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Abstract

Characterization of the set of entropy functions Γ∗ is an important open problem in information

theory. The region Γ∗ is central to the theory of information inequalities, and as such could be regarded

as a key to the basic laws of information theory. Characterization of Γ∗ has several important conse-

quences. In probability theory, it would provide a solution for the implication problem of conditional

independence. In communications networks, the capacity region of multi-source network coding is

given in terms of Γ∗. More broadly, determination of Γ∗ would have an impact on converse theorems

for multi-terminal problems in information theory. This paper provides several new dualities between

entropy functions and network codes. Given a function g ≥ 0 defined on all proper subsets of N

random variables, we provide a construction for a network multicast problem which is ”solvable” if and

only if g is the entropy function of a set of quasi-uniform random variables. The underlying network

topology is fixed and the multicast problem depends on g only through link capacities and source rates.

A corresponding duality is developed for linear networks codes, where the constructed multicast problem

is linearly solvable if and only if g is linear group characterizable. Relaxing the requirement that the

domain of g be subsets of random variables, we obtain a similar duality between polymatroids and the

linear programming bound. These duality results provide an alternative proof of the insufficiency of

linear (and abelian) network codes, and demonstrate the utility of non-Shannon inequalities to tighten

outer bounds on network coding capacity regions.

1Terence Chan is also with the Department of Computer Science, University of Regina.
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I. INTRODUCTION

Information inequalities are one of the central tools of information theory. An information

inequality is a relation between information measures such as entropy and mutual information

that holds regardless of the specific choice of joint probability distribution on the underlying

random variables, see [1, Chapters 12–14]. Converse proofs involving chains of information

inequalities are ubiquitous in the literature, extending back to Shannon. It is somewhat frustrating

therefore, that a characterization of the complete set of information inequalities is lacking. Until

the appearance of the Zhang-Yeung inequality [2], the only known inequalities were the so-

called Shannon, or basic inequalities, being consequences of the non-negativity of conditional

mutual information (which is a special case of non-negativity of information divergence). Starting

with [3], large classes of conditional non-Shannon inequalities (e.g. contingent on imposition of

certain Markov constraints) have been found [4]–[7]. A countably infinite class of unconstrained

inequalities was reported in [8], indexed by the number of random variables N involved (one

inequality for each N ). More recently, additional unconstrained non-Shannon inequalities have

been found [9]. Another countably infinite class of unconditional inequalities was recently found

in [10]. This class differs from [8], in that a countably infinite number of inequalities were found

for any fixed number of N ≥ 4 random variables. As we shall see later, this result has profound

implications.

An intimately related concept is the set of entropy functions Γ∗. Let H[L] be a subset of a

2N dimensional euclidean space. Each coordinate of this space will be indexed by a subset of

a set L with N elements. Points h ∈ H[L] can be regarded as functions, mapping from the set

of all subsets of L onto R with h(∅) = 0. Points in H[L] belong to Γ∗ if they correspond to

a consistent choice of joint entropies for a set L = {X1, X2, . . . , XN} of N random variables.

Members of Γ∗ are called entropic, and members of the closure of Γ∗, denoted by Γ̄∗, are called

almost entropic.

Characterization of Γ̄∗ is equivalent to determination of the set of all possible information

inequalities [1, Section 12.3]. This characterization is lacking for N > 3. In contrast, we do

know the set Γ ⊃ Γ∗ corresponding to the basic inequalities. This set contains some functions

that obey the basic inequalities, but are not entropy functions and do not correspond to any joint

distribution on N random variables. The basic inequalities are equivalent to the polymatroid
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axioms, and hence Γ is simply the set of polymatroids, implying a polyhedral structure.

Characterization of Γ∗ is an important open problem. It gives bounds for source coding prob-

lems [11]. As shown in [1], it would resolve the implication problem of conditional independence

(determination of all additional conditional independence relations implied by a given set of

conditional independence relationships). In other fields, information inequalities are also closely

linked to group theory [12] and the theory of Kolmogorov complexity [13], [14]. The focus in this

paper is however on the link between entropy functions and the capacity region of multi-source

network coding.

The prevailing approach to data transport in communications networks is based on routing, in

which intermediate nodes duplicate and forward packets towards their final destination. Although

such a store-and-forward scheme is simple to implement, it does not guarantee efficient utilization

of available transmission capacity. The network coding approach introduced in [15], [16] general-

izes routing by allowing intermediate nodes to forward packets that are coded combinations of all

received data packets. This seemingly simple change in approach yields many benefits. Not only

can network coding increase throughput in multicast scenarios, it can also provide robustness

to link failure [17], wiretap security [18], and minimal transmission cost [19]. Naturally, these

advantages are obtained at the expense of increased node complexity.

One fundamental problem in network coding is to understand the capacity region and the

classes of codes that achieve capacity. In the single session multicast scenario, the problem is

well understood. In particular, the capacity region is characterized by max-flow/min-cut bounds

and linear network codes are sufficient to achieve maximal throughput [16], [20].

Significant practical and theoretical complications arise in more general multicast scenarios,

involving more than one session. It was recently proved that linear network codes are not

sufficient for the multi-source problem [20]. Furthermore, the network coding capacity region is

unknown. In fact, there are only a few tools in the literature for study the capacity region.

One powerful theoretical tool bounds the capacity region by the intersection of a set of

hyperplanes (specified by the network topology and connection requirement) and the set of

entropy functions Γ∗ (inner bound), or its closure Γ̄∗ (outer bound) [1], [21], [22]. Recently,

these bounds have been tightened to obtain an exact expression for the capacity region, again in

terms of Γ∗ [23]. Unfortunately, the capacity region, or even the bounds cannot be computed in

practice, due to the lack of an explicit characterization of the set of entropy functions for more
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than three random variables. One way to resolve this difficulty is via relaxation of the bound,

replacing the set of entropy functions with the set of polymatroids Γ. The resulting “linear

programming” bound can be quite loose. Recent work [24] based on matroid theory showed that

application of the Zhang-Yeung inequality [2] yields a tighter bound for the capacity region (by

obtaining a better outer bound for the set of entropy functions).

The main results of this paper are new dualities between non-negative functions g ∈ H[L] and

network codes. These duality results are based on the construction of a special network multicast

problem from functions g. The underlying network topology is fixed and the multicast problem

depends on g only through the assignment of link capacities and source rates.

Three main kinds of duality are considered, corresponding to different restrictions on g and

different kinds of network codes. First, we show in Theorem 1 that the constructed multicast

problem is solvable (i.e. the constructed source rates and link capacities are in the capacity

region) if and only if g is the entropy function of a set of quasi-uniform random variables. This

duality is extended in Theorem 2 to show that the multicast problem is asymptotically solvable

with ε error if and only if h is almost entropic.

The second duality restricts attention to linear network codes. We show that the multicast

problem is linearly solvable if and only if g is linear group characterizable (i.e. g is an entropy

function for random variables generated by vector spaces). A corresponding limiting form of

this duality is also provided.

Finally, by relaxing the requirement that the domain of g be subsets of random variables, we

obtain a duality between polymatroids and the linear programming bound.

These duality results yield several immediate implications. In particular, we provide an al-

ternative proof to [20], [24] for the insufficiency of linear (and abelian) network codes, and

demonstrate the utility of non-Shannon inequalities to tighten outer bounds on network coding

capacity regions.

The paper is organized in the following way. Section II introduces some fundamentals of

network coding. Section II-A focuses on network codes with algebraic structure, and random

variables generated by groups with a variety of algebraic structures. We establish a relation

between linear network codes and random variables generated by vector spaces and generalize

this idea to define the concept of a group network code. A central theme of the paper is the

trade-off between source rate and link capacity using network coding, i.e. determination of
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the network coding capacity region. Section II-B introduces the definitions for admissibility

and achievability in the network coding context. Section III introduces the concept of pseudo-

variables, which generalize random variables in such a way that allows a notational unification

of the linear programming bound with that of [21].

Section IV proves the duality results, Theorems 1 – 5. These results rely on the construction in

Section IV-A of a special network and multicast problem from a function g. Section IV-B gives

the duality between entropic functions and solvable multicast problems. Section IV-C provides the

corresponding duality for linearly solvable multicast problems. These duality results are extended

in Section IV-D to give a similar link between polymatroids and the linear programming bound,

i.e. a function g is a polymatroid if and only if the constructed source rates and link capacities

satisfy the bound. This result relies heavily on the notion of pseudo-variables introduced in

Section III, and in particular on extension and adhesion of sets of pseudo-variables, discussed

in Appendix I. Finally, in Section IV-E we give a one-way relation between the LP bound for

linear codes, and polymatroids which also satisfy the Ingleton inequality.

Section V explores the implications of our results, which include the insufficiency of linear

or even (abelian) group network codes, and the necessity for non-Shannon inequalities for

determination of the network coding capacity region.

Notation: For a set A, the power set 2A = {B : B ⊆ A} denotes the set of all subsets of A.

Given a set of |A| variables {Xa, a ∈ A}, and a subset C ⊆ A, the subscript XC shall mean

{Xc : c ∈ C}. In contrast, the notation Y[B] will be used to index a single variable out of a set

of 2|A| variables {Y[B] : B ∈ 2A}. Other notation will be introduced as necessary throughout the

paper.

II. NETWORKS, CODES AND CAPACITY

A directed acyclic graph G = (P , E) is commonly used as a simplified model of a commu-

nication network. The nodes u ∈ P and directed edges e = (tail(e), head(e)) ∈ E respectively

model communication nodes and directed, error-free point-to-point communication links. The

terms graph and network will be used interchangeably. For edges e, f ∈ E , write f → e as

shorthand for head(f) = tail(e). Similarly, for an edge f ∈ E and a node u ∈ P , the notations

f → u and u → f respectively denote head(f) = u and tail(f) = u. So far we have only

specified the basic network topology. The communication problem is specified via imposition
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of a connection requirement.

Definition 1 (Connection Requirement): For any network G, a connection requirement M =

(S, O,D) is specified by three components representing the sessions, originating nodes and

destination nodes as follows. S is an index set of independent multicast sessions, each of which

is a collection, or stream of data packets to be multicast to a prescribed set of destination nodes.

O : S 7→ P is a source-location mapping, where O(s) is the originating node for multicast

session s. D : S 7→ 2P is a receiver-location mapping, where D(s) ⊆ P is the set of nodes

requiring the data of session s.

It should be noted that there is no specified rate requirement. The connection requirement

differs from the usual concept of multicast requirement in that it only specifies which nodes

require data from which other nodes, and not any particular desired information rate.

Given a connection requirement M , the goal of a network code is to efficiently multicast data

for session s originating at node O(s) to all receivers in the set D(s). Nodes are assumed to

have sufficient computing power to implement any desired network coding scheme.

