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Maximal Orders in the Design of Dense Space-Time Lattice Codes
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Abstract

We construct explicit rate-one, full-diversity, geomeélly dense matrix lattices with large, non-vanishing
determinants (NVD) for four transmit antenna multiplednsingle-output (MISO) space-time (ST) applications.
The constructions are based on the theory of rings of algebmtegers and related subrings of the Hamiltonian
quaternions and can be extended to a larger number of Txraagefhe usage of ideals guarantees a non-vanishing
determinant larger than one and an easy way to present tlog gxafs for the minimum determinants. The idea
of finding denser sublattices within a given division algels then generalized to a multiple-input multiple-output
(MIMO) case with an arbitrary number of Tx antennas by usimg theory of cyclic division algebras (CDA) and
maximal orders. It is also shown that the explicit consiang in this paper all have a simple decoding method based
on sphere decoding. Related to the decoding complexityndtion of sensitivity is introduced, and experimental
evidence indicating a connection between sensitivitypdeg complexity and performance is provided. Simulations
in a quasi-static Rayleigh fading channel show that our @éeusternionic constructions outperform both the earlier
rectangular lattices and the rotated ABBA lattice as welthes DAST lattice. We also show that our quaternionic
lattice is better than the DAST lattice in terms of the diitgrmultiplexing gain tradeoff.

Index Terms

Cyclic division algebras, dense lattices, maximal ordensjtiple-input multiple-output (MIMO) channels,
multiple-input single-output (MISO) channels, numberdg&lquaternions, space-time block codes (STBCs), sphere
decoding.

. INTRODUCTION AND BACKGROUND

Multiple-antenna wireless communication promises vemghhdata rates, in particular when we have perfect
channel state information (CSI) available at the receivefl] the design criteria for such systems were developed
and further on the evolution of ST codes took two directidredlis codes and block codes. Our work concentrates
on the latter branch.

The very first ST block code for two transmit antennas wasAlaenouti codg2] representing multiplication in
the ring of quaternions. As the quaternions form a divisilgelara, such matrices must be invertible, i.e. the regultin
STBC meets the rank criterion. Matrix representations beodivision algebras have been proposed as STBCs at
least in [3]-[15], and (though without explicitly saying)sf6]. The most recent work [6]-[16] has concentrated
on adding multiplexing gain, i.e. multiple input-multiputput (MIMO) applications, and/or combining it with a
good minimum determinant. In this work, we do not specificakek any multiplexing gains, but want to improve
upon e.g. the diagonal algebraic space time (DAST) latticgeduced in [5] by using non-commutative division
algebras. Other efforts to improve the DAST lattices anésdalike can be found in [17]-[19].

The main contributions of this work are:

« We give energy efficient MISO lattice codes with simple deéagdhat win over e.g. the rotated ABBA [20]
and the DAST lattice codes in terms of the block error rateER). performance.

« It is shown that by using a non-rectangular lattice one can gajor energy savings without significant
increasement in decoding complexity. The usage of idealeover guarantees a non-vanishing determinant
> 1 and an easy way to present the exact proofs for the minimuermetants.

« In addition to the explicit MISO constructions, we presegeaeral method for finding dense sublattices within
a given CDA in a MIMO setting. This is tempting as it has beeovah in [15] that CDA-based square ST
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codes with NVD achieve the diversity-multiplexing gaindeaff (DMT) introduced in [21]. When a CDA is
chosen the next step is to choose a corresponding latticghat, amounts to the same thing, choose an order
within the algebra. Most authors, among which e.g. [11]],[B5d [16], have gone with the so-called natural
order (see Section1I4B, Example_B.2). In a CDA based caotiin, the density of a sublattice is lumped
together with the concept of maximality of an order. The idethat one can, on some occasions, use several
cosets of the natural order without sacrificing anythingamts of the minimum determinant. So the study of
maximal orders is easily motivated by an analogy from thethef error correcting codes: why one would
use a particular code of a given minimum distance and lenfyth Jarger code with the same parameters is
available.

« Furthermore, related to the decoding complexity, the motibsensitivity is introduced for the first time, and
evidence of its practical appearance is provided. Also tMTbehavior of our codes will be given.

At first, we are interested in the coherent MISO case withgotrCSI available at the receiver. The received
signaly € C" has the form
y =hX +n,

where X € C™*" is the transmitted codeword drawn from a ST caljéh € C™ is the Rayleigh fading channel
response and the components of the noise vacterC” are i.i.d. complex Gaussian random variables.

A lattice is a discrete finitely generated free abelian subgroup ofah ae complex finite dimensional vector
spaceV, also called the ambient space. Thus/ifis a k-dimensional lattice, there exists a finite set of vectors
B ={bi,bsy,..., by} C V such thatB is linearly independent over the integers and that

k
L={> zbi|zecZbcVforali=12,... k}
=1
In the space-time setting a natural ambient space is theeS&a€* of complexn x n matrices. When a code is
a subset of a latticé in this ambient space, thank criterion [22] states that any non-zero matrix in must be
invertible. This follows from the fact that the differencéany two matrices froni is again inL.

The receiver and the decoder, however, (recall that we wotké MISO setting) observe vector lattices instead
of matrix lattices. When the channel statehisthe receiver expects to see the lattlek. If h # 0 and L meets
the rank criterion, therhL is, indeed, a free abelian group of the same ranl.aslowever, it is well possible
thathZ is not a lattice, as its generators may be linearly depenuentthe reals — the lattice is said ¢tollapse
whenever this happens.

From the pairwise error probability (PEP) point of view [2®]e performance of a space-time code is dependent
on two parameterddiversity gainand coding gain Diversity gain is the minimum of the rank of the difference
matrix X — X'’ taken over all distinct code matrice$, X’ € C, also called theank of the codeC. When( is
full-rank, the coding gain is proportional to the deternminaf the matrix(X — X’)(X — X’)¥, whereX” denotes
the transpose conjugate of the matix The minimum of this determinant taken over all distinct eadatrices
is called theminimum determinamf the codeC and denoted by. If é¢ is bounded away from zero even in the
limit as SNR— oo, the ST code is said to have then-vanishing determinamroperty [8]. As mentioned above,
for non-zero square matrices being full-rank coincidedvaiging invertible.

The data rate R in symbols per channel use is given by

1
R = —logig([c))

where|S| and |C| are the sizes of the symbol set and code respectively. Thistiso be confused with theate

of a code desigr(shortly, code rat@ defined as the ratio of the number of transmitted inforrmasgmbols to
the decoding delay (equivalently, block length) of thesmlsgls at the receiver for any given number of transmit
antennas using any complex signal constellations. If thi® s equal to the delay, the code is said to hauk
rate.

The correspondence is organized as follows: basic defisitaf algebraic number theory and explicit MISO
lattice constructions are provided in Section Il. As a (MIM@eneralization for the idea of finding denser lattices
within a given division algebra, the theory of cyclic algabrand maximal orders is briefly introduced in Section
[M In Section[1M, we consider the decoding of the nestedusege of quaternionic lattices from Sectioh II. A



variety of results on decoding complexity is establishe&attion 1V, where also the notion of sensitivity is taken
into account. Simulation results are discussed in Selicalovig with energy considerations. Finally in Section
VI] the DMT analysis of the proposed codes will be given.

This work has been partly published in a conference, seen@]4]. For more background we refer to [22]-[29].

Il. RINGS OF ALGEBRAIC NUMBERS QUATERNIONS AND LATTICE CONSTRUCTIONS

We shall denote the sets of integers, rationals, reals, angplex numbers by, Q, R, andC respectively.
Let us recall the set

H = {a; + agi + agj + ask | a; € R Vt},

wherei? = j2 = k2 = —1, ij = k, as the ring ofHamiltonian quaternionsNote thatH ~ C & Cj, when the
imaginary unit is identified withi. A special interest lies on the subsets

Hy = {a1 + a2t + asj + a4k | ay € Z Vt} C H and

. . 1 S
Hy = {a1p + a2i + azj + ask | a; € Z Vt, pzi(l—i-z—i-j—i-k)}QH

called theLipschitz’ and Hurwitz’ integral quaterniongespectively.
We shall use extension rings of the Gaussian integers

G={a+bi|labelZ}

inside a given division algebra. It would be easy to adaptthestruction to use the slightly denser hexagonal ring
of the Eisensteinian integers

E={a+bw|abelZ}

wherew? = 1, as a basic alphabet. However, the Gaussian integers ricalith the popular 16-QAM and QPSK
alphabets. Natural examples of such rings are the ringsgebaic integers inside an extension field of the quotient
fields of G, as well as their counterparts inside the quaternions. abehd we need division algebrasthat are
also 4-dimensional vectors spaces over the fi@(d).

