∈ Vn, let C(u) denote the cyclic code of length n generated by the
polynomial representation u(Z) of u. Since σR(x) has polynomial representa-
tion equal to xR(Z)a(Z), we obtain easily

Lemma 3 The right syndrome σR(x) of any given x ∈ V2n is uniformly dis-

tributed in the cyclic code C(xR). Therefore, the probability P(x ∈ Crand) that

x is a codeword of the random code Crand is

• P(x ∈ Crand) = 1/|C(xR)| if xL ∈ C(xR),
• P(x ∈ Crand) = 0 if xL 6∈ C(xR).
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2.3 The case n prime and 2 primitive modulo n

If n is prime and 2 is primitive modulo n then, over F2[Z], the factorization of
Zn + 1 into irreducible polynomials is

Zn + 1 = (1 + Z)(1 + Z + Z2 + · · ·+ Zn−1)

and there is only one non-trivial cyclic code of length n, namely the [n, n −
1, 2] even-weight code. Therefore P(X(w) > 0) = P(X ′(w) > 0) ≤ E [X ′(w)]
together with (4) and Lemma 3 give

P(X(w) > 0) ≤
∑

wt(xL)+wt(xR)≤w
wt(xR) odd

1

n2n
+

∑

wt(xL)+wt(xR)≤w
wt(xR) even
wt(xL) even

1

n2n−1
(7)

P(X(w) > 0) ≤ 2|B2n(w)|
1

n2n
.

We therefore have the following result:

Theorem 4 If p is prime and 2 is primitive modulo p, then there exist double

circulant codes of parameters [2p, p, d > w] for any positive number w such that

2|B2p(w)| < p2p.

Unfortunately, it is not known (though it is conjectured) whether there
exists an infinite family of primes p for which 2 is primitive modulo p. Therefore,
to obtain Theorem 2 we will envisage cases when n is non-prime. This will
involve two technical difficulties, namely dealing with non-trivial divisors d of
n in (5), and non-trivial cyclic codes C(xR) of length n in Lemma 3.

3 An infinite family of double circulant codes

3.1 Preview

In this section we will study the behaviour of the minimum distance of random
double circulant codes for the infinite sequences of blocklengths 2n introduced
by Kasami : we will have n = pm for suitably chosen p. We will first specialise
inequality (5) to this case, for which all the possible orbit sizes ℓ are powers
of p, ps, s ≤ m. Applying Lemma 3 will lead us to an upper bound (13) on
P(X(w) > 0) that involves the weight distributions of the cyclic codes of length
n. This upper bound can be essentially thought of as the same as (7), plus a
number of parasite terms involving all vectors x = (xL,xR) of B2n(w) for which
both xL and xR are codewords of some cyclic code of length n that is neither
the whole space {0, 1}n nor the [n, n− 1, 2] even-weight subcode. The problem
at hand is to control the parasite terms so that they do not pollute too much
the main term i.e. the right hand side of (7). To do this, the crucial part will
be to bound from above with enough precision terms of the form

∑

i+j≤w

Ai(C)Aj(C)
1

|C| (8)
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where C is a cyclic code of length n and Ai(C) is the number of codewords of
weight i. In section 3.2 we shall state such an upper bound, namely Proposi-
tion 5, and show how it leads to the desired result which will be embodied by
Theorem 8.

Section 3.3 will then be devoted to proving Proposition 5. It is not easy
in general to estimate the weight distribution of cyclic codes that don’t have
extra properties, but it turns out that for these particular code lengths of the
form n = pm, all cyclic codes C have a special degenerate structure. Either C
consists of a collection of vectors of the form (x, x, . . . , x) where x is a subvector
of length n/p and is repeated p times, or C is the dual of such a code. Section 3.2
will have reduced the problem to the latter class of cyclic codes only. Ideally,
we would like to claim that the cyclic codes C have a binomial distribution
of weights, i.e. Ai(C) ≈ |C|

2n

(n
i

)

, however this is not true, the cyclic codes C
have many more low-weight codewords than would be dictated by the binomial
distribution. The problem of the unbalanced couples (i, j), (i small and j large
or vice versa) in the sum (8) is therefore dealt with by the trivial upper bound
Ai(C) ≤

(

n
i

)

: Lemma 11 will show that these terms account for a sufficiently
small fraction of |B2n(w)|/2n. Lemma 10 is the central result of section 3.3
which gives a more refined upper bound on Ai(C) for i well enough separated
from 0, i.e. i ≥ κn for constant positive κ. Fortunately, we do not need Ai(C)
to be too close to the binomial distribution, and the cruder upper bound of
Lemma 11 will suffice to derive Proposition 5.

