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On Unique Decodability An important contribution in this direction came from
McMillan [B], who showed that everjuniquely decodable”
Marco Dalai, Riccardo Leonardi code using aD-ary alphabet must satisfy Kraft's inequality,
>, D7t < 1, I; being the codeword lengths][4]. Based on
Abstract—In this paper we propose a revisitation of the topic this r.esult, he was able to prove that the expgcte(_j length of
of unique decodability and of some fundamental theorems of @ uniquely decodable code for a random varialileis not
lossless coding. It is widely believed that, for any discretsource smaller than its entropy[l(X)] < H(X). This represents a
X, every “uniquely decodable” block code satisfies strong converse result in coding theory. However, while the
Bl(X1 Xz X)) > H(X1, Xa,. .., Xn), initial work by Shannon was explicitly referring to finitease
Markov sources, McMillan’s results basically consideradiyo
El(X1 X -+ X,)] is the expected length of the code for those the enc_odmg of a random variable. ThIS leads to immediate
symbols and H (X1, X», ..., X,) is their joint entropy. We show conclusions on the problem of encoding memoryless sources,
that, for certain sources with memory, the above inequalityonly ~but an ad hoc study is necessary for the case of sources with
holds when a limiting definition of “uniquely decodable codels memory. The application of McMillan’s theorem to these type
considered. In p‘grticul_ar, the at’J’ove inequality is usuallyassumed  of sources can be found in [5, Sec. 5.4] ahd [6, Sec. 3.5]. In
to hold for any "practical code” due to a debatable applicaton  yheqe o well-known references, McMillan’s result is usetl

of McMillan’s theorem to sources with memory. We thus propog | deri h h .
a clarification of the topic, also providing an extended verion of ~©ONlYy t0 derive a converse theorem on the asymptotic average

where X1, Xo,..., X, are the first n symbols of the source,

McMillan’s theorem to be used for Markovian sources. number of bits per symbol needed to represent an information
Index Terms—Lossless source coding, McMillan's theorem, source,_but also to deduce a hon-asymptotic strong CO”“ETSG
constrained sources, minimum expected code length. the coding theorem. In particular, the famous result olein

(seell®, Th. 3.5.2][15, Th. 5.4.2].1[7, Sec. Il, p. 2047]) list,
for every source with memory, any uniquely decodable code
I. INTRODUCTION satisfies
The problem of lossless encoding of information sources has
been intensively studied over the years (see [1, Sec. lIhfor El(X1Xp - Xn)] 2 H(Xy, Xz, o, Xn), @
detailed historical overview of the key developments irs thiwhere Xy, Xo, ..., X,, are the firstn symbols of the source,
field). Shannon initiated the mathematical formulationfd t E[I(X; X5 --- X,,)] is the expected length of the code for
problem in his major work[[2] and provided the first resultthose symbols and (X1, X», ..., X,,) represents their joint
on the average number of bits per source symbol that mesttropy.
be usedasymptoticallyin order to represent an information In this paper we want to clarify that the above equation is
source. only valid if a limiting definition of “uniquely decodable de”
For a random variabl& with alphabetY and probability is assumed. In particular, we show that there are informatio
mass functionpx (-), he defined theentropy of X as the sources for which a reversible encoding operation exisis th

guantity produces a code for which equatidd (1) does not hold any
H(X) = ZPX(JT) log 1 longer for everyn. This is demonstrated through a simple
=~ px(z) example in Sectiof]ll. In Sectidn Il we revisit the topic of

unique decodability, consequently providing an extengibn

cMillan’s theorem for the case of first order Markov sources
Finally, in Sectior 1V, some additional interesting rensdn
the considered topic are made.

On another hand, Shannon focused his attention on finite st
Markov sourcesX = {X;, Xo, ...}, for which he defined the
entropyas

.1
H(X) = lim ~H(Xy, Xz,..., Xn), Il. A M EANINGFUL EXAMPLE

a quantity that is now usually calleshtropy rateof the source.  Let X = { X1, X»,...} be a first order Markov source with
Based on these definitions, he derived the fundamentalksesalphabetY = {4, B, C, D} and with transition probabilities
for fixed length and variable length codes. In particular, hshown by the graph of Fidl 1. Its transition probability natr
showed that, by encoding sufficiently large blocks of syrapolis thus

the average number of bits per symbol used by fixed length /2 0 1/2 0
codes can be made as close as desired to the entropy rate of p_| 0 /2 0 1/2
the source while maintaining the probability of error as kma /4 1/4 1/4 1/4 7
as desirable. If variable length codes are allowed, funtioee, 1/4 1/4 1/4 1/4

he showed that the probability of error can be reduced to zegdere rows and columns are associated to the natural alpha-
without increasing the asymptotically achievable average. betical order of the symbol values, B, C and D.

