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Abstract

A class of distortions termed functional Bregman divergences is defined, which
includes squared error and relative entropy. A functional Bregman divergence acts
on functions or distributions, and generalizes the standard Bregman divergence for
vectors and a previous pointwise Bregman divergence that was defined for functions.
A recently published result showed that the mean minimizes the expected Bregman
divergence. The new functional definition enables the extension of this result to the
continuous case to show that the mean minimizes the expected functional Bregman
divergence over a set of functions or distributions. It is shown how this theorem
applies to the Bayesian estimation of distributions. Estimation of the uniform
distribution from independent and identically drawn samples is used as a case study.

1. Overview

Bregman divergences are a useful set of distortion functions that include squared
error, relative entropy, logistic loss, Mahalanobis distance, and the Itakura-Saito
function. Bregman divergences are popular in statistical estimation and information
theory. Analysis using the concept of Bregman divergences has played a key role in
recent advances in statistical learning [1–9], clustering [10,11], inverse problems [12],
maximum entropy estimation [13], and the applicability of the data processing
theorem [14]. Recently, it was discovered that the mean is the minimizer of the
expected Bregman divergence for a set of d-dimensional points [10, 15].

In this paper we define a functional Bregman divergence that applies to functions
and distributions, and we show that this new definition is equivalent to Bregman di-
vergence applied to vectors. The functional definition generalizes a pointwise Breg-
man divergence that has been previously defined for measurable functions [7, 16],
and thus extends the class of distortion functions that are Bregman divergences;
see Section 2.1.2 for an example. Most importantly, the functional definition en-
ables one to solve functional minimization problems using standard methods from
the calculus of variations; we extend the recent result on the expectation of vector
Bregman divergence [10, 15] to show that the mean minimizes the expected Breg-
man divergence for a set of functions or distributions. We show how this theorem
links to Bayesian estimation of distributions. For distributions from the exponen-
tial family distributions, many popular divergences, such as relative entropy, can
be expressed as a (different) Bregman divergence on the exponential distribution
parameters. The functional Bregman definition enables stronger results and a more
general application.

In Section 1 we state a functional definition of the Bregman divergence and
give examples for total squared difference, relative entropy, and squared bias. The
relationship between the functional definition and previous Bregman definitions
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is established. In Section 2 we present the main theorem: that the expectation
of a set of functions minimizes the expected Bregman divergence. In Section 3 we
discuss the role of this theorem in Bayesian estimation, and as a case study compare
different estimates for the uniform distribution given independent and identically
drawn samples. For ease of reference, Appendix A contains relevant definitions and
results from functional analysis and the calculus of variations. In Appendix B we
show that the functional Bregman divergence has many of the same properties as
the standard vector Bregman divergence. Proofs are in Appendix C.

2. Functional Bregman Divergence

Let
(

R
d,Ω, ν

)

be a measure space, where ν is a Borel measure, d is a positive

integer, and define a set of functions A =
{

a ∈ Lp(ν) subject to a : R
d → R, a ≥ 0

}

where 1 ≤ p ≤ ∞.

Definition 2.1 (Functional Definition of Bregman Divergence). Let φ : Lp(ν) →
R be a strictly convex, twice-continuously Fréchet-differentiable functional. The
Bregman divergence dφ : A×A → [0,∞) is defined for all f, g ∈ A as

(1) dφ[f, g] = φ[f ] − φ[g] − δφ[g; f − g],

where δφ[g; ·] is the Fréchet derivative of φ at g.

Here, we have used the Fréchet derivative, but the definition (and results in
this paper) can be easily extended using more general definitions of derivatives; a
sample extension is given in Section 2.1.3.

The functional Bregman divergence has many of the same properties as the
standard vector Bregman divergence, including non-negativity, convexity, linearity,
equivalence classes, linear separation, dual divergences, and a generalized Pythagorean
inequality. These properties are established in Appendix B.