A. Base lattice constructions

Let now ¢ = e™/8 (resp.& = ™/* = (1 +14)/+/2) be a primitive 16" (resp.8") root of unity. Our main
examples of suitable division algebras are the number field

and the following subskewfield

H=Q(¢) ¢,/jQ(¢) CH

of the Hamiltonian quaternions. Note that as= jz* for all complex numbers, and as the field)(¢) is stable
under the usual complex conjugati¢f), the setH is, indeed, a subskewfield of the quaternions.

As always, multiplication (from the left) by a non-zero elemb of a division algebral is an invertibleQ(:)-linear
mapping (withQ(:) acting from the right). Therefore its matrix with respecttechoser)(i)-basisB of A is also
invertible. Our example division algebrds and H have the set$3;, = {1,(,¢?,¢3} and By = {1,¢,7,5¢} as
naturalQ(i)-bases. Thus we immediately arrive at the following mategresentations of our division algebras.

Proposition 2.1: Let the variables:, cq, 3, c4 range over all the elements @f(i). The division algebra$ and
H can be identified via an isomorphisgnwith the following rings of matrices

C1 ’iC4 ng ’ng
C9 C1 iC4 ng
C3 (6] C1 ’iC4
€4 C3 C2 (1

L=< My = Mp(c1,co,c3,¢4) =



and

c1 g —c3 —c)

N 3 >k

H: M:M(Cl,CQ,Cg,C4): . % *
C3 ZC4 Cl 02

€4 €3 —ic;

The isomorphismp from L into the matrix ring is determined b§(:)-linearity and the fact thaf corresponds
to the choicecs = 1,¢; = ¢3 = ¢4 = 0. The isomorphismp from H into the matrix ring is determined by
Q(i)-linearity and the facts thag corresponds to the choieg = 1, ¢; = ¢3 = ¢4 = 0, andj corresponds to the
choicecs = 1, ¢; = c2 = ¢4 = 0. In particular, the determinants of these matrices are zevo-whenever at least
one of the coefficients;, ¢, c3, ¢4 IS NON-zero. [ |

In order to get ST lattices and useful bounds for the minim@teminant, we need to identify suitable subrings
S of these two algebras. Actually, we would like these ringdéofree rightG-modules of rank 4. This is due
to the fact that then the determinants of the matrices of ¢&itipn[2.1 that belong to the subringS) must be
elements of the ringj. We repeat the well-known reason for this for the sake of detepess: the determinant of
the matrix representing the multiplication by a fixed elemer S does not depend on the choice of the bdsis
and thus we may assume that it igfanodule basis. However, in that casB C S, so the matrix will have entries
in G as all the elements of are G-linear combinations of8. The claim follows.

In the case of the field. we are only interested in its ring of integef, = Z[(] that is a fregG-module with the
basisB; . In this case the ring (O, ) consists of those matrices &fthat have all the coefficients, ¢z, c3,c4 € G.
Similarly, the G-module

L=G®EGDJYDjEY

spanned by our earlier bashy; is a ring of the required type. We call this the ring ldpschitz’ integers ofH.
Again ¢(L) consists of those matrices ®f that have all the coefficients, c2, c3, ¢4 € G. While Of, is known to
be maximal among the rings satisfying our requirementsstdme is not true about. The ringHy also has an
extension of the prescribed type insiHE called the ring oHurwitz’ integers ofH. This ring, denoted by

H = pG @ pEG & 59 @ j&G,

is the rightG-module generated by the badis;.,. = {p, p¢, j, 7§}, where agairp = (1+ i+ j + k)/2. The fact
that 7 is a subring can easily be verified by straightforward corapons, e.g&p = p¢ — j€. For future use we
express the ring{ in terms of the basigy of Propositiod 2.11. It is not difficult to see that the element

q=c1+&c+ jes +jlcs € H

is an element oft{, if and only if the coefficients; satisfy the requirementsl + i)c; € G for all t = 1,2,3,4
andc; + c3,c0 + ¢4 € G. As the ideal generated bly+ 7 has index two inG, we see that is an additive, index
four subgroup inH. We summarize these findings in Proposition 2.2. The bountherminimum determinant is
a consequence of the fact that all the element§ dfave a norm at least one.

Proposition 2.2: The following rings of matrices form ST lattices with minimudeterminant equal to one.
Ly = {ML(Clv C2, 63764) | €1,C2,€3,C4 € g} >

L2 = {M(C1,62,03,64) | C1,C2,C3,C4 S g}7

141
Lz = {M(017027C3,C4) | c1,¢2,¢3,¢4 € T@ cit+c3efeatey € g}.

Remark 2.1:The lattice L, is quite similar to the DAST lattice in the sense that all &f ihatrices can be
simultaneously diagonalized. See more details in Se€N8BI IThe lattice Lo, for its part, is a more developed
case from the so-calleguasi-orthogonalSTBC suggested e.g. in [30]. The matdiX(c;, c2, c3, c4) Oof Proposition
2.1 can also be found as an example in the landmark paperyéhdoptimization has been done there by using,
for example, ideals as we shall do here.



A drawback shared by the latticds; and L. is that in the ambient space of the transmitter they are isiene
to the rectangular lattic&®. The rectangular shape does carry the advantage that thefseformation carrying
coefficients of the basis matrices are simple and all idehtidich is useful in e.g. sphere decoding. But, on the
other hand, this shape is very wasteful in terms of transorigsower. Geometrically denser sublattices75f e.g.

the checkerboard lattice .
d =0 (mod2)}

Dg = {(ml, ...,l’g) e78
i=1

and the diamond lattice

Eg = {(ml, ...,xg) S Z8

8
z; =z; (Mod2), > x; =0 (mod 4)} :

=1
are well-known (cf. e.g. [31]). However, we must be carefulpicking the copies of the sublattices, as it is the
minimum determinant we want to keep an eye on (see Remalrk 2.3)

B. Dense sublattices inside the base lattice

As our earlier simulations [3],[4] have shown that outperformsZ, we concentrate on finding good sublattices
of L,. The units of the ringl, are exactly the non-zero matrices whose determinants @&eninimal absolute
value of one. Thus a natural way to find a sublattice with aebettinimum determinant is to take the lattip€Z),
whereZ C S is a proper ideal. This idea has appeared at least in [3],a/d, [8]. Even earlier, ideals of rings of
algebraic integers were used in [27] to produce densedatticet us first record the following simple fact.

Lemma 2.3:Let A and B be diagonalizable complex square matrices of the sameAsaame that they commute
and that their eigenvalues are all real and non-negativenTh
det (A+ B) > det A+ det B

with a strict inequality if bothA and B are invertible.

Proof: As A and B commute, they can be simultaneously diagonalized. Heneegam reduce the claim to
the case of diagonal matrices with non-negative real entliethat case the claim is obvious. [ |

In Propositio 24 we give a construction isometric to theakerboard latticeDg
Proposition 2.4:Let 7 be the prime ideal of the ring generated byl + i. Define

Ir ={(c1 +&c2) +j(cs +8ca) EL |1 + 2+ c3+cs €T
ThenZ, is an ideal of index two inC. The corresponding lattice
Ly = {M(61,62,63,C4) € Lo | cl1+co+c3+cq € I}

is an index2 sublattice inLy. Furthermore, the absolute value d&ft(M M), M ¢ L\ {0}, is then at least.

Proof: It is straightforward to check th&i, is stable under (left or right) multiplication with the geations
¢ andj, soZ, is an ideal inL.
Let us consider a matrid/ € L, and write it in the block form

A —BH

AAH + BBH 0
H _
MM _< 0 AAH+BBH>’

We see that

and

AAH+BBH=<O‘ g >
kE «



wherea = 2?21 |c;|? is a non-negative integer arid= —ic;c} + cac} — icsci + cuch is a Gaussian integer with
the propertyk* = ik. We are to prove thadet MM*” = (a? — |k:|2)2 > 4. Assume first that; = ¢, = 0, i.e. the
block B = 0. Thendet(A) is the relative norm
Q
det(A) = N5 (1 + £ca),
which is a Gaussian integer. As+£cz is a non-zero element of the ideg] we conclude thafet(A) is a non-zero
non-unit. Thereforelet(A) det(A7) > 2, and the claim follows.
Let us then assume that bothand B are non-zero. Thedet(A) anddet(B) are non-zero Gaussian integers
and have a norm at least one. The matridesi” . B, BH all commute, so by Lemmia 2.3 we get

det(MM™) > det(AAT)? + det(BBH)? > 2.