Let F = S ∪ E . For a network G and connection requirement M , a network code is specified

by a set of source and edge alphabets {Uf , f ∈ F} and a set of local coding functions

Φ ,

{
φe :

∏
f∈F :f→e

Uf 7→ Ue : e ∈ E

}
where for ease of notation, s→ e indicates O(s)→ e, and f ∈ F : f → e means any source or

edge incident to edge e.

Data transmission takes place as follows. Session s ∈ S generates a source symbol Us, which

is assumed to be independent of other sessions and uniformly distributed over Us. The link

symbol transmitted along e ∈ E is Ue = φe(Uf : f ∈ F , f → e). In other words, the symbol

transmitted along an outgoing link of a node is a function of the available sources and incident

link symbols.

We will refer to a network code by Φ, with the set of alphabets {Uf , f ∈ F} implicitly defined.

Since the input and link symbols are random variables, we can also refer to the code by the set

of random variables UF , where their joint distribution is implied by Φ. Clearly,

H(US) =
∑
s∈S

H(Us) =
∑
s∈S

log |Us| and

H(Ue) ≤ log |Ue|.
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For a given network code Φ designed for a network G with connection requirement M , the

error probability Pe(Φ) is defined as the probability that at least one receiver d ∈
⋃
s∈S D(s)

fails to correctly reconstruct one or more of its requested source messages {Us : D(s) = d}. A

zero-error network code is one for which Pe(Φ) = 0, implying that the source symbols Us are

deterministic functions of the corresponding receiver-incident edge symbols.

A. Algebraic network codes

The above formulation imposes no restriction on the choice of alphabets and local coding

functions. However, in practice, it may be preferable to impose algebraic structure to reduce

the complexity of encoding and decoding. The overwhelming majority of codes studied for the

point-to-point channel are in fact linear, and linear codes are also of particular interest in the

network coding context.

Definition 2 (Linear Network Code): A network code Φ is linear over a finite field Fq if

all source and link alphabets Uf are vector spaces over some finite field Fq, and all the local

encoding functions φe are linear.

Clearly, for a linear network code, each source alphabet is a vector subspace and the symbol

transmitted along link e ∈ E is a linear function of the inputs US . As will be stated in

Proposition 2, the set of all the kernels of these linear functions associated with all the links can

be used to “construct” the set of source and link random variables defining the network code. To

understand this relationship, we first review the construction of random variables from a finite

group and its groups [12].

Definition 3 (Construction of random variables from subgroups): Suppose that U is a ran-

dom variable uniformly distributed over a group G. For any subgroup Gi, the set of left cosets

of Gi forms a partition in G. Let Ui be an index set of the cosets of Gi in G. We can define a

random variable Ui as a function of U such that Ui is the index of the coset of Gi that contains

U , or simply that Ui is the coset of Gi that contains U . The resulting random variable is said

to be constructed from G and Gi.

Definition 4 (Group characterizable random variables): A set of random variables {U1, . . . , UN}
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(and its induced entropy function) is called group characterizable if it is equivalent1 to a set of

random variables constructed from a finite group G and its subgroups G1, · · · , GN .

If G is abelian, then {U1, · · · , UN} (and the entropy function) is called abelian group charac-

terizable. If in addition G and G1, · · · , GN are all vector spaces, then the set of random variables

(and the entropy function) is called linear group characterizable.

Denote the set of group characterizable entropy functions by Γ∗G ⊂ Γ∗, the set of abelian

group characterizable functions by Γ∗ab and the set of linear (with respect to a finite field Fq)

group characterizable functions by Γ∗L(q). Then, it is clear that Γ∗L(q) ⊂ Γ∗ab ⊂ Γ∗G ⊂ Γ∗.

Random variables constructed from subgroups have been shown to have many interesting

properties. For example, suppose {U1, · · · , UN} is constructed from a finite group G and its

subgroups G1, · · · , GN . Then H (Uα) = log |G|/|
⋂
i∈αGi| for any non-empty subset α ⊆ N ,

{1, 2, . . . , N} [12]. It was also proved in [12] that a linear information inequality is valid if and

only it is satisfied by all group characterizable random variables. Thus group characterizable

random variables have an interesting role to play in the proof of information inequalities,

Before describing some additional properties of group characterizable random variables, we

will need the concept of quasi-uniform random variables.

Definition 5 (Quasi-uniform random variable): A discrete finite random variable U defined

on a sample space U is called quasi-uniform if and only if it is uniformly distributed over its

support Ω(U). In other words, the probability distribution of U has the following form:

Pr(U = u) =

1/|Ω(U)| if u ∈ Ω(U)

0 otherwise

Hence, H(U) = log |Ω(U)|.

Similarly, a set of random variables U1, U2, . . . , UN (and its induced entropy function) is

called quasi-uniform if and only if every subset of random variables Uα, α ⊆ {1, 2, . . . , N} is

quasi-uniform, i.e. H(Uα) = log |Ω(Uα)|.

1Two sets of random variables {U1, · · · , UN} and {V1, · · · , VN} with probability distributions PU and PV respectively are

“equivalent” if for each i = 1, · · · , N , there is a one-to-one mapping τi from the support of Ui to the support of Vi such

that PU (U1, · · · , UN ) = PV (τ1(U1), · · · , τN (UN )). In this paper, two sets of equivalent random variables will be regarded as

identical.
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Lemma 1 ( [12], [25]): Random variables induced by groups and subgroups are quasi-uniform.

Hence

Γ∗L(q) ⊂ Γ∗ab ⊂ Γ∗G ⊂ Γ∗Q ⊂ Γ∗

where Γ∗Q is the set of all quasi-uniform entropy functions.

W
U1

U2U2

U1

Fig. 1. The side-information network.

Lemma 2: With reference to Figure 1, consider a simple coding problem in which there is a

transmitter (indicated by an open circle) and a receiver (indicated by a double circle) connected

by a noiseless point-to-point link. A source U1 is available at the transmitter, while correlated

side-information U2 is available at both transmitter and receiver. The coding problem is to encode

U1, U2 into a symbol W defined on the sample spaceW such that U1 can be constructed perfectly

at receiver from W and U2.

Suppose that {U1, U2} is quasi-uniform. Then one can have a zero-error code with rate

log |Ω(U1, U2)|/|Ω(U2)| = H(U1|U2), where the code rate is defined as log |W|.

Proof: Since U2 is available to both transmitter and receiver, U1 can be reconstructed

perfectly if the transmitter only sends the index of u1 in the set {u1 : (u1, u2) ∈ Ω(U1, U2)}

for any given u2 ∈ Ω(U2). By the quasi-uniformity of {U1, U2}, the cardinality of the set

{u1 : (u1, u2) ∈ Ω(U1, U2)} is |Ω(U1, U2)|/|Ω(U2)| for any u2 ∈ Ω(U2). Hence, one can easily

construct a zero-error code at a rate of log |Ω(U1, U2)|/|Ω(U2)| = H(U1|U2) that solves the

coding problem.

If the group and subgroups in question possess additional algebraic properties, the induced

random variables may also satisfy certain additional properties. One interesting example, proved

in [26], [27] is given as follows.
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Proposition 1 (Ingleton’s inequality): Suppose that the set of random variables {U1, . . . , UN}

is abelian group characterizable. Let {V1, V2, V3, V4} ⊆ {U1, . . . , UN}. Then

g(1, 2) + g(1, 3) + g(1, 4) + g(2, 3) + g(2, 4) ≥ g(1) + g(2) + g(3, 4) + g(1, 2, 3) + g(1, 2, 4) (1)

where g(α) , H(Vα).

Proposition 2: Suppose that a set of random variables {Uf , f ∈ F} defines a zero-error linear

network code. Then {Uf , f ∈ F} is linear group characterizable.

Proof: [Proof Sketch] Suppose that Φ = {φe, e ∈ E} is a zero-error linear network code

with inputs Us ∈ Us for s ∈ S and link symbols Ue ∈ Ue for e ∈ E . We will now construct a

linear group characterization for the set of source/link random variables induced by Φ. Let

1) G be the vector space formed by the Cartesian product of
∏

s∈S Us;

2) ψs : G 7→ Us be a linear function such that ψs(Us : s ∈ S) = Us;

3) ψe : G 7→ Ue be a linear function such that Ue = ψe(Us : s ∈ S); (This is possible as all

local coding functions φe are linear)

4) Gf is the kernel of ψf , denoted by ker(ψf ), for f ∈ S ∪E . Hence, Gf is a subspace of G.

Then it is straightforward to show that for any (Us : s ∈ S) and f ∈ F , the value of ψf (Us :

s ∈ S) can be uniquely determined from the index of the coset of Gf that contains (Us : s ∈ S)

and vice versa. In other words, the link random variable Uf is equivalent to the one induced by

the subspace Gf .

A natural interpretation of Proposition 2 is that linear network codes are those codes whose

induced source and link random variables can be characterized by a vector space and its

subspaces. Developing this line of thought more generally, we make the following definition.

Definition 6 (Group network code): A group network code is a network code {Uf , f ∈ F}

whose source and link random variables are induced by a finite group G with subgroups Gf , f ∈

F . Furthermore, a group network code is called abelian if G is abelian.

For a group network code Φ = {Uf , f ∈ F}, encoding at intermediate nodes works as follows.

Suppose that the source and link random variables {Uf , f ∈ F} are characterized by a finite

group and its subgroups Gf for f ∈ F . For any f ∈ F , let Uf be the index set for the set of left

cosets of Gf in G. Each edge e receives symbols {Uf : f → e}, which are indexes of cosets

Gf in G. The symbol Ue to be transmitted along edge e is the index of the left coset Ge that

contains the intersection of the cosets of Gf indexed by {Uf : f → e}.
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In fact, in the special case when the group and all its subgroups are vector spaces, we can

index the coset of Ge as elements in a vector space such that Ue is indeed a linear function of

{Uf : f → e}.

Example 1: An R-module generalizes the concept of vector space, where the scalars are a

members of a ring R, instead of a field. It consists of an abelian group K, and an operation of

left multiplication by each element in R. In particular, for all r, s ∈ R and g, h ∈ K,

rg ∈ K

(rs)g = r(sg)

(r + s)g = rg + sg

r(g + h) = rg + rh

0g = 0.

R−module codes have been proposed as generalizations of linear network codes [20]. Messages

to be transmitted along edges are elements in K. The only difference is that local encoding

functions must be of the form

Ue =
∑

f∈F :f→e

rfeUf

where rfe ∈ R. As such, there exists elements Mes ∈ R such that

Ue =
∑
s∈S

MesUs.

