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Maximal Orders in the Design of Dense Space-Time Lattice Codes

Camilla Hollanti, Jyrki Lahtonen,Member IEEE, and Hsiao-feng (Francis) Lu

Abstract

We construct explicit rate-one, full-diversity, geometrically dense matrix lattices with large, non-vanishing
determinants (NVD) for four transmit antenna multiple-input single-output (MISO) space-time (ST) applications.
The constructions are based on the theory of rings of algebraic integers and related subrings of the Hamiltonian
quaternions and can be extended to a larger number of Tx antennas. The usage of ideals guarantees a non-vanishing
determinant larger than one and an easy way to present the exact proofs for the minimum determinants. The idea
of finding denser sublattices within a given division algebra is then generalized to a multiple-input multiple-output
(MIMO) case with an arbitrary number of Tx antennas by using the theory of cyclic division algebras (CDA) and
maximal orders. It is also shown that the explicit constructions in this paper all have a simple decoding method based
on sphere decoding. Related to the decoding complexity, thenotion of sensitivity is introduced, and experimental
evidence indicating a connection between sensitivity, decoding complexity and performance is provided. Simulations
in a quasi-static Rayleigh fading channel show that our dense quaternionic constructions outperform both the earlier
rectangular lattices and the rotated ABBA lattice as well asthe DAST lattice. We also show that our quaternionic
lattice is better than the DAST lattice in terms of the diversity-multiplexing gain tradeoff.

Index Terms

Cyclic division algebras, dense lattices, maximal orders,multiple-input multiple-output (MIMO) channels,
multiple-input single-output (MISO) channels, number fields, quaternions, space-time block codes (STBCs), sphere
decoding.

I. INTRODUCTION AND BACKGROUND

Multiple-antenna wireless communication promises very high data rates, in particular when we have perfect
channel state information (CSI) available at the receiver.In [1] the design criteria for such systems were developed
and further on the evolution of ST codes took two directions:trellis codes and block codes. Our work concentrates
on the latter branch.

The very first ST block code for two transmit antennas was theAlamouti code[2] representing multiplication in
the ring of quaternions. As the quaternions form a division algebra, such matrices must be invertible, i.e. the resulting
STBC meets the rank criterion. Matrix representations of other division algebras have been proposed as STBCs at
least in [3]-[15], and (though without explicitly saying so) [16]. The most recent work [6]-[16] has concentrated
on adding multiplexing gain, i.e. multiple input-multipleoutput (MIMO) applications, and/or combining it with a
good minimum determinant. In this work, we do not specifically seek any multiplexing gains, but want to improve
upon e.g. the diagonal algebraic space time (DAST) latticesintroduced in [5] by using non-commutative division
algebras. Other efforts to improve the DAST lattices and ideas alike can be found in [17]-[19].

The main contributions of this work are:

• We give energy efficient MISO lattice codes with simple decoding that win over e.g. the rotated ABBA [20]
and the DAST lattice codes in terms of the block error rate (BLER) performance.

• It is shown that by using a non-rectangular lattice one can gain major energy savings without significant
increasement in decoding complexity. The usage of ideals moreover guarantees a non-vanishing determinant
> 1 and an easy way to present the exact proofs for the minimum determinants.

• In addition to the explicit MISO constructions, we present ageneral method for finding dense sublattices within
a given CDA in a MIMO setting. This is tempting as it has been shown in [15] that CDA-based square ST

C. Hollanti is with the Laboratory of Discrete Mathematics for Information Technology, Turku Centre for Computer Science,
Joukahaisenkatu 3-5 B, FIN-20520 Turku, Finland.

C. Hollanti & J. Lahtonen are with the Department of Mathematics, FIN-20014 University of Turku, Finland.
E-mails: {cajoho, lahtonen}@utu.fi
H.-f. Lu is with the Department of Communication Engineering, National Chung-Cheng University, Chia-yi, Taiwan
E-mail: francis@ccu.edu.tw

http://arxiv.org/abs/0803.2639v1


2

codes with NVD achieve the diversity-multiplexing gain tradeoff (DMT) introduced in [21]. When a CDA is
chosen the next step is to choose a corresponding lattice or,what amounts to the same thing, choose an order
within the algebra. Most authors, among which e.g. [11], [15], and [16], have gone with the so-called natural
order (see Section III-B, Example 3.2). In a CDA based construction, the density of a sublattice is lumped
together with the concept of maximality of an order. The ideais that one can, on some occasions, use several
cosets of the natural order without sacrificing anything in terms of the minimum determinant. So the study of
maximal orders is easily motivated by an analogy from the theory of error correcting codes: why one would
use a particular code of a given minimum distance and length,if a larger code with the same parameters is
available.

• Furthermore, related to the decoding complexity, the notion of sensitivity is introduced for the first time, and
evidence of its practical appearance is provided. Also the DMT behavior of our codes will be given.

At first, we are interested in the coherent MISO case with perfect CSI available at the receiver. The received
signaly ∈ Cn has the form

y = hX + n,

whereX ∈ Cm×n is the transmitted codeword drawn from a ST codeC, h ∈ Cm is the Rayleigh fading channel
response and the components of the noise vectorn ∈ Cn are i.i.d. complex Gaussian random variables.

A lattice is a discrete finitely generated free abelian subgroup of a real or complex finite dimensional vector
spaceV , also called the ambient space. Thus, ifL is a k-dimensional lattice, there exists a finite set of vectors
B = {b1,b2, . . . ,bk} ⊂ V such thatB is linearly independent over the integers and that

L = {
k

∑

i=1

zibi | zi ∈ Z,bi ∈ V for all i = 1, 2, . . . , k}.

In the space-time setting a natural ambient space is the space Cn×n of complexn × n matrices. When a code is
a subset of a latticeL in this ambient space, therank criterion [22] states that any non-zero matrix inL must be
invertible. This follows from the fact that the difference of any two matrices fromL is again inL.

The receiver and the decoder, however, (recall that we work in the MISO setting) observe vector lattices instead
of matrix lattices. When the channel state ish, the receiver expects to see the latticehL. If h 6= 0 andL meets
the rank criterion, thenhL is, indeed, a free abelian group of the same rank asL. However, it is well possible
thathL is not a lattice, as its generators may be linearly dependentover the reals — the lattice is said tocollapse,
whenever this happens.

From the pairwise error probability (PEP) point of view [22], the performance of a space-time code is dependent
on two parameters:diversity gainand coding gain. Diversity gain is the minimum of the rank of the difference
matrix X − X ′ taken over all distinct code matricesX,X ′ ∈ C, also called therank of the codeC. WhenC is
full-rank, the coding gain is proportional to the determinant of the matrix(X−X ′)(X−X ′)H , whereXH denotes
the transpose conjugate of the matrixX. The minimum of this determinant taken over all distinct code matrices
is called theminimum determinantof the codeC and denoted byδC . If δC is bounded away from zero even in the
limit as SNR→ ∞, the ST code is said to have thenon-vanishing determinantproperty [8]. As mentioned above,
for non-zero square matrices being full-rank coincides with being invertible.

The data rateR in symbols per channel use is given by

R =
1

n
log|S|(|C|),

where |S| and |C| are the sizes of the symbol set and code respectively. This isnot to be confused with therate
of a code design(shortly, code rate) defined as the ratio of the number of transmitted information symbols to
the decoding delay (equivalently, block length) of these symbols at the receiver for any given number of transmit
antennas using any complex signal constellations. If this ratio is equal to the delay, the code is said to havefull
rate.

The correspondence is organized as follows: basic definitions of algebraic number theory and explicit MISO
lattice constructions are provided in Section II. As a (MIMO) generalization for the idea of finding denser lattices
within a given division algebra, the theory of cyclic algebras and maximal orders is briefly introduced in Section
III. In Section IV, we consider the decoding of the nested sequence of quaternionic lattices from Section II. A
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variety of results on decoding complexity is established inSection IV, where also the notion of sensitivity is taken
into account. Simulation results are discussed in Section Valong with energy considerations. Finally in Section
VI, the DMT analysis of the proposed codes will be given.

This work has been partly published in a conference, see [3] and [4]. For more background we refer to [22]-[29].

II. R INGS OF ALGEBRAIC NUMBERS, QUATERNIONS AND LATTICE CONSTRUCTIONS

We shall denote the sets of integers, rationals, reals, and complex numbers byZ, Q, R, andC respectively.
Let us recall the set

H = {a1 + a2i+ a3j + a4k | at ∈ R ∀t},

where i2 = j2 = k2 = −1, ij = k, as the ring ofHamiltonian quaternions. Note thatH ≃ C ⊕ Cj, when the
imaginary unit is identified withi. A special interest lies on the subsets

HL = {a1 + a2i+ a3j + a4k | at ∈ Z ∀t} ⊆ H and

HH = {a1ρ+ a2i+ a3j + a4k | at ∈ Z ∀t, ρ =
1

2
(1 + i+ j + k)} ⊆ H

called theLipschitz’ andHurwitz’ integral quaternionsrespectively.
We shall use extension rings of the Gaussian integers

G = {a+ bi | a, b ∈ Z}

inside a given division algebra. It would be easy to adapt theconstruction to use the slightly denser hexagonal ring
of the Eisensteinian integers

E = {a+ bω | a, b ∈ Z},

whereω3 = 1, as a basic alphabet. However, the Gaussian integers nicelyfit with the popular 16-QAM and QPSK
alphabets. Natural examples of such rings are the rings of algebraic integers inside an extension field of the quotient
fields of G, as well as their counterparts inside the quaternions. To that end we need division algebrasA that are
also 4-dimensional vectors spaces over the fieldQ(i).

