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Abstract

One-to-one codes are “one shot” codes that assign a distinct codeword to source symbols
and are not necessarily prefix codes (more generally, uniquely decodable). Interestingly,
as Wyner proved in 1972, for such codes the average code length can be smaller than
the source entropy. By how much? We call this difference the anti-redundancy. Various
authors over the years have shown that the anti-redundancy can be as big as minus the
logarithm of the source entropy. However, to the best of our knowledge precise estimates
do not exist. In this note, we consider a block code of length n generated for a binary
memoryless source, and prove that the average anti-redundancy is

−1

2
log

2
n + C + F (n) + o(1)

where C is a constant and either F (n) = 0 if log
2
(1 − p)/p is irrational (where p is the

probability of generating a “0”) or otherwise F (n) is a fluctuating function as the code
length increases. This relatively simple finding requires a combination of analytic tools such
as precise evaluation of Bernoulli sums, the saddle point method, and theory of distribution
of sequences modulo 1.

Index Terms — Prefix codes, one-to-one codes, average redundancy, Bernoulli sums, saddle
point method, distribution of sequences modulo 1.
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1 Introduction

Traditionally, source coding deals with prefix (or more generally, uniquely decodable) codes

that are injections from an alphabet A into the binary strings {0, 1}∗. Already in 1948 Shannon

observed that for such codes the average code length cannot be smaller than the entropy of

the source. A simple proof of this fact may go as follows: Let K =
∑

x 2−L(x) ≤ 1 (by Kraft’s

inequality for prefix codes). Then, using standard notations (e.g., L(x) stands for the code

length of the source symbol x, P (x) is the probability of x, and H(X) = −∑x∈A P (x) log2 P (x)

is the source entropy), we have

E[L(X)]−H(X) =
∑

x∈A

P (x)L(x) +
∑

x∈A

P (x) log2 P (x) =
∑

x∈A

P (x) log2
P (xn

1 )

2−L(x)/K
− log K ≥ 0

since the divergence cannot be negative.

The next natural step is to ask by how much the average code length exceeds the entropy.

This is called the average redundancy which is nonnegative for prefix codes (i.e., codes satisfying

Kraft’s inequality), as shown above. Over the last twenty years a substantial literature was

built to address this problem (e.g., see [7] for some recent developments).

Occasionally, encodings are not necessarily prefix free. In one-to-one codes a distinct code-

word is assigned to each source symbol and unique decodability is not required. Such codes are

usually one shot codes and there is one designated an“end of message” symbol that is distinct

from all other (source) symbols. Wyner [17] in 1972 proved that the average code length L is

actually smaller than the source X entropy H(X). A lower bound for the average code length

of such codes was first established in [13] and then improved by Alon and Orlitsky [1] who

proved that

L ≥ H(X) − log(H(X) + 1) − log e. (1)

Some recent results on one-to-one codes are reported in [4, 14].

As with prefix codes, one can study the difference between the average code length and

the entropy. For one-to-one codes we shall call this difference the anti-redundancy. Thus the

anti-redundancy is defined as

R̄ = L − H(X)

and from [1] we conclude that R̄ = Ω(− log H(X)). A question arises whether this lower bound

is a universal one for a class of sources. Alon and Orlitsky [1] showed that the lower bound

is achievable for the geometric distribution. In this note we consider a block one-to-one code

for a binary memoryless source over {0, 1}n and analyze precisely the average anti-redundancy

R̄n showing that the bound in [1] is not tight for such sources.

Let us briefly discuss our main findings. We consider a source sequence Xn
1 = X1 . . . Xn

generated by a binary memoryless source with p being the probability of generating a “0”. We

assume p ≤ 1 − p := q and order all probabilities pkqn−k in a nondecreasing fashion assigning
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a codeword length ⌊log2 j⌋ to the jth message where 1 ≤ j ≤ 2n. Observe that for every

1 ≤ k ≤ n there are
(n
k

)

messages of the same probability that we order randomly. Our goal is

to estimate the average code length Ln defined precisely in (3) below. We shall prove that for

p < 1/2

Ln = nh(p) − 1

2
log2 n + C + F (n) + o(1)

where h(p) = −p log2 p − (1 − p) log2(1 − p) is the entropy rate, C is an explicitly computable

constant, and F (n) ≡ 0 when log2(1−p)/p is irrational and F (n) is a fluctuating function of n

when log2(1−p)/p is rational. Interestingly enough, fluctuations appear only in the third order

term of the asymptotic expansion, while for the Huffman and arithmetic codes the fluctuations

contribute already to the second term [6, 15].