Let G be the |S|-fold Cartesian product of K. For all e ∈ E and s ∈ S, let

Ge =

{
(Us ∈ K : s ∈ S) :

∑
s∈S

MesUs = 0

}

Gs = {(Us ∈ K : s ∈ S) : Us = 0} .

Then it is straightforward to show that Gf is an abelian subgroup of G for f ∈ F and that

the source and link random variables induced by the R −module code is characterized by the

subgroup G and its subgroups Gf , f ∈ F .
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B. The source rate-link capacity tradeoff

So far, we have only considered networks, and codes designed to meet particular connection

requirements. Typically however, each link has limited capacity, and a fundamental design

consideration is the tradeoff between supportable network throughput and link capacities. Of

primary interest is determination of the minimal link capacities ω , (ωe : e ∈ E) required to

transmit sources over a network at given rates λ , (λs : s ∈ S) such that all receivers can

reconstruct their desired messages with no, or arbitrarily small probability of error.

Definition 7 (Admissible rate-capacity tuple): Given a network G = (P , E) and a connection

requirement M , a rate-capacity tuple (λ, ω) is admissible if there exists a zero-error network

code Φ = {Uf , f ∈ S ∪ E}, such that

H(Ue) ≤ log |Ue| ≤ ωe, ∀e ∈ E ,

H(Us) = log |Us| ≥ λs, ∀s ∈ S,

where Ue is the message symbol transmitted along link e and Us is the input symbol generated

at source s.

Coding over long block of symbols often improves the rate of point-to-point codes. Similarly,

increased efficiency may be expected for network codes operating over a long block of source

symbols. Therefore, we also consider the asymptotic tradeoff between source rates and link

capacities.

Definition 8 (Asymptotically admissible): A rate-capacity tuple (λ, ω) is asymptotically ad-

missible if there exists a sequence of zero-error network codes Φ(n) = {U (n)
f , f ∈ S ∪ E} and

positive normalizing constants r(n) such that

lim
n→∞

1

r(n)
H
(
U (n)
e

)
≤ lim

n→∞

1

r(n)
log |U (n)

e | ≤ ωe, ∀e ∈ E ,

lim
n→∞

1

r(n)
H
(
U (n)
s

)
= lim

n→∞

1

r(n)
log |U (n)

s | ≥ λs, ∀s ∈ S.

The above two definitions consider zero-error network codes. Relaxing the requirement to

allow arbitrarily small error probability prompts the following definition.

Definition 9 (Achievable rate-capacity tuple): A rate-capacity tuple (λ, ω) is achievable if

there exists a sequence of network codes Φ(n) , {U (n)
f , f ∈ S ∪ E} and positive normalizing
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constants r(n) such that

lim
n→∞

1

r(n)
H
(
U (n)
e

)
≤ lim

n→∞

1

r(n)
log |U (n)

e | ≤ ωe, ∀e ∈ E ,

lim
n→∞

1

r(n)
H
(
U (n)
s

)
= lim

n→∞

1

r(n)
log |U (n)

s | ≥ λs, ∀s ∈ S,

lim
n→∞

Pe
(
Φ(n)

)
= 0.

Assuming that the underlying network and connection requirement are known implicitly, the

set of admissible, asymptotically admissible and achievable rate-capacity tuples will be denoted

Υ0,Υ∞ and Υε respectively.

The preceding definitions place no restriction on the class of network codes under considera-

tion. However, if a rate-capacity tuple is admissible/asymptotically admissible/achievable using a

network code in a specific class C (e.g. the class of linear network codes), then that rate-capacity

tuple is said to be admissible/asymptotically admissible/achievable by network codes in C, and

the corresponding sets are denoted Υ0
C,Υ

∞
C and Υε

C .

In this paper, we are interested in two special classes of network codes, (i) linear network codes

(with respect to an underlying finite field Fq) and (ii) abelian group network codes. The sets of

admissible/asymptotically admissible/achievable rate-capacity tuples by linear network codes are

respectively denoted by Υ0
L(q),Υ

∞
L(q) and Υε

L(q). Similarly, the set of admissible/asymptotically

admissible/achievable rate-capacity tuples by abelian group network codes are respectively de-

noted by Υ0
ab,Υ

∞
ab and Υε

ab.

Discovering the hidden structure of these sets of rate-capacity tuples is the key to understanding

the tradeoff between source rates and edge capacities. In the following, we list some basic

structural properties of Υ0
C,Υ

∞
C and Υε

C when C is either the class of all network codes, linear

network codes or abelian group network codes.

P1) The sets Υ0
C,Υ

∞
C and Υε

C are closed under addition. In other words, if tuples (λ, ω) and

(λ′, ω′) are in Υ0
C (or respectively in Υ∞C and Υε

C), then the element-wise addition of the

two tuples will still be in the same set.

P2) Υ∞C and Υε
C are closed convex cones, and con(Υ0

C) = Υ∞C where con(Υ0
C) is the minimal

closed convex cone containing Υ0
C .

P3) Admissibility implies asymptotic admissibility which further implies achievability, Υ0
C ⊆

Υ∞C ⊆ Υε
C .
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III. PSEUDO-VARIABLES AND BOUNDS

The sets of admissible/achievable rate-capacity tuples are difficult to characterize explicitly. In

fact, we will show later that finding these sets is at least as hard as determining the set of entropy

functions Γ∗. Due to the difficulty of the problem, results on characterizing the set of achievable

rate-capacity tuples are quite limited [21], [24], [28], [29]. While inner bounds and outer bounds

constructed with entropic/almost entropic functions exist [1], these bounds are not computable

and hence are of limited practical use. The only known computable outer bound is the Linear

Programming (LP) bound, which is constructed using polymatroids [1]. The remainder of this

section provides a brief review of these bounds. We use the opportunity to introduce notation

(differing slightly from the original manuscripts), facilitating later discussion.

Let L be a nonempty finite set. Recall that H[L] (or simply H) is a real euclidean space which

has 2|L| dimensions and coordinates indexed by the set of all subsets of L and that g(∅) = 0 for

all g ∈ H[L]. Specifically, if g ∈ H, then its coordinates will be denoted by (g(A) : A ⊆ L).

We call L a ground set. Each g ∈ H can also be viewed as a real-valued function g : 2L 7→ R

defined on each subset of L.

Definition 10 (Polymatroid): A function g ∈ H[L] is a polymatroid if it satisfies

g(∅) = 0 (2)

g(A) ≥ g(B), if B ⊆ A non-decreasing (3)

g(A) + g(B) ≥ g(A ∪ B) + g(A ∩ B) submodular (4)

Note (2) and (3) imply non-negativity of a polymatroid. Let L be a set of discrete random

variables with finite entropies. Note that L contains random variables rather than indexes for a

set of random variables. This induces a function g ∈ H where g(A) is the joint entropy of the

set of random variables ∅ 6= A ⊆ L. Functions so-defined will be called entropy functions.

It is well-known that entropy functions are polymatroids over the ground set L. In fact, in

the context of entropy functions, the polymatroid axioms are completely equivalent to the basic

information inequalities (i.e. non-negativity of conditional mutual information) [1, p. 297]. It is

by now well-known however that there are other information inequalities that are not implied by

the polymatroid axioms. The set of entropy functions is denoted Γ∗, while the set of polymatroids

is Γ.

While an entropy function takes a subset of random variables as argument, a polymatroid g
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more generally takes a subset of the ground set L as argument, where the elements of L may or

may not be random variables. For simplicity, we shall call the elements of the ground set of a

polymatroid pseudo-variables. They differ from random variables in that they do not necessarily

take values, and there may be no associated joint probability distribution function.

It must be emphasized that pseudo-variables are only defined in the context of a polymatroid

g defined on the ground set L. The elements of L are not pseudo-variables by themselves in the

absence of an associated polymatroid.

Carrying these ideas further, we will call g(A) the pseudo-entropy of the set of pseudo-

variablesA, and g is a pseudo-entropy function. Treating pseudo-variables as a set of basic objects

associated with a polymatroid yields notational simplification. For example, random variables

are simply pseudo-variables possessing a probability distribution such that their pseudo-entropy

function is the same as the entropy function. As such, we extend the use of H(A) to refer to

the pseudo-entropy of a set of pseudo-variables A.

Definition 11 (Entropic function): A set of pseudo-variables (and its associated pseudo-entropy

function) is called entropic if its pseudo-entropy function is the same as an entropy function of

a set of random variables.

Similarly, a set of pseudo-variables (and their pseudo-entropy function) is called linear group

characterizable if its pseudo-entropy function is the same as an entropy function of a set of

linear group characterizable random variables.

The following two definitions generalize concepts of functional dependence and independence

to pseudo-variables.

Definition 12 (Functional dependence): Let L be a set of pseudo-variables. A pseudo-variable

X ∈ L is said to be a function of a set of pseudo-variables A ⊆ L if H ({X} ∪ A) = H (A).

This relation will be denoted by H(X|A) = 0.

Definition 13 (Independence): Two subsets of pseudo-variables A and B are called indepen-

dent if H(A ∪ B) = H(A) +H(B), and this relationship will be denoted by A⊥B. Similarly,

if H(
⋃
j∈J Aj) =

∑
j∈J H(Aj), write ⊥j∈J Aj .

Clearly, these definitions are consistent with the usual ones used for random variables. The

following bound re-states the linear programming bound [1, Section 15.6] in terms of pseudo-

variables.

Definition 14 (LP bound): Given a network G and a connection requirement M , the LP bound
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is the set of rate-capacity tuples (λ, ω) such that there exists a set of pseudo-variables {Us : s ∈

S, Ue : e ∈ E} satisfying the following “connection constraint”:

H (Ue | Uf : f → e) = 0, e ∈ E

H (Us | Uf : f → u) = 0, u ∈ D(s)

⊥s∈S Us

H(Us) ≥ λs, s ∈ S

H(Ue) ≤ ωe, e ∈ E .

(5)

Denote the set of rate-capacity tuples that satisfy the LP bound by ΥLP . From [1] it is known

that ΥLP ⊇ Υε. It is interesting to notice that the use of pseudo-variables gives a notational

unification of an inner bound and an outer bound given in [1] as follows:

Proposition 3 (Inner and Outer bounds): Given a network G and a connection requirement

M , let Υin resp. Υout be the set of rate-capacity tuples (λ, ω) such that there exists a set of

entropic resp. almost entropic pseudo-variables {Us : s ∈ S, Ue : e ∈ E} satisfying (5). Then

Υin ⊆ Υε ⊆ Υout ⊆ ΥLP .

Proof: The proof is straightforward by rewriting the bounds obtained in [1].

Similar to the LP bound, we define the following bound for abelian group network codes

(including linear network codes) as follows.

