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On Unique Decodability

Marco Dalai, Riccardo Leonardi

Abstract—In this paper we propose a revisitation of the topic
of unique decodability and of some fundamental theorems of
lossless coding. It is widely believed that, for any discrete source
X, every “uniquely decodable” block code satisfies

E[l(X1X2 · · ·Xn)] ≥ H(X1, X2, . . . , Xn),

where X1, X2, . . . , Xn are the first n symbols of the source,
E[l(X1X2 · · ·Xn)] is the expected length of the code for those
symbols andH(X1, X2, . . . , Xn) is their joint entropy. We show
that, for certain sources with memory, the above inequalityonly
holds when a limiting definition of “ uniquely decodable code”is
considered. In particular, the above inequality is usuallyassumed
to hold for any “practical code” due to a debatable application
of McMillan’s theorem to sources with memory. We thus propose
a clarification of the topic, also providing an extended version of
McMillan’s theorem to be used for Markovian sources.

Index Terms—Lossless source coding, McMillan’s theorem,
constrained sources, minimum expected code length.

I. I NTRODUCTION

The problem of lossless encoding of information sources has
been intensively studied over the years (see [1, Sec. II] fora
detailed historical overview of the key developments in this
field). Shannon initiated the mathematical formulation of the
problem in his major work [2] and provided the first results
on the average number of bits per source symbol that must
be usedasymptoticallyin order to represent an information
source.

For a random variableX with alphabetX and probability
mass functionpX(·), he defined theentropy of X as the
quantity

H(X) =
∑

x∈X

pX(x) log
1

pX(x)

On another hand, Shannon focused his attention on finite state
Markov sourcesX = {X1, X2, . . .}, for which he defined the
entropyas

H(X) = lim
n→∞

1

n
H(X1, X2, . . . , Xn),

a quantity that is now usually calledentropy rateof the source.
Based on these definitions, he derived the fundamental results
for fixed length and variable length codes. In particular, he
showed that, by encoding sufficiently large blocks of symbols,
the average number of bits per symbol used by fixed length
codes can be made as close as desired to the entropy rate of
the source while maintaining the probability of error as small
as desirable. If variable length codes are allowed, furthermore,
he showed that the probability of error can be reduced to zero
without increasing the asymptotically achievable averagerate.
Shannon also proved the converse theorem for the case of fixed
length codes, but he did not explicitly consider the converse
theorem for variable length codes (see [1, Sec. II.C]).
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An important contribution in this direction came from
McMillan [3], who showed that every“uniquely decodable”
code using aD-ary alphabet must satisfy Kraft’s inequality,
∑

iD
−li ≤ 1, li being the codeword lengths [4]. Based on

this result, he was able to prove that the expected length of
a uniquely decodable code for a random variableX is not
smaller than its entropy,E[l(X)] ≤ H(X). This represents a
strong converse result in coding theory. However, while the
initial work by Shannon was explicitly referring to finite state
Markov sources, McMillan’s results basically considered only
the encoding of a random variable. This leads to immediate
conclusions on the problem of encoding memoryless sources,
but an ad hoc study is necessary for the case of sources with
memory. The application of McMillan’s theorem to these type
of sources can be found in [5, Sec. 5.4] and [6, Sec. 3.5]. In
these two well-known references, McMillan’s result is usednot
only to derive a converse theorem on the asymptotic average
number of bits per symbol needed to represent an information
source, but also to deduce a non-asymptotic strong converseto
the coding theorem. In particular, the famous result obtained
(see [6, Th. 3.5.2], [5, Th. 5.4.2], [7, Sec. II, p. 2047]) is that,
for every source with memory, any uniquely decodable code
satisfies

E[l(X1X2 · · ·Xn)] ≥ H(X1, X2, . . . , Xn), (1)

whereX1, X2, . . . , Xn are the firstn symbols of the source,
E[l(X1X2 · · ·Xn)] is the expected length of the code for
those symbols andH(X1, X2, . . . , Xn) represents their joint
entropy.