To obtain our main result we need a battery of analytic techniques. Namely, a formula

to deal with sums of floor functions, asymptotics for the Bernoulli sums, the saddle point

method, and the theory of distribution of sequences modulo 1. The interested reader is referred

to [10, 16] for detailed accounts on these methods. In the next section we present our main

results that are proved in Section 3.

2 Main Results

We consider a binary memoryless source X over the binary alphabet A = {0, 1} generating

a sequence xn
1 = x1, . . . , xn ∈ An. Then P (xn

1 ) = pkqn−k, where k is the number of 0s in xn
1

and throughout this paper we shall assume that p ≤ q. We now list all 2n probabilities in a

nonincreasing order

qn
(

p

q

)0

≥ qn
(

p

q

)1

≥ . . . ≥ qn
(

p

q

)n

. (2)

Let us assign consecutive natural numbers j (1 ≤ j ≤ 2n) to each probability on the list of

P (xn
1 ). Clearly, there are

(n
k

)

equal probabilities pkqn−k. Define

Ak =

(

n

0

)

+

(

n

1

)

+ · · · +
(

n

k

)

, A−1 = 0.

Starting from the position Ak−1 + 1 of the list (2), the next
(n
k

)

probabilities are the same and

equal to pkqn−k.

For each j = Ak−1 + i, 1 ≤ i ≤
(n
k

)

, we now assign the codelength

⌊log2(j)⌋ = ⌊log2(Ak−1 + i)⌋

to the jth binary string. Thus the average code length is

Ln =
n
∑

k=0

pkqn−k
Ak
∑

j=Ak−1+1

⌊log2(j)⌋ (3)

=
n
∑

k=0

pkqn−k

(n
k)
∑

i=1

⌊log2(Ak−1 + i)⌋.
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Our goal is to estimate Ln asymptotically for large n.

Let us first simplify the above formula for Ln. We need to handle the inner sum that

contains the floor function. To evaluate this sum we apply the following identity (cf. Knuth

[12] Ex. 1.2.4-42)
N
∑

j=1

aj = NaN −
N−1
∑

j=1

j(aj+1 − aj)

for any sequence aj . Using this, we easily find an explicit formula for the inner sum of (3),

namely

Sn,k =

(n
k)
∑

j=1

⌊log2(Ak−1 + j)⌋ =

(

n

k

)

⌊log2 Ak⌋ − (2⌊log2(Ak)⌋+1 − 2⌈log2(Ak−1+2)⌉)

+ (Ak−1 + 1)(1 + ⌊log2(Ak)⌋ − ⌈log2(Ak−1 + 2)⌉).

After some algebra, using ⌊x⌋ = x − 〈x〉 and ⌈x⌉ = x + 〈−x〉 where 〈x〉 = x − ⌊x⌋ is the

fractional part of x, we finally reduce the formula for Ln to the following

Ln =
n
∑

k=0

(

n

k

)

pkqn−k⌊log2 Ak⌋ (4)

− 2
n
∑

k=0

(

n

k

)

pkqn−k2−〈log2 Ak〉 (5)

+
n
∑

k=0

(

n

k

)

pkqn−k 1 + Ak−1
(n
k

)

(

1 + log2

(

Ak

Ak−1 + 2

)

− 〈− log2(Ak−1 + 2)〉 − 〈log2 Ak〉
)

(6)

−
n
∑

k=0

(

n

k

)

pkqn−k Ak−1
(n
k

)

(

2−〈log2 Ak〉+1 − 2〈− log2(Ak−1+2)〉
)

(7)

+ 2
n
∑

k=0

pkqn−k2〈− log2(Ak−1+2)〉. (8)

In the next section, we evaluate asymptotically sums (4)– (8) leading to our main result of

this paper.