As det(MM*H") = (a? — \k]z)z is a square of a rational integer, it must be at least 4. |

Remark 2.2:1t is easy to see that in the previous propositio# bi € Z, if and only if a 4+ b is an even integer.
Thus geometrically the matrix latticB, is, indeed, isometric tds.

We proceed to describe two more interesting sublatticeb,ofvith even better minimum determinants. To that
end we use the ring{ (or the latticeL3). The first sublattice is isometric to the direct sum 1 D, [31] of two
4-dimensional checkerboard lattices.

Proposition 2.5: Let againZ be the ideal1 + i)G. The lattice
Ls ={M(c1,ca,¢c3,¢4) € Lo | e1 +c3,c0 +ca €T}

has a minimum determinant equal to 16. The index.gfin L, is 4.

Proof: The coefficients:; andcs can be chosen arbitrarily withiG. The the ideall has index2 in G, and
the coefficients; andcy now must belong to the cosets+ 7 andcs + Z respectively. Whence, the index 6§
in Ly is 4. The matricesA in the lattice L5 are of the formA = (1 4 ¢) M, whereM is a matrix in the latticel3
of Propositio 22. Thuglet(AA) = 16 det(M M) and the claim follows from Propositidn 2.2. |

The diamond latticdZs can be described in terms of the Gaussian integers as (§f. [32

4
1
Eg = 13 {(61,62,63,64) €G¢ a+T=c+TI, t=23/4, th € 2g}-

t=1
By our identification of quadruple&;, c2,c3,¢4) € G* and the elements di it is straightforward to verify that
(1+4)Eg has{2,(1 +i)+ (1 + )1 +9)E+ (1+4)5,1+&+ 7+ j&} € L as aG-basis, whence the set
{1+4,1+&€+4,p+p¢} CHis aG-basis forEg. By another simple computation we see tligt= #(1 + &),
i.e. Fg is the left ideal of the ring{ generated byl + £.

Proposition 2.6: The lattice

4
L6: {M(Cl7027c3a64)€L2‘ Cl+I:Ct+I7 t:273747 the2g}
t=1

is an index 16 sublattice af,. Furthermore, the minimum determinant b§ is 64.

Proof: Let M; = M(1,1,0,0) be the matrixp(1 + &) under the isomorphism of Propositibn2.1. We see that
det(M;MH) = 4. By the preceding discussion any matrixof the latticeL has the form4 = M M/ (1+4), where
M is a matrix inLs. As in the proof of Proposition 2.5, we see thiat AA” = 16 det(M ;M) det(MM™T). The
claim on the minimum determinant now follows from Propasif2.2. We see that the coefficientcan be chosen

arbitrarily within G. The coefficients:; andcs then must belong to the coset+ Z, andcs must be chosen such
thatc; + ¢y + 3+ ¢4 € 2G = 72. As T has index two ing, we see that the index df in L, is 16 as claimed.m

Remark 2.3:We have now produced rested sequence of lattices

278 = 2Ly C Lg C Ly C Ly C Ly = Z8(C L3). (1)



TABLE |
LATTICES FROM A CODING THEORETICAL POINT OF VIEW

Lo <+ The 8-dimensional rectangular gri&f < no coding

1

L, <> The checkerboard latticBs <+ overall parity check code of length
)

Ls <> The latticeDs | D4 <> two blocks of the overall parity check code of length

1

Lg <> The diamond latticeFs «» extended Hamming-code of lenggh

We concentrate on the lattices that are sandwiched bet@&eandZ?2. It is worthwhile to note that these lattices
are in a bijective correspondence with a binary linear cddermth 8 by projection modulo 2, see Table | above.
As it happens, within this sequence of lattices the minimuamifhing distance of the binary linear code and the
minimum determinant of the lattice are somewhat related.

Thereupon it is natural to ask that what if we simply concaternthe use of., with a good binary code (extended
over severall,-blocks, if needed), and be done with it. While the binaryedin codes appearing above are the
first ones that come to one’s mind, we want to caution the uywead-user. Namely, it is possible that there are
high weight units in the ring in question. If such binary werre included, then the minimum determinant of the
corresponding lattice is equal 19 i.e. no coding gain will take place. E.g. the ufiit—¢3)/(1 - &) = 1 +£4+ €2 =
(1+14)+ ¢ of the ring £ corresponds to the matrix/(1 +4,1,0,0) of determinant 1, and thus we must not allow
such words of weight 3. If the lattice; were used, the situation would be even worse, as then we Hmatgelike
(1—-¢")/(1 —¢) in the ring Oy, that would be mapped to a word of Hamming weight 7. A consioacbased on
ideals provides a mechanism to avoid this problem causeddbyveight units.

[1l. CYCLIC ALGEBRAS AND ORDERS

In Section[Il we produced a nested sequemde (1) of quatecniatiices with the property that as the lattice
gets denser after rescaling the increased minimum detannhlmack to one, the BLER perfomance gets better. As
the sequencd 1) lies within a specific division algebra, lbvicus question evokes how to generalize this idea.
The theory of cyclic division algebras and their maximalegdoffer us an answer. When designing square ST
matrix lattices for MIMO use, cyclic division algebras aré uimost interest as it has been shown in [15] that
a non-vanishing determinant is a sufficient condition fdl-fate CDA based STBC-designs to achieve the upper
bound on the optimal DMT, hence proving that the upper bouselfiis the optimal DMT for any number of
transmitters and receivers. Given the number of transmaittewe pick a suitable cyclic division algebra of index
n (more on this in a forthcoming paper, see Section VII and.[&je also [15] ). The matrix representation of
the algebra, with some constraints on the elements, wilh tm@respond to the base lattice, similarly as did the
lattice L, in SectionIl. Now in order to make the lattice denser, we c®othe elements in the matrices from an
order. The natural first choice for an order is the one comadimg to the ring of algebraic integers of the maximal
subfield inside the algebra. The densest possible sulelatithe one where the elements come from a maximal
order.

All algebras considered here are finite dimensional asseeialgebras over a field.

A. Cyclic algebras

The basic theory of cyclic algebras and their represematims matrices are thoroughly considered in [[34],
Chapter 8.5] and [6]. We are only going to recapitulate theeetal facts here.

In the following, we consider number field extensidnsF’, whereF' denotes the base fiel&* (resp.E*) denotes
the set of non-zero elements Bf(resp.E). Let E/F be a cyclic field extension of degreewith the Galois group
Gal(E/F) = (o), whereo is the generator of the cyclic group. Let= (E/F, o,v) be the corresponding cyclic
algebra ofindexn, that is,

A=E®uE®uWE® ---®u" 1E,



with u € A such thateu = uc(z) for all z € E andu™ = v € F*. An elementa = zo+uz;+---+u" "'z, 1 € A
has the following representation as a matfix=

zo  Y0(Tn-1) Y0 (Tn-2) - 0" H(a1)
x1 o(xg) Yo (Tn_1) yo" L (x9)
z2  o(z1) a?(xg o zs) | 2)
tn1 0(tn2) 0o*(zp-3) -+ 0" (zo)
Let us compute the third column as an example:
w? s au? = zou turu+ -+ 0" e, u?

= wo(zo)u + vlo(z))u+ - +y0(zp_1)u
= w0 (xg) + udct(x1) + -+ uyo(zn_1),

and hence as the third column we get the vector
(y0 (2n-2), 70" (Tn-1), 0> (20), . .., 0> (2n-5)) T

Let us denote the ring of algebraic integerstoty Og. A basic, ratea MIMO STBC C is usually defined as
C =

z9  vo(Tp—1) - 0" H(z1)

1 o(xo) Yo" (22)

T2 o(z1) o™ (a3) 2, €Op v . (3)
Tn—1 0(Tp_g) - J"_ll(:no)

Further optimization might be carried out by using e.g. isidiwe denote the basis @ overOr by {1,e1,...,e,-1},
then the elements;, i = 0,...,n—1 in (@) take the formz; = Zz;é frex, wheref, € Op forall k =0,....,n—1.
Hencen complex symbols are transmitted per channel use, i.e. teigmdas raten. In literature this is often
referred to as having tull rate.