Definition 15 (LP-Ingleton bound): Given a network G and a connection requirement M , the

LP-Ingleton bound is the set of rate-capacity tuples (λ, ω) such that there exists a set of pseudo-

variables {Us : s ∈ S, Ue : e ∈ E} satisfying the Ingleton inequalities (1) and the connection

constraint (5).

Proposition 4: Denote the set of rate-capacity tuples that satisfy the LP-Ingleton bound by

ΥLP,I . Then ΥLP,I contains Υε
ab.

Proof: First notice that all source and link random variables of an abelian group network

code must satisfy the Ingleton inequalities. The proposition then follows by using a similar

argument as in [1] that proves ΥLP ⊇ Υε.

Since the LP and LP-Ingleton bounds are defined by intersections of several linear half-spaces

and hyperplanes, these bounds are polyhedral. Together with the following duality results, this

implies that LP bounds are not generally tight (this is proved Section V).
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IV. ENTROPY FUNCTIONS, NETWORK CODES AND DUALITY

Given a network, a connection requirement and a rate-capacity tuple, the multicast problem

is to determine whether or not the rate-capacity tuple is admissible or achievable (perhaps

even restricted to codes in a particular class). In this section, we construct multicast problems

from non-negative functions. This construction yields several dualities between properties of the

generating function and the solubility of the multicast problem. We establish three main dualities.

The first duality relates entropy functions and network codes. It can be paraphrased as follows.

A function is quasi-uniform if and only if its induced rate-capacity tuple is admissible.

This is shown in Theorem 1. Theorem 2 provides an extension which implies

A function is almost entropic if and only if its induced rate-capacity tuple is achievable.

The second duality proves similar results for linear network codes.

An entropy function is linear group characterizable if and only if its induced rate-

capacity tuple is admissible by linear network codes.

This is Theorem 3. Again, Theorem 4 extends the result, relating almost linear group character-

izable functions and achievable rate-capacity tuples with linear network codes.

The third duality, Theorem 5 relates polymatroids and the linear programming bound.

A function is a polymatroid if and only if its induced rate-capacity tuple satisfies the

LP bound.

We also give a partial result for an extension to polymatroids that also satisfy the Ingleton

inequality.

Despite their apparent simplicity, these results leads to many interesting corollaries: linear

network codes (or more generally, abelian group network codes) are suboptimal, the LP bound is

not tight, and in general the network coding capacity region is not a polytope. These consequences

will be described in more detail in Section V.

A. Constructing multicast problems

Let h ∈ H[N ], be a given non-negative function over the ground set N = {1, 2, . . . , N}.

The proof for the main result relies on the construction of a special network G†, a connection

requirement M † and a rate-capacity tuple T(h) , (λ(h), ω(h)).
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Figure 2 defines the network topology, connection requirement and edge capacities. For

convenience, the network is divided into several subnetworks. To differentiate the roles of network

nodes, source nodes are indicated by open circles, destination nodes are double circles, and

intermediate nodes are solid circles. By construction, each node takes only one role. The label

beside a source node is the input message available to that source node (this defines the source

location mapping O). The label beside a receiver node indicates the desired source message

to be reconstructed at that destination node (this defines the destination location mapping D).

To simplify notation, each capacitated edge is labeled with a pair of symbols denoting the

edge message (and corresponding random variable), and the edge capacity. Unlabelled edges are

assumed to be uncapacitated, or to have a finite but sufficiently large capacity (such as
∑

α h(α))

to losslessly forward all received messages.

The first part of the network, shown in Figure 2(a), contains the sources. There are 2N − 1

independent sessions, S =
{
S[α] : ∅ 6= α ⊆ 2N

}
2. The desired source rate associated with session

α is h(α). Singletons {i} ∈ 2N will be denoted without brackets, e.g. h(i) and S[i]. There are

N specific edge messages that are of particular interest. Rather than naming all edge variables

Ue, e ∈ E , we label these N particular edge variables Vj , j = 1, . . . , N . Remaining edge variables

will be labelled with generic symbols W,W ′,W ′′,W ∗ and W ∗∗. Source S[N ] generates the

network coded messages V1, V2, . . . , VN which are duplicated as required and forwarded to the

rest of the network. The remaining part of the network is divided into subnetworks of three

types, shown in Figures 2(b), 2(c) and 2(d).

With reference to Figure 2(b), type 0 subnetworks connect a single source to one receiver.

There are 2N − 1 type 0 subnetworks, indexed by the choice of ∅ 6= α ∈ 2N .

Referring to Figure 2(c), there are 2N−1 type 1 subnetworks, one for each nonempty α ∈ 2N .

These subnetworks introduce an edge of capacity h(N )− h(α) between source S[N ] and a sink

requiring S[N ]. There is an intermediate node which has another |α| incident edges (from Figure

2(a)), carrying the messages Vα = {Vj, j ∈ α}. The intermediate node then has an edge of

capacity h(α) to the sink.

Finally, Figure 2(d) shows the structure of the type 2 subnetworks. Type 2 subnetworks are

indexed by a set α, where ∅ 6= α ⊂ N and an element i ∈ α, i 6∈ N . Each type 2 subnetwork

2For simplicity, we use the same symbol to denote the index of a multicast session and the associated source random variable.
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S[{i,j}]

S[α]

S[N ]

V1, h(1)

V2, h(2)

VN , h(N)

S[1]

S[i]

(a) The sources.

S[α] S[α]

W,h(α)

(b) Type 0 subnetworks

S[N ]

Vα {
W,h(N )− h(α)

S[N ]

W ′, h(α)

(c) Type 1 subnetworks

S[α]

S[α]Vα{

S[N ]

S[N ]

W,h(α)

W ′, h(N )− h(α)

Vi Vi

W ∗, h(α)

W ′′, h(α, i)− h(i)

W ∗∗, h(α)

(d) Type 2 subnetworks

Fig. 2. The network G†.
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connects two sources S[α] and S[N ] and two receivers respectively requiring S[α] and S[N ]. In

addition, there are |α|+ 2 other incident edges from Part 1 of the network, carrying Vα and two

copies of Vi. For notational simplicity, we have written h (α ∪ {i}) , h(α, i).

So far, we have described a network G†, a connection requirement M † and have assigned rates

to sources and capacities to links. Clearly M † depends only on N , and not in any other way on

h. Similarly, the topology of the network G† depends only on N . The choice of h affects only

the source rates and edge capacities, which are collected into the rate-capacity tuple T(h). Also,

we can assume without loss of generality that T(h) is a linear function of h.

Example 2: Figure 3 shows the topology of the network G† when N = 2. Edge labels are

omitted for clarity.

V1

V2

S[{1,2}]

S[1]

S[2]
S[2]

S[1]

S[{1,2}]

S[{1,2}]

S[{1,2}]

S[{1,2}]

S[{1,2}]

S[1]

S[{1,2}]

S[2]

Fig. 3. The network G† when N = 2.

B. First Duality: Entropy functions and network codes

Theorem 1: Let h be in H[N ] for N = {1, 2, . . . , N}. The induced rate-capacity tuple T(h) is

admissible on the network G† and connection requirement M †, if and only if h is quasi-uniform,

i.e.,

h ∈ Γ∗Q ⇐⇒ T(h) ∈ Υ0.
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We begin with a proof of the only-if statement, i.e. starting with the assumption of admissibility,

we must demonstrate that the function is quasi-uniform. By Definition 7, admissibility of T(h) on

G†,M † requires existence of a zero-error network code Φ with source messages S[α], ∅ 6= α ⊆ N

and a subset of its coded messages VN satisfying

H
(
S[α]

)
≥ h(α), α ⊆ N (6)

H
(
S[α] : α ⊆ N

)
=
∑
α⊆N

H(S[α]) (7)

H (Vi) ≤ h(i), i ∈ N . (8)

The remaining goal is to prove H(Vα) = h(α) for every α ⊆ N . To this end, we prove the

following series of Lemmas 3–8, each predicated on admissibility of T(h) on G†,M †.

Lemma 3: H
(
S[α]

)
= h(α) for all ∅ 6= α ⊆ N .

Proof: Consider the type 0 subnetworks of Figure 2(b). Admissibility implies that each re-

ceiver can correctly reconstruct its required source message. This is not possible unless H(S[α]) ≤

H(W ) ≤ h(α), which together with (6) proves the lemma.

Lemma 4: h(α) ≤ H(Vα) for all ∅ 6= α ⊆ N .

Proof: Consider type 1 subnetworks in Figure 2(c). In order for the receiver to correctly

determine the requested source message S[N ], it must be true that H(Vα) + H(W ) ≥ H(S[N ]).

Furthermore, H(W ) ≤ h(N )− h(α). Hence,

H(Vα) + h(N )− h(α) ≥ H(Vα) +H(W )

≥ H(S[N ])

≥ h(N ),

where the last line follows from (6). As a result, H(Vα) ≥ h(α).

Lemma 5: H(Vj) = h(j) for all j ∈ N .

Proof: A direct consequence of Lemma 4 and (8).

By Lemma 5 we have taken a small step towards our goal, establishing H(Vα) = h(α) for

|α| = 1. Extension to all α will be achieved by induction on |α|. To this end, the remaining

lemmas take the hypothesis H(Vα) = h(α) for |α| = k < N , and are proved in the context of

type 2 subnetworks indexed by α and an element i ∈ N , i 6∈ α, as shown in Figure 2(d).
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Lemma 6: In type 2 subnetworks, W ⊥S[α]. Furthermore, if Vα = h(α), then H(Vα|W,S[α]) =

0.

Proof: By (7), S[α]⊥S[N ] and hence

H
(
S[α]

)
+H

(
S[N ]

)
= H

(
S[α], S[N ]

)
≤ H

(
S[α], S[N ],W,W

′)
(i)

≤ H(W,S[α],W
′)

= H(W,S[α]) +H(W ′ | W,S[α])

(ii)

≤ H(W,S[α]) +H(W ′)

≤ H(W ) +H(S[α]) +H(W ′)

(iii)

≤ h(α) +H(S[α]) +H(W ′)

(iv)

≤ h(α) +H(S[α]) + h(N )− h(α)

(v)
= H(S[α]) +H(S[N ]).