Theorem 1 Consider a binary memoryless source and the one-to-one block code described

above. Then for p < 1
2

Ln = nh(p) − 1

2
log2 n − 3 + ln(2)

2 ln(2)
+ log2

1 − p

1 − 2p

1
√

2πp(1 − p)
+

p

1 − 2p
log2

(

2(1 − p)

p

)

+ F (n) + o(1) (9)

where h(p) = −p log2 p − (1 − p) log2(1 − p) is the entropy rate, α = log2(1 − p)/p, β =

log2(1/(1 − p) and F (n) = 0 if log2
1−p

p is irrational. If log2
1−p

p = N/M for some integers

M,N such that gcd(N,M) = 1, then

F (n) = − 1 − p

1 − 2p
HM (nβ)[x]− p

1 − 2p
HM (nβ−α)[−x]−2(1 − 3p)

1 − 2p
HM (nβ)[2−x]+

p

1 − 2p
HM (nβ−α)[2x]
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where

HM (y)[f ] :=
1

M
√

2π

∫ ∞

−∞
e−x2/2

(〈

M

(

y − log2

(

1 − 2p

1 − p

√

2πpqn

)

− x2

2 ln 2

)〉

−
∫ 1

0
f(t)dt

)

dx

for some Riemann function f .

For p = 1
2 , we have

Ln = nh(1/2) − 2 + 2−n(n + 2)

for every n ≥ 1.

In view of Theorem 1, we again see that asymptotic behavior of the redundancy or anti-

redundancy depends on the rationality/irrationality of log2(1−p)/p (cf. [6, 7, 15]). In Figure 1

we plot the “constant part” Ln − nh(p) + 0.5 log2(n) versus n. We observe change of “mode”

from a “converging mode” to a “fluctuating mode”, when switching from α = log2(1 − p)/p

irrational (cf. Fig. 1(a)) to rational (cf. Fig. 1(b)). This phenomenon was already observed in

[7, 15] for Huffman and Shannon codes.
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150100
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(a) (b)

Figure 1: Plots of Ln − nh(p) + 0.5 log(n) (y-axis) versus n (x-axis) for: (a) irrational α =

log2(1 − p)/p with p = 1/π; (b) rational α = log2(1 − p)/p with p = 1/9.

Finally, one may conclude from the lower bound proved in [1] that the leading term of R̄n is

− log2 n (e.g., the bound is achievable for the geometric distribution). In this paper we prove

that for memoryless sources (i.e., the binomial distribution) the average anti-redundancy is

asymptotically equal to −1
2 log2 n showing that the lower bound of [1] is not tight in this case.
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Furthermore, our findings indicate that the minimax anti-redundancy for a class of binary

memoryless sources is −1
2 log2 n + O(1).

3 Analysis

In this section we analyze asymptotically the four terms of Ln as presented in (4)–(8). Through-

out we write log := log2. We start with (4) which we split as follows

n
∑

k=0

(

n

k

)

pkqn−k⌊log2 Ak⌋ =
n
∑

k=0

(

n

k

)

pkqn−k log2 Ak −
n
∑

k=0

(

n

k

)

pkqn−k〈log2 Ak〉,

and define

an =
n
∑

k=0

(

n

k

)

pkqn−k log2 Ak, (10)

bn =
n
∑

k=0

(

n

k

)

pkqn−k〈log2 Ak〉. (11)

The first sum, and most sums discussed here, falls under the so called Bernoulli sum paradigm

(discussed in depth in [9, 11]) defined as

Bn =
n
∑

k=0

(

n

k

)

pkqn−kf(k)

where f(k) is a suitable function. In general, at least for poly-log functions f

Bn ∼ f(⌊np⌋),

however, a more sophisticated analysis (i.e., singularity analysis or analytic depoissonization)

is required to find second order asymptotic terms, as we aspire here. For example, in [9, 11] it

is shown that

n
∑

k=0

(

n

k

)

pkqn−k log k = log(pn) +
p − 1

2pn
− p2 − 6p + 5

12p2n2
+ O(n−3).