Definition 3.1: An algebraA is calledsimpleif it has no nontrivial ideals. AnF-algebra.A is central if its
centerZ(A) = {a € Alad' = d'a Vd' € A} = F.

Definition 3.2: An ideal Z is callednilpotentif Z* = 0 for somek € Z... An algebraA is semisimpléf it has
no nontrivial nilpotent ideals. Any finite dimensional seimple algebra over a field is a finite and unique direct
sum of simple algebras.

Definition 3.3: The determinant (resp. trace) of the matrxis called thereduced nornm(resp.reduced tracg
of an element € A and is denoted byr(a) (resp.tr(a)).

Remark 3.1:The connection with the usual norm map,,r(a) (resp. trace maf’y,r(a)) and the reduced
norm nr(a) (resp. reduced trace (a)) of an element € Ais Ny p(a) = (nr(a))” (resp.Ty/p(a) = ntr(a)),
wheren is the degree of2/F'.

In Section Il we have attested that the algeBFas a division algebra. The next old result due to A. A. Albert
[[35], Chapter V.9] provides us with a condition for when dgebra is indeed a division algebra.

Proposition 3.1: The algebrad = (E/F, 0,~) of indexn is a division algebra, if and only if the smallest factor
t € Z, of n such thaty! is the norm of some element ifi*, is n. |

B. Orders

We are now ready to present some of the basic definitions audtserom the theory of maximal orders. The
general theory of maximal orders can be found in [36].
Let S denote a Noetherian integral domain with a quotient fig|dand letA be a finite dimensionak-algebra.



Definition 3.4: An S-orderin the F-algebraA is a subringA of A4, having the same identity element 4s and
such thatA is a finitely generated module ovérand generatesl as a linear space ovet.

As usual, anS-order in A is said to bemaxima] if it is not properly contained in any othé-order in A. If the
integral closureS of S in A happens to be af-order in.4, thenS is automatically the unique maximatorder
in A.

Let us illustrate the above definition by the following exdenp

Example 3.1:(a) Orders always exist: I/ is a full S-lattice in A, i.e. FM = A, then theleft order of M
defined ag0;(M) = {z € A|aM C M} is an S-order in A. The right order is defined in an analogous way.

(b) If A= M, (F), the algebra of alh x n matrices overF, thenA = M,,(S) is an S-order in A.

(c) Leta € A be integral oversS, that is,a is a zero of a monic polynomial ovef. Then the ringS[q] is an
S-order in theF-algebraF’[a).

(d) Let S be a Dedekind domain, and &t be a finite separable extension6f Denote bysS the integral closure
of Sin E. ThenS is an S-order in E. In particular, takingS = Z, we see that the ring of algebraic integersiof
is aZ-order inE.

Hereafter,/” will be an algebraic number field antla Dedekind ring withZ" as a field of fractions.

Proposition 3.2:Let A be a finite dimensional semisimple algebra o¥eand A be aZ-order in A. Let O
stand for the ring of algebraic integers Bf ThenI' = OrA is an Op-order containing\. As a consequence, a

maximal Z-order in A is a maximalOg-order as well. [ |
The following proposition provides us with a useful tool fiilmding a maximal order within a given algebra.
Proposition 3.3:Let A be anS-order in A. For eacha € A we havenr(a) € S andtr(a) € S. [
Proposition 3.4:Let I be a subring ofd containingS, such thatFT" = 4, and suppose that eache T is

integral overS. ThenT is anS-order in.A. Conversely, eveng-order in.A has these properties. [ |
Corollary 3.5: Every S-order in A is contained in a maxima$-order in.A. There exists at least one maximal

S-order in A. [ |

Remark 3.2:As the previous corollary indicates, a maximal order of agehfa is not necessarily unique.

Remark 3.3:The algebrdH can also be viewed as a cyclic division algebra. As it is aiagof the Hamiltonian
quaternions, its center consists of the intersecibn R = Q(+/2). Also Q(¢) is an example of a splitting field of
H. In the notation above we have an obvious isomorphism

H =~ (Q(¢)/Q(V2),0,-1),
whereo is the usual complex conjugation.

Remark 3.4:In principle, the lattices from Sectidn Il could also be ussdMIMO codes, but when we padk
in the form of [2),0c becomes vanishing and the DMT cannot be achieved.

One extremely well-performing CDA based code taking advgatof a maximal order is the celebra@dlden
code[8] (also independently found in [9]) treated in the follogi example.
Example 3.2:In any cyclic algebra where the elementappens to be an algebraic integer, we have the following
natural order
A=0g&uOg & - au" 'O,

whereOg is the ring of integers of the field. We note thatDy is the uniqgue maximal order if. In the so-called
Golden Division AlgebraGDA) [8], i.e. the cyclic algebrd E/F,,~) obtained from the dat& = Q(i,/5),

F =Q®), vy =1i,n =2, 0(/5) = —/5, the natural orden\ is already maximal [37]. The ring of algebraic
integersOg = Z[i][f], when we denote the golden ratio By= 1*—2‘/5 The authors of [8] further optimize the code
by using an ideal«) = (1 + ¢ — i¢), and the Golden code is then defind as

oo {1 (oo ieton)

The Golden code achieves the DMT as the elemesnti is not in the image of the norm map. For the proof, see

[8].

X0, T1 € OE} . (4)
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Remark 3.5:We feel that in [8], the usage of a maximal order is just a ddiexece, as in this case it coincides
with the natural order which is generally used in ST codegiesicf. [3)). At least the authors do not mention
maximal orders. As far as we know, but our constructions édse [33]) there does not exist any designs using a
maximal order other than the natural one.

Next we prove that the latticéq is optimal within the cyclic division algebrH in the sense that the diamond
lattice Fs = H(1 + &) corresponds to a proper ideal of a maximal ordeHin

Proposition 3.6: The ring
H={g=c1+&+jes+jécac H|cy,...,cs €Q(i), (1+1i)c; €G Vt,c1 +c3,c2+cq4 €G}

is a maximalZ-order of the division algebrHl.

Proof: Clearly theQ-span of# is the whole algebr#&l, and we have seen that is a ring, so it is an order
of H. Furthermore, ifA is any order ofH, then so isA[v2] = A - Z[/2], as the elemeny/2 is in the center oH
(cf. Propositior 32). Therefore it suffices to show tiais a maximalZ[/2]-order. In what follows, we will call
rational numbers in the cosét/2) + Z half-integers. Assume for contradiction that we could edtéhe orderH
into a larger ordeil” = H[g| by adjoining the quaternion = a; + asj, where the coefficients

ar = Mo + me1& +my 22+ me €, my, € Q for all ¢, ¢
are elements of the fiel@(¢). As € — &3 = /2, and¢* = —¢3, we see that
tr(q) = a1 +ay =2mio+ \/§(m171 —my3).

By Proposition[3.8 this must be an elementZif/2], so we may conclude that; o must be an integer or a
half-integer, and thatn; ; — m; 3 must be an integer. Similarly

tr(qg€) = —2my 3 + V2(m1 o — m1 2)

must be an element d¢t[v/2]. We may thus conclude that all the coefficients ,, ¢ = 0,1,2,3 are integers or
half-integers, and that the pains; o, m1 2 (resp.mq 1, m; 3) must be of the same type, i.e. either both are integers
or both are half-integers. A similar study of(qj) and¢r(gj&) shows that the same conclusions also hold for the
coefficientsmsy, ¢ = 0,1,2,3. Becaus€Z[{] C H, replacingg with any quaternion of the forng — v, where
v € Z[¢] will not change the resulting ordét. Thus we may assume that the coefficiemts,, ¢ = 0,1,2,3 all
belong to the sef0,1/2}. Similarly, if needed, replacing with ¢ — /j for somer’ € Z[¢] allows us to assume
that the coefficientsny s, ¢ = 0,1,2,3 also all belong to the s€i0,1/2}. Further replacements @fby ¢ — p or
q — p§ then permit us to restrict ourselves to the casg, = 0, for all / = 0,1,2,3. If we are to get a proper
extension ofH, we are left with the cases= (1+1i)/2, ¢ =&(1+1)/2 andg = (1+&)(1+1i)/2. We immediately
see that none of these have reduced norni[if2], so we have arrived at a contradiction. [ |
Remark 3.6:Another related well known maximal order is the icosian ritigis a maximal order in another
subalgebra of the Hamiltonian quaternions, namely

(Q(% \/3)/@(\/3)7 g, _1)7

where o is again the usual complex conjugation. This order made antegppearance as a building block of a
MIMO-code in a construction by Liu & Calderbank. We refer tihéerested reader to their work [38] or [31] for
a detailed description of this order.