3.2 Reducing the problem to the study of the weight distribu-

tion of certain cyclic codes

Following Kasami [9], let us consider n of the form n = pm where 2 is primi-
tive modulo p and 2p−1 6= 1 mod p2. It will be implicit that all the primes p
considered in the remainder of section 3 will satisfy this property. Let us also
suppose m ≥ 2, since the case m = 1 is covered by Theorem 4.

It is known [9] that the irreducible factors of Zn + 1 in F2[Z] are 1 + Z
together with all the polynomials of the form

1 +Q(Z) +Q(Z)2 + · · ·Q(Z)p−1 (9)

for Q(Z) = Z,= Zp, Zp2 , . . . , Zpm−1

.
Since n is a prime power, (5) gets rewritten through Lemma 3 as:

P(X(w) > 0) ≤
m
∑

s=1

∑

wt(x)≤w
ℓ(x)=ps

C(xL)⊂C(xR)

1

ps|C(xR)|
(10)

Note that x ∈ V2n has orbit length ℓ(x) < n if and only if both xL and xR

are made up of p successive identical subvectors of length n/p. Equivalently xL

and xR each belong to the cyclic code generated by the polynomial

Pn(Z) = 1 + Zn/p + Z2n/p + · · ·+ Z(p−1)n/p. (11)

7



Let Cn denote the set of those cyclic codes of length n whose generator poly-
nomial is not a multiple of Pn(Z). All the other cyclic codes of length n are
obtained by duplicating p times some cyclic code of length n/p. Therefore, for
s = m, the inner sum in (10) can be bounded from above by:

∑

C∈Cn

∑

i+j≤w

Ai(C)Aj(C)
1

n|C| (12)

where Ai(C) denotes the number of codewords of C of weight i. Applying (12)
recursively, we obtain from (10)

P(X(w) > 0) ≤
m−1
∑

s=0

∑

C∈Cn/ps

∑

i+j≤w/ps

Ai(C)Aj(C)
1

|C|n/ps . (13)

We now proceed to evaluate the righthandside of (13). The most technical
part of our proof of Theorem 2 is contained in the following Proposition.

Proposition 5 There exist positive constants q,K, c1 and γ < 1 such that, for

any n = pm with p ≥ q, we have |B2n(2Kn)| ≤ 2n and for any positive real

number w, K ≤ w/2n ≤ 1/4, and for any cyclic code C of Cn, we have

∑

i+j≤w

Ai(C)Aj(C)
1

|C| ≤ c1
|B2n(w)|

2n
γn−dimC .

Suitable numerical values of the constants are q = 143, K = 0.1, γ = 1/21/5,
c1 = 26/5.

Before proving Proposition 5, let us derive the consequences on the proba-
bility P(X(w) > 0). That will lead us to our main result, namely Theorem 8,
the consequence of which is Theorem 2. We have:

Lemma 6 There exists a constant c2 such that, for any n = pm, p > q, and
for any K ≤ w/2n ≤ 1/4,

∑

C∈Cn

∑

i+j≤w

Ai(C)Aj(C)
1

|C| ≤ c2
|B2n(w)|

2n
.

A suitable numerical value for c2 is c2 = 4.3.