Shannon also proved the converse theorem for the case of fixeft is not difficult to verify that the stationary distributio
length codes, but he did not explicitly consider the cornwerassociated with this transition probability matrix is théfarm
theorem for variable length codes (seé [1, Sec. II.C]). distribution. LetX; be uniformly distributed, so that the source

, . . . X is stationary and, in addition, ergodic.
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v A B BZ example, the sequencés3 andC are both coded t61. This

° is usually expressed, see for example [5], by saying that the
code is notuniquely decodablean expression which suggests
the idea that the code cannot be inverted, different seesenc
being associated to the same code. It is however easy to
notice that, for the source considered in this example, the

1/2
12

C D code does not introduce any ambiguity. Different sequences

e~ = e that are producible by the source are in fact mapped into
Q \—{O different codes. Thus it is possible to “decode” any seqaenc
va 14 of bits without ambiguity. For example the codiecan only be

Fig. 1. Graph, with transition probabilities, for the Mavksource use in p,rOduced by the smgle Symbﬂ and not by the SequenGhB’ .
the example. since our source cannot produce such sequence (the toansiti

from A to B being impossible). It is not difficult to verify

that it is indeed possible to decode any sequence of bits by
evaluate the performance of different codes we determiae @perating in the following way. Consider first the case when
entropy of the sequences of symbols that can be producedthygre are still two or more bits to decode. In such a case,
this source. By stationarity of the source, one easily povfor the first pair of encountered bits, if @ (respectively a

that 11) is observed then clearly this corresponds to4asymbol
n followed by a code starting with a O (respectively3asymbol
H(X1,Xo,...,X,) = H(X1)+ ZH(XiIqu) followed by a code starting with a 1). If, instead,0a pair
i=2 is observed (respectively &) then aC must be decoded
- 24 §(n —1), (respectively aD). Finally, if there is only one bit left to

decode, say a 0 or a 1, the decoded symbol is respectively an
where H(X;|X;_1) is the conditional entropy ofX; given oraB. Such coding and decoding operations are summarized
X,_1, that is in Table[].
Now, what is the performance of this code? The expected

H(X;|X; 1) = Z Px, X, (%, y) log number of bits in coding the first symbols is given by:

TyEX pXi‘Xi—l(xkg) .
Let us now consider the following binary codes to represent Ell(X1 X2 X5 - X,)] = Z E[l(X;)]
sequences produced by this source. i=1
3
Classic code = "

We call this first code “classic” as it is the most naturallJ .
) . . . _Unexpectedly, the average number of bits used by the code
way to encode the source given its particular structureceSin,

the first symbol is uniformly distributed between four chesc Is strictly smaller.than th? entropy of the symbols. So, the
. : ) PR : erformance of this code is better than what would have been
2 bits are used to uniquely identify it, in an obvious wa

raditionally considered the “optimal” hat is thasdical
For the next symbols we note that we always have dyaohradto ally considered the ‘optimal” code, that is thasdica

" - 6de. Let us mention that this code is not only more efficient
conditional probabilities. So, we apply a state-dependedée. o . y :
. o .~ on average, but it is at least as efficient as the classic code
For encoding thek-th symbol we use, again in an obviou

way, 1 bit if symbolk — 1 was anA or a B, and we use 2 Yor every possible sequence which remains compllant_wnh
N . the source characteristics. For each source sequencedinde
bits if symbolk — 1 was aC or a D. This code seems to

the number of decoded symbols after reading the firstits

perfectly fulfill the source as the number of used bits alwa% the alternative code is always larger than or equal to the

corresponds to th.e uncertamty: In(_jeed, the average IEm‘g'[hnumber of symbols decoded with the firgtbits of the classic
the code for the first, symbols is given by

n
Bl(X1,Xs,...,X,)] = E[(X1)]+ Y E[l(X))] AT
5 =2 Encoding C : 01
= 2+45(n—1) D - 10
So, the expected number of bits used for the firsymbols is more bits left one bit left
exactly the same as their entropy, which would let us declare | pecoding| 00... — A+o0... 0 — A
that this encoding technique is optimal. 01... — C... 1 — B
10.. — D...
Alternative code ... » B+1..
Let us consider a different code, obtained by applying the
o : . TABLE |
fO"OWIng fIXEd mappmg from SymbOIS to bItSt — 0’ B — 1' TABLE OF ENCODING AND DECODING OPERATIONS OF THE PROPOSED