The icosian ring and our order share one feature that is woeltioning. As2 x 2 matrices they do not have the
non-vanishing determinant property. Algebraically tlsisiconsequence of the fact the respective ceri@grgh) or
Q(v/2) both have arbitrarily small algebraic integers, e.g. thgusace consisting of powers of the unitgs —1)/2
(resp.v/2 — 1) converges to zero. We shall return to this point in the nextisn, where a remedy is described.
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V. DECODING OF THE NESTED SEQUENCE OF LATTICES

In this section, let us consider the coherent MIMO case whiggereceiver perfectly knows the channel coeffi-
cients. The received signal is
y = Bx + n,

wherex € R™, y, n € R"™ denote the channel input, output and noise signals, arel R™*™ is the Rayleigh
fading channel response. The components of the noise vacioe i.i.d. complex Gaussian random variables. In
the special case of a MISO channel-£ 1), the channel matrix takes a form of a vect®r= h € R™ (cf. Section
0.

The information vectors to be encoded into our code matrégestaken from the pulse amplitude modulation
(PAM) signal setX of the sizeQ, i.e.,

X={u=2¢-Q+1 | q€Zy}

with Zg = {0,1,...,Q — 1}.
Under this assumption, the optimal detecgary — x € X" that minimizes the average error probability

P(e) £ P(x # x)

is the maximum-likelihood (ML) detector given by
% = arg minezy |y — Bx %, (5)

where the components of the noisehave a common variance equal to one.

A. Code controlled sphere decoding

The search in[{5) for thelosest lattice pointo a given pointy is known to be NP-hard in the general case
where the lattice does not exhibit any particular structing39], however, Pohst proposed an efficient strategy of
enumerating all the lattice points within a sph&tgy, +/Cy) centered ay with a certain radius/C, that works
for lattices of a moderate dimension. For background, ség[f#8]. For finite PAM signals sphere decoders can
also be visualized as laounded searcin a tree.

The complexity of sphere decoders critically depends onpiteprocessing stage, the ordering in which the
components are considered, and the initial choice of thersptadius. We shall use the standard preprocessing and

ordering that consists of th@ram-Schmidt orthonormalizatioB = (Q, Q') ]g of the columns of the channel

matrix B (equivalently,QR decompositioron B) and the natural back-substitution component orderingrgivy
T, ...,T1. The matrixR is anm x m upper triangular matrix with positive diagonal elemerigs(resp.Q’) is an
n x m (resp.n x (n —m)) unitary matrix, and) is an(n — m) x m zero matrix.

The conditionBx € S(y,v/Cp) can be written as

|y — Bx [’< Cy (6)
which after applying the&) R decomposition o3 takes the form
| y/ — Rx |2§ C((/)7 (7)
wherey’ = QTy andC}, = Cy —|(Q")T'y|*. Due to the upper triangular form @, (@) implies the set of conditions
m m )
Z‘y; — Zrﬂxg‘ <Ch, i=1,..,m. (8)
j=i =j

The sphere decoding algorithm outputs the pgirfor which the distance

*(y, Bx) Z‘y] Z Tj e

=3

2
| (©)

is minimum. See details in [43].
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TABLE I
CCSD: ADDITIONAL CASE CONSIDERATIONS

CASE L | 3%, 2; =0 (mod?2)

CASE Ls | 21 + 29 = x5 + Tg,
T3+ Ty = 2T7+ Ty (mOd 2)

CASE Lg | x1 + 19 =23+ 14 = x5 + 16 = 7 + 23,
D oli Ti = Doy i = 0 (Mod 2)

The decoding of the base lattide, can be performed by using the algorithm below proposed i [43
Algorithm |1, Smart Implementation (Input C{,, y’, R. Outputx.)
STEP 1: (Initialization) Seti := m, T,, :== 0, &, := 0, andd, := C{, (current sphere squared radius).
STEP 2: (DFE onuz;) Setx; := [(y, — &)/rii| andA; := sign(y, — & — ri24).
STEP 3: (Main step) Ifd. < T;+ | yi — & — 7@, |, then go to STEP 4 (i.e., we are outside the sphere).
Else if z; ¢ Z¢g go to STEP 6 (i.e., we are inside the sphere but outside timalssgt boundaries).
Else (i.e., we are inside the sphere and signal set bousjlarie> 1, then
{let 5@—1 = Z;nzl Ti—1,5%j, T, 1:=T;+ | y; — gz — Ti4i%; |2, 1:=i—1, and go to STEP 2}
Else (i=1) go to STEP 5.
STEP 4: If i = m, terminate, else sét:= i+ 1 and go to STEP 6.

STEP 5: (A valid point is found) Letd, := T\ + | ¥} — & — r1121 |?, savex := x.
Then, leti :== i+ 1 and go to STEP 6.

STEP 6: (Schnorr-Euchner enumeration of levglLet x; := z; + A;, A; := —A; — sign(4;).
Then, go to STEP 3.

Note that given the values;,, ..., z,,, taking the ZF-DFE (zero-forcing decision-feedback egadébn) onzx;
avoids retesting other nodes at levéh case we fall outside the sphere. Settifig= co would ensure that the first
point found by the algorithm is the ZF-DFE point (or the Bapaint) [43]. However, if the distance between the
ZF-DFE point and the received signal is very large this chaitay cause some inefficiency, especially for high
dimensional lattices.

The decoding of the other three lattices[ih (1) also relieshis algorithm, but we need to run some additional
parity checks. This simply means that in addition to the &eamncerning the facts that we have to be both inside
the sphere radius and inside the signal set boundaries,seehale to lie inside a given sublattice. This will be
taken care of by a method we calbde controlled sphere decodif@CSD), that combines the algorithm above
with certain case considerations. To this end, let us whiteconstraints on the elemertsasmodulo2 operations
Denote byx = (21, x2, ..., 23) = (Rey, Seq, ..., Req, Seyq) € R the real vector corresponding to the channel input.
Note that when exploiting these relations in the CCSD atborj we have to use different orderings for the basis
matrices of the lattice in different cases in order to maleghrity checks as simple as possible. Let us first order
the basis matrices aB; = M(1,0,0,0), B = M (4,0,0,0), ..., By = M(0,0,0,1), Bg = M(0,0,0,7). Then when
decoding e.g. thd s lattice, we reorder the basis matrices iag B., Bs, Bg, B3, By, B7, Bg in order to get the
sume; + c3 as the sum of the first components and the sum + ¢4 as the sum of the last components (cf.
Propositiori 25). The conditions for the Gaussian elemehBropositions 214-216 can clearly be translated into the
following modulo2 integer conditions, see for instance Remark 2.2. The auditiparity check steps will hence
be as shown in Tablelll above.

As the Alamouti scheme [2] has a very efficient decoding atlgor available, and our quaternionic lattices have
an Alamouti-like block structure, it is natural to ask whatlany of the benefits of Alamouti decoding will survive
for our lattices. We shall see that the block structure alas to decode the two blocks independently from each
other. The following simple observation is the underlyirgpmetric reason for our ability to do this.
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Fig. 1. Average complexity of tx-antenna matrix lattices at rates (approximatdly}= 4 and R = 8 bpcu.

Lemma 4.1:Let A and B be twon x n matrices with the property that the matricasB, A", B commute.
Let h € C?" be any (row) vector and write

M(A, B) = ( o >

Then the vectorhM (A, 0) andhM (0, B) are orthogonal to each other when we iden@fy* with R*" and use
the usual inner product of a vector space over the real nusnber

Proof: With the identificationC?® = R*" the real inner product is the real part of the hermitian irpreduct
(, ) of C*". Write the vectorh in the block formh = (h(V) h(?)), where the blocks"),j = 1,2, are (row)
vectors inC™. Then we can compute

(hM(A,0),hM (0, B))

(hM(A,0)M (0, B)Y h)

= (hM(A,0)M(0,—B),h)
(
(

hM (0, —AB), h)
K2 AR BH pMy _ (n(MWAB, h?).