The inequality (i) follows from the fact that S[N ] is determined from W,S[α],W
′ at the upper

receiver in Figure 2(d). Inequality (ii) is by discarding conditioning (note that both W and W ′

depend on S[N ], so this is indeed only an inequality). Inequalities (iii) and (iv) follow from the

type 2 subnetwork capacity constraints,

H(W ) ≤ h(α) (9)

H(W ′) ≤ h(N )− h(α) (10)

and from Lemma 3. Finally, (v) is by Lemma 3. Thus the series of inequalities is actually a

series of identities, and as a result,

H(W ) = h(α) (11)

H(W,S[α]) = H(W ) +H(S[α]) = 2h(α) (12)
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which proves W ⊥S[α]. Now consider

H(Vα|W,S[α]) = H(Vα,W, S[α])−H(W,S[α])

(i)
= H(Vα, S[α])−H(W,S[α])

≤ H(Vα) +H(S[α])−H(W,S[α])

(ii)
= H(Vα)− h(α)

= 0 if H(Vα) = h(α)

where (i) holds since W is a function of Vα, S[α] and (ii) is by (11) and (12).

Lemma 7: In type 2 subnetworks, H(W |Vα,W ∗) = H(W |W ∗) = H(W ), or equivalently,

I(W ;Vα,W
∗) = 0.

Proof: Recalling that i 6∈ α ⊂ N ,

H(W |Vα,W ∗) ≥ H(W |Vα,W ∗, Vi)

(i)
= H(W |Vα, Vi)
(ii)
= H(W |Vα, Vi) +H(S[α]|Vα, Vi,W )

= H(W,S[α]|Vα, Vi)

≥ H(S[α]|Vα, Vi)
(iii)
= H(S[α])

(iv)
= h(α)

(v)

≥ H(W )

≥ H(W |W ∗)

≥ H(W |Vα,W ∗)

where (i) follows from the fact that W ∗ is a function of Vα, Vi, (ii) follows from that S[α] can

be reconstructed at the lower receiver, and (iii) follows from independence of S[α] and (Vα, Vi),

since by (7) S[α]⊥S[N ] and all the Vj, j ∈ N depend only on S[N ]. Finally, (iv) is by Lemma 3,

(v) is by the capacity constraint (9) and the remaining inequalities simply add extra conditioning.

Thus the chain of inequalities is actually a chain of identities, the last three proving the lemma.
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Lemma 8: In type 2 subnetworks, assuming H(Vα) = h(α), H(W ∗|Vα) = H(Vα|W ∗) = 0.

Proof:

H(Vα|W ∗) = H(Vα|W ∗,W ) + I(Vα;W |W ∗)

(i)
= H(Vα|W ∗,W )

≤ H(Vα, S[α]|W ∗,W )

= H(Vα|W ∗,W, S[α]) +H(S[α]|W ∗,W )

(ii)
= H(Vα|W ∗,W, S[α])

≤ H(Vα|W,S[α])

(iii)
= 0.

where (i) follows from Lemma 7, (ii) is because S[α] can be reconstructed at the lower receiver,

and (iii) is by Lemma 6, assuming H(Vα) = h(α). Since conditional entropies are non-negative

H(Vα|W ∗) = 0. (13)

On the other hand,

H(W ∗|Vα) = H(W ∗, Vα)−H(Vα)

= H(W ∗) +H(Vα|W ∗)−H(Vα)

≤ h(α)− h(α) = 0

where the last inequality uses (13), the type 2 subnetwork capacity bound H(W ∗) ≤ h(α) and

the assumption H(Vα) = h(α). Non-negativity of conditional entropy yields H(W ∗|Vα) = 0.

We are now ready to assemble the preceding lemmas into a proof for the only-if part of

Theorem 1. Proof: [Proof: only-if part of Theorem 1] The goal is to prove H(Vα) = h(α)

for all non-empty subsets α ⊆ N . This was already shown for |α| = 1 in Lemma 5. Extension

to all α will be achieved using induction. First, assume the hypothesis is true for all α ⊂ N

with 1 ≤ |α| ≤ k < N . For any i ∈ N and α ⊂ N such that i 6∈ α and |α| = k, consider

the type 2 subnetwork of Figure 2(d). We must show that H(Vα, Vi) = h(α ∪ {i}) , h(α, i).

By Lemma 4 we already know that H(Vα, Vi) ≥ h(α, i). Therefore it remains only to prove

July 5, 2021 DRAFT



25

H(Vα, Vi) ≤ h(α, i). Now

H(Vi, Vα) ≤ H(Vi, Vα,W
∗)

(i)
= H(Vi,W

∗)

≤ H(Vi,W
∗,W ′′)

(ii)
= H(Vi,W

′′)

≤ H(Vi) +H(W ′′)

(iii)

≤ H(Vi) + h(α, i)− h(i)

(iv)
= h(i) + h(α, i)− h(i)

= h(α, i)

where (i) follows from Lemma 8 (which holds under the induction hypothesis), (ii) is due to

the fact that W ∗ is a function of W ′′, Vi and (iii) is from the subnetwork 2 capacity bound

H(W ′′) ≤ h(α, i)− h(i). Finally, (iv) is by Lemma 5.

Up to this point, we have proved that h is the entropy function of a set of random variables

{V1, . . . , VN}. To show that h is indeed quasi-uniform, it suffices to prove that for any subset

α of N , the set of random variables Vα is quasi-uniform. Since we have just showed that

H(Vα) = h(α), if the receiver in the type 1 subnetwork can decode S[N ], then H(Vα|W ′) =

H(W ′|Vα) = 0. Hence, H(W ′) = h(α). Now according to the link capacity constraint, W ′ is

defined on an alphabet set of size 2h(α), and W ′ (and hence Vα) must be quasi-uniform.

It remains to prove the “if” statement in the theorem, i.e. to show that quasi-uniform random

variables imply admissibility. Proof: [Proof: if part of Theorem 1] It suffices to show that

one can construct a network code (defined by input variables, and message variables) meeting

the connection requirement subject to the individual capacity constraint on each link.

The construction for the input variables is simple. For any ∅ 6= α ⊆ N , define S[α] to be a

quasi-uniform random variable with entropy h(α). These input variables are also assumed to

be independent. It remains to show that we can construct edge variables satisfying the capacity

constraints, and which allow each receiver to reconstruct the requested messages perfectly.

By the quasi-uniformity of S[α], it is clear that all receivers in type 0 subnetworks can

reconstruct their requested message simply by having the source transmit the uncoded message,
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W = S[α].

Let {Vj : j ∈ N} be a set of quasi-uniform random variables whose entropy function is h.

Since H(VN ) = H(S[N ]), there is a one-to-one mapping between Ω(VN ) and Ω(S[N ]). As they

are both quasi-uniform, S[N ] and (Vj : j ∈ N ) can be regarded as the same.

For type 1 networks, by quasi-uniformity of Vα, one can send Vα unencoded as W ′. Then

the receivers see Vα and an auxiliary message W defined on a sample space of size at most

2h(N )−h(α). Reconstructing S[N ] at the receiver is equivalent to reconstructing VN\α at the receiver.

By the quasi-uniformity of S[α] and Lemma 2, VN\α can be compressed to a symbol W of

size 2h(N )−h(α) such that VN\α can be losslessly reconstructed from W and Vα.

It remains to verify that receivers in type 2 subnetworks can reconstruct all requested messages.

Recall that both S[α] and Vα are quasi-uniform. Assume without loss of generality that their

supports are {0, 1, 2, . . . , 2h(α) − 1}. Then we can define W , Vα + S[α] mod 2h(α). It is easy

to verify the following properties:

H
(
W | Vα, S[α]

)
= H

(
S[α] | W,Vα

)
= H

(
Vα | W,S[α]

)
= 0, (14)

log |Ω(W )| = h(α). (15)

By (14), the upper receiver can correctly reconstruct Vα from S[α] and W . Using a similar

compression scheme as used in type 1 subnetworks, source S[N ] is compressed to h(N )− h(α)

bits, allowing lossless reconstruction of S[N ] at the upper receiver.

On the other hand, it is easy to see that {Vα, Vi} is quasi-uniform. Hence Vα can be compressed

into W ′′ with a support of size |Ω(W ′′)| = 2h(α,i)−h(i) such that Vα can be reconstructed by using

W ′′ and Vi. As a result, W ∗ may be transmitted as Vα without any encoding. The lower receiver

can then recover S[α] from Vα and W .

Since all receivers can reconstruct their requested source messages with properly constructed

message random variables satisfying the capacity constraints, the rate-capacity tuple T(h) is

admissible.

Definition 16: A polymatroid h is called almost entropic if there exists a sequence of entropic

pseudo-entropy functions h(k) and positive constants r(k) such that limk→∞ h
(k)/r(k) = h.

As Γ̄∗ is a closed and convex cone [30], the set of all almost entropic functions is Γ̄∗. Theorem

1 establishes a duality, or equivalence between the quasi-uniformity of h and admissibility of
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T(h). The following theorem extends this result to a duality between almost entropic h and

asymptotically admissible (and achievable) T(h).

Theorem 2: Let h ∈ H[N ] for N = {1, 2, . . . , N} and let T(h) be an induced rate-capacity

tuple. Then we have,

h ∈ Γ̄∗ ⇐⇒ T(h) ∈ Υ∞ ⇐⇒ T(h) ∈ Υε.

In other words, the rate-capacity tuple T(h) is asymptotically admissible (or achievable) on the

network G† and connection requirement M † if and only if h is almost entropic.

Proof: Suppose that h is almost entropic. We will first show that T(h) ∈ Υ∞. By [12],

[26], one can construct a sequence of quasi-uniform entropic functions h(n) and normalizing

constants r(n) that limn→∞ h
(n)(α)/r(n) = h(α). By Theorem 1, each T(h(n)) is admissible.

By property P2, the set Υ∞ of asymptotically admissible rate-capacity tuples is a closed and

convex cone and hence T(h) ∈ Υ∞.

Clearly, T(h) ∈ Υ∞ implies that T(h) ∈ Υε. It remains to show that T(h) is achievable

implying that h is almost entropic. Suppose that T(h) ∈ Υε. According to Definition 9, one

can construct a sequence of normalizing constants r(n) and network codes Φ(n) with source

messages {S(k)
[α] , α ⊆ N} and edge messages V (k)

N such that3

lim
k→∞

1

r(n)
H
(
S

(n)
[α]

)
≥ h(α) (16)

lim
k→∞

1

r(n)
H
(
V

(n)
i

)
≤ h(i) (17)

lim
n→∞

Pe
(
Φ(n)

)
= 0. (18)

For each value of the sequence index n, consider the network G† and connection requirement

M † of Figure 2 with sources S =
{
S

(n)
[α] , ∅ 6= α ∈ 2N

}
and edge messages V (n)

N . By the Fano

inequality, the entropy of any source s ∈ S conditioned on the edge variables incident to any

node in D(s) can be made as small as desired by increasing n. Following a similar procedure

as in the proof for Theorem 1, it can be proved that for any non-empty subset ∅ 6= α ⊆ N ,

lim
k→∞

1

r(n)
H
(
V (k)
α

)
= h(α).