In this paper we want to clarify that the above equation is
only valid if a limiting definition of “uniquely decodable code”
is assumed. In particular, we show that there are information
sources for which a reversible encoding operation exists that
produces a code for which equation (1) does not hold any
longer for everyn. This is demonstrated through a simple
example in Section II. In Section III we revisit the topic of
unique decodability, consequently providing an extensionof
McMillan’s theorem for the case of first order Markov sources.
Finally, in Section IV, some additional interesting remarks on
the considered topic are made.

II. A M EANINGFUL EXAMPLE

Let X = {X1, X2, . . .} be a first order Markov source with
alphabetX = {A,B,C,D} and with transition probabilities
shown by the graph of Fig. 1. Its transition probability matrix
is thus

P =









1/2 0 1/2 0
0 1/2 0 1/2

1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4









,

where rows and columns are associated to the natural alpha-
betical order of the symbol valuesA,B,C andD.

It is not difficult to verify that the stationary distribution
associated with this transition probability matrix is the uniform
distribution. LetX1 be uniformly distributed, so that the source
X is stationary and, in addition, ergodic.

Let us now examine possible binary encoding techniques
for this source and possibly find an optimal one. In order to
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Fig. 1. Graph, with transition probabilities, for the Markov source use in
the example.

evaluate the performance of different codes we determine the
entropy of the sequences of symbols that can be produced by
this source. By stationarity of the source, one easily proves
that

H(X1, X2, . . . , Xn) = H(X1) +

n
∑

i=2

H(Xi|Xi−1)

= 2 +
3

2
(n− 1),

whereH(Xi|Xi−1) is the conditional entropy ofXi given
Xi−1, that is

H(Xi|Xi−1) =
∑

x,y∈X

pXiXi−1(x, y) log
1

pXi|Xi−1
(x|y)

.

Let us now consider the following binary codes to represent
sequences produced by this source.

Classic code
We call this first code “classic” as it is the most natural

way to encode the source given its particular structure. Since
the first symbol is uniformly distributed between four choices,
2 bits are used to uniquely identify it, in an obvious way.
For the next symbols we note that we always have dyadic
conditional probabilities. So, we apply a state-dependentcode.
For encoding thek-th symbol we use, again in an obvious
way, 1 bit if symbolk − 1 was anA or a B, and we use 2
bits if symbol k − 1 was aC or a D. This code seems to
perfectly fulfill the source as the number of used bits always
corresponds to the uncertainty. Indeed, the average lengthof
the code for the firstn symbols is given by

E[l(X1, X2, . . . , Xn)] = E[l(X1)] +
n
∑

i=2

E[l(Xi)]

= 2 +
3

2
(n− 1).

So, the expected number of bits used for the firstn symbols is
exactly the same as their entropy, which would let us declare
that this encoding technique is optimal.

Alternative code
Let us consider a different code, obtained by applying the

following fixed mapping from symbols to bits:A → 0, B → 1,
C → 01, D → 10. It will be easy to see that this code maps
different sequences of symbols into the same codeword. For

example, the sequencesAB andC are both coded to01. This
is usually expressed, see for example [5], by saying that the
code is notuniquely decodable, an expression which suggests
the idea that the code cannot be inverted, different sequences
being associated to the same code. It is however easy to
notice that, for the source considered in this example, the
code does not introduce any ambiguity. Different sequences
that are producible by the source are in fact mapped into
different codes. Thus it is possible to “decode” any sequence
of bits without ambiguity. For example the code01 can only be
produced by the single symbolC and not by the sequenceAB,
since our source cannot produce such sequence (the transition
from A to B being impossible). It is not difficult to verify
that it is indeed possible to decode any sequence of bits by
operating in the following way. Consider first the case when
there are still two or more bits to decode. In such a case,
for the first pair of encountered bits, if a00 (respectively a
11) is observed then clearly this corresponds to anA symbol
followed by a code starting with a 0 (respectively aB symbol
followed by a code starting with a 1). If, instead, a01 pair
is observed (respectively a10) then aC must be decoded
(respectively aD). Finally, if there is only one bit left to
decode, say a 0 or a 1, the decoded symbol is respectively anA
or aB. Such coding and decoding operations are summarized
in Table I.