As (uM,v) = (vM* u)* for all vectorsu, v and matrices\, we see that the above hermitian inner product is
pure imaginary. |
Corollary 4.2: Let A and B range over sets of x n-matrices. Leh andr be vectors inC?". Then the Euclidean

distance between andhM (A, B) is minimized for theA = Ay, and B = By, when Ay minimizes the Euclidean
distance between andhM (A, 0) and By minimizes the Euclidean distance betwaeandh/ (0, B).

Proof: Write V4 (resp.Vp) for the real vector space spanned by the vectob$(A,0) (resp.hM (0, B)).
These subspaces are orthogonal to each other in the sensawhdl[4.ll. Whence we can uniquely write=
ra+rp+ry, wherery € V4, rg € Vg andr is in the (real) orthogonal complement of the direct sumd V.
A similar decomposition for the vectdiM (A, B) is hM (A, B) = ha + hp, wherehy = hM(A,0) € V4 and
hp =hM(0, B) € V. By the Pythagorean theorem

[t —hM (A, B)]? = [ra —hM(A,0)* +[rp — hM (0, B)* + [r.[*.

Furthermore, here
[ra —hM(A,0)]* = [r —hM(A,0)]* = [ra|* — [rL|*,
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so the quantitiegr4 — hM(A,0)|? and |r — hM (A, 0)|? are minimized for the same choice of the matrix A
similar argument applies to thB-components, so the claim follows. [ |

B. Complexity issues and collapsing lattices

The number of nodes in the search tree is used as a measurenpfegdy so that the implementation details
or the physical environment do not affect it. We have analyamny different kinds of situations concerning the
change of complexity of the sphere decoder when moving@lirfr¢ right to left.

In Fig.[d we have plotted the average number of points viditedhe algorithm in different cases at the rates
approximately4 and 8 bpcu. The SNR regions cover the block error rates betwedi% — 0.01%. As can be
seen, in the low SNR end, the difference in complexity betwie different lattices is clear but evens out when
the SNR increases. For the sublattides Ls, and Lg the algorithm visitsl.1 — 2.1 times as many points as for
the base latticel,. In the larger SNR end, the performance is fairly similar &birthe lattices. E.g. at and 8
bpcu, when all the lattices reach the bound of maximum 20tpaiisited, the block error rates @f;, Ls, andLg
are still as big a$%, 2%, and1% respectively.

Definition 4.1: In a MISO setting we say that a matrix lattide of rank m collapses at a channel realization
h, if the receiver’s version of the lattick. spans a real vector space of dimensiomn. We call the set of such
channel realizations the critical set. We say that skasitivitys(L) (towards collapsing) of the latticé is r, if
the critical set is a union of finitely many subspaces of realethsion< r.

So we e.g. immediately see that a lattice residing in an gdahal design will have zero sensitivity. While we
have no precise results the thinking underlying the concaptbe motivated as follows. When the infinite lattice
collapses into a lower dimensional space, its linear airecits severely mutilated. For example the minimum
Euclidean distance drops to zero — for any 0 there will be infinitely many other lattice points within asthnce
< e. Even when we restrict ourselves to a finite subset of th&datthe coordinates of the nearby points may
differ drastically. Thus even an ML-decoder will have perk, and an algorithm relying on the orderly linear
structure of the lattice (like the sphere decoder) cannokwery efficiently. Similar problems are still there, when
the actual channel realizatidnis close to a critical vector.

The sensitivity then enters the scene as a crude measureef@robability of this happening. It is easy to see
that in a Rayleigh fading channel the probability of the alelrvectorh to be withine of a critical vector behaves
like O(e*"~*). Thus the lower the sensitivity, the lower the probabilifytiee lattice becoming distorted by the
channel.

We lead off by determining the sensitivity of the DAST-laés.

Example 4.1:There exist 8-dimensional lattices [5] éfx 4 matrices of the form
T T2 T3 Ty
r1 —X9 xr3 —I4
I o —I3 —T4
r1 —To —I3 T4

Mpast =

These matrices are simultaneously diagonalizable as theg tommon orthogonal eigenvectérs = (1,1,1, 1),
h, =(1,-1,1,—-1), hg = (1,1,-1,—1) andhy = (1,—1,—1, 1)4. Write the channel vector in terms of this basis
h = Z?:l a;h;. If any of the coefficients vanishes, say = 0, then the DAST-lattice collapses, because the
receiver’s version of the lattice will belong to the compkpan of the other three eigenvectdrs j # k. On the
other hand, if all the coefficients; # 0,j = 1,2, 3,4, this channel vector will not be critical. One way of seeing
this is that applying the linear mapping determinedlby— (1/a;)h; to the receiver’s lattice then recovers the
original full rank lattice of vectorgzi, 2, 3, x4). Such a mapping obviously cannot affect the dimension of the
space spanned by the vectors, so the lattice won'’t collapse.

We have shown that the sensitivity of the DAST-lattice is. six

We proceed to determine the sensitivities of the lattifesof Proposition 2.2 and the ones within the nested

sequence_ (1). Let us first considey. Let
h,

hy
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be the4 x 4 matrix with rows hy, hy, hs, hy of the form (1,¢7,¢%,¢%) for 7 = 1,5,9,13. Recall that earlier
we have used1,¢,¢?,¢3} as an integral basis, so the rows@fare the images of this ordered basis under the
action of the Galois groupg: of the extensionQ(¢)/Q(¢). Now it happens that the matri&/ is unitary (up to

a constant factor) aBU* = 41,. Let z = ¢1 + c2¢ + c3¢? + 4¢3 be an arbitrary algebraic integer @f(¢),
and M (z) = Mp(cy,c2,c3,c4) € Ly be the corresponding matrix of Proposition]2.2. Accordiaghe theory of
algebraic numbers (and also trivially verified by hand) toes of U are (left) eigenvectors a#/(z), and

z 0 0 0

1| 0 o2(2) O 0

UMEU =10 0" o4z) 0
0 0 0 o4(2)

is a diagonal matrix with entries gotten by applying the edats of the Galois grouyr = {01 = id, 09,03,04} t0O
the numberz.

So all the matriced/;,(c1, c2, c3,c4) are diagonalized by/. Therefore we might call the lattice; ‘DAST-like’,
as it shares this property with the lattices from [5].

Proposition 4.3: The latticeL; has sensitivity Six.
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Proof: The situation is completely analogous to that of Exarnple Bhe latticeL; will collapse, iff the channel
realization belongs to any of the 4 complex vector spacesrsghby any three of the common eigenvectorm

Ll: Complexity vs sensitivity (scaled), R = 2 bpcu, SNR = 10
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In order to study the quaternionic lattices we first obsehat the2 x 2-matricesA and B appearing as blocks
of a matrix M € L, all have(1,£¢) as their common (left) eigenvectors. The same holds for theirgs A*, B*
as they also appear as blocks &f* that also happens to belong to the lattice From the proof of Proposition
[2.4 we see that the matrix M*, M = M(cy, co, c3,c4), has eigenvalues + | k| with respective (left) eigenvectors
(1,4££,0,0) and (0,0, 1,£¢). Herea = Z?:l lcj|? and k = —icich + cact — icscl + cach. We make this more
precise before we determine the sensitivity of the quabeiailattices.

There is a connection between our MISO-code and the mutikotodes introduced by Belfiore in [45] and Lu
in [44] that can be best explained with the notation of thespn¢ section. Consider the unitary matrix with the
above basis vectors as columns

1 1 0 0
po L& €00
210 0 11
0 0 ¢ —¢
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If we conjugate the matrices of the algelifaby U we get matrices of the form

r —xh 0 0
T9 ] 0 0
0 0 7(z1) —7(x2)
0 0 T(fL'Q) T(I‘l)*

where the elements;,z, belong to the fieldQ(¢) = Q(i,v/2), and7 : Q(&) — Q(¢) is the automorphism
determined byr(i) = 4, 7(v/2) = —v/2. Thus we see that our MISO-code is unitarily equivalent todtirblock
code with a structure similar to [44] — only our center is Sieral

The upshot here, as well as in [45], [44], and in the icosiamstoiction from [38] is that while the individual
diagonal blocks may have arbitrarily small determinantsemwe use them together with their algebraic conjugates,
the diagonal blocks together conspire to give a non-vamigtieterminant. This is because the algebraic conjugates
of small numbers are necessarily just large enough to cosaperms the algebraic norms are known to be integers.