In other words, h is almost entropic.

3By the Bolzano-Wierstrass Theorem which says that any sequence in a closed and bounded interval has a convergent

subsequence, we can safely assume that limk→∞
1

r(k)
H(S

(k)

[α] , V
(k)
β ) exists for any nonempty subsets α, β of N .
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C. Second Duality: Linear group characterizable functions and linear network codes

The first duality shows that h is quasi-uniform (almost entropic) if and only if T(h) is

admissible (achievable). We will now prove a similar result, restricting the network codes to

be linear.

Theorem 3: Let h ∈ H[N ] for N = {1, 2, . . . , N}. The induced rate-capacity tuple T(h) is

admissible using linear network codes on the network G† and connection requirement M †, if

and only if h is linear group characterizable, i.e.,

h ∈ Γ∗L(q) ⇐⇒ T(h) ∈ Υ0
L(q)

Proof: [Proof: only-if part of Theorem 3] The proof of the only-if part is very similar to

the one given in Theorem 1. Suppose that T(h) ∈ Υ0
L(q), i.e., it is admissible using a linear

network code Φ on the network G† and connection requirement M †. By Proposition 2, the set of

induced source and link random variables by Φ is linear group characterizable. Using the same

argument as in the proof for Theorem 1, h is the entropy function of a subset of these linear

group characterizable random variables. Hence, h is linear group characterizable.

In fact, using the same argument, we can show that if the induced rate-capacity tuple T(h)

is admissible using abelian network codes on the network G† and connection requirement M †,

then h is abelian group characterizable.

Before we prove the if part of Theorem 3, we need the following lemma which serves a similar

role as Lemma 2 in the proof of Theorem 1 by justifying the feasibility of certain “compression”

scheme.

Lemma 9: Consider a special case of the network depicted in Figure 1 where the left node

receives T1(a) and T2(a) as inputs, where T1 and T2 are two linear functions defined on a vector

space A over Fq. Let the kernels of T1 and T2 be respectively B1 and B2. Then, there exists a

linear function W of T1(a) and T2(a) such that (1) T1(a) is uniquely determined from W and

T2(a), and (2) W takes at most qdimB2−dimB1∩B2 different values.

Proof: From B1 and B2, we can construct three subspaces W1, W2 and W0 such that

dim W0 + dim W1 + dim W2 + dim B1 ∩B2 = dim A

and that for each i = 1, 2, the subspace Bi is equal to the linear span of Wi and B1∩B2. Hence

any a ∈ A can be written uniquely as a = a0 + a1 + a2 + b where ai ∈Wi for i = 1, 2, 3 and

b ∈ B1 ∩B2.
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Since ker(T1) = B1, we have T1(a0 + a1 + a2 + b) = T1(a2) + T1(b). Furthermore, one can

easily construct a linear function T ∗1 such that T ∗1 (T1(a)) = (a2, b). Similarly, there exists a linear

function T ∗2 such that T ∗2 (T2(a)) = (a1, b).

To compute T1(a) at node 2, it suffices to compute a2 as b can be computed directly from

T2(a). A simple counting argument shows that a2 lies in a vector subspace of dimension

dim B2 − dim B1 ∩ B2. Therefore, we can set W = a2 over the network and it takes at most

qdimB2−dimB1∩B2 different values.

Now we may continue our proof for Theorem 3. Proof: [Proof: if part of Theorem 3] To

prove the direct part of Theorem 3, we need to show that if h is linear group characterizable,

then one can construct a linear network code (defined by the induced source and link random

variables) meeting the connection requirement subject to the individual capacity constraint on

each link.

Suppose that h is linear group characterizable by a vector space V and its subspaces V1, . . . ,VN ,

defined over a field Fq. Assume without loss of generality that the subspaces intersect only at

the zero vector,
⋂N
j=1 Vj = {0}. As such, h(N ) = log q · (dim V) and for any α ⊆ N , we have

h(α) = log q · (dim V − dim
⋂
j∈αVj).

For j = 1, . . . , N , construct linear functions fj over V such that ker(fj) = Vj . The source

random variable S[N ] is uniformly distributed over V such that the link symbols transmitted in

Figure 2(a) are Vj = fj(S[N ]). For any other ∅ 6= α ⊂ N , define S[α] to be a random variable,

uniformly distributed over a vector space of dimension logq 2 · h(α) (hence, H(S[α]) = h(α)).

All these source random variables are assumed to be independent.

Up to this point, we have described how source and link random variables are defined in

Figure 2(a). It remains to show that we can construct a linear network code, consisting of a set

of link random variables which are linear functions of the incident source/link random variables,

satisfying the capacity constraints, and which allow each receiver to reconstruct the requested

messages perfectly.

For type 0 subnetworks, all receivers can reconstruct their requested message simply by having

the source transmit the uncoded message, W = S[α]. Clearly, the associated link random variables

in these subnetworks are linear functions of the incident ones and meet the capacity constraint.

For type 1 subnetworks, let W ′ = (Vi : i ∈ α) = (fi(S[N ]) : i ∈ α), which depends linearly

on S[N ]. Note that (fi(a) : i ∈ α) = 0 if and only if fi(a) = 0 for all i ∈ α, or equivalently,
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when a ∈
⋂
i∈αVi. By the rank-nullity theorem, W ′ can take at most |V|/|

⋂
i∈αVi| different

values. We can thus treat W ′ as a vector in space of dimension dim V − dim
⋂
i∈αVi.

As a result, the subnetwork can now be treated as a special case of Lemma 9 such that T1(a) =

a and T2(a) = (fi(a) : i ∈ α). The dimensions of the kernels of T1 and T2 are respectively 0

and dim
⋂
i∈αVi. By Lemma 9, the required rate is thus log q · (dim

⋂
i∈αVi) = h(N )− h(α).

Similarly, for type 2 subnetworks, let W ∗∗ = (fi(S[N ]) : i ∈ α). As before, we can treat W ∗∗

as a vector of length dim V − dim
⋂
i∈αVi. Similarly, S[α] can also be regarded as a vector of

the same length. We can therefore define W by vector addition, W = S[α] +W ∗∗. Consequently,

the receiver in the upper branch can reconstruct Vα by subtracting S[α] from W . As before, one

can find W ′ as a linear function of S[N ] and this function allows S[N ] to be reconstructed from

W ′ and Vα.

For the lower branch, we can identify a special case of Figure 1 with T1(a) = Vα and

T2(a) = Vi. One can construct W ′′ such that (1) W ′′ is a linear function of T1(a) and T2(a), (2)

the kernel ker(T1) =
⋂
j∈αVj and ker(T2) = Vi, and (3) the rate required is dim

⋂
j∈αVj −

dim Vi

⋂
j∈αVj . Therefore, we can reconstruct Vα from W ′′ and T2(a) where T1(a) = Vα.

Again, treating Vα as a vector of length dim V− dim
⋂
i∈αVi, the receiver at the lower branch

can reconstruct S[α] by subtracting Vα from W .

So far, we have proved that h is linear group characterizable if and only if the rate-capacity

tuple T(h) is admissible with a linear network code. As before, we can further generalize the

result to include the case when h is almost linear group characterizable according to the following

definition.

Definition 17: A polymatroid h is called almost linear group characterizable if there exists a

sequence of linear group characterizable entropy functions h(k) and positive constants r(k) such

that limk→∞ h
(k)/r(k) = h.

It is easy to prove that the set of all almost linear group characterizable polymatroids is con(Γ∗L(q)),

the minimal closed and convex cone containing Γ∗L(q).

Theorem 4: Let h ∈ H[N ] for N = {1, 2, . . . , N} and let T(h) be an induced rate-capacity

tuple. Then we have

h ∈ con(Γ∗L(q)) ⇐⇒ T(h) ∈ Υ∞L(q) ⇐⇒ T(h) ∈ Υε
L(q).

In other words, the rate-capacity tuple T(h) is asymptotically admissible (or achievable) by linear
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network codes on the network G† and connection requirement M † if and only if h is is almost

linear group characterizable.

Proof: Suppose that h ∈ con(Γ∗L(q)). By Definition 17, one can construct a sequence

of linear group characterizable entropy functions h(k) and positive constants r(k) such that

limk→∞ h
(k)/r(k) = h. By Theorem 3, each T(h(n)) is admissible by linear network codes.

By property P2, the set Υ∞L(q) of asymptotically admissible rate-capacity tuples is a closed and

convex cone and hence T(h) ∈ Υ∞L(q).

Clearly, T(h) ∈ Υ∞L(q) implies that T(h) ∈ Υε
L(q). It remains to prove that T(h) ∈ Υε

L(q) implies

h ∈ con(Γ∗L(q)).

Suppose that T(h) is achievable by linear network codes. Then one can construct a sequence of

normalizing constants r(n) and linear network codes Φ(n) with source messages (S
(k)
[α] , α ⊆ N )

and edge messages (V
(k)
j , j ∈ N ) such that

lim
k→∞

1

r(n)
H
(
S

(n)
[α]

)
≥ h(α) (19)

lim
k→∞

1

r(n)
H
(
V

(n)
j

)
≤ h(j) (20)

lim
n→∞

Pe
(
Φ(n)

)
= 0. (21)

Similar to the proof given in Theorem 2, it can be proved that for any non-empty subset ∅ 6= α ⊆

N , limk→∞
1

r(n)
H
(
V

(k)
α

)
= h(α). In addition, as (V

(k)
j , j ∈ N ) is linear group characterizable,

h is almost linear group characterizable.

D. Third Duality: Polymatroids and the LP bound

Theorem 2 provides a duality between entropy functions and network codes, namely that a

function h ∈ H[N ] is almost entropic if and only if T(h) is achievable on G†, M †. As the set

of almost entropic functions Γ̄∗ has no explicit characterization for four or more variables, the

sets of admissible or achievable rate-capacity tuples are unknown. Therefore computable bounds

such as the linear programming bound are of great interest.

Let Γ be the set of all polymatroids. Definition 14 writes the LP bound in terms of constraints

on pseudo-variables. The following theorem provides a direct generalization of the ideas of the

previous sections to pseudo-variables.
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Theorem 5: Suppose h ∈ H[N ]. A rate-capacity tuple (λ(h), ω(h)) satisfies the LP bound if

and only if h is a polymatroid,

h ∈ Γ ⇐⇒ T(h) ∈ ΥLP .

Proof: The “only if” part of the proof is a direct generalization of the proof of Theorem 1.