C — 01, D — 10. It will be easy to see that this code maps  ALTERNATIVE CODE FOR THEMARKOV SOURCE OFFIGURE[].
different sequences of symbols into the same codeword. For



code. Hence, the proposed alternative code is more efficisiuctures between them in the development of the theoty, bu
than the classic code in all respects. The obtained gain also some interesting differences. The most importanttfact
symbolobviously goes to zero asymptotically, as imposed Hye noticed is the use, in both references with only marginal
the Asymptotic Equipartition Property. However, in praati differences, of the following chain of deductions:

cases we are usually interested in coding a finite nhumber o(

- a) McMillan’s theorem asserts that all uniquely decodable
symbols. Thus, this simple example reveals that the problem codes satisfy Kraft's inequality;

finding an optimal code is not yet well understood for the Casqp) If a code for a random variabl& satisfies Kraft's
of sources with memory. The obtained results may thus have inequality, thenE[I(X)] > H (X);

interesting consequences not only from a theoretical pafint (c) Thus any uniquely decodable code for a random variable
view, but even for practical purposes in the case of sources * satisfiesE[l(X)] > H(X);

exibiting constraints imposing r_\igh order dependenci_es. (d) For sources with memory, by considering sequences of
Commenting on the “alternative code”, one may object that symbols asuper-symbolswe deduce that any uniquely
it is not fair to use the knowledge on impossible transitions decodable code satisfiedZ[l(X 1, Xo X)) >

order to dgsign the code. But probably nopody would objept H(X1, X, ..., Xn).
to the design of what we called the “classic code”. Even in _ . o
that case, however, the knowledge that some transitions ard? the above flow of deductions there is an implicit as-

impossible was used, in order to construct a state-dependdfmPtion which is not obvious and, in a certain way, not
“optimal” code clearly supported. It is implicitly assumed that the deiimitof

uniquely decodable codesed in McMillan’s theorem is also

It is important to point out that we have just shown a fixe@ppropriate for sources with memory. Of course, by definitio
to variable length code for a stationary ergodic source theft “definition”, one can freely choose to define “uniquely
maps sequences of symbols into strings of bits that candecodable code” in any preferred way. However, as shown
be decoded and such thae average code length is smaller by the code of Tablél | in the previous section, the definition
than the entropy of thosen symbols Furthermore, this holds of uniquely decodable codgsed in McMillan’s theorem does
for everyn, and not for ara priori fixed n. In a sense we could not coincide with the intuitive idea of “decodable” for cairt
say that the given code has a negatiwdundancy Note that sources with memory. To our knowledge, this ambiguity
there is a huge difference between the considered setting &as never been reported previously in the literature, and fo
that of the so calledne-to-one code@ee for example [8] for this reason it has been erroneously believed that the result
details). In the case of one-to-one codes, it is assumeaoiiyat E[l(X1, Xo,..., X,,)] > H(X1, X, ..., X,,) holds for every
one symbol, or a given known amount of symbols, must Bgractically usable” code. As shown by the Markov source
coded, and codes are studied as maps from symbols to binexgmple presented, this interpretation is incorrect.
strings without considering the decodability of concatema  In order to better understand the confusion associated to
of codewords. Under those hypotheses, Wyner [9] first pdintthe meaning of “uniquely decodable code”, it is interesting
out that the average codeword length can always be maddocus on a small difference between the formal definitions
lower than the entropy, and different authors have studigi/en by the authors in_[5] and inl[6]. We start by rephrasing
bounds on the expected code length over the yéais [10], [1fbr notational convenience the definition given by Cover and
Here, instead, we have considered a fixed-to-variable tendthomas in[[5].
code used to compress sequences of symbols of whatever pefinition 2: [5, Sec. 5.1, pp. 79-80] A code is
length, concatenating the code for the symbols one by one, giiq to pe uniquely decodable if no finite sequence

as in the most classic scenario. of code symbols can be obtained in two or more
different ways as a concatenation of codewords.