A. Base lattice constructions

Let now ζ = eπi/8 (resp. ξ = eπi/4 = (1 + i)/
√
2) be a primitive16th (resp.8th) root of unity. Our main

examples of suitable division algebras are the number field

L = Q(ζ),

and the following subskewfield
H = Q(ξ)⊕ jQ(ξ) ⊆ H

of the Hamiltonian quaternions. Note that aszj = jz∗ for all complex numbersz, and as the fieldQ(ξ) is stable
under the usual complex conjugation(∗), the setH is, indeed, a subskewfield of the quaternions.

As always, multiplication (from the left) by a non-zero element of a division algebraA is an invertibleQ(i)-linear
mapping (withQ(i) acting from the right). Therefore its matrix with respect toa chosenQ(i)-basisB of A is also
invertible. Our example division algebrasL and H have the setsBL = {1, ζ, ζ2, ζ3} andBH = {1, ξ, j, jξ} as
naturalQ(i)-bases. Thus we immediately arrive at the following matrix representations of our division algebras.

Proposition 2.1:Let the variablesc1, c2, c3, c4 range over all the elements ofQ(i). The division algebrasL and
H can be identified via an isomorphismφ with the following rings of matrices

L =















ML = ML(c1, c2, c3, c4) =









c1 ic4 ic3 ic2
c2 c1 ic4 ic3
c3 c2 c1 ic4
c4 c3 c2 c1






















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and

H =















M = M(c1, c2, c3, c4) =









c1 ic2 −c∗3 −c∗4
c2 c1 ic∗4 −c∗3
c3 ic4 c∗1 c∗2
c4 c3 −ic∗2 c∗1























.

The isomorphismφ from L into the matrix ring is determined byQ(i)-linearity and the fact thatζ corresponds
to the choicec2 = 1, c1 = c3 = c4 = 0. The isomorphismφ from H into the matrix ring is determined by
Q(i)-linearity and the facts thatξ corresponds to the choicec2 = 1, c1 = c3 = c4 = 0, andj corresponds to the
choicec3 = 1, c1 = c2 = c4 = 0. In particular, the determinants of these matrices are non-zero whenever at least
one of the coefficientsc1, c2, c3, c4 is non-zero.

In order to get ST lattices and useful bounds for the minimum determinant, we need to identify suitable subrings
S of these two algebras. Actually, we would like these rings tobe free rightG-modules of rank 4. This is due
to the fact that then the determinants of the matrices of Proposition 2.1 that belong to the subringφ(S) must be
elements of the ringG. We repeat the well-known reason for this for the sake of completeness: the determinant of
the matrix representing the multiplication by a fixed element x ∈ S does not depend on the choice of the basisB
and thus we may assume that it is aG-module basis. However, in that casexB ⊆ S, so the matrix will have entries
in G as all the elements ofS areG-linear combinations ofB. The claim follows.

In the case of the fieldL we are only interested in its ring of integersOL = Z[ζ] that is a freeG-module with the
basisBL. In this case the ringφ(OL) consists of those matrices ofL that have all the coefficientsc1, c2, c3, c4 ∈ G.
Similarly, theG-module

L = G ⊕ ξG ⊕ jG ⊕ jξG

spanned by our earlier basisBH is a ring of the required type. We call this the ring ofLipschitz’ integers ofH.
Again φ(L) consists of those matrices ofH that have all the coefficientsc1, c2, c3, c4 ∈ G. While OL is known to
be maximal among the rings satisfying our requirements, thesame is not true aboutL. The ringHH also has an
extension of the prescribed type insideH, called the ring ofHurwitz’ integers ofH. This ring, denoted by

H = ρG ⊕ ρξG ⊕ jG ⊕ jξG,

is the rightG-module generated by the basisBHur = {ρ, ρξ, j, jξ}, where againρ = (1 + i+ j + k)/2. The fact
that H is a subring can easily be verified by straightforward computations, e.g.ξρ = ρξ − jξ. For future use we
express the ringH in terms of the basisBH of Proposition 2.1. It is not difficult to see that the element

q = c1 + ξc2 + jc3 + jξc4 ∈ H

is an element ofH, if and only if the coefficientsct satisfy the requirements(1 + i)ct ∈ G for all t = 1, 2, 3, 4
and c1 + c3, c2 + c4 ∈ G. As the ideal generated by1 + i has index two inG, we see thatL is an additive, index
four subgroup inH. We summarize these findings in Proposition 2.2. The bound onthe minimum determinant is
a consequence of the fact that all the elements ofG have a norm at least one.

Proposition 2.2:The following rings of matrices form ST lattices with minimum determinant equal to one.

L1 = {ML(c1, c2, c3, c4) | c1, c2, c3, c4 ∈ G} ,

L2 = {M(c1, c2, c3, c4) | c1, c2, c3, c4 ∈ G} ,

L3 =

{

M(c1, c2, c3, c4) | c1, c2, c3, c4 ∈
1 + i

2
G, c1 + c3 ∈ G, c2 + c4 ∈ G

}

.

Remark 2.1:The latticeL1 is quite similar to the DAST lattice in the sense that all of its matrices can be
simultaneously diagonalized. See more details in Section IV-B. The latticeL2, for its part, is a more developed
case from the so-calledquasi-orthogonalSTBC suggested e.g. in [30]. The matrixM(c1, c2, c3, c4) of Proposition
2.1 can also be found as an example in the landmark paper [6], but no optimization has been done there by using,
for example, ideals as we shall do here.



5

A drawback shared by the latticesL1 andL2 is that in the ambient space of the transmitter they are isometric
to the rectangular latticeZ8. The rectangular shape does carry the advantage that the sets of information carrying
coefficients of the basis matrices are simple and all identical which is useful in e.g. sphere decoding. But, on the
other hand, this shape is very wasteful in terms of transmission power. Geometrically denser sublattices ofZ8, e.g.
the checkerboard lattice

D8 =

{

(x1, ..., x8) ∈ Z8

∣

∣

∣

∣

8
∑

i=1

xi ≡ 0 (mod 2)

}

and the diamond lattice

E8 =

{

(x1, ..., x8) ∈ Z8

∣

∣

∣

∣

xi ≡ xj (mod 2),

8
∑

i=1

xi ≡ 0 (mod 4)

}

,

are well-known (cf. e.g. [31]). However, we must be careful in picking the copies of the sublattices, as it is the
minimum determinant we want to keep an eye on (see Remark 2.3).

B. Dense sublattices inside the base latticeL2

As our earlier simulations [3],[4] have shown thatL2 outperformsL1, we concentrate on finding good sublattices
of L2. The units of the ringL2 are exactly the non-zero matrices whose determinants have the minimal absolute
value of one. Thus a natural way to find a sublattice with a better minimum determinant is to take the latticeφ(I),
whereI ⊂ S is a proper ideal. This idea has appeared at least in [3], [4],and [8]. Even earlier, ideals of rings of
algebraic integers were used in [27] to produce dense lattices. Let us first record the following simple fact.

Lemma 2.3:LetA andB be diagonalizable complex square matrices of the same size.Assume that they commute
and that their eigenvalues are all real and non-negative. Then

det (A+B) ≥ detA+ detB

with a strict inequality if bothA andB are invertible.

Proof: As A andB commute, they can be simultaneously diagonalized. Hence, we can reduce the claim to
the case of diagonal matrices with non-negative real entries. In that case the claim is obvious.

In Proposition 2.4 we give a construction isometric to the checkerboard latticeD8

Proposition 2.4:Let I be the prime ideal of the ringG generated by1 + i. Define

IL = {(c1 + ξc2) + j(c3 + ξc4) ∈ L | c1 + c2 + c3 + c4 ∈ I}.

ThenIL is an ideal of index two inL. The corresponding lattice

L4 = {M(c1, c2, c3, c4) ∈ L2 | c1 + c2 + c3 + c4 ∈ I}

is an index2 sublattice inL2. Furthermore, the absolute value ofdet(MMH), M ∈ L4 \ {0}, is then at least4.

Proof: It is straightforward to check thatIL is stable under (left or right) multiplication with the quaternions
ξ andj, soIL is an ideal inL.

Let us consider a matrixM ∈ L4 and write it in the block form

M =

(

A −BH

B AH

)

.