Proof: From Proposition 5 it is enough to show that the sum
∑

C∈Cn
γn−dimC

is upperbounded by a constant for any γ < 1. Choosing a code C in Cn

is equivalent to choosing its generator polynomial, and from the list (9) of
irreducible factors of Zn + 1, we see that if we order all possible generator
polynomials by increasing degrees, we have 1 and 1 +Z, then 2 polynomials of
degree at least p− 1, then 4 polynomials of degree at least p(p− 1), ... then 2i

8



polynomials of degree at least p(p−1)i−1 and so on. Therefore, since n−dimC
equals the degree of the generator polynomial, we obtain

∑

C∈Cn

γn−dimC ≤ 1 + γ + 2γp−1 +
∑

i≥2

2iγp(p−1)i−1

≤ 1 + γ + 2γp−1 +

(

2

p− 1

)2
∑

i≥2

(p− 1)iγ(p−1)i

≤ 1 + γ + 2γp−1 +

(

2

p− 1

)2
∑

j≥1

jγj

≤ 1 + γ + 2γp−1 +

(

2

p− 1

)2 γ

(1− γ)2
.

With the values γ = 21/5, c1 = 26/5 and p ≥ 143 given in Proposition 5 we
obtain that c2 = 4.3 is suitable.

From (13) and Lemma 6 we obtain that

P(X(w) > 0) ≤ c2
1

n

|B2n(w)|
2n

+ c2

m−1
∑

s=1

ps

n

|B2n/ps(w/p
s)|

2n/ps
(14)

to deal with this last sum we invoke:

Lemma 7 For any prime p > 143 and for any positive number w such that

|B2n(w)| ≤ n2n, we have

m−1
∑

s=1

ps

n

|B2n/ps(w/p
s)|

2n/ps
≤ 2

p

Proof: Choose p times a vector of length 2n/p and weight not more than w/p:
concatenate the resulting vectors and one obtains a vector of length 2n and
weight not more than w. Therefore |B2n/p(w/p)|p ≤ |B2n(w)| and we have

m−1
∑

s=1

ps

n

|B2n/ps(w/p
s)|

2n/p
s ≤

m−1
∑

s=1

ps

n

( |B2n(w)|
2n

)1/ps

≤
m−1
∑

s=1

ps

n
n1/ps .

The result follows from routine computations.

We see therefore from (14) and Lemma 7 that, if we choose w such that
|B2n(w)| ≤ bn2n, for b < 1, then, provided the conditions of Proposition 5 are
satisfied, we have P(X(w) > 0) ≤ bc2+2c2/p. For c2 = 4.3 and any p > 143 this
quantity is less than 1 when b ≤ 0.23. The largest w for which |B2n(w)| ≤ bn2n

is readily seen to satisfy K ≤ w
2n ≤ 1

4 which means that all conditions of
Proposition 5 are satisfied, so that we have proved:

Theorem 8 There exist positive constants b ≤ 0.23 and q, such that for any

prime p ≥ q such that 2 is primitive modulo p and 2p−1 6= 1 mod p2, and

for any power n = pm of p, there exist double circulant codes of parameters

[2n, n, d > w] for any w such that |B2n(w)| ≤ bn2n. A suitable value of q is

q = 143 and the first suitable prime p is p = 2789.
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3.3 Proof of Proposition 5

Our remaining task is now to prove Proposition 5. We start by noting that
Proposition 5 is stated with a positive real number w, because the discussion
starting from (13) involves balls of non-integer radius. However, it clearly is
enough to prove it only for integer values of w.

The crucial part of the proof will be to bound from above the weight distri-
bution of C, for C ∈ Cn. Let us note that, since the polynomial Pn(Z) defined
in (11) is an irreducible factor of Zn + 1, the code C belongs to Cn if and only
if Pn(Z) divides the generator polynomial of the dual code C⊥. This means
that any codeword of C⊥ must be obtained by repeating p times a subvector of
length n/p. Equivalently, a generating matrix of C⊥, i.e. a parity-check matrix
of C is of the form

HC = [A | A | · · · | A]

meaning that it equals the concatenation of p identical copies of an r × n/p
matrix A.

We shall need the following lemma.