Now, what is the performance of this code? The expected
number of bits in coding the firstn symbols is given by:

E[l(X1X2X3 · · ·Xn)] =
n
∑

i=1

E[l(Xi)]

=
3

2
n

Unexpectedly, the average number of bits used by the code
is strictly smaller than the entropy of the symbols. So, the
performance of this code is better than what would have been
traditionally considered the “optimal” code, that is the classical
code. Let us mention that this code is not only more efficient
on average, but it is at least as efficient as the classic code
for every possible sequence which remains compliant with
the source characteristics. For each source sequence, indeed,
the number of decoded symbols after reading the firstm bits
of the alternative code is always larger than or equal to the
number of symbols decoded with the firstm bits of the classic

Encoding

A → 0

B → 1

C → 01

D → 10

Decoding

more bits left one bit left

00 . . . → A+ 0 . . .

01 . . . → C . . .

10 . . . → D . . .

11 . . . → B + 1 . . .

0 → A

1 → B

TABLE I
TABLE OF ENCODING AND DECODING OPERATIONS OF THE PROPOSED

ALTERNATIVE CODE FOR THEMARKOV SOURCE OFFIGURE 1.
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code. Hence, the proposed alternative code is more efficient
than the classic code in all respects. The obtained gainper
symbolobviously goes to zero asymptotically, as imposed by
the Asymptotic Equipartition Property. However, in practical
cases we are usually interested in coding a finite number of
symbols. Thus, this simple example reveals that the problemof
finding an optimal code is not yet well understood for the case
of sources with memory. The obtained results may thus have
interesting consequences not only from a theoretical pointof
view, but even for practical purposes in the case of sources
exibiting constraints imposing high order dependencies.

Commenting on the “alternative code”, one may object that
it is not fair to use the knowledge on impossible transitionsin
order to design the code. But probably nobody would object
to the design of what we called the “classic code”. Even in
that case, however, the knowledge that some transitions are
impossible was used, in order to construct a state-dependent
“optimal” code.

It is important to point out that we have just shown a fixed
to variable length code for a stationary ergodic source that
maps sequences ofn symbols into strings of bits that can
be decoded and such thatthe average code length is smaller
than the entropy of thosen symbols. Furthermore, this holds
for everyn, and not for ana priori fixedn. In a sense we could
say that the given code has a negativeredundancy. Note that
there is a huge difference between the considered setting and
that of the so calledone-to-one codes(see for example [8] for
details). In the case of one-to-one codes, it is assumed thatonly
one symbol, or a given known amount of symbols, must be
coded, and codes are studied as maps from symbols to binary
strings without considering the decodability of concatenation
of codewords. Under those hypotheses, Wyner [9] first pointed
out that the average codeword length can always be made
lower than the entropy, and different authors have studied
bounds on the expected code length over the years [10], [11].
Here, instead, we have considered a fixed-to-variable length
code used to compress sequences of symbols of whatever
length, concatenating the code for the symbols one by one,
as in the most classic scenario.

III. U NIQUE DECODABILITY FOR CONSTRAINED SOURCES

In this section we briefly survey the literature on unique
decodability and we then propose an adequate treatment of
the particular case ofconstrained sourcesdefined as follows.

Definition 1: A sourceX = {X1, X2, . . .} with symbols in
a discrete alphabetX is a constrained sourceif there exists a
finite sequence of symbols fromX that cannot be obtained as
output of the sourceX .