We see that

MMH =

(

AAH +BBH 0
0 AAH +BBH

)

,

and

AAH +BBH =

(

α k∗

k α

)

,
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whereα =
∑4

j=1 |cj |2 is a non-negative integer andk = −ic1c
∗
2 + c2c

∗
1 − ic3c

∗
4 + c4c

∗
3 is a Gaussian integer with

the propertyk∗ = ik. We are to prove thatdetMMH =
(

α2 − |k|2
)2 ≥ 4. Assume first thatc3 = c4 = 0, i.e. the

block B = 0. Thendet(A) is the relative norm

det(A) = N
Q(ξ)
Q(i) (c1 + ξc2),

which is a Gaussian integer. Asc1+ξc2 is a non-zero element of the idealI, we conclude thatdet(A) is a non-zero
non-unit. Thereforedet(A) det(AH) ≥ 2, and the claim follows.

Let us then assume that bothA andB are non-zero. Thendet(A) anddet(B) are non-zero Gaussian integers
and have a norm at least one. The matricesA,AH , B,BH all commute, so by Lemma 2.3 we get

det(MMH) > det(AAH)2 + det(BBH)2 ≥ 2.

As det(MMH) =
(

α2 − |k|2
)2

is a square of a rational integer, it must be at least 4.

Remark 2.2:It is easy to see that in the previous propositiona+ bi ∈ I, if and only if a+ b is an even integer.
Thus geometrically the matrix latticeL4 is, indeed, isometric toD8.

We proceed to describe two more interesting sublattices ofL2 with even better minimum determinants. To that
end we use the ringH (or the latticeL3). The first sublattice is isometric to the direct sumD4 ⊥ D4 [31] of two
4-dimensional checkerboard lattices.

Proposition 2.5:Let againI be the ideal(1 + i)G. The lattice

L5 = {M(c1, c2, c3, c4) ∈ L2 | c1 + c3, c2 + c4 ∈ I}

has a minimum determinant equal to 16. The index ofL4 in L2 is 4.

Proof: The coefficientsc1 and c3 can be chosen arbitrarily withinG. The the idealI has index2 in G, and
the coefficientsc2 andc4 now must belong to the cosetsc1 + I andc3 + I respectively. Whence, the index ofL5

in L2 is 4. The matricesA in the latticeL5 are of the formA = (1 + i)M , whereM is a matrix in the latticeL3

of Proposition 2.2. Thusdet(AAH) = 16det(MMH) and the claim follows from Proposition 2.2.

The diamond latticeE8 can be described in terms of the Gaussian integers as (cf. [32])

E8 =
1

1 + i

{

(c1, c2, c3, c4) ∈ G4 | c1 + I = ct + I, t = 2, 3, 4,

4
∑

t=1

ct ∈ 2G
}

.

By our identification of quadruples(c1, c2, c3, c4) ∈ G4 and the elements ofH it is straightforward to verify that
(1 + i)E8 has {2, (1 + i) + (1 + i)ξ, (1 + i)ξ + (1 + i)j, 1 + ξ + j + jξ} ⊆ L as aG-basis, whence the set
{1 + i, 1 + ξ, ξ + j, ρ+ ρξ} ⊆ H is aG-basis forE8. By another simple computation we see thatE8 = H(1 + ξ),
i.e. E8 is the left ideal of the ringH generated by1 + ξ.

Proposition 2.6:The lattice

L6 =

{

M(c1, c2, c3, c4) ∈ L2 | c1 + I = ct + I, t = 2, 3, 4,
4

∑

t=1

ct ∈ 2G
}

is an index 16 sublattice ofL2. Furthermore, the minimum determinant ofL6 is 64.

Proof: Let MI = M(1, 1, 0, 0) be the matrixφ(1+ ξ) under the isomorphism of Proposition 2.1. We see that
det(MIM

H
I ) = 4. By the preceding discussion any matrixA of the latticeL6 has the formA = MMI(1+i), where

M is a matrix inL3. As in the proof of Proposition 2.5, we see thatdetAAH = 16det(MIM
H
I ) det(MMH). The

claim on the minimum determinant now follows from Proposition 2.2. We see that the coefficientc1 can be chosen
arbitrarily within G. The coefficientsc2 andc3 then must belong to the cosetc1 + I, andc4 must be chosen such
that c1 + c2 + c3 + c4 ∈ 2G = I2. As I has index two inG, we see that the index ofL6 in L2 is 16 as claimed.

Remark 2.3:We have now produced anested sequence of lattices

2Z8 = 2L2 ⊆ L6 ⊆ L5 ⊆ L4 ⊆ L2 = Z8(⊆ L3). (1)
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TABLE I

LATTICES FROM A CODING THEORETICAL POINT OF VIEW

L2 ↔ The 8-dimensional rectangular gridZ8 ↔ no coding

↓

L4 ↔ The checkerboard latticeD8 ↔ overall parity check code of length8

↓

L5 ↔ The latticeD4 ⊥ D4 ↔ two blocks of the overall parity check code of length4

↓

L6 ↔ The diamond latticeE8 ↔ extended Hamming-code of length8

We concentrate on the lattices that are sandwiched between2Z8 andZ8. It is worthwhile to note that these lattices
are in a bijective correspondence with a binary linear code of length 8 by projection modulo 2, see Table I above.
As it happens, within this sequence of lattices the minimum Hamming distance of the binary linear code and the
minimum determinant of the lattice are somewhat related.

Thereupon it is natural to ask that what if we simply concatenate the use ofL2 with a good binary code (extended
over severalL2-blocks, if needed), and be done with it. While the binary linear codes appearing above are the
first ones that come to one’s mind, we want to caution the unwary end-user. Namely, it is possible that there are
high weight units in the ring in question. If such binary words are included, then the minimum determinant of the
corresponding lattice is equal to1, i.e. no coding gain will take place. E.g. the unit(1− ξ3)/(1− ξ) = 1+ ξ+ ξ2 =
(1+ i) + ξ of the ringL corresponds to the matrixM(1 + i, 1, 0, 0) of determinant 1, and thus we must not allow
such words of weight 3. If the latticeL1 were used, the situation would be even worse, as then we have units like
(1− ζ7)/(1− ζ) in the ringOL that would be mapped to a word of Hamming weight 7. A construction based on
ideals provides a mechanism to avoid this problem caused by high weight units.

III. C YCLIC ALGEBRAS AND ORDERS

In Section II we produced a nested sequence (1) of quaternionic lattices with the property that as the lattice
gets denser after rescaling the increased minimum determinant back to one, the BLER perfomance gets better. As
the sequence (1) lies within a specific division algebra, an obvious question evokes how to generalize this idea.
The theory of cyclic division algebras and their maximal orders offer us an answer. When designing square ST
matrix lattices for MIMO use, cyclic division algebras are of utmost interest as it has been shown in [15] that
a non-vanishing determinant is a sufficient condition for full-rate CDA based STBC-designs to achieve the upper
bound on the optimal DMT, hence proving that the upper bound itself is the optimal DMT for any number of
transmitters and receivers. Given the number of transmitters n, we pick a suitable cyclic division algebra of index
n (more on this in a forthcoming paper, see Section VII and [33]. See also [15] ). The matrix representation of
the algebra, with some constraints on the elements, will then correspond to the base lattice, similarly as did the
lattice L2 in Section II. Now in order to make the lattice denser, we choose the elements in the matrices from an
order. The natural first choice for an order is the one corresponding to the ring of algebraic integers of the maximal
subfield inside the algebra. The densest possible sublattice is the one where the elements come from a maximal
order.

All algebras considered here are finite dimensional associative algebras over a field.

A. Cyclic algebras

The basic theory of cyclic algebras and their representations as matrices are thoroughly considered in [[34],
Chapter 8.5] and [6]. We are only going to recapitulate the essential facts here.

In the following, we consider number field extensionsE/F , whereF denotes the base field.F ∗ (resp.E∗) denotes
the set of non-zero elements ofF (resp.E). Let E/F be a cyclic field extension of degreen with the Galois group
Gal(E/F ) = 〈σ〉, whereσ is the generator of the cyclic group. LetA = (E/F, σ, γ) be the corresponding cyclic
algebra ofindexn, that is,

A = E ⊕ uE ⊕ u2E ⊕ · · · ⊕ un−1E,



8

with u ∈ A such thatxu = uσ(x) for all x ∈ E andun = γ ∈ F ∗. An elementa = x0+ux1+ · · ·+un−1xn−1 ∈ A
has the following representation as a matrixA =















x0 γσ(xn−1) γσ2(xn−2) · · · γσn−1(x1)
x1 σ(x0) γσ2(xn−1) γσn−1(x2)
x2 σ(x1) σ2(x0) γσn−1(x3)
...

...
xn−1 σ(xn−2) σ2(xn−3) · · · σn−1(x0)















. (2)

Let us compute the third column as an example:

u2 7→ au2 = x0u
2 + ux1u

2 + · · ·+ un−1xn−1u
2

= uσ(x0)u+ u2σ(x1)u+ · · ·+ γσ(xn−1)u

= u2σ2(x0) + u3σ2(x1) + · · · + uγσ2(xn−1),

and hence as the third column we get the vector

(γσ2(xn−2), γσ
2(xn−1), σ

2(x0), . . . , σ
2(xn−3))

T .