Lemma 9 Let Htr = [Ir | Ir | · · · | Ir] be the r× tr matrix obtained by concate-

nating t copies of the r× r identity matrix. Let σtr be the associated syndrome

function:

σtr : {0, 1}tr → {0, 1}r

x 7→ σtr(x) = x tHtr.

Let w ≤ tr be an integer. Then, for any s ∈ {0, 1}r, the number of vectors of

length tr and of weight w that map to s by σtr is not more than:

√
2rt

(

1 + |1− 2ω|t
2

)r (
tr

w

)

where w = ωtr.

Proof: Let X be a random vector of length tr obtained by choosing indepen-
dently each of its coordinates to equal 1 with probability ω. The probabilities
that any given coordinate of σtr(X) equals 0 or 1 are those of a sum of t inde-
pendent Bernoulli random variables of parameter ω, namely:

1 + (1− 2ω)t

2
and

1− (1− 2ω)t

2
.

Since all the coordinates of σtr(X) are clearly independent,

max
s∈{0,1}r

P(σtr(X) = s) =

(

1 + |1− 2ω|t
2

)r

. (15)

Now let W = wt (X) be the weight of X. We have

P(W = w) =

(

tr

w

)

ωw(1− ω)tr−w =

(

tr

ωtr

)

2−trh(ω)

10



where h denotes the binary entropy function, h(x) = −x log2 x−(1−x) log2(1−
x). By a variant of Stirling’s formula [13][Ch. 10,§11,Lemma 7]

(

n

w

)

≥ 2nh(ω)/
√

8nω(1− ω), (16)

therefore:

P(W = w) ≥ 1
√

8trω(1− ω)
≥ 1√

2tr
.

For given s, let Nw denote the number of vectors of length tr and weight w that
have syndrome s. Since P(σtr(X) = s | W = w) = Nw/

(

tr
w

)

we have

P(σtr(X) = s) ≥ P(σtr(X) = s | W = w) P(W = w) ≥ Nw
(

tr
w

)

1√
2tr

.

Hence, by (15),

Nw ≤
√
2tr

(

1 + |1− 2ω|t
2

)r (
tr

w

)

which is the claimed result.

Lemma 10 Let 0 < κ < 1/4. There exist q, such that for any p > q, n = pm,

and for any code C ∈ Cn, the following holds:

• either C = {0, 1}n or C equals the even-weight code,

• or, the weight distribution of C satisfies, for any i, κn ≤ i ≤ n/2,

Ai(C) ≤ 1

23r/5

(

n

i

)

where r = n− dimC.

For κ = 0.07 a suitable value of q is q = 143.

Proof: If r = 0 or r = 1, i.e. C equals the whole space {0, 1}n or the even-
weight code, there is nothing to prove. Suppose therefore r > 1. From the
factorization (9) of Zn + 1 into irreducible factors we see that we must have
r ≥ p− 1. From the discussion preceding Lemma 9 we must have

r ≤ n− pm−1(p − 1) = n/p (17)

and a parity-check matrix of C is made up of p identical copies of some r×n/p
matrix A. Therefore, after permuting coordinates, there exists a parity-check
matrix of C of the form

HC = [B |Ir | Ir | · · · | Ir]

whereB is some r×(n−rt) matrix and is followed by t copies of the r×r identity
matrix. The integer t can be chosen to take any value such that 1 ≤ t ≤ p: we
shall impose the restriction

t ≤ p1/3. (18)

11



For any x ∈ {0, 1}n, write x = (x1,x2) where x1 is the vector made up of the
first n − tr coordinates of x and x2 consists of the remainding tr coordinates
Now the syndrome function σ associated to HC takes the vector x ∈ {0, 1}n
to σ(x) = x1

tB + σtr(x2) where σtr is the function defined in Lemma 9. The
code C is the set of vectors x such that σ(x) = 0, therefore by partitioning the
set of vectors of weight i into all possible values of x1 we have, from Lemma 9:

Ai(C) ≤
√
2tr

tr
∑

j=0

(

1 + |1− 2 j
tr |t

2

)r
(

tr

j

)(

n− tr

i− j

)

(19)

for any i such that
i ≥ tr. (20)