A. Classic definitions and revisitation

It is interesting to consider how the topic of unique decod-
ability has been historically dealt with in the literature and
how the results on unique decodability are used to deduce
results on the expected length of codes. Taking [6] and [5] as
representative references for what can be viewed as the classic
approach to lossless source coding, we note some common

structures between them in the development of the theory, but
also some interesting differences. The most important factto
be noticed is the use, in both references with only marginal
differences, of the following chain of deductions:

(a) McMillan’s theorem asserts that all uniquely decodable
codes satisfy Kraft’s inequality;

(b) If a code for a random variableX satisfies Kraft’s
inequality, thenE[l(X)] ≥ H(X);

(c) Thus any uniquely decodable code for a random variable
X satisfiesE[l(X)] ≥ H(X);

(d) For sources with memory, by considering sequences ofn
symbols assuper-symbols, we deduce that any uniquely
decodable code satisfiesE[l(X1, X2, . . . , Xn)] ≥
H(X1, X2, . . . , Xn).

In the above flow of deductions there is an implicit as-
sumption which is not obvious and, in a certain way, not
clearly supported. It is implicitly assumed that the definition of
uniquely decodable codeused in McMillan’s theorem is also
appropriate for sources with memory. Of course, by definition
of “definition”, one can freely choose to define “uniquely
decodable code” in any preferred way. However, as shown
by the code of Table I in the previous section, the definition
of uniquely decodable codeused in McMillan’s theorem does
not coincide with the intuitive idea of “decodable” for certain
sources with memory. To our knowledge, this ambiguity
has never been reported previously in the literature, and for
this reason it has been erroneously believed that the result
E[l(X1, X2, . . . , Xn)] ≥ H(X1, X2, . . . , Xn) holds for every
“practically usable” code. As shown by the Markov source
example presented, this interpretation is incorrect.

In order to better understand the confusion associated to
the meaning of “uniquely decodable code”, it is interesting
to focus on a small difference between the formal definitions
given by the authors in [5] and in [6]. We start by rephrasing
for notational convenience the definition given by Cover and
Thomas in [5].

Definition 2: [5, Sec. 5.1, pp. 79-80] A code is
said to be uniquely decodable if no finite sequence
of code symbols can be obtained in two or more
different ways as a concatenation of codewords.

Note that this definition is the same used in McMillan’s paper
[3], and it considers a property of the codebook without any
reference to sources. It is however difficult to find a clear
motivation for such a source independent definition. After all,
a code is always designed for a given source, not for a given
alphabet. Indeed, right after giving the formal definitions, the
authors comment

“In other words, any encoded string in a uniquely
decodable code has only one possiblesource string
producing it.”

So, a reference to sources is introduced. What is not noticedis
that the condition given in the formal definition coincides with
the phrased one only if the source at hand can produce any
possible combination of symbols as output. Conversely, the
two definitions are not equivalent, the first one being stronger,
the second one being instead “more intuitive”.
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With respect to formal definitions, Gallager proceeds in a
different way with the following:

Definition 3: [6, Sec. 3.2, pg. 45]“A code is
uniquely decodable if for each source sequence of
finite length, the sequence of code letters corre-
sponding to that source sequence is different from
the sequence of code letters corresponding to any
other source sequence.”

Note that this is a formal definition of unique decodability
of a code with respect to a given source. Gallager states
this definition while discussing memoryless sources1. In that
case, the definition is clearly equivalent to Definition 2 but,
unfortunately, Gallager implicitly uses Definition 2 instead of
Definition 3 when dealing with sources with memory.2

In order to avoid the above discussed ambiguity, we propose
to adopt the following explicit definition.

Definition 4: A code C is said to beuniquely decodable
for the sourceX if no two different finite sequences of source
symbols producible byX have the same code.

With this definition, not alluniquely decodable codes for
a given sourcesatisfy Kraft’s inequality. So, the chain of
deductions (a)-(d) listed at the beginning of this section cannot
be used for constrained sources, as McMillan’s theorem uses
Definition 2 of unique decodability.