Let us denote the ring of algebraic integers ofE by OE . A basic, rate-n MIMO STBC C is usually defined as
C =









































x0 γσ(xn−1) · · · γσn−1(x1)
x1 σ(x0) γσn−1(x2)
x2 σ(x1) γσn−1(x3)
...

...
xn−1 σ(xn−2) · · · σn−1(x0)















∣

∣

∣

∣

∣

xi ∈ OE



























. (3)

Further optimization might be carried out by using e.g. ideals. If we denote the basis ofE overOF by {1, e1, ..., en−1},
then the elementsxi, i = 0, ..., n−1 in (3) take the formxi =

∑n−1
k=0 fkek, wherefk ∈ OF for all k = 0, ..., n−1.

Hencen complex symbols are transmitted per channel use, i.e. the design has raten. In literature this is often
referred to as having afull rate.

Definition 3.1: An algebraA is called simple if it has no nontrivial ideals. AnF -algebraA is central if its
centerZ(A) = {a ∈ A|aa′ = a′a ∀a′ ∈ A} = F .

Definition 3.2: An ideal I is callednilpotent if Ik = 0 for somek ∈ Z+. An algebraA is semisimpleif it has
no nontrivial nilpotent ideals. Any finite dimensional semisimple algebra over a field is a finite and unique direct
sum of simple algebras.

Definition 3.3: The determinant (resp. trace) of the matrixA is called thereduced norm(resp.reduced trace)
of an elementa ∈ A and is denoted bynr(a) (resp.tr(a)).

Remark 3.1:The connection with the usual norm mapNA/F (a) (resp. trace mapTA/F (a)) and the reduced
norm nr(a) (resp. reduced tracetr(a)) of an elementa ∈ A is NA/F (a) = (nr(a))n (resp.TA/F (a) = ntr(a)),
wheren is the degree ofE/F .

In Section II we have attested that the algebraH is a division algebra. The next old result due to A. A. Albert
[[35], Chapter V.9] provides us with a condition for when an algebra is indeed a division algebra.

Proposition 3.1:The algebraA = (E/F, σ, γ) of indexn is a division algebra, if and only if the smallest factor
t ∈ Z+ of n such thatγt is the norm of some element inE∗, is n.

B. Orders

We are now ready to present some of the basic definitions and results from the theory of maximal orders. The
general theory of maximal orders can be found in [36].

Let S denote a Noetherian integral domain with a quotient fieldF , and letA be a finite dimensionalF -algebra.
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Definition 3.4: An S-order in theF -algebraA is a subringΛ of A, having the same identity element asA, and
such thatΛ is a finitely generated module overS and generatesA as a linear space overF .

As usual, anS-order inA is said to bemaximal, if it is not properly contained in any otherS-order inA. If the
integral closureS of S in A happens to be anS-order inA, thenS is automatically the unique maximalS-order
in A.

Let us illustrate the above definition by the following example.

Example 3.1:(a) Orders always exist: IfM is a full S-lattice in A, i.e. FM = A, then theleft order of M
defined asOl(M) = {x ∈ A | xM ⊆ M} is anS-order inA. The right order is defined in an analogous way.

(b) If A = Mn(F ), the algebra of alln× n matrices overF , thenΛ = Mn(S) is anS-order inA.
(c) Let a ∈ A be integral overS, that is,a is a zero of a monic polynomial overS. Then the ringS[a] is an

S-order in theF -algebraF [a].
(d) LetS be a Dedekind domain, and letE be a finite separable extension ofF . Denote byS the integral closure

of S in E. ThenS is anS-order inE. In particular, takingS = Z, we see that the ring of algebraic integers ofE
is aZ-order inE.

Hereafter,F will be an algebraic number field andS a Dedekind ring withF as a field of fractions.

Proposition 3.2:Let A be a finite dimensional semisimple algebra overF andΛ be aZ-order inA. Let OF

stand for the ring of algebraic integers ofF . ThenΓ = OFΛ is anOF -order containingΛ. As a consequence, a
maximalZ-order inA is a maximalOF -order as well.

The following proposition provides us with a useful tool forfinding a maximal order within a given algebra.

Proposition 3.3:Let Λ be anS-order inA. For eacha ∈ Λ we havenr(a) ∈ S and tr(a) ∈ S.

Proposition 3.4:Let Γ be a subring ofA containingS, such thatFΓ = A, and suppose that eacha ∈ Γ is
integral overS. ThenΓ is anS-order inA. Conversely, everyS-order inA has these properties.

Corollary 3.5: Every S-order inA is contained in a maximalS-order inA. There exists at least one maximal
S-order inA.

Remark 3.2:As the previous corollary indicates, a maximal order of an algebra is not necessarily unique.

Remark 3.3:The algebraH can also be viewed as a cyclic division algebra. As it is a subring of the Hamiltonian
quaternions, its center consists of the intersectionH∩R = Q(

√
2). Also Q(ξ) is an example of a splitting field of

H. In the notation above we have an obvious isomorphism

H ≃ (Q(ξ)/Q(
√
2), σ,−1),

whereσ is the usual complex conjugation.

Remark 3.4:In principle, the lattices from Section II could also be usedas MIMO codes, but when we packH
in the form of (2),δC becomes vanishing and the DMT cannot be achieved.

One extremely well-performing CDA based code taking advantage of a maximal order is the celebratedGolden
code[8] (also independently found in [9]) treated in the following example.

Example 3.2:In any cyclic algebra where the elementγ happens to be an algebraic integer, we have the following
natural order

Λ = OE ⊕ uOE ⊕ · · · ⊕ un−1OE ,

whereOE is the ring of integers of the fieldE. We note thatOE is the unique maximal order inE. In the so-called
Golden Division Algebra(GDA) [8], i.e. the cyclic algebra(E/F, σ, γ) obtained from the dataE = Q(i,

√
5),

F = Q(i), γ = i, n = 2, σ(
√
5) = −

√
5, the natural orderΛ is already maximal [37]. The ring of algebraic

integersOE = Z[i][θ], when we denote the golden ratio byθ = 1+
√
5

2 . The authors of [8] further optimize the code
by using an ideal(α) = (1 + i− iθ), and the Golden code is then defind as

GC =

{

1√
5

(

αx0 iσ(α)σ(x1)
αx1 σ(α)σ(x0)

)

∣

∣

∣

∣

∣

x0, x1 ∈ OE

}

. (4)

The Golden code achieves the DMT as the elementγ = i is not in the image of the norm map. For the proof, see
[8].
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Remark 3.5:We feel that in [8], the usage of a maximal order is just a coincidence, as in this case it coincides
with the natural order which is generally used in ST code designs (cf. (3)). At least the authors do not mention
maximal orders. As far as we know, but our constructions (seealso [33]) there does not exist any designs using a
maximal order other than the natural one.

Next we prove that the latticeL6 is optimal within the cyclic division algebraH in the sense that the diamond
latticeE8 = H(1 + ξ) corresponds to a proper ideal of a maximal order inH.

Proposition 3.6:The ring

H = {q = c1 + ξc2 + jc3 + jξc4 ∈ H | c1, . . . , c4 ∈ Q(i), (1 + i)ct ∈ G ∀t, c1 + c3, c2 + c4 ∈ G}

is a maximalZ-order of the division algebraH.

Proof: Clearly theQ-span ofH is the whole algebraH, and we have seen thatH is a ring, so it is an order
of H. Furthermore, ifΛ is any order ofH, then so isΛ[

√
2] = Λ · Z[

√
2], as the element

√
2 is in the center ofH

(cf. Proposition 3.2). Therefore it suffices to show thatH is a maximalZ[
√
2]-order. In what follows, we will call

rational numbers in the coset(1/2) + Z half-integers. Assume for contradiction that we could extend the orderH
into a larger orderΓ = H[q] by adjoining the quaternionq = a1 + a2j, where the coefficients

at = mt,0 +mt,1ξ +mt,2ξ
2 +mt,3ξ

3, mt,ℓ ∈ Q for all t, ℓ

are elements of the fieldQ(ξ). As ξ − ξ3 =
√
2, andξ∗ = −ξ3, we see that

tr(q) = a1 + a∗1 = 2m1,0 +
√
2(m1,1 −m1,3).