2.1. Examples. Different choices of the functional φ lead to different Bregman
divergences. Illustrative examples are given for squared error, squared bias, and
relative entropy. Functionals for other Bregman divergences can be derived based
on these examples, from the example functions for the discrete case given in Table
1 of [15], and from the fact that φ is a strictly convex functional if it has the

form φ(g) =
∫

φ̃(g(t))dt where φ̃ : R → R, φ̃ is strictly convex and g is in some
well-defined vector space of functions [17].

2.1.1. Total Squared Difference. Let φ[g] =
∫

g2dν, where φ : L2(ν) → R, and let
g, f, a ∈ L2(ν). Then

φ[g + a] − φ[g] =

∫

(g + a)2dν −

∫

g2dν

= 2

∫

gadν +

∫

a2dν.

Because
∫

a2dν

‖a‖L2(ν)
=

‖a‖2
L2(ν)

‖a‖L2(ν)
= ‖a‖L2(ν) → 0

as a→ 0 in L2(ν),

δφ[g; a] = 2

∫

gadν,
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which is a continuous linear functional in a. Then, by definition of the second
Fréchet derivative,

δ2φ[g; b, a] = δφ[g + b; a] − δφ[g; a]

= 2

∫

(g + b)adν − 2

∫

gadν

= 2

∫

badν.

Thus δ2φ[g; b, a] is a quadratic form, where δ2φ is actually independent of g and
strongly positive since

δ2φ[g; a, a] = 2

∫

a2dν = 2‖a‖2
L2(ν)

for all a ∈ L2(ν), which implies that φ is strictly convex and

dφ[f, g] =

∫

f2dν −

∫

g2dν − 2

∫

g(f − g)dν

=

∫

(f − g)2dν

= ‖f − g‖2
L2(ν).

2.1.2. Squared Bias. Under definition (1), squared bias is a Bregman divergence,
this we have not previously seen noted in the literature despite the importance of
minimizing bias in estimation [18].

Let φ[g] =
(∫

gdν
)2

, where φ : L1(ν) → R. In this case

φ[g + a] − φ[g] =

(
∫

gdν +

∫

adν

)2

−

(
∫

gdν

)2

= 2

∫

gdν

∫

adν +

(
∫

adν

)2

.(2)

Note that 2
∫

gdν
∫

adν is a continuous linear functional on L1(ν) and
(∫

adν
)2

≤
‖a‖2

L1(ν), so that

0 ≤

(∫

adν
)2

‖a‖L1(ν)
≤

‖a‖2
L1(ν)

‖a‖L1(ν)
= ‖a‖L1(ν).

Thus from (2) and the definition of the Fréchet derivative,

δφ[g; a] = 2

∫

gdν

∫

adν.

By the definition of the second Fréchet derivative,

δ2φ[g; b, a] = δφ[g + b; a] − δφ[g; a]

= 2

∫

(g + b)dν

∫

adν − 2

∫

gdν

∫

adν

= 2

∫

bdν

∫

adν

is another quadratic form, and δ2φ is independent of g.
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Because the functions in A are positive, δ2φ is strongly positive on A (which
again implies that φ is strictly convex):

δ2φ[g; a, a] = 2

(
∫

adν

)2

= 2‖a‖2
L1(ν) ≥ 0

for a ∈ A. The Bregman divergence is thus

dφ[f, g]

=

(
∫

fdν

)2

−

(
∫

gdν

)2

− 2

∫

gdν

∫

(f − g)dν

=

(
∫

fdν

)2

+

(
∫

gdν

)2

− 2

∫

gdν

∫

fdν

=

(
∫

(f − g)dν

)2

≤ ‖f − g‖2
L1(ν).