The alternative code of Table I thus immediately gives:
Lemma 1:There exists at least one sourceX and a uniquely

decodable code forX such that, for everyn ≥ 1,

E[l(X1, X2, . . . , Xn)] < H(X1, X2, . . . , Xn).

B. Extension of McMillan’s theorem to Markov sources

In Section II, the proposed alternative code demonstrates
that McMillan’s theorem does not apply in general to uniquely
decodable codes for a constrained sourceX as defined in
Definition 4. In this section a modified version of Kraft’s
inequality is proposed which represents a necessary condition
for the unique decodability of a code for a first order Markov
source.

Let X be a Markov source with alphabetX =
{1, 2, . . . ,m} and transition probability matrixP. Let W =
{w1, w2, . . . , wm} be a set ofD-ary codewords for the al-
phabetX and let, li = l(wi) be the length of codewordwi.
McMillan’s original theorem can be stated in the following
way:

Theorem 1 (McMillan, [3]): If the set of codewordsW is
uniquely decodable (in the sense of Definition 2) then

m
∑

i=1

D−li ≤ 1.

We propose a modified theorem for considering the unique
decodability for the specific source.

1See [6, pg. 45]“We also assume, initially, [...] that successive letters are
independent”

2In fact, in [6], the proof of Theorem 3.5.2, on page 58, is based on
Theorem 3.3.1, on page 50, the proof of which states:“...follows from Kraft’s
inequality, [...] which is valid for any uniquely decodablecode”. But Kraft’s
inequality is valid for uniquely decodable codes defined as in Definition 2
and not Definition 3.

Theorem 2:If the set of codewordsW is uniquely decod-
able for the Markov sourceX , then the matrixQ defined by

Qij =

{

0 if Pij = 0

D−lj if Pij > 0

has spectral radius at most 1.
Proof: The proof is very similar to Karush’s proof of

McMillan’s theorem [12]. LetX (k) be the set of all sequences
of k symbols that can be produced by the source and letL =
[D−l1 , D−l2 , . . . , D−lm ]′. For k > 0, define the row vector

V(k) = L′Qk−1.

It is easy to see by induction that thei-th component ofV(k)

can be written as

V
(k)
i =

∑

h1,h2,...,hk

D−lh1
−lh2

···−lhk

where the sum runs over all sequences of indices
(h1, h2, . . . , hk) with varying h1, h2, . . . , hk−1 and hk = i
such that(h1, h2, . . . , hk) ∈ X (k). So, calling1m the vector
composed ofm 1’s, we have

L′Qk−11m =
∑

(h1,h2,...,hk)∈X (k)

D−lh1
−lh2

···−lhk .

Reindexing the sum with respect to the total lengthr = lh1 +
lh2 + · · ·+ lhk

and callingN(r) the number of sequences of
X (k) which are mapped in a lengthr code, we have

L′Qk−11m =

klmax
∑

r=1

N(r)D−r

wherelmax is the maximum of the valuesli, i = 1, 2, . . . ,m.
Since the code is uniquely decodable for the sourceX , there
are at mostDr source-compatible sequences with a code of
lengthr, that is,N(r) ≤ Dr. Hence, for everyk > 0

L′Qk−11m ≤

klmax
∑

r=1

DrD−r = klmax (2)

Now, note that the irreducible matrixQ is also nonnegative.
Thus, by the Perron-Frobenius theorem (see [13] for details),
its spectral radiusρ(Q) is also an eigenvalue, with algebraic
multiplicity 1 and with positive associated left eigenvector.

Suppose nowρ(Q) > 1. SinceL and1m are both positive,
it is easy to deduce that the term on the left hand side of
equation (2) asymptotically grows asρ(Q)k−1 when k goes
to infinity. On the contrary, the right hand side term only grows
linearly with k and, for large enoughk, equation (2) cannot
hold. We conclude thatρ(Q) ≤ 1.