By Proposition 3.3 this must be an element ofZ[
√
2], so we may conclude thatm1,0 must be an integer or a

half-integer, and thatm1,1 −m1,3 must be an integer. Similarly

tr(qξ) = −2m1,3 +
√
2(m1,0 −m1,2)

must be an element ofZ[
√
2]. We may thus conclude that all the coefficientsm1,ℓ, ℓ = 0, 1, 2, 3 are integers or

half-integers, and that the pairsm1,0,m1,2 (resp.m1,1,m1,3) must be of the same type, i.e. either both are integers
or both are half-integers. A similar study oftr(qj) andtr(qjξ) shows that the same conclusions also hold for the
coefficientsm2,ℓ, ℓ = 0, 1, 2, 3. BecauseZ[ξ] ⊆ H, replacingq with any quaternion of the formq − ν, where
ν ∈ Z[ξ] will not change the resulting orderΓ. Thus we may assume that the coefficientsm1,ℓ, ℓ = 0, 1, 2, 3 all
belong to the set{0, 1/2}. Similarly, if needed, replacingq with q − ν ′j for someν ′ ∈ Z[ξ] allows us to assume
that the coefficientsm2,ℓ, ℓ = 0, 1, 2, 3 also all belong to the set{0, 1/2}. Further replacements ofq by q − ρ or
q − ρξ then permit us to restrict ourselves to the casem2,ℓ = 0, for all ℓ = 0, 1, 2, 3. If we are to get a proper
extension ofH, we are left with the casesq = (1+ i)/2, q = ξ(1+ i)/2 andq = (1+ ξ)(1+ i)/2. We immediately
see that none of these have reduced norms inZ[

√
2], so we have arrived at a contradiction.

Remark 3.6:Another related well known maximal order is the icosian ring. It is a maximal order in another
subalgebra of the Hamiltonian quaternions, namely

(Q(i,
√
5)/Q(

√
5), σ,−1),

whereσ is again the usual complex conjugation. This order made a recent appearance as a building block of a
MIMO-code in a construction by Liu & Calderbank. We refer theinterested reader to their work [38] or [31] for
a detailed description of this order.

The icosian ring and our order share one feature that is worthmentioning. As2×2 matrices they do not have the
non-vanishing determinant property. Algebraically this is a consequence of the fact the respective centers,Q(

√
5) or

Q(
√
2) both have arbitrarily small algebraic integers, e.g. the sequence consisting of powers of the units(

√
5−1)/2

(resp.
√
2− 1) converges to zero. We shall return to this point in the next section, where a remedy is described.
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IV. D ECODING OF THE NESTED SEQUENCE OF LATTICES

In this section, let us consider the coherent MIMO case wherethe receiver perfectly knows the channel coeffi-
cients. The received signal is

y = Bx+ n,

wherex ∈ Rm, y, n ∈ Rn denote the channel input, output and noise signals, andB ∈ Rn×m is the Rayleigh
fading channel response. The components of the noise vectorn are i.i.d. complex Gaussian random variables. In
the special case of a MISO channel (n = 1), the channel matrix takes a form of a vectorB = h ∈ Rm (cf. Section
I).

The information vectors to be encoded into our code matricesare taken from the pulse amplitude modulation
(PAM) signal setX of the sizeQ, i.e.,

X = {u = 2q −Q+ 1 | q ∈ ZQ}
with ZQ = {0, 1, ..., Q − 1}.

Under this assumption, the optimal detectorg : y 7→ x̂ ∈ Xm that minimizes the average error probability

P (e)
∆
= P (x̂ 6= x)

is the maximum-likelihood (ML) detector given by

x̂ = arg minx∈Zm
Q
| y −Bx |2, (5)

where the components of the noisen have a common variance equal to one.

A. Code controlled sphere decoding

The search in (5) for theclosest lattice pointto a given pointy is known to be NP-hard in the general case
where the lattice does not exhibit any particular structure. In [39], however, Pohst proposed an efficient strategy of
enumerating all the lattice points within a sphereS(y,√C0) centered aty with a certain radius

√
C0 that works

for lattices of a moderate dimension. For background, see [40]-[43]. For finite PAM signals sphere decoders can
also be visualized as abounded searchin a tree.

The complexity of sphere decoders critically depends on thepreprocessing stage, the ordering in which the
components are considered, and the initial choice of the sphere radius. We shall use the standard preprocessing and

ordering that consists of theGram-Schmidt orthonormalizationB = (Q,Q′)

(

R
0

)

of the columns of the channel

matrix B (equivalently,QR decompositionon B) and the natural back-substitution component ordering given by
xm, ..., x1. The matrixR is anm×m upper triangular matrix with positive diagonal elements,Q (resp.Q′) is an
n×m (resp.n× (n −m)) unitary matrix, and0 is an (n−m)×m zero matrix.

The conditionBx ∈ S(y,√C0) can be written as

| y −Bx |2≤ C0 (6)

which after applying theQR decomposition onB takes the form

| y′ −Rx |2≤ C ′
0, (7)

wherey′ = QTy andC ′
0 = C0−|(Q′)Ty|2. Due to the upper triangular form ofR, (7) implies the set of conditions

m
∑

j=i

∣

∣

∣y′j −
m
∑

ℓ=j

rj,ℓxℓ

∣

∣

∣

2
≤ C ′

0, i = 1, ...,m. (8)

The sphere decoding algorithm outputs the pointx̂ for which the distance

d2(y, Bx) =
m
∑

j=1

∣

∣

∣
y′j −

m
∑

ℓ=j

rj,ℓxℓ

∣

∣

∣

2
(9)

is minimum. See details in [43].
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TABLE II

CCSD: ADDITIONAL CASE CONSIDERATIONS

CASEL4

∑8
i=1 xi ≡ 0 (mod 2)

CASEL5 x1 + x2 ≡ x5 + x6,
x3 + x4 ≡ x7 + x8 (mod 2)

CASEL6 x1 + x2 ≡ x3 + x4 ≡ x5 + x6 ≡ x7 + x8,
∑

2|i xi ≡
∑

2∤i xi ≡ 0 (mod 2)

The decoding of the base latticeL2 can be performed by using the algorithm below proposed in [43].

Algorithm II, Smart Implementation (Input C ′
0, y′, R. Output x̂.)

STEP 1: (Initialization) Seti := m, Tm := 0, ξm := 0, anddc := C ′
0 (current sphere squared radius).

STEP 2: (DFE onxi) Setxi := ⌊(y′i − ξi)/ri,i⌉ and∆i := sign(y′i − ξi − ri,ixi).

STEP 3: (Main step) Ifdc < Ti+ | y′i − ξi − ri,ixi |2, then go to STEP 4 (i.e., we are outside the sphere).
Else if xi /∈ ZQ go to STEP 6 (i.e., we are inside the sphere but outside the signal set boundaries).
Else (i.e., we are inside the sphere and signal set boundaries) if i > 1, then
{let ξi−1 :=

∑m
j=i ri−1,jxj , Ti−1 := Ti+ | y′i − ξi − ri,ixi |2, i := i− 1, and go to STEP 2}.

Else (i=1) go to STEP 5.

STEP 4: If i = m, terminate, else seti := i+ 1 and go to STEP 6.

STEP 5: (A valid point is found) Letdc := T1+ | y′1 − ξ1 − r1,1x1 |2, savex̂ := x.
Then, leti := i+ 1 and go to STEP 6.

STEP 6: (Schnorr-Euchner enumeration of leveli) Let xi := xi +∆i, ∆i := −∆i − sign(∆i).
Then, go to STEP 3.

Note that given the valuesxi+1, ..., xm, taking the ZF-DFE (zero-forcing decision-feedback equalization) onxi
avoids retesting other nodes at leveli in case we fall outside the sphere. Settingdc = ∞ would ensure that the first
point found by the algorithm is the ZF-DFE point (or the Babaipoint) [43]. However, if the distance between the
ZF-DFE point and the received signal is very large this choice may cause some inefficiency, especially for high
dimensional lattices.

The decoding of the other three lattices in (1) also relies onthis algorithm, but we need to run some additional
parity checks. This simply means that in addition to the checks concerning the facts that we have to be both inside
the sphere radius and inside the signal set boundaries, we also have to lie inside a given sublattice. This will be
taken care of by a method we callcode controlled sphere decoding(CCSD), that combines the algorithm above
with certain case considerations. To this end, let us write the constraints on the elementsci asmodulo2 operations.
Denote byx = (x1, x2, ..., x8) = (ℜc1,ℑc1, ...,ℜc4,ℑc4) ∈ R8 the real vector corresponding to the channel input.
Note that when exploiting these relations in the CCSD algorithm, we have to use different orderings for the basis
matrices of the lattice in different cases in order to make the parity checks as simple as possible. Let us first order
the basis matrices asB1 = M(1, 0, 0, 0), B2 = M(i, 0, 0, 0), ..., B7 = M(0, 0, 0, 1), B8 = M(0, 0, 0, i). Then when
decoding e.g. theL5 lattice, we reorder the basis matrices asB1, B2, B5, B6, B3, B4, B7, B8 in order to get the
sum c1 + c3 as the sum of the first4 components and the sumc2 + c4 as the sum of the last4 components (cf.
Proposition 2.5). The conditions for the Gaussian elementsof Propositions 2.4-2.6 can clearly be translated into the
following modulo2 integer conditions, see for instance Remark 2.2. The additional parity check steps will hence
be as shown in Table II above.