Notice that:
(

tr

j

)(

n− tr

i− j

)

=

(i
j

)(n−i
tr−j

)

(n
tr

)

(

n

i

)

so that (19) becomes

Ai(C) ≤
√
2tr

tr
∑

j=0

(

1 + |1− 2 j
tr |t

2

)r (i
j

)( n−i
tr−j

)

(n
tr

)

(

n

i

)

≤
√
2tr(tr + 1)

(

n

i

)

max
0≤j≤tr

(

1 + |1− 2 j
tr |t

2

)r (i
j

)(n−i
tr−j

)

(n
tr

) . (21)

Set i = ιn and j = αtr, we have:

(i
j

)(n−i
tr−j

)

(n
tr

) ≤ ij(n− i)tr−j

(n
tr

)

j!(tr − j)!

≤ ιj(1− ι)tr−jntr

(

n
tr

)

j!(tr − j)!

≤ ιj(1− ι)tr−jntr

(n− tr)tr
(

tr
j

)−1 since
(n
tr

)

≥ (n− tr)tr/(tr)!

≤
ιj(1− ι)tr−j

(tr
j

)

(1− tr
n )

tr
.

We have seen (17) that r ≤ n/p and t ≤ p1/3 (condition (18)), therefore tr/n ≤
1/p2/3 ≤ 1/2: by using the inequality 1−x ≥ 2−2x, valid whenever 0 ≤ x ≤ 1/2,
we therefore have

(i
j

)(n−i
tr−j

)

(n
tr

) ≤ 22t
2r2/nιj(1− ι)tr−j

(

tr

j

)

and by using
(

tr
j

)

≤ 2trh(α) we finally get

(i
j

)(n−i
tr−j

)

(n
tr

) ≤ 2tr(
2tr
n

−D(α||ι))

12



where D(x||y) = x log2
x
y + (1− x) log2

1−x
1−y . Together with (21) we get:

Ai(C) ≤ 2r(β+f(ι)) 1

2r

(

n

i

)

with

f(ι) = max
0≤α≤1

g(α, ι) (22)

where g(α, ι) = log2(1 + |1− 2α|t)− tD(α||ι) (23)

and β = 1
r log2

√
2tr + 1

r log2(tr + 1) + 2t2r/n. Write log2(tr + 1) ≤ 1 + log2 tr

to get β ≤ (32 +
3
2 log2(tr))/r + 2t2r/n. By using t < p1/3 and p− 1 ≤ r ≤ n/p,

we get
3

2

log2 tr

r
<

3

2

log2(r + 1)4/3

r
= 2

log2(r + 1)

r
≤ 2

log2 p

p− 1

and

β ≤ 3

2(p − 1)
+

2 log2 p

p− 1
+

2

p1/3
.

We see that β can be made arbitrarily small by increasing the value of p. A
numerical computation gives us β < 0.152 for all p > 143.

Since we have supposed i ≤ n/2, we have ι ≤ 1/2 so that the definition (22)
and (23) of f can be replaced by the equivalent

f(ι) = max
0≤α≤ι

g(α, ι)

g(α, ι) = log2(1 + (1− 2α)t)− tD(α||ι)

from which we easily see that g and f are decreasing functions of ι. We see that
f(κ) can be made arbitrarily small, for all κ > 0, by choosing t big enough.
Numerically, by choosing t = 14, κ = 0.07 and p > 143, we see that (20) is
satisfied and we get, for all 0.07 ≤ ι, f(ι) ≤ f(κ) ≤ 0.24. We obtain therefore
that, for all κn ≤ i ≤ n/2,

Ai(C) ≤ 2−0.608r

(

n

i

)

which proves the lemma.

To prove Proposition 5, we need a final technical lemma, of a purely enu-
merative nature.

Lemma 11 Let 0 < κ < K < 1/4. There exist an integer n0 and ε > 0 such

that, for any n ≥ n0, w = 2ωn with K ≤ ω < 1/4,

2
∑

i+j≤w
i<κn

(

n

i

)(

n

j

)

≤ 1

2εn
|B2n(w)|.