Suppose (λ(h), ω(h)) satisfies the LP bound. By Definition 14 there exists a set of pseudo-

variables satisfying the set of (in)equalities in (5). In particular, there are pseudo-variables

{S[α], ∅ 6= α ⊆ N} and VN such that

H(S[α]) ≥ h(α), α ⊆ N , (22)

H(S[α] : α ⊆ N ) =
∑
α⊆N

H(S[α]) (23)

H(Vi) ≤ h(i). (24)

Following the same steps as in the proof for Theorem 1 (translating random variables to pseudo-

variables), shows that h is the pseudo-entropy function of VN . Hence, h is a polymatroid.

To prove the direct part, suppose h is a polymatroid over the ground set L = {V1, V2, . . . , VN}

(i.e. h is the pseudo-entropy function of VN ). We must exhibit a set of pseudo-variables satisfying

the set of (in)equalities (5). Whereas the proof for Theorem 1 constructs auxiliary random

variables via data compression, we need to show how to analogously adhere auxiliary pseudo-

variables W,W ′′ etc. to the set of pseudo-variables VN . In contrast to random variables, we

cannot rely on coding theorems, or other probabilistic constructions that assume the existence

of an underlying probability distribution. Nevertheless, it is possible to adhere pseudo-variables.

This is accomplished in Appendix I, where proof of the direct part is also completed.

E. Fourth Duality: Ingleton polymatroids and the LP bound for linear codes?

Finally, we can consider rate-capacity tuples which satisfy the LP-Ingleton bound of Definition

15. The following theorem establishes a relation to Ingleton polymatroids (i.e., a polymatroid

satisfying Ingleton inequalities). This is shown in one direction only. Let ΓLP,I be the set of all

Ingleton polymatroids.

Theorem 6: Suppose h ∈ H[N ]. If a rate-capacity tuple (λ(h), ω(h)) satisfies the LP bound

for linear codes, then h is an Ingleton polymatroid, i.e.,

T(h) ∈ ΥLP,I ⇒ h ∈ ΓLP,I .
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Proof: Suppose (λ(h), ω(h)) satisfies the LP-Ingleton bound. By Definition 15 there exists

a set of Ingleton pseudo-variables satisfying the set of (in)equalities in (5). In particular, there

are pseudo-variables {S[α], ∅ 6= α ⊆ N} and VN such that

H(S[α]) ≥ h(α), α ⊆ N , (25)

H(S[α] : α ⊆ N ) =
∑
α⊆N

H(S[α]) (26)

H(Vi) ≤ h(i). (27)

Following the same steps as in the proof for Theorem 1 (translating random variables to

pseudo-variables), shows that h is the pseudo-entropy function of VN . Hence, h is an Ingleton

polymatroid.

We conjecture that the converse of the fourth duality should also hold. In fact, it can be proved

that if the converse fails to hold, then there exists a polymatroid satisfying Ingleton inequalities

but which is not almost linear group characterizable. Therefore determination of whether the

converse of the fourth duality holds is a very interesting open question.

V. IMPLICATIONS

The results of Section IV while interesting in their own right, have several consequential

applications. First, in Section V-A we consider implications to the determination of the network

coding capacity region (in the absence of any restriction on the class of network codes). Secondly,

we discuss the sub-optimality of linear network codes in Section V-B.

A. The capacity region

Implication 1 (Hardness of a multicast problem): Determination of the set of achievable source

rate-link capacity tuples Υε is at least as hard as the problem of determining the set of all almost

entropic functions.

Similarly, determination of the set of source rate-link capacity tuples achieved by linear

network codes Υε
L(q) is at least as hard as the problem of determining the set of all almost

linear group characterizable entropy functions.

Proof: By Theorem 2, a polymatroid h is almost entropic (and almost linear group char-

acterizable) if and only if the induced rate-capacity tuple (λ(h), ω(h)) is achievable (with linear
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network codes). In other words, the problem of determining the set of all almost entropic (and

almost linear group characterizable) functions can be reduced to the solubility of a corresponding

multicast problem.

In [24], a network, called the Vámos network, was constructed from the Vámos matroid. This

was later used to prove that the LP bound is not tight and the bound can be tightened by applying

a non-Shannon information inequality proved in [2].

In the following, we will use the duality results obtained in Section IV to provide another

proof for the looseness of LP bound.

Implication 2 (Looseness of LP bound): The LP outer bound can be tightened by any non-

Shannon information inequality.

Proof: Theorem 5 shows that the rate-capacity tuple (λ(h), ω(h)) is in the LP bound if

h is a polymatroid. Yet, Theorem 2 proves that (λ(h), ω(h)) is achievable if and only if h is

almost entropic. Consider the function h defined as follows [2]:

h(1) = h(2) = h(3) = (4) = 2a > 0

h(1, 2) = 3a

h(3, 4) = 4a

h(1, 3) = h(1, 4) = h(2, 3) = h(2, 4) = 3a

h(i, j, k) = 4a = h(1, 2, 3, 4), ∀ distinct i, j, k.

It can be verified directly that h ∈ Γ4. However, the non-Shannon information inequality obtained

in [2] shows that h 6∈ Γ̄∗4. While the rate-capacity tuple T(h) satisfies the LP bound, it is not

achievable, as it is not almost entropic.

Using the same argument, any non-Shannon information inequality [2], [9], [10] will remove

some polymatroids which are not almost entropic. The corresponding tuples in the LP bound

will not be achievable. In other words, any set of non-Shannon information inequalities can be

used to tighten the LP bound.

In fact, together with the fact that Γ̄∗ is not a polyhedron when the number of random variables

is at least four [10], our duality results lead to very interesting consequences.

First, we show that the set of achievable rate-capacity tuples is not a polyhedron in general.

Second, the LP bound is not only loose, but it remains loose even when tightened via application
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of any finite number of linear non-Shannon information inequalities.

Proposition 5: The set of almost entropic functions is not a polytope.

Proof: [Proof sketch] The following is a sketch of the proof given by Matúš [10]. Matúš

constructed a convergent sequence of entropic functions gt → g0 with one-side tangent ġ0+ ,

limt→0+(gt−g0)/t. Clearly, if Γ̄∗n is polyhedral, there exists ε > 0 such that g0 + εġ0+ ∈ Γ̄∗n. This

was shown not to be the case, since g0+εġ0+ violates some of the information inequalities proved

in [10]. Therefore, Γ̄∗n is not polyhedral. Furthermore, there are infinitely many information

inequalities.

Implication 3 (Set of achievable rate-capacity tuples): The sets of achievable rate-capacity

tuples Υ∞ and Υε for the network G† and connection requirement M † are not polytopes (when

N ≥ 4).

Proof: Consider the sequence gt → g0 from the proof of Proposition 5. By Theorem 2,

T(gt) and T(g0) are asymptotically admissible. As T(h) is a linear function of h, we have

Ṫ , lim
t→0+

(T(gt)− T(g0))/t = T(ġ0+). (28)

For any ε > 0,

T(g0) + εṪ = T(g0 + εġ0+). (29)

As g0 + εġ0+ is not almost entropic, T(g0) + εṪ is not achievable. In other words, Υ∞ and Υε

are not polytope.

Now the LP bound is a polytope, while the capacity region is not. Furthermore, the introduction

of any finite number of additional linear inequalities in the LP bound simply results in another

polytope. Hence

Implication 4 (Looseness of polyhedral bounds): The LP bound is not tight. Furthermore, any

finite number of linear information inequalities cannot tighten the LP bound ΥLP to the set of

achievable rate-capacity tuples Υε. In fact, any polyhedral outer bound for Υε is not tight.

Proof: A direct consequence of Theorem 3 and Proposition 5.

B. Suboptimality of linear network codes

As discussed in Section II-A, it may be practically desirable to use network codes with nice

algebraic properties that simplify encoding and decoding operations. Most algebraic network
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codes considered in the literature are linear, and these were shown in [16] to be optimal for

single session multicast.

Since the appearance of [16], it has been an open question as to whether linear network

codes are in general optimal. This question was recently answered in the negative by Dougherty

et. al [20]. Their proof constructs a special network containing two subnetworks such that the

base fields required for optimality by each of the subnetworks have different characteristics,

establishing a contradiction.

The following provides an alternative proof using a completely different approach, making

use of the duality between entropy functions and achievability established in Section IV. The

proof is an immediate consequence of the duality results and that some entropic functions are

not almost linear group characterizable.

Implication 5 (Suboptimality of linear network codes): There is a network and a connection

requirement such that the use of abelian network codes is suboptimal, including linear network

codes, R–module codes, and time-sharing of such.

Proof: Consider a set of four random variables U1, U2, U3, U4 constructed using the pro-

jective plane described in [2]. The entropy function of these random variables is

h(1) = h(2) = h(3) = (4) = log 13

h(1, 2) = log 6 + log 13

h(3, 4) = log 13 + log 12

h(1, 3) = h(1, 4) = h(2, 3) = h(2, 4) = log 13 + log 4

h(i, j, k) = log 13 + log 12 = h(1, 2, 3, 4), ∀ distinct i, j, k.

Since h is the entropy function of a set of random variables, T(h) is achievable, by Theorem 2.

Since h does not satisfy the Ingleton inequality

h(1, 2) + h(1, 3) + h(1, 4) + h(2, 3) + h(2, 4) ≥

h(1) + h(2) + h(3, 4) + h(1, 2, 3) + h(1, 2, 4), (30)

h is not almost linear group characterizable. By Theorem 4, T(h) is not achievable by linear

network codes.
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Implication 6 (Suboptimality of abelian group network codes): There is a network and a mul-

ticast requirement for which abelian codes are (asymptotically) suboptimal.

Proof: All abelian group characterizable entropy function must satisfy the Ingleton inequal-

ity. The corollary then follows.

VI. CONCLUSION

Entropy functions and network coding are already closely connected, through the network

coding capacity region which is expressed in terms of Γ∗. The main results of this paper,

summarized in Figure 4, further strengthens this connection. Figure 4 shows the inclusion

relationships of the various sets of interest, as well as the implications between set membership

of h and T(h) established by the theorems. Each arrow is labeled by the Theorem number which

establishes the relation. Note that the relation of con(Γ∗L(q)) to sets other than Γ∗L(q) shown in

Figure 4(a) is unknown, hence the linear code relationships are shown separately in Figure 4(b).

Γ∗
L(q) Γ∗

ab Γ∗
G Γ∗

Q Γ∗ Γ̄∗ Γ

Υ0
L(q) Υ0

ab Υ0
G Υ0 Υ∞ Υε ΥLP

⊂ ⊂ ⊂ ⊂ ⊂ ⊂

⊂ ⊂ ⊂ ⊂ ⊂ ⊂

1 23 511 2

(a)

con (Γ∗
L(q))

ΥLP,I

ΓLP,I

Υ∞L(q)

Γ∗
L(q)

Υ0
L(q)

4 6

⊂

⊂

⊂

⊂

3

(b) Linear codes.