The second sum bn requires a different approach that falls under the Bernoulli distributed

sequences modulo 1 scenario. The reader is referred to [5, 8, 6, 15] for a detailed discussion.

In order to evaluate these sums we first need to estimate asymptotically Ak around k = np

which is presented in the next lemma. Throughout the paper we shall use small positive

constants δ > 0 and ε > 0 that can change from line to line.

Lemma 1 For large n and p < 1/2

Anp =
1 − p

1 − 2p

1
√

2πnp(1 − p)
2nh(p)

(

1 + O(n−1/2)
)

(12)
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where h(p) is the binary entropy. More precisely, for an ε > 0 and k = np + Θ(n1/2+ε) we

have

Ak =
1 − p

1 − 2p

1
√

2πnp(1 − p)

(

1 − p

p

)k 1

(1 − p)n
exp

(

− (k − np)2

2p(1 − p)n

)

(

1 + O(n−δ)
)

(13)

for some δ > 0.

Proof. We use the saddle point method [16]. Let’s first define the generating function of Ak,

that is,

An(z) =
n
∑

k=0

Akz
k =

(1 + z)n − 2nzn+1

1 − z
.

Thus by Cauchy’s formula [16]

Ak =
1

2πi

∮

(1 + z)n − 2nzn+1

1 − z

dz

zk+1

=
1

2πi

∮

1

1 − z
2n log(1+z)−(k+1) log zdz.

Define H(z) = n log(1+ z)− (k +1) log z. The saddle point z0 solves H ′(z0) = 0, and one finds

z0 = (k + 1)/(n − k + 1) = p/(1 − p) and H ′′(z0) = q3/p. Thus by the saddle point method

Ak =
1

1 − z0

1
√

2πnH ′′(z0)
2nH(z0)(1 + O(n−1/2)).

This proves (12). In a similar manner, as shown in [5], we establish (13).

We also need to approximate the binomial distribution around the mean. We shall use the

following well known lemma that is a simple consequence of Stirling’s approximation.

Lemma 2 Let pn(k) =
(n
k

)

pkqn−k where q = 1 − p be the binomial distribution. Then for

|k − pn| ≤ n1/2+ε we have

pn(k) =
1

√

2πp(1 − p)n
exp

(

− (k − pn)2

2p(1 − p)n

)

+ O(n−δ) (14)

uniformly as n → ∞. Furthermore

∑

|k−np|>
√

p(1−p)n1/2+ε

pn(k) < 2n−εe−n2ε/2 (15)

for large n.

Proof. These are standard estimates that can be found in textbooks; formula (14) is the

local limit theorem for the binomial distribution [2, 5], and (15) is the tail of the binomial

distribution (cf. Corollary 1.4 in [2]).
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Remark. Observe that by (12) and (13) we have

Ak
(n
k

) =
1 − p

1 − 2p
+ O(n−δ) (16)

Ak−1
(n
k

) =
p

1 − 2p
+ O(n−δ) (17)

for k = np + O(n1/2+ε) since by Stirling’s approximation

(

n

np

)

=
1

√

2πnp(1 − p)
2nh(p)

(

1 + O(n−1/2)
)

.

Now we are in a position to estimate an and bn. Observe that based on (15) of Lemma 2

we can restrict the sum to |k − pn| ≤ n1/2+ε. In fact, by Lemma 1 we have

log Ak = log Anp + α(k − np) − (k − np)2

2pqn ln 2
+ O(n−δ). (18)

Using Lemma 2 we arrive at

an = log Anp −
1

2 ln 2
+ O(n−δ)

after applying (12).

Now, we deal with the second sum (11), namely

bn =
n
∑

k=0

(

n

k

)

pkqn−k〈log2 Ak〉

which falls under the Bernoulli distributed sequences modulo 1 methodology, as discussed in

[8, 6, 15]. This technique was already used in [6, 15] to estimate the redundancy of the Huffman

code and arithmetic codes. Observe first that from (13) we find for |k − pn| ≤ n1/2+ε

log Ak = αk + nβ − log2 ω
√

n − (k − np)2

2pqn ln 2
+ O(n−δ)

where ω = (1 − 2p)
√

2πpq/(1 − p). In order to estimate bn we need to understand the asymp-

totics of the following sum

n
∑

k=0

(

n

k

)

pkqn−k

〈

αk + nβ − log2 ω
√

n − (k − np)2

2pqn ln 2

〉

.