Another benefit enjoyed by our matrix representation of figelaraH over the above multi-block representation
is that the signal constellation is better behaved. Suiedy simple QAM-constellation of our matrices is to be
preferred over the linear combinations of two rotated QANMaibols of the multi-block representation.

This feature clearly begs to be generalized to a MIMO-sgttibne such construction is the previously mentioned
icosian construction of Liu & Calderbank [38], where theyrmaged to add a multiplexing gain of 2 to a similar
multi-block representation of the icosians. It turned cdttthe question of how to best do this in the spirit of
the present article is somewhat delicate. The resultingsedll necessarily be asymmetric MIMO-codes, and we
refer the reader to [46].

We return to the sensitivity of the quaternionic latticebeTollowing result is how easy to verify

Proposition 4.4:Let V, (resp.V_) be the complex subspace @f generated by the vectord, ¢,0,0) and
(0,0,1,¢) (resp. by(1,—¢,0,0) and(0,0,1,—¢)). The subspaceg, andV_ are orthogonal complements of each
other inC*, so any channel vector can be uniquely written as

h=h, +h_,

whereh. € Vi respectively. Ifh belongs to one of the subspacés, V_, the latticehL, collapses. Otherwise
the lattice L, does not collapse. In particular the sensitivity of theidet Lo, L3, L4, L5, Lg is four. [ |

Our simulations, indeed, show that the complexity of a spliercoder increases sharply, when we approach the
critical set. A comparison between the lattidesand L, does not show a dramatic difference between the average
complexities of a sphere decoder, but the difference besomgy apparent, when studying the high-complexity
tails of the complexity distribution.

In Fig.[2 we have plotted the complexity distribution of 500@nsmissions for different data rates. On the
horizontal axis the quantity min|h;|> ) (resp. mii |h,|?, |h_|? )) describes how close the lattice, (resp.

L) is to the situation where it would collapse. That is, howseldo zero the minimum of the components
h; € V;, i =1,2,3,4, (resp.hy € V) gets (cf. Remark’413 and Propositionl4.4). For bbthand L, the figure
shows that the smaller the quantity, the higher the comipleXie can also conclude that the lattiége nearly
collapses a lot more often than the latti€g. In addition, the number of points visited by the sphere dewp
algorithm is much higher fof,; than for L,. These are phenomena caused by the higher sensitiviby .o Fig.
the scaled impact of sensitivity is depicted.

Note that asLpasr has the same sensitivity ds, we can equally well analyze the behavior of the DAST
lattice on the basis of Fidll 2 and F[g. 3.

V. ENERGY CONSIDERATIONS AND SIMULATIONS
As a summary of Propositiolis 2[2—.6 we get the following.

Proposition 5.1: (1) The lattice L, is isometric to the rectangular lattic&® and has a minimum determinant
equal tol.

(2) The latticeL, isometric toDg is an index two sublattice of, and has a minimum determinant equalto

(3) The latticeL5 isometric toD, 1 D, is an index four sublattice of, and has a minimum determinant equal
to 16.
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(4) The latticeLg isometric toEs is an index 16 sublattice df; and has a minimum determinant equabtom

In order to compare these lattices we scale them to the samienoth determinant. When a real scaling factor
p is used the minimum determinant is multiplied py. As all the lattices have rank 8, the fundamental volume
is then multiplied byp®. Let us choose the units so that the fundamental volume,of m(L,) = 1. Then after
scalingm(Ly) = 1/2, m(Ls) = 1/4, andm(Lg) = 1/4. As the density of a lattice is inversely proportional to
the fundamental volume, we thus expect the codes constirugtkin e.g. the latticed., and Lg to outperform the
codes of the same size withiiy.
Average energy of some 4 Tx lattices Block error rates at 2 bpcu

300 T T T T T T 10 T T T T
— bk : - Lpast

4 5 Sicosian
- L T T "ABBA
250 : 0~ Lonst I — L

Average energy
I n
(%, o
o o
T T
BLER

-

o

=)
T

50~

X 10” I I I I I I I
1 15 2 25 3 35 4 4.5 5 55 6 7 8 9 10 11 12 13 14 15

Rate (bpcu) SNR (dB)

Fig. 4. Average energy (left) and block error ratesiofx-antenna lattices a bpcu with one receiver (right).

The exact average transmission power data in[Big. 4 is cadpma follows. Given the siz& of the code we
choose a random set & shortest vectors from each lattice. The average energyeotalde

>eec
K

is then computed with the aid of theta functions [31]. All thttices were normalized to have minimum determinant
equal to 1. When using the matricd$(c;, c2, c3,c4) Of Propositior 211, in some cases we are better off selecting
the input vectorgcy, co, c3,¢4) from the cose%(l +1i,1+14,1+1i,1414) + G* instead of letting them range over
G*. Obviously such a translation does not change the minimut@rménant of the code, but it sometimes results
in significant energy savings. E.g. to get a code of size 2&6dtearly desirable to let the coefficientg cs, c3, ¢4
range over the QPSK-alphabet.

Fig.[3 shows the block error rates of the various competitigéacodes at the rates approximately 2, 4, 6, and 8
bpcu, i.e. all the codes contain rougfy, 216, 224 or 232 matrices respectively. For the latticés, Lo, Lpagr, and
Lappa [20] this simply amounted to letting the coefficients c2, c3, ¢4 take all the values in a QPSK-alphabet.
Therefore, it would have been easy to obtain bit error ratesvell. For the latticed.,, Ls, Lg the rate is not
exact, see (10) below and the preceding explanation. Ofseoalso the exact rate equal to a power of two could
be achieved by just choosing a more or less random set ofestidatitice vectors. As there is no natural way to
assign bit patterns to vectors bfs, D4 D4 or Eg, we chose to show the block error rates instead of the bit erro
rates.

The simulations were set up, here, so that the 95 per ceabil@ly range amounts to a relative error of about 3
per cent at the low SNR end and to about 10 per cent at the hidgh &M (or to about 4000 and 400 error events
respectively). One receiver was used for all the lattices.

When moving left in [(I1) the minimum determinant increaceslevithe BLER decreases at the same time.
However, the other side of the coin is that improvements mBhER performance cause a slightly more complex
decoding process by increasing the number of points visitetie search tree. Still after this increasement, even

E(w =
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Block error rates at 2 bpcu Block error rates at 4 bpcu
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T
<~ Loast : : : : : : : = Loast

BLER
BLER

10” I I I I I I I 10 I I I I I I I I

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
SNR (dB) SNR (dB)
Block error rates at 6 bpcu Block error rates at 8 bpcu
0 0
10 T T T T 10 T T T

BLER
BLER

107 1 1 1 1 1 1 1 107 1 1 1 1 1 1 1
22 23 24 25 26 27 28 29 30 29 30 31 32 33 34 35 36 37

SNR (dB) SNR (dB)

Fig. 5. Block error rates of tx-antenna lattices at approximatehy0, 4.0, 6.0, and8.0 bpcu with one receiver.

the lattice Lg admits a fairly low average complexity as compared to thécks L, and Lp 457 due to its lower
sensitivity. In part of the pictures in Figl 5, the order of tturves seems not to respect the above mentioned order,
but this only happens because the rates are not exactly the && all the lattices. E.g. at the rate 4 bpcu,

the exact rates fol., L4, L5, and Lg are 4,3.75,4.14, and 4.17 bpcu respectively. Consequently, the lattite
seems to perform better than what it actually does. Let ustlghexplain how these rates follow: when picking
the elements:, ..., zg from the setZq (cf. Section 1V (%) and the discussion after Algorithm Ilpetsize of the

code within the latticel,;, i = 2,4, 5,6, will be Q Tor] = 9l° g[LzL] , Where[Ls : L;] is the index of the sublattice
L; inside Ly (cf. Prop03|t|0d__511) Hence, the data rate in bits per chhnse can be computed as