Fig. 4. Summary of the duality results.

Given a non-negative real function g whose domain consists of all non-empty subsets of N

random variables, we have provided a construction for a network and a connection requirement

such that a rate-capacity tuple is achievable if and only if g is almost entropic (i.e. satisfies every

information inequality). The network topology depends only on the number of random variables,

and not on the function g, which affects the construction only through the assignment of source

rates and link capacities.

An extension of this result shows that a rate-capacity tuple for the constructed multicast

problem is achievable by linear network codes if and only if the entropy function g is almost
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linear group characterizable. A further extension shows that the induced rate-capacity tuple

satisfies the linear programming bound if and only if the function g is a polymatroid (i.e. satisfies

all Shannon-type inequalities). This extension is obtained using the concept of pseudo-variables,

which replace random variables in the domain of g. These pseudo-variables are abstract objects

that do not take any values, and are not associated with any probability distribution. The key is

that polymatroids defined over set of pseudo-variables behave very similar to entropy functions,

except that they lie in Γ rather than Γ∗. This definition of pseudo-variables is not just a matter

of terminology. It is a non-trivial matter to generalize notions of extension and adhesion of

random variables (which rely on the existence of a probability distribution) to pseudo-variables.

We provided some examples of such extensions and adhesions, which leaves the proof of the

main theorem intact under a substitution of pseudo-variables for random variables. We anticipate

that this concept of pseudo-variables, and their differences from random variables, may yet bear

more fruit in uncovering the structure of Γ∗

The seemingly simple duality between entropy vectors and network codes has a number of

powerful implications. It renders the problems of network code solubility is at least as hard

as determination of Γ̄∗. We also obtain alternate proofs that the LP bound is not tight, and

that non-Shannon inequalities such as the Zhang-Yeung inequality indeed tighten the LP bound.

However no additional finite number of inequalities can improve the LP bound to the capacity

region. Finally, we have proved the suboptimality of abelian network codes, including linear

codes, R-module codes and any scheme that time-shares between such codes. The duality result

also provides a tool to compare different classes of network codes. Rather than comparing the

codes directly, one can now compare the sets of entropy functions induced by the codes.
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APPENDIX I

PROOF FOR CONVERSE OF THEOREM 5

Before we prove the direct part of Theorem 5, we will prove some intermediate results which

show how to extend sets of pseudo-variables (build new pseudo-variables from old ones), and

how to adhere additional pseudo-variables to a given set of pseudo-variables (consistently join

two sets of pseudo-variables). These results are provided in Section I-A. The proof of Theorem

5 follows in Section I-B.

A. Adhesion and extension for pseudo-variables

For random variables, adhesion or extension is facilitated by the existence of an underlying

probability distribution. For example, consider two sets of random variables L = {X,U} and

L∗ = {X,W} with respective underlying distributions PXU and P ∗XW . Suppose that the marginals

over X coincide, PX = P ∗X . We can then easily adhere PXU and P ∗XW to obtain a new distribution

QXUW such that its marginals over L and L∗ coincide, QXU = PXU and QXW = P ∗XW . One

possibility is QXUV = PXUP
∗
XW/PX . In general, for any sets of random variables L and L∗

with respective distributions P and P ∗ coinciding on L∩L∗, we can construct a new distribution

over L ∪ L∗ such that its marginals over L and L∗ are P and P ∗. Clearly, the entropy function

for L ∪ L∗ is an extension of those belonging to L and L∗.

Consider another simple example. Let A ⊂ L be a subset of the random variables L. Then we

can define a new random variable W , A. By doing so, we have constructed a new variable,

and extended both the distribution and entropy function. Clearly there are various ways to adhere

or extend sets of random variables. Doing this for pseudo-variables is not so straightforward.

The following results provide several adhesion and extension methods for pseudo-variables.

Lemma 10 (Functional extension): Let L be a set of pseudo-variables. For any given A ⊆ L,

one can adhere a new pseudo-variable Y to L such that H(Y |A) = H(A|Y ) = 0. In other

words, there exists a polymatroid g over L ∪ {Y } satisfying

g(B) = H(B) ∀B ⊆ L (31)

g(Y ) = g(A) = g({Y } ∪ A). (32)

Proof: Define g over L ∪ {Y } such that for all B ⊆ L,

g(B) = H(B) and g({Y } ∪ B) = H(B ∪ A). (33)
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It is straightforward to show that g is a polymatroid satisfying (31) and (32).

In light of Definition 12, we shall refer to (33) as functional extension and denote the new

variable as JA. Clearly, any subset of pseudo-variables in A is a function of JA.

Lemma 11 (Sum extension): Let {X, Y } be a set of pseudo-variables such that H(X) = H(Y )

and X ⊥ Y . Then one can adhere a new pseudo-variable Z to {X, Y } such that H(Z) = H(X)

and H(Z|X, Y ) = H(X|Y, Z) = H(Y |X,Z) = 0.

Proof: Let g be the pseudo-entropy function for {X, Y }. Extend g such that g(Z) = g(X)

and g(X,Z) = g(Y, Z) = g(X, Y, Z) = g(X, Y ). The resulting extended g is still a polymatroid.

Lemma 11 shows that for any independent pseudo-variables X and Y of equal pseudo-entropies,

one can construct a pseudo-variable Z, denoted Z = X ⊕ Y such that its pseudo-entropy is the

same as X and Y , and any single pseudo-variable is a function of the two others. Structurally,

this mimics the modulo-2 addition of two i.i.d binary random variables.

Lemma 12 (SW extension): Let {X, Y } be two pseudo-variables. Then one can adhere a new

pseudo-variable Z to {X, Y } such that

H(Z) = H(X|Y ),

H(X|Z, Y ) = 0,

H(Z|X) = 0.

Proof: Let g be the pseudo-entropy of {X, Y } and extend it as follows: g(Z) = g(X, Y )−

g(Y ), g(Z, Y ) = g(X, Y, Z) = g(X, Y ), and g(X,Z) = g(X). The resulting extended g is still

a polymatroid.

Lemma 12 shows that starting with pseudo-variables X, Y , one can construct another pseudo-

variable Z with pseudo-entropy H(X, Y )−H(Y ) such that X is a function of Y, Z and Z is a

function of X . For simplicity, we use the symbol JX|Y to denote the new pseudo-variable Z.

Lemmas 10–12 show that sets of pseudo-variables can be explicitly extended to obtain new

pseudo-variables. In the following, we study adhesion of existing sets of pseudo-variables.

Lemma 13 (Independent adhesion): Let L and L∗ be two disjoint sets of pseudo-variables.

Then they can adhere to each other independently such that for any A ⊆ L ∪ L∗,

H(A) = H(A ∩ L) +H(A ∩ L∗). (34)
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Proof: Let g and g∗ be the pseudo-entropies of A and A∗, and for each A ⊆ L ∪ L∗ set

g(A) = g(A ∩ L) + g∗(A ∩ L∗). It can be verified that g is a polymatroid.

Any subsets A ⊆ L and B ⊆ L∗ are independent, A⊥B under the independent adhesion of

L and L∗ in Lemma 13. Before we continue with more complicated adhesions, we need the

following proposition from [31].

Proposition 6: Let L and L∗ be two sets of pseudo-variables coinciding over L′ , L ∩ L∗,

i.e. for all A ⊆ L′, the pseudo-entropy of A is the same with respect L and L∗. Further, suppose

∆(A,B) ≥ ∆(L′ ∩ A,L′ ∩ B), (35)

for all flats4 A,B of L where ∆(A,B) , H(A) +H(B)−H(A∪B)−H(A∩B). Then L and

L∗ can adhere to each other.

Proof: See Theorem 1 in [31].

Corollary 1: Let L = {X, Y, Z} be a set of pseudo-variables, such that Z is a function of

X, Y and X is a function of Y, Z. Let L∗ be another set of pseudo-variables such that L and

L∗ coincide over L
⋂
L∗ = {X, Y }. Then L∗ and L can adhere to each other.

Proof: It is easy to verify that {X, Y } and {Y, Z} cannot be flats of L. To prove the

corollary, it suffices to prove that (35) is satisfied for all flats of L.

Suppose that A and B are flats of L. If either A or B is the empty set, {Z} or {X, Y, Z},

then either L′ ∩ A ⊆ L′ ∩ B or L′ ∩ B ⊆ L′ ∩ A. As a result, ∆(L′ ∩ A,L′ ∩ B) = 0 and (35)

holds. On the other hand, if both A and B are subsets of {X, Y }, then it is obvious that (35)

remains true. Now, suppose A = {X,Z}. Then (35) holds for B = {X} or {X,Z}. Finally,

when A = {X,Z} and B = {Y }, by direct verification, (35) still holds. Combining all the cases,

we see that (35) indeed holds for all flats of L.

Corollary 1 directly leads to the following result.

Theorem 7: Let L∗ ⊇ {X, Y }. Then one can adhere the pseudo-variable Z = JX|Y to L∗.

If in addition H(X) = H(Y ), it is possible adhere a pseudo-variable Z = X ⊕ Y to L∗.

B. Proof for direct part of Theorem 5

Proof: To prove the direct part, we must exhibit a set of pseudo-variables satisfying the

set of (in)equalities (5). Our construction works as follows:

4A subset A of the ground set L is a flat if H(A′) > H(A) for all proper supersets A′ containing A.
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• Let V1, . . . , VN be pseudo-variables whose pseudo-entropy function is h.

• By Lemma 10, we can adhere S[N ] , JL to L = {V1, . . . , Vn}.

• For any non-empty subset α of N , let S[N ] be a pseudo-variable whose pseudo-entropy is

H(Vα).

• By Lemma 13, we adhere independent pseudo-variables S[α] to the current set of pseudo-

variables {V1, . . . , VN , S[N ]}.

• By Theorem 7, we can further adhere auxiliary pseudo-variables such as JVα , JS[N ]|JVα ,

JVα ⊕ S[α] etc.

Now, we will show how to associate pseudo-variables to edges. If the edge is uncapacitated,

then the associated pseudo-variable is the join of the set of pseudo-variables incident to that edge.

It remains to show that for the three subnetworks, we can adhere pseudo-variables meeting all

the constraints of the LP bound.

Consider type 0 subnetworks. Let W = S[α]. Then, (5) clearly holds. In type 1 subnetworks

let W = JS[N ]|JVα and W ′ = JVα . Again, (5) holds. Finally, for type 2 subnetworks, let W =

S[α] ⊕ JVα , W ′ = JS[N ]|JVα , W ′′ = JJVα |Vi , and W ∗ = W ∗∗ = JVα . By direct verification, the set

of (in)equalities (5) holds.
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