Il UNIQUE DECODABILITY FOR CONSTRAINED SOURCES Note that this definition is the same used in McMillan’s paper
In this section we briefly survey the literature on uniqufS], and it considers a property of the codebook without any
decodability and we then propose an adequate treatmentreference to sources. It is however difficult to find a clear
the particular case afonstrained sourcedefined as follows. motivation for such a source independent definition. Aftgr a
Definition 1: A sourceX = {X;, Xs,...} with symbolsin a code is always designed for a given source, not for a given
a discrete alphabet’ is aconstrained sourcé there exists a alphabet. Indeed, right after giving the formal definitiptise
finite sequence of symbols froii that cannot be obtained asauthors comment

output of the sourcex. “In other words, any encoded string in a uniquely

decodable code has only one possibteirce string
A. Classic definitions and revisitation producing it”

It is interesting to consider how the topic of unique decodo, a reference to sources is introduced. What is not notsced
ability has been historically dealt with in the literaturada that the condition given in the formal definition coincideishw
how the results on unique decodability are used to dedute phrased one only if the source at hand can produce any
results on the expected length of codes. Taking [6] and [5] pessible combination of symbols as output. Conversely, the
representative references for what can be viewed as th&iclaswvo definitions are not equivalent, the first one being stesng
approach to lossless source coding, we note some comntio® second one being instead “more intuitive”.



With respect to formal definitions, Gallager proceeds in a Theorem 2:If the set of codeword$V is uniquely decod-

different way with the following: able for the Markov sourc&, then the matrixQ defined by
Definition 3: [6, Sec. 3.2, pg. 45]“‘A code is 0 i po_0
uniquely decodable if for each source sequence of Qi = { L i =
finite length, the sequence of code letters corre- D=5 if Py >0

sponding to that source sequence is different from
the sequence of code letters corresponding to any Proof: The proof is very similar to Karush's proof of

other source sequence.’ McMillan’s theorem [12]. LetY %) be the set of all sequences
Note that this is a formal definition of Unique deCOdablllty)f k Symbo's that can be produced by the source andl let

has spectral radius at most 1.

of a code with respect to a given source. Gallager statgs-i p-i= . D-I=]'. Fork > 0, define the row vector
this definition while discussing memoryless soufcen that i -
case, the definition is clearly equivalent to Definitidn 2,but vk =LQF .

unfqr'anately, Gallager_ |mpI|.C|tIy uses Deﬂmt@l 2 inateof It is easy to see by induction that tti¢h component oV (%)
Definition[3 when dealing with sources with memEry. can be written as

In order to avoid the above discussed ambiguity, we propose
to adopt the following explicit definition. v = Z Db —lhy =l
Definition 4: A code C is said to beuniquely decodable b b
for the sourceX if no two different finite sequences of source -
. where the sum runs over all sequences of indices
symbols producible byX have the same code. : . )
: ) o . (h1, ha, ..., k) with varying hq, ha,..., hx—1 and hy = ¢
With this definition, not alluniquely decodable codes for (k) X
. . - . : such that(hy, ha, ..., h;) € X5, So, callingl,, the vector
a given sourcesatisfy Kraft’s inequality. So, the chain Ofcom osed ofn 1's. we have
deduction$ (&)-(4)) listed at the beginning of this sectianrmot P ’
be used for constrained sources, as McMillan’s theorem uses  1/Qk-11, — Z D7ty =ty
Definition[2 of unique decodability.
The alternative code of Tablé | thus immediately gives: . ) .
Lemma 1: There exists at least one sout€eand a uniquely Reindexing the sum with respect to the total length [, +

decodable code foX such that, for every, > 1, lhy + -+ +Ip, and callingN (r) the number of sequences of
X*) which are mapped in a lengthcode, we have

(h1,h2,...,hi)€X )

E[Z(Xl,XQ,...,Xn)] <H(X1,X2,...,Xn). Ll

L/Qk—llm — Z N(T)D_7
r=1

B. Extension of McMillan's theorem to Markov sources

In Section[1), the proposed alternative code demonstratgerel,., is the maximum of the values,i = 1,2, ....m.