IV. SOME ADDITIONAL REMARKS

Remark 1 (Theorem 2 generalizes Theorem 1):In the case
of unconstrained Markov sources, Theorem 2 is equivalent to
Theorem 1. Indeed, the Markov source being not constrained
means that its transition probability matrixP has all strictly
positive entries. This implies that the matrixQ defined in
Theorem 2 has all equal rows. The spectral radius of such
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a matrix equals the sum of the elements in every row, which
is

∑

j D
−lj , reducing thus to the classic Kraft’s inequality.

Remark 2 (Non sufficiency of the condition):Kraft’s
inequality is both a necessary and sufficient condition for
the existence of a uniquely decodable code (in the sense of
Definition 2) with codeword lengthsli. Theorem 2, instead,
only gives a necessary condition on the lengthsli for the
unique decodability of a code for a given source. It is easy to
show that condition stated in the theorem is not a sufficient
condition for the existence of a uniquely decodable code for
a source with codeword lengthsli. Finding a necessary and
sufficient condition seems to be a much harder problem.

Remark 3 (Extended Sardinas-Patterson test):With
respect to the previous remark, we point out that it is however
possible to test a given code for decodability for a given
source by devising a generalization of the Sardinas-Patterson
test [14] to deal with constrained sources (see [15]).

Remark 4 (A more general form of Theorem 2):Theorem
2 was formulated for the case of Markov chains “in the
Moore form”, as considered for example in [5]. In other
words, we have modeled information sources as Markov
chains by assigning an output source symbol to every state.
In order to deal with more general sources we can consider
Markov sources in the “Mealy form”, where output symbols
are not associated to states but to transitions between states
(which corresponds to the Markov source model used by
Shannon in [2] or, for example, by Gallager in [6]). Theorem
2 can be extended to this type of Markov sources as follows
(see [15]).

Theorem 3:Let X be a finite state source, with possible
statesS1, S2, . . . , Sq and with output symbols in the alphabet
X = {1, 2, . . . ,m}. Let W = {w1, . . . , wm} be a set of
codewords for the symbols inX with lengthsl1, l2, . . . , lm.
Let Oi,j be the subsets ofX of possible symbols output by
the source when transiting from stateSi to stateSj , Oij being
the empty set if transition fromSi to Sj is impossible. If the
code is uniquely decodable for the sourceX , then the matrix
Q defined by

Qij =
∑

h∈Oi,j

D−lh

has spectral radius at most 1.
Remark 5 (Shannon’s insight):

An historical analysis reveals that both McMillan’s theorem
and the proposed generalized one in the form of Theorem 3
are mathematically equivalent to a formulation obtained by
Shannon already in [2, Part I, Sec. 1] for the evaluation of
the capacity of discrete noiseless channels. In particular, in
[2] Shannon established that the capacity of an unconstrained
noiseless channel with symbol durationst1, t2, . . . , tm is given
by the valuelogX0, whereX0 is the largest real solution of
the difference equation

X−t1 +X−t2 + · · ·+X−tm = 1.

It is not difficult to show that McMillan’s theorem is equivalent
to the obvious statement that the capacity of aD-ary channel
is at mostlogD.

Furthermore, Shannon generalized the capacity formula to
the case of noiseless finite state channels, by stating the
following [2, Th. 1]:

Theorem 4 (Shannon, [2]):Let b(s)ij be the duration

of the sth symbol which is allowable in statei and
leads to statej. Then the channel capacityC is equal
to logW0 whereW0 is the largest real root of the
determinant equation:

∣

∣

∣

∣

∣

∑

s

W−b
(s)
ij − δij

∣

∣

∣

∣

∣

= 0.

As for the unconstrained case, it is possible to show that
Theorem 3 is equivalent to the statement that every finite state
D-ary channel has capacity at mostlogD.
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