As the Alamouti scheme [2] has a very efficient decoding algorithm available, and our quaternionic lattices have
an Alamouti-like block structure, it is natural to ask whether any of the benefits of Alamouti decoding will survive
for our lattices. We shall see that the block structure allows us to decode the two blocks independently from each
other. The following simple observation is the underlying geometric reason for our ability to do this.
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Fig. 1. Average complexity of4 tx-antenna matrix lattices at rates (approximately)R = 4 andR = 8 bpcu.

Lemma 4.1:Let A andB be twon × n matrices with the property that the matricesA,B,AH , BH commute.
Let h ∈ C2n be any (row) vector and write

M(A,B) =

(

A B
−BH AH

)

.

Then the vectorshM(A, 0) andhM(0, B) are orthogonal to each other when we identifyC2n with R4n and use
the usual inner product of a vector space over the real numbers.

Proof: With the identificationC2n = R4n the real inner product is the real part of the hermitian innerproduct
〈 , 〉 of C2n. Write the vectorh in the block formh = (h(1), h(2)), where the blocksh(j), j = 1, 2, are (row)
vectors inCn. Then we can compute

〈hM(A, 0),hM(0, B)〉
= 〈hM(A, 0)M(0, B)H ,h〉
= 〈hM(A, 0)M(0,−B),h〉
= 〈hM(0,−AB),h〉
= 〈h(2)AHBH , h(1)〉 − 〈h(1)AB,h(2)〉.

As 〈uM,v〉 = 〈vMH ,u〉∗ for all vectorsu,v and matricesM , we see that the above hermitian inner product is
pure imaginary.

Corollary 4.2: Let A andB range over sets ofn×n-matrices. Leth andr be vectors inC2n. Then the Euclidean
distance betweenr andhM(A,B) is minimized for theA = A0 andB = B0, whenA0 minimizes the Euclidean
distance betweenr andhM(A, 0) andB0 minimizes the Euclidean distance betweenr andhM(0, B).

Proof: Write VA (resp.VB) for the real vector space spanned by the vectorshM(A, 0) (resp.hM(0, B)).
These subspaces are orthogonal to each other in the sense of Lemma 4.1. Whence we can uniquely writer =
rA+ rB + r⊥, whererA ∈ VA, rB ∈ VB andr⊥ is in the (real) orthogonal complement of the direct sumVA⊕VB.
A similar decomposition for the vectorhM(A,B) is hM(A,B) = hA + hB , wherehA = hM(A, 0) ∈ VA and
hB = hM(0, B) ∈ VB. By the Pythagorean theorem

|r− hM(A,B)|2 = |rA − hM(A, 0)|2 + |rB − hM(0, B)|2 + |r⊥|2.

Furthermore, here
|rA − hM(A, 0)|2 = |r− hM(A, 0)|2 − |rB |2 − |r⊥|2,
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so the quantities|rA − hM(A, 0)|2 and |r − hM(A, 0)|2 are minimized for the same choice of the matrixA. A
similar argument applies to theB-components, so the claim follows.

B. Complexity issues and collapsing lattices

The number of nodes in the search tree is used as a measure of complexity so that the implementation details
or the physical environment do not affect it. We have analyzed many different kinds of situations concerning the
change of complexity of the sphere decoder when moving in (1)from right to left.

In Fig. 1 we have plotted the average number of points visitedby the algorithm in different cases at the rates
approximately4 and 8 bpcu. The SNR regions cover the block error rates between≈ 10% − 0.01%. As can be
seen, in the low SNR end, the difference in complexity between the different lattices is clear but evens out when
the SNR increases. For the sublatticesL4, L5, andL6 the algorithm visits1.1 − 2.1 times as many points as for
the base latticeL2. In the larger SNR end, the performance is fairly similar forall the lattices. E.g. at4 and 8
bpcu, when all the lattices reach the bound of maximum 20 points visited, the block error rates ofL4, L5, andL6

are still as big as5%, 2%, and1% respectively.

Definition 4.1: In a MISO setting we say that a matrix latticeL of rank m collapses at a channel realization
h, if the receiver’s version of the latticehL spans a real vector space of dimension< m. We call the set of such
channel realizations the critical set. We say that thesensitivitys(L) (towards collapsing) of the latticeL is r, if
the critical set is a union of finitely many subspaces of real dimension≤ r.

So we e.g. immediately see that a lattice residing in an orthogonal design will have zero sensitivity. While we
have no precise results the thinking underlying the conceptcan be motivated as follows. When the infinite lattice
collapses into a lower dimensional space, its linear structure is severely mutilated. For example the minimum
Euclidean distance drops to zero — for anyǫ > 0 there will be infinitely many other lattice points within a distance
< ǫ. Even when we restrict ourselves to a finite subset of the lattice, the coordinates of the nearby points may
differ drastically. Thus even an ML-decoder will have problems, and an algorithm relying on the orderly linear
structure of the lattice (like the sphere decoder) cannot work very efficiently. Similar problems are still there, when
the actual channel realizationh is close to a critical vector.

The sensitivity then enters the scene as a crude measure for the probability of this happening. It is easy to see
that in a Rayleigh fading channel the probability of the channel vectorh to be withinǫ of a critical vector behaves
like O(ǫ2n−s). Thus the lower the sensitivity, the lower the probability of the lattice becoming distorted by the
channel.

We lead off by determining the sensitivity of the DAST-lattices.

Example 4.1:There exist 8-dimensional lattices [5] of4× 4 matrices of the form

MDAST =









x1 x2 x3 x4
x1 −x2 x3 −x4
x1 x2 −x3 −x4
x1 −x2 −x3 x4









.

These matrices are simultaneously diagonalizable as they have common orthogonal eigenvectorsh1 = (1, 1, 1, 1),
h2 = (1,−1, 1,−1), h3 = (1, 1,−1,−1) andh4 = (1,−1,−1, 1)4. Write the channel vector in terms of this basis
h =

∑4
j=1 ajhj . If any of the coefficients vanishes, sayak = 0, then the DAST-lattice collapses, because the

receiver’s version of the lattice will belong to the complexspan of the other three eigenvectorshj, j 6= k. On the
other hand, if all the coefficientsaj 6= 0, j = 1, 2, 3, 4, this channel vector will not be critical. One way of seeing
this is that applying the linear mapping determined byhj 7→ (1/aj)hj to the receiver’s lattice then recovers the
original full rank lattice of vectors(x1, x2, x3, x4). Such a mapping obviously cannot affect the dimension of the
space spanned by the vectors, so the lattice won’t collapse.

We have shown that the sensitivity of the DAST-lattice is six.

We proceed to determine the sensitivities of the latticesL1 of Proposition 2.2 and the ones within the nested
sequence (1). Let us first considerL1. Let

U =







h1
...

h4






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Fig. 2. The impact of sensitivity on complexity,L1 (≈ LDAST ) vs L2.

be the4 × 4 matrix with rowsh1,h2,h3,h4 of the form (1, ζj , ζ2j, ζ3j) for j = 1, 5, 9, 13. Recall that earlier
we have used{1, ζ, ζ2, ζ3} as an integral basis, so the rows ofU are the images of this ordered basis under the
action of the Galois groupG of the extensionQ(ζ)/Q(i). Now it happens that the matrixU is unitary (up to
a constant factor) asUU∗ = 4I4. Let z = c1 + c2ζ + c3ζ

2 + c4ζ
3 be an arbitrary algebraic integer ofQ(ζ),

andM(z) = ML(c1, c2, c3, c4) ∈ L1 be the corresponding matrix of Proposition 2.2. According to the theory of
algebraic numbers (and also trivially verified by hand) the rows ofU are (left) eigenvectors ofM(z), and

UM(z)U−1 =









z 0 0 0
0 σ2(z) 0 0
0 0 σ3(z) 0
0 0 0 σ4(z)









is a diagonal matrix with entries gotten by applying the elements of the Galois groupG = {σ1 = id, σ2, σ3, σ4} to
the numberz.

So all the matricesML(c1, c2, c3, c4) are diagonalized byU . Therefore we might call the latticeL1 ‘DAST-like’,
as it shares this property with the lattices from [5].

Proposition 4.3:The latticeL1 has sensitivity six.
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Proof: The situation is completely analogous to that of Example 4.1. The latticeL1 will collapse, iff the channel
realization belongs to any of the 4 complex vector spaces spanned by any three of the common eigenvectors.
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Fig. 3. The scaled impact of sensitivity on complexity,L1 (≈ LDAST ) vs L2.