R= aiizong (10)
4
Now, for instance, to get as close to the r&te= 4 bpcu as possible, we have to chod@e=4,Q = 4,Q = 5,
and @ = 6 for the latticesLs, L4, L5, and Lg respectively. By substituting and the sublattice index in question
to (I0) we obtain the above rates.
Simulations at the raté bpcu with one receiver show that the lattitg wins by approximatelyi dB over the
lattice L, and by at leas®.5 dB over Lpasr. At the rate2 bpcu, the rotated ABBA latticd. 454 is already
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beaten by thd., lattice by a fraction of a dB. The difference betweksn and Lp sy iS even clearerl, gains
1—2 dB overLp s, depending on the SNR. At all data rates the latfigeoutperforms all the other lattices.
Prompted by the question of one of the reviewers, we make dthewing remark in case that the reader is
familiar with the Icosian code [38] and ponders over whetaed how it relates to the codes presented in this
paper.
Remark 5.1:The Icosian latticeL ;cosran presented in [38] takes use of the Icosian ring (cf. Remaéj 3.

and has a similar looking structure to the Golden code [Lhlem the matrix elements are replaced with Icosian
Alamouti blocks

a1 +aot —az + aqt
A:A(al,ag,ag,a4): < . .
as +aqt  ayp — ag

and B = B(by, b, b3, by) respectively:

Licosian = {(g I%F) ‘ ai,b; € Z[(1+V5)/2] W},

where A denotes the algebraic conjugate fwith respect to the mapping’s — —+/5 and

k= (2 %)

A code within this lattice is callettosian codeNote that Jafarkhani’'s quasi-orthogonal code [30] in theutations
of [38] is exactly our base latticé,.

First of all, note that the Icosian code has code rate twohaddttice is 16-dimensional over the reals. Hence,
in order to enable efficient linear decoding, at least tweanas are required at the receiving end. Taking this into
consideration, there is no good way to make fair comparisetwvéen the Icosian lattice and the 8-dimensional
lattices proposed in this paper. If the application at hallmiva us to use one receiving antenna only, we either
have to puncturd.;cosran (e.g. by settingB = 0) which will cause it to lose its benefits, or, we need to penfor
complex decoding process (e.g. a sphere decoder cannoeblg us

However, if we still want to compare these codes with two kgms, our codes will of course lose due to the
lower code rate as they are designed for MISO use only. Simdaparison could be done e.g. with thex 4
Perfect code [11] and the Icosian code resulting to the Ib$lseolcosian code due to its lower rate (two vs. four).
When using one receiver for the Icosian code by punctringotbek B, it will lose to L, by 0.5-1 dB at 2 bpcu
depending on the SNR as depicted in Figure 4. But, as noteeceabothis wayL;cosran Will of course lose its
benefits (as we are not really using the whole Icosian ringhs&is not a comparison on which we should put
too much value.

To conclude, the codes in this paper and the Icosian codeaggeted into different types of applications: the
first ones are aimed for systems with one receiving antenharems the Icosian code naturally fits into systems
with two receiving antennas.

VI. DIVERSITY-MULTIPLEXING TRADEOFF ANALYSIS

This section contains the DMT analysis of the MISO codes tooted in this paper. We denote by (resp.
n,) the number of transmitting (resp. receiving) antennas.tke rest of the notation, see [21].
Let us first consider the number field construction. DenoteRooposition 2.R)

C1 iC4 ng ng

C2 C1 iC4 ng
Ly = . ,G €A S
Cq

where A C ZJi] is some constellation set. This code is for the MISO systeth wj = 4 transmit andn, = 1
receive antennas. Given the transmit code maXrix Lq, the received signal vector is

y' = 0hTX 407,

whereh ~ CN (0, I).
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Let r be the desired multiplexing gain; then we need
IL1| = SNR™ = |A*

and the above in turn gives

Al = SNR". (11)
Hence we see for every € A

les|* < SNR (12)
and

> = SNR!™". (13)

Let \ := H@H% = SNR™“ and lets; > --- > &, be the ordered eigenvalues &fXT; then the random Euclidean
distancedy is lower bounded by

62\
3 .
i=19%

d2 > 0?26, = > SNRPm (14)

where
Erp, =1—-r—a—-3r=1—4r —a. (15)

1

Now the DMT of this code is given by

1
d > inf 4a = 4(1 -4 foro0<r <=, 16
)zt da = 401 4r), <r<g (16)
while the optimal tradeoff in this channel is actually
d*(r) = 41—-r) foro<r<1. (17)
The quaternionic construction is
c1 icg —c3 —c
Ly = @A zc*4 _53 €A
03 ZC4 Cl C2
¢y c3 —icy ]

First of all, as pointed out in the proof of Proposition 2Hde tmatrix M € Lo is of the following form:

A —BH
w= (5 )

and
AAH + BHEB 0
H _
MM™ = ( 0 AHA+BBH>
- AA® + BBH 0
- 0 AAH + BBH

since AB = BA. Thus the ordered eigenvalues bf M satisfy §; = §, > §3 = 6, and in particularg; > &3
are the ordered eigenvalues 4fA” + BB . Secondly, note thad/ M satisfies the non-vanishing determinant
property, and so does the matrik4’ + BB . Now the bound for the random Euclidean distance is
2 2 R E
dp > 0°X6y = 5 >SNR™"2, (18)
3

where

Er, =1—-r—a—-r=1-2r—a. (19)

2

Now the DMT of this code is given by

dr,(r) > inf 4a = 4(1—-2r), for0<r<

20
Er,<0 ( )

DO =
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The same of course also holds for codes within the sublatfigels, Lg C Lo.

Remark 6.1:While our codes are not DMT optimal, it has to be noticed thilhout using a full-rate code the
DMT cannot be achieved. Hence, if one wishes to enable gfficddecoding process with one receiving antenna
only (see the remark below), sacrifices in terms of the DMTeht@vbe made. However, our quaternionic lattices
Lo, L4, Ly, Lg admit higher DMT as e.g. the DAST lattice, as the DMT of the DASttice coincides with that of
L.

Remark 6.2:0ne might ponder why not use e.g. the full-rate CDA based £ddle [6], [11]) as they are DMT
optimal provided that they have non-vanishing determin@he answer to this is in principle the same as the one
provided in Remark 511. We could naturally do this, but cdasng that we only want to use one receiving antenna
it should be clear that a full-rate code cannot be efficientigd. Indeed, using a full-rate code would destroy the
lattice structure and cause exponential complexity at gdoeiver. To enable efficient decoding with one receiver
we have to limit ourselves to rate-one codes, which exacttlyhave done in this paper. We want the reader to
note that full-rate codes (e.g. the perfect codes [11]) gtemally suited for systems with; = n, > 1, hence
inapplicable to the purposes of this paper where we hgve 4 andn, = 1.

VIlI. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

In this paper, we have presented new constructions of rae-foll-diversity, and energy efficiedt x 4 space-
time codes with non-vanishing determinant by using therthebdrings of algebraic integers and their counterparts
within the division rings of Lipschitz’ and Hurwitz' integt quaternions. A comfortable, purely number theoretic
way to improve space-time lattice constellations was ghiged. The use of ideals provided us with denser lattices
and an easy way to present the exact proofs for the minimumrmatants. The constructions can be extended
also to a larger number of transmit antennas, and they nfitalith the popular 3-QAM and QPSK modulation
alphabets. The idea of finding denser sublattices withinvargtivision algebra was also generalized to a MIMO
case with arbitrary number of Tx antennas by using the thebwgyclic division algebras and, as a novel method,
their maximal orders. This is encouraging as the CDA basegregST constructions with NVD are known to
achieve the DMT. We have also shown that the explicit coptms in this paper all have a simple decoding
method based on sphere decoding. Related to the decodingedty, the notion of sensitivity was introduced for
the first time in this paper. The experimental results havergevidence about the relevance of this new notion.

Comparisons with the four antenna DAST block code have shbainour codes provide lower energy and block
error rates due to their good minimum determinant, i.e. highsity and lower sensitivity. At the moment, we are
searching for well-performing MIMO codes arising from tieory of crossed product algebras and maximal orders
of cyclic division algebras. We have noticed that also theeiininant of a maximal order plays an important role
in code design. It is desirable to choose cyclic divisionellgs for which the discriminant of a maximal order
is as small as possible [33]. By now, we are able to constmadlicit cyclic division algebra of an arbitrary
index overQ(i) (or Q(w)) that has a maximal order with minimal discriminant. Desgite fact that we have
not yet fully analyzed the practical performance of codesiray from these constructions, the preliminary results
have been very promising. Further details on this and on ltperithmic properties of maximal orders (see also
[47]-[49]) will be given in a forthcoming paper [33].
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