The asymptotics of the above sum depend upon rationality or irrationality of α as proved

in [6] (cf. also [8, 15]). In fact, the next lemma follows directly from the analysis of [6].

Lemma 3 Let 0 < p < 1 be a fixed real number and f : [0, 1] → R be a Riemann integrable

function.
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(i) If α is irrational, then

lim
n→∞

n
∑

k=0

(

n

k

)

pk(1 − p)n−kf
(〈

kα + y − (k − np)2/(2pqn ln 2)
〉)

=

∫ 1

0
f(t) dt, (19)

where the convergence is uniform for all shifts y ∈ R.

(ii) Suppose that α = N
M is a rational number with integers N,M such that gcd(N,M) = 1.

Then uniformly for all y ∈ R

n
∑

k=0

(

n

k

)

pk(1 − p)n−kf
(〈

kα + y − (k − np)2/(2pqn ln 2)
〉)

=

∫ 1

0
f(t) dt + GM (y) (20)

where

GM (y)[f ] :=
1

M

1√
2π

∞
∫

−∞

e−x2/2

(〈

M

(

y − x2

2 ln 2

)〉

−
∫ 1

0
f(t) dt

)

dx

is a periodic function with period 1
M .

Using this lemma we immediately show that for α irrational

bn =
1

2
+ o(1),

while for α = N/M we have

bn =
1

2
+ GM

(

βn − log2 ω
√

n
)

[x] =
1

2
+ HM (nβ)[x] + o(1),

where HM (y)[f ] is defined in Theorem 1.

Now we consider term (6) which we split into two terms

cn =
n
∑

k=0

(

n

k

)

pkqn−k 1 + Ak−1
(n
k

)

(

1 + log2(1 +

(

n

k

)

A−1
k−1)

)

+ o(1),

dn =
n
∑

k=0

(

n

k

)

pkqn−k 1 + Ak−1
(n
k

) (〈− log2 Ak−1 + 2〉 + 〈log2 Ak〉) .

By (16)-(17), and since by Lemma 2 the sum for cn is negligible for |k − np| > n1/2+ε, we

immediately obtain

cn =
p

1 − 2p
+

p

1 − 2p
log2

1 − p

p
+ o(1).

Finally, by Lemma 3 and the above we conclude that

dn =
p

1 − 2p
(HM (nβ)[x] + HM(nβ − α)[−x]) + o(1).

for α rational, and dn = o(1) for α irrational.
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Thus, to complete the proof of Theorem 1 we need to evaluate (7) which we recall below

en =
n
∑

k=0

(

n

k

)

pkqn−k Ak−1
(n
k

)

(

2−〈log2 Ak〉+1 − 2〈− log2(Ak−1+2)〉
)

.

This sum can be estimated using Lemmas 2 and 3. In particular,

n
∑

k=0

(

n

k

)

pkqn−k Ak−1
(n
k

) 2−〈log2 Ak〉 =
∑

|k−np|≤n1/2+ε

(

n

k

)

pkqn−k Ak−1
(n
k

) 2−〈log2 Ak〉 + o(1)

=
p

1 − 2p

n
∑

k=0

(

n

k

)

pkqn−k2−〈log2 Ak〉 + o(1)

=
p

1 − 2p

1

2 ln 2
+

p

1 − 2p
HM (nβ)[2−x] + o(1)

where the last expression follows from

n
∑

k=0

(

n

k

)

pkqn−k2−〈log2 Ak〉 =
1

2 ln 2
+ HM (nβ)[2−x] + o(1)

by Lemma 3 as in [15]. This also provides asymptotics of the term like (5) and (7), that is

en =
p

1 − 2p

(

2HM (nβ)[2−x] + HM (nβ − α)[2x]
)

+ o(1)

for α rational, and en = o(1) for α irrational. Finally, one easily see that the last sum (8) is

o(1). This completes the proof of Theorem 1 since the case p = 0.5 is trivial.
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