In order to study the quaternionic lattices we first observe that the2× 2-matricesA andB appearing as blocks
of a matrixM ∈ L2 all have(1,±ξ) as their common (left) eigenvectors. The same holds for the adjointsA∗, B∗

as they also appear as blocks ofM∗ that also happens to belong to the latticeL2. From the proof of Proposition
2.4 we see that the matrixMM∗, M = M(c1, c2, c3, c4), has eigenvaluesα±|k| with respective (left) eigenvectors
(1,±ξ, 0, 0) and (0, 0, 1,±ξ). Hereα =

∑4
j=1 |cj |2 and k = −ic1c

∗
2 + c2c

∗
1 − ic3c

∗
4 + c4c

∗
3. We make this more

precise before we determine the sensitivity of the quaternionic lattices.
There is a connection between our MISO-code and the multi-block codes introduced by Belfiore in [45] and Lu

in [44] that can be best explained with the notation of the present section. Consider the unitary matrix with the
above basis vectors as columns

U =
1√
2









1 1 0 0
ξ −ξ 0 0
0 0 1 1
0 0 ξ −ξ









.
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If we conjugate the matrices of the algebraH by U we get matrices of the form








x1 −x∗2 0 0
x2 x∗1 0 0
0 0 τ(x1) −τ(x2)
0 0 τ(x2) τ(x1)

∗









,

where the elementsx1, x2 belong to the fieldQ(ξ) = Q(i,
√
2), and τ : Q(ξ) → Q(ξ) is the automorphism

determined byτ(i) = i, τ(
√
2) = −

√
2. Thus we see that our MISO-code is unitarily equivalent to a multi-block

code with a structure similar to [44] — only our center is smaller.
The upshot here, as well as in [45], [44], and in the icosian construction from [38] is that while the individual

diagonal blocks may have arbitrarily small determinants, when we use them together with their algebraic conjugates,
the diagonal blocks together conspire to give a non-vanishing determinant. This is because the algebraic conjugates
of small numbers are necessarily just large enough to compensate as the algebraic norms are known to be integers.

Another benefit enjoyed by our matrix representation of the algebraH over the above multi-block representation
is that the signal constellation is better behaved. Surely the simple QAM-constellation of our matrices is to be
preferred over the linear combinations of two rotated QAM-symbols of the multi-block representation.

This feature clearly begs to be generalized to a MIMO-setting. One such construction is the previously mentioned
icosian construction of Liu & Calderbank [38], where they managed to add a multiplexing gain of 2 to a similar
multi-block representation of the icosians. It turned out that the question of how to best do this in the spirit of
the present article is somewhat delicate. The resulting codes will necessarily be asymmetric MIMO-codes, and we
refer the reader to [46].

We return to the sensitivity of the quaternionic lattices. The following result is now easy to verify
Proposition 4.4:Let V+ (resp.V−) be the complex subspace ofC4 generated by the vectors(1, ξ, 0, 0) and

(0, 0, 1, ξ) (resp. by(1,−ξ, 0, 0) and(0, 0, 1,−ξ)). The subspacesV+ andV− are orthogonal complements of each
other inC4, so any channel vector can be uniquely written as

h = h+ + h−,

whereh± ∈ V± respectively. Ifh belongs to one of the subspacesV+, V−, the latticehL2 collapses. Otherwise
the latticeL2 does not collapse. In particular the sensitivity of the latticesL2, L3, L4, L5, L6 is four.

Our simulations, indeed, show that the complexity of a sphere decoder increases sharply, when we approach the
critical set. A comparison between the latticesL1 andL2 does not show a dramatic difference between the average
complexities of a sphere decoder, but the difference becomes very apparent, when studying the high-complexity
tails of the complexity distribution.

In Fig. 2 we have plotted the complexity distribution of 5000transmissions for different data rates. On the
horizontal axis the quantity min( |hi|2 ) (resp. min( |h+|2, |h−|2 )) describes how close the latticeL1 (resp.
L2) is to the situation where it would collapse. That is, how close to zero the minimum of the components
hi ∈ Vi, i = 1, 2, 3, 4, (resp.h± ∈ V±) gets (cf. Remark 4.3 and Proposition 4.4). For bothL1 andL2 the figure
shows that the smaller the quantity, the higher the complexity. We can also conclude that the latticeL1 nearly
collapses a lot more often than the latticeL2. In addition, the number of points visited by the sphere decoding
algorithm is much higher forL1 than forL2. These are phenomena caused by the higher sensitivity ofL1. In Fig.
3 the scaled impact of sensitivity is depicted.

Note that asLDAST has the same sensitivity asL1, we can equally well analyze the behavior of the DAST
lattice on the basis of Fig. 2 and Fig. 3.

V. ENERGY CONSIDERATIONS AND SIMULATIONS

As a summary of Propositions 2.2–2.6 we get the following.

Proposition 5.1: (1) The latticeL2 is isometric to the rectangular latticeZ8 and has a minimum determinant
equal to1.

(2) The latticeL4 isometric toD8 is an index two sublattice ofL2 and has a minimum determinant equal to4.
(3) The latticeL5 isometric toD4⊥D4 is an index four sublattice ofL2 and has a minimum determinant equal

to 16.
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(4) The latticeL6 isometric toE8 is an index 16 sublattice ofL2 and has a minimum determinant equal to64.

In order to compare these lattices we scale them to the same minimum determinant. When a real scaling factor
ρ is used the minimum determinant is multiplied byρ2. As all the lattices have rank 8, the fundamental volume
is then multiplied byρ8. Let us choose the units so that the fundamental volume ofL2 is m(L2) = 1. Then after
scalingm(L4) = 1/2, m(L5) = 1/4, andm(L6) = 1/4. As the density of a lattice is inversely proportional to
the fundamental volume, we thus expect the codes constructed within e.g. the latticesL4 andL6 to outperform the
codes of the same size withinL2.
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Fig. 4. Average energy (left) and block error rates of4 Tx-antenna lattices at2 bpcu with one receiver (right).

The exact average transmission power data in Fig. 4 is computed as follows. Given the sizeK of the code we
choose a random set ofK shortest vectors from each lattice. The average energy of the code

Eav =

∑

x∈C ‖x‖2
K

is then computed with the aid of theta functions [31]. All thelattices were normalized to have minimum determinant
equal to 1. When using the matricesM(c1, c2, c3, c4) of Proposition 2.1, in some cases we are better off selecting
the input vectors(c1, c2, c3, c4) from the coset12(1 + i, 1 + i, 1 + i, 1 + i) + G4 instead of letting them range over
G4. Obviously such a translation does not change the minimum determinant of the code, but it sometimes results
in significant energy savings. E.g. to get a code of size 256 itis clearly desirable to let the coefficientsc1, c2, c3, c4
range over the QPSK-alphabet.

Fig. 5 shows the block error rates of the various competing lattice codes at the rates approximately 2, 4, 6, and 8
bpcu, i.e. all the codes contain roughly28, 216, 224 or 232 matrices respectively. For the latticesL1, L2, LDAST , and
LABBA [20] this simply amounted to letting the coefficientsc1, c2, c3, c4 take all the values in a QPSK-alphabet.
Therefore, it would have been easy to obtain bit error rates as well. For the latticesL4, L5, L6 the rate is not
exact, see (10) below and the preceding explanation. Of course also the exact rate equal to a power of two could
be achieved by just choosing a more or less random set of shortest lattice vectors. As there is no natural way to
assign bit patterns to vectors ofD8, D4⊥D4 or E8, we chose to show the block error rates instead of the bit error
rates.

The simulations were set up, here, so that the 95 per cent reliability range amounts to a relative error of about 3
per cent at the low SNR end and to about 10 per cent at the high SNR end (or to about 4000 and 400 error events
respectively). One receiver was used for all the lattices.

When moving left in (1) the minimum determinant increaces while the BLER decreases at the same time.
However, the other side of the coin is that improvements in the BLER performance cause a slightly more complex
decoding process by increasing the number of points visitedin the search tree. Still after this increasement, even
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Fig. 5. Block error rates of4 tx-antenna lattices at approximately2.0, 4.0, 6.0, and8.0 bpcu with one receiver.

the latticeL6 admits a fairly low average complexity as compared to the latticesL1 andLDAST due to its lower
sensitivity. In part of the pictures in Fig. 5, the order of the curves seems not to respect the above mentioned order,
but this only happens because the rates are not exactly the same for all the lattices. E.g. at the rate≈ 4 bpcu,
the exact rates forL2, L4, L5, andL6 are 4, 3.75, 4.14, and 4.17 bpcu respectively. Consequently, the latticeL4

seems to perform better than what it actually does. Let us shortly explain how these rates follow: when picking
the elementsx1, ..., x8 from the setZQ (cf. Section IV (5) and the discussion after Algorithm II), the size of the

code within the latticeLi, i = 2, 4, 5, 6, will be Q8

[L2:Li]
= 2

log Q8

[L2:Li] , where[L2 : Li] is the index of the sublattice
Li insideL2 (cf. Proposition 5.1). Hence, the data rate in bits per channel use can be computed as

R =
log Q8

[L2:Li]

4
. (10)

Now, for instance, to get as close to the rateR = 4 bpcu as possible, we have to chooseQ = 4, Q = 4, Q = 5,
andQ = 6 for the latticesL2, L4, L5, andL6 respectively. By substitutingQ and the sublattice index in question
to (10) we obtain the above rates.