For κ = 0.07, K = 0.1, n0 = 143, a suitable value of ε is ε = 0.004.

13



Proof: Clearly we have:

2
∑

i+j≤w
i<κn

(

n

i

)(

n

j

)

≤ κn2

(

n

κn

)(

n

w − κn

)

≤ κn22n(h(κ)+h(2ω−κ)) =
κn222nh(ω)

2n(2h(ω)−h(κ)−h(2ω−κ))

≤ κn2 22nh(ω)

2n(2h(K)−h(κ)−h(2K−κ))

since 2h(ω)− h(κ)− h(2ω − κ) is an increasing function of ω. By (16) we have
22nh(ω) ≤

√
16n|B2n(w)|, so that we obtain, since κ ≤ 1/4,

2
∑

i+j≤w
i<κn

(

n

i

)(

n

j

)

≤ n5/2 |B2n(w)|
2n(2h(K)−h(κ)−h(2K−κ))

≤ |B2n(w)|
2εn

for any n ≥ n0 with ε ≤ 2h(K)− h(κ) − h(2K − κ)− 5
2
log2 n0

n0
.

Proof of Proposition 5: If C = {0, 1}n or if C is the even-weight subcode,
then Ai(C) ≤

(

n
i

)

, and
∑

i+j≤wAi(C)Aj(C) ≤∑i+j≤w

(

n
i

)(

n
j

)

= |B2n(w)|. The
result clearly holds for any c1 ≥ 2/γ.

Let C ∈ Cn with r = n− dimC > 1. Let us write:

1

|C|
∑

i+j≤w

Ai(C)Aj(C) = S1 + S2

with

S1 =
1

|C|
∑

i+j≤w
κn≤i,j

Ai(C)Aj(C) and S2 =
2

|C|
∑

i+j≤w
i<κn

Ai(C)Aj(C).

By Lemma 10 we have

S1 ≤
1

|C|
∑

i+j≤w

(

n

i

)(

n

j

)

1

26r/5
≤ |B2n(w)|

2n
1

2r/5
.

To upperbound S2 we simply write Ai(C) ≤
(n
i

)

. By Lemma 11, we have

S2 ≤
|B2n(w)|

2n
2r

2εn
=

|B2n(w)|
2n

2r

(2εp)n/p
≤ |B2n(w)|

2n
2r

(2εp)r

since we have seen (17) that r ≤ n/p. By choosing p ≥ 6
5ε we obtain

S2 ≤
|B2n(w)|

2n
1

2r/5
.

This proves the result with γ = 1/21/5 and c1 = 26/5.
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4 Comments

The probabilistic method we used easily shows that almost all double circulant
codes of the asymptotic family presented here satisfy an improved bound of
the form (2). Actually we suspect that this is also the case for most choices
of n : this is suggested by computer experiments with randomly chosen double
circulant codes of small blocklengths.

We have tried to strike a balance between giving readable proofs and deriv-
ing a non-astronomical lower bound on the prime p in Theorem 8. In principle,
the numerical values could be refined. In particular, the constant b of Theorem
8 could be made to approach 1/2 (as in Theorem 4) but at the cost of a larger p.
If we convert the formulation of Theorem 8 in the form (2) (which just involves
switching from |B2n(d)| in Theorem 2 to |B2n(d − 1)| in (2)) we obtain a con-
stant c which is of the same order of magnitude, but somewhat worse, than the
improved constant c ≈ 0.102 of [16] for Jiang and Vardy’s method.

In this paper we only consider the binary case with codes of rate 1/2 but the
method can be straightforwardly generalized to the case of different alphabets
and to quasi-cyclic codes of any rational rate (though at the cost of a wors-
ening of the constant b) by considering for parity check matrices vertical and
horizontal concatenations of random circulant matrices.

Finally, a natural question is to wonder whether the ideas developed in this
paper can be extended to Euclidean lattices in a way similar to the generaliza-
tion of Jiang and Vardy’s method to sphere-packings of Euclidean spaces [10].
A positive answer to this question is given in the paper [4].
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