that McMillan’s theorem does not apply in general to uniguelsince the code is uniquely decodable for the soufcehere

decodable codes for a constrained souiteas defined in gre gt mosth” source-compatible sequences with a code of
Definition [4. In this section a modified version of Kraft'Siength, that is, N (r) < D”. Hence, for every: > 0

inequality is proposed which represents a necessary éomdit
for the unique decodability of a code for a first order Markov L'QF-1 Flmax R
source. Q" '1, <Y DD = klmax 2
Let X be a Markov source with alphabet’ = r=1
{1,2,...,m} and transition probability matrif?>. Let W = Now, note that the irreducible matri&® is also nonnegative.
{wy,wa,...,w,} be a set ofD-ary codewords for the al- Thus, by the Perron-Frobenius theorem (see [13] for dgtails
phabetX’ and let,l; = [(w;) be the length of codeword;. its spectral radiug(Q) is also an eigenvalue, with algebraic
McMillan’s original theorem can be stated in the followingnultiplicity 1 and with positive associated left eigenact
way: Suppose now(Q) > 1. SinceL and1,, are both positive,
Theorem 1 (McMillan,[IB]): If the set of codeword$V is it is easy to deduce that the term on the left hand side of
uniquely decodable (in the sense of Definitidn 2) then equation [(2) asymptotically grows agQ)*~! when k goes
to infinity. On the contrary, the right hand side term onlywgso

m
ZD—li <1. linearly with k& and, for large enougk, equation[(R) cannot
i1 hold. We conclude thai(Q) < 1. [ |
We propose a modified theorem for considering the unique
decodability for the specific source. IV. SOME ADDITIONAL REMARKS
1see[[6, pg. 45]We also assume, initially, [...] that successive letters a Remark 1 .(Theorelﬁ 2 generallzes Theo@m_lm)the .Case
independent” of unconstrained Markov sources, Theolgm 2 is equivalent to

2In fact, in [€], the proof of Theorem 3.5.2, on page 58, is dasa TheorenllL. Indeed, the Markov source being not constrained
Theorem 3.3.1, on page 50, the proof of which stétedollows from Krafts  means that its transition probability matiX has all strictly
inequality, [...] which is valid for any uniquely decodahtede”. But Kraft's . . L . . .
inequality is valid for uniquely decodable codes defined m®eéfinition[2 positive entries. This |mpI|es that the matr@ defined in
and not Definitior B. Theorem[2 has all equal rows. The spectral radius of such



a matrix equals the sum of the elements in every row, whichFurthermore, Shannon generalized the capacity formula to
is Zj D, reducing thus to the classic Kraft's inequality. the case of noiseless finite state channels, by stating the
Remark 2 (Non sufficiency of the conditiomraft’s following [2, Th. 1]:

inequality is both a necessary and sufficient condition for  Theorem 4 (Shannori,][2])Let bz(';) be the duration

the existence of a uniquely decodable code (in the sense of of the sth symbol which is allowable in stateand

Definition [@) with codeword lengthg. Theorem 2, instead, leads to statg. Then the channel capacityis equal

only gives a necessary condition on the lengthdor the to log W, where W, is the largest real root of the

unigue decodability of a code for a given source. It is easy to determinant equation:

show that condition stated in the theorem is not a sufficient

condition for the existence of a uniquely decodable code for ZW_bE;) s
ij

a source with codeword lengtlis Finding a necessary and
sufficient condition seems to be a much harder problem. _ . _

Remark 3 (Extended Sardinas-Patterson tegtjth As for the unconstrained case, it is possible to show that
respect to the previous remark, we point out that it is howevaheoreniB is equivalent t(_) the statement that every finite sta
possible to test a given code for decodability for a give/-@"y channel has capacity at masg D.
source by devising a generalization of the Sardinas-Ratter
test [14] to deal with constrained sources (see [15]). REFERENCES
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An historical analysis reveals that both McMillan’s themre

and the proposed generalized one in the form of Thediem 3
are mathematically equivalent to a formulation obtained by
Shannon already in_[2, Part I, Sec. 1] for the evaluation of
the capacity of discrete noiseless channels. In particidar
[2] Shannon established that the capacity of an unconstlain
noiseless channel with symbol duratianst,, . . ., t,, is given

by the valuelog X, where X, is the largest real solution of
the difference equation

Xy Xt g Xt =1,

It is not difficult to show that McMillan’s theorem is equivait
to the obvious statement that the capacity dbary channel
is at mostlog D.
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