Simulations at the rate6 bpcu with one receiver show that the latticeL6 wins by approximately1 dB over the
lattice L2 and by at least2.5 dB overLDAST . At the rate2 bpcu, the rotated ABBA latticeLABBA is already
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beaten by theL2 lattice by a fraction of a dB. The difference betweenL2 andLDAST is even clearer:L2 gains
1− 2 dB overLDAST , depending on the SNR. At all data rates the latticeL6 outperforms all the other lattices.

Prompted by the question of one of the reviewers, we make the following remark in case that the reader is
familiar with the Icosian code [38] and ponders over whetherand how it relates to the codes presented in this
paper.

Remark 5.1:The Icosian latticeLICOSIAN presented in [38] takes use of the Icosian ring (cf. Remark 3.6)
and has a similar looking structure to the Golden code [11], where the matrix elements are replaced with Icosian
Alamouti blocks

A = A(a1, a2, a3, a4) =

(

a1 + a2i −a3 + a4i
a3 + a4i a1 − a2i

)

andB = B(b1, b2, b3, b4) respectively:

LICOSIAN =

{(

A KB

B A

)

∣

∣

∣
ai, bi ∈ Z[(1 +

√
5)/2] ∀i

}

,

whereA denotes the algebraic conjugate ofA with respect to the mapping
√
5 7→ −

√
5 and

K =

(

i 0
0 −i

)

.

A code within this lattice is calledIcosian code. Note that Jafarkhani’s quasi-orthogonal code [30] in the simulations
of [38] is exactly our base latticeL2.

First of all, note that the Icosian code has code rate two, as the lattice is 16-dimensional over the reals. Hence,
in order to enable efficient linear decoding, at least two antennas are required at the receiving end. Taking this into
consideration, there is no good way to make fair comparison between the Icosian lattice and the 8-dimensional
lattices proposed in this paper. If the application at hand allows us to use one receiving antenna only, we either
have to punctureLICOSIAN (e.g. by settingB = 0) which will cause it to lose its benefits, or, we need to perform
complex decoding process (e.g. a sphere decoder cannot be used).

However, if we still want to compare these codes with two receivers, our codes will of course lose due to the
lower code rate as they are designed for MISO use only. Similar comparison could be done e.g. with the4 × 4
Perfect code [11] and the Icosian code resulting to the loss of the Icosian code due to its lower rate (two vs. four).
When using one receiver for the Icosian code by punctring theblock B, it will lose to L2 by 0.5-1 dB at 2 bpcu
depending on the SNR as depicted in Figure 4. But, as noted above, in this wayLICOSIAN will of course lose its
benefits (as we are not really using the whole Icosian ring) sothis is not a comparison on which we should put
too much value.

To conclude, the codes in this paper and the Icosian code are targeted into different types of applications: the
first ones are aimed for systems with one receiving antenna, whereas the Icosian code naturally fits into systems
with two receiving antennas.

VI. D IVERSITY-MULTIPLEXING TRADEOFF ANALYSIS

This section contains the DMT analysis of the MISO codes constructed in this paper. We denote bynt (resp.
nr) the number of transmitting (resp. receiving) antennas. For the rest of the notation, see [21].

Let us first consider the number field construction. Denote (cf. Proposition 2.2)

L1 =























c1 ic4 ic3 ic2
c2 c1 ic4 ic3
c3 c2 c1 ic4
c4 c3 c2 c1









, ci ∈ A















,

whereA ⊂ Z[i] is some constellation set. This code is for the MISO system with nt = 4 transmit andnr = 1
receive antennas. Given the transmit code matrixX ∈ L1, the received signal vector is

yT = θhTX + nT ,

whereh ∼ CN (0, I4).
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Let r be the desired multiplexing gain; then we need

|L1| .
= SNR4r .

= |A|4

and the above in turn gives
|A| .

= SNRr. (11)

Hence we see for everyci ∈ A
‖ci‖2 ≤̇ SNRr (12)

and
θ2

.
= SNR1−r. (13)

Let λ := ‖h‖2F = SNR−α and letδ1 ≥ · · · ≥ δ4 be the ordered eigenvalues ofXX†; then the random Euclidean
distancedE is lower bounded by

d2E ≥ θ2λδ4
.
=

θ2λ
∏3

i=1 δi
≥̇ SNREL1 (14)

where
EL1

= 1− r − α− 3r = 1− 4r − α. (15)

Now the DMT of this code is given by

dL1
(r) ≥ inf

EL1<0
4α = 4(1− 4r), for 0 ≤ r ≤ 1

4
, (16)

while the optimal tradeoff in this channel is actually

d∗(r) = 4(1− r) for 0 ≤ r ≤ 1. (17)

The quaternionic construction is

L2 =























c1 ic2 −c∗3 −c∗4
c2 c1 ic∗4 −c∗3
c3 ic4 c∗1 c∗2
c4 c3 −ic∗2 c∗1









, ci ∈ A















.

First of all, as pointed out in the proof of Proposition 2.4, the matrixM ∈ L2 is of the following form:

M =

(

A −BH

B AH

)

and

MMH =

(

AAH +BHB 0

0 AHA+BBH

)

=

(

AAH +BBH 0

0 AAH +BBH

)

sinceAB = BA. Thus the ordered eigenvalues ofMMH satisfy δ1 = δ2 ≥ δ3 = δ4 and in particular,δ1 ≥ δ3
are the ordered eigenvalues ofAAH + BBH . Secondly, note thatMMH satisfies the non-vanishing determinant
property, and so does the matrixAAH +BBH . Now the bound for the random Euclidean distance is

d2E ≥ θ2λδ4
.
=

θ2λ

δ3
≥̇SNREL2 , (18)

where
EL2

= 1− r − α− r = 1− 2r − α. (19)

Now the DMT of this code is given by

dL2
(r) ≥ inf

EL2<0
4α = 4(1− 2r), for 0 ≤ r ≤ 1

2
. (20)
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The same of course also holds for codes within the sublattices L4, L5, L6 ⊆ L2.

Remark 6.1:While our codes are not DMT optimal, it has to be noticed that without using a full-rate code the
DMT cannot be achieved. Hence, if one wishes to enable efficient decoding process with one receiving antenna
only (see the remark below), sacrifices in terms of the DMT have to be made. However, our quaternionic lattices
L2, L4, L5, L6 admit higher DMT as e.g. the DAST lattice, as the DMT of the DAST lattice coincides with that of
L1.

Remark 6.2:One might ponder why not use e.g. the full-rate CDA based codes (cf. [6], [11]) as they are DMT
optimal provided that they have non-vanishing determinant. The answer to this is in principle the same as the one
provided in Remark 5.1. We could naturally do this, but considering that we only want to use one receiving antenna
it should be clear that a full-rate code cannot be efficientlyused. Indeed, using a full-rate code would destroy the
lattice structure and cause exponential complexity at the receiver. To enable efficient decoding with one receiver
we have to limit ourselves to rate-one codes, which exactly we have done in this paper. We want the reader to
note that full-rate codes (e.g. the perfect codes [11]) are optimally suited for systems withnt = nr > 1, hence
inapplicable to the purposes of this paper where we havent = 4 andnr = 1.

VII. C ONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

In this paper, we have presented new constructions of rate-one, full-diversity, and energy efficient4 × 4 space-
time codes with non-vanishing determinant by using the theory of rings of algebraic integers and their counterparts
within the division rings of Lipschitz’ and Hurwitz’ integral quaternions. A comfortable, purely number theoretic
way to improve space-time lattice constellations was introduced. The use of ideals provided us with denser lattices
and an easy way to present the exact proofs for the minimum determinants. The constructions can be extended
also to a larger number of transmit antennas, and they nicelyfit with the popular Q2-QAM and QPSK modulation
alphabets. The idea of finding denser sublattices within a given division algebra was also generalized to a MIMO
case with arbitrary number of Tx antennas by using the theoryof cyclic division algebras and, as a novel method,
their maximal orders. This is encouraging as the CDA based square ST constructions with NVD are known to
achieve the DMT. We have also shown that the explicit constructions in this paper all have a simple decoding
method based on sphere decoding. Related to the decoding complexity, the notion of sensitivity was introduced for
the first time in this paper. The experimental results have given evidence about the relevance of this new notion.

Comparisons with the four antenna DAST block code have shownthat our codes provide lower energy and block
error rates due to their good minimum determinant, i.e. highdensity and lower sensitivity. At the moment, we are
searching for well-performing MIMO codes arising from the theory of crossed product algebras and maximal orders
of cyclic division algebras. We have noticed that also the discriminant of a maximal order plays an important role
in code design. It is desirable to choose cyclic division algebras for which the discriminant of a maximal order
is as small as possible [33]. By now, we are able to construct an explicit cyclic division algebra of an arbitrary
index overQ(i) (or Q(ω)) that has a maximal order with minimal discriminant. Despite the fact that we have
not yet fully analyzed the practical performance of codes arising from these constructions, the preliminary results
have been very promising. Further details on this and on the algorithmic properties of maximal orders (see also
[47]-[49]) will be given in a forthcoming paper [33].
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