2.1.3. Relative Entropy of Simple Functions. Let (X,Σ, ν) be a measure space. We
denote by S the collection of all measurable simple functions on (X,Σ, ν), that is,
the set of functions which can be written as a finite linear combination of indicator
functions. If g ∈ S then it can be expressed as

g(x) =
t
∑

i=0

αiITi ; α0 = 0,

where ITi is the indicator function of the set Ti and {Ti}ti=0 is a collection of

mutually disjoint measurable sets with the property that X =
⋃t
i=0 Ti. We adopt

the convention, that T0 is the set on which g is zero and therefore αi 6= 0 if i 6= 0.
The set

(

S, ‖ · ‖L∞(ν)

)

is a normed vector space. In this case

(3)

∫

X

g ln gdν =
t
∑

i=1

∫

Ti

αi lnαidν,

since 0 ln 0 = 0.
Note that the integral in (3) exists and is finite for g ∈ S if g ∈ L1(ν) and g ≥ 0.

This implies that ν(Ti) < ∞ for all 1 ≤ i ≤ t, while the measure of T0 could be
infinity. For this reason, consider the normed vector space (L1(ν) ∩ S,‖ · ‖L∞(ν)),

where (L1(ν) ∩ S)⊂ S⊂ L∞(ν). Let W be the set (not necessarily a vector space)
of functions satisfying the conditions mentioned above – that is, let

W = {g ∈ L1(ν) ∩ S subject to g ≥ 0}.

Define the functional φ on W ,

(4) φ[g] =

∫

X

g ln g dν, g ∈ W .

The functional φ is not Fréchet-differentiable at g because in general it cannot be
guaranteed that g + h is non-negative for all functions h in the underlying normed
vector space

(

L1(ν) ∩ S, ‖ · ‖L∞(ν)

)

with norm smaller than any prescribed ǫ > 0.
However, a generalized Gâteaux derivative can be defined if we limit the perturbing
function h to a vector subspace.



5

Let G be the subspace of
(

L1(ν) ∩ S, ‖ · ‖L∞(ν)

)

defined by

G = {f ∈ L1(ν) ∩ S subject to f dν ≪ g dν}.

It is straightforward to show that G is vector space. We define the generalized
Gâteaux derivative of φ at g ∈ W to be the linear operator δGφ[g; ·] if

(5) lim
‖h‖L∞(ν)→0

h∈G

|φ[g + h] − φ[g] − δGφ[g;h]|

‖h‖L∞(ν)
= 0.

Note, that δGφ[g; ·] is not linear in general, but it is on the vector space G. In
general, if G is the entire underlying vector space then (5) is the Fréchet derivative,
and if G is the span of only one element from the underlying vector space then (5)
is the Gâteaux derivative. Here, we have generalized the Gâteaux derivative for the
present case that G is a subspace of the underlying vector space.

It remains to be shown that given the functional (4), the derivative (5) exists
and yields relative entropy. Consider the solution

(6) δGφ[g;h] =

∫

X

(1 + ln g)hdν,

which coupled with (4) does yield relative entropy. We complete the proof by
showing that (6) satisfies (5). Note that

φ[g + h] − φ[g] − δGφ[g;h] =

∫

X

(h+ g) ln
h+ g

g
− hdν

=

∫

E

(h+ g) ln
h+ g

g
− hdν,(7)

where E is the set on which g is not zero.
Because g ∈ W , there are m,M > 0 such that m ≤ g ≤ M on E. Let h ∈ G be

such that ‖h‖L∞(ν) ≤ m, then g + h ≥ 0. Our goal is to find a lower and an upper
bound for the expression

φ[g + h] − φ[g] − δGφ[g;h]

‖h‖L∞(ν)

such that both bounds go to 0 as ‖h‖L∞(ν) → 0. We start with bounding the
integrand from above:

(h+ g) ln
h+ g

g
− h ≤ (h+ g)

h

g
− h =

h2

g
,

and therefore

φ[g + h] − φ[g] − δGφ[g;h]

‖h‖L∞(ν)
≤

1

‖h‖L∞(ν)

∫

E

h2

g
dν

≤
1

m

∫

E

|h| dν

≤
1

m
‖h‖L1(ν).

We can use Jensen’s inequality to find a lower bound for the integral (7). In
order to use the inequality we have to rewrite the equation. We begin with the first
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term of the integrand,

∫

E

(h+ g) ln
h+ g

g
dν

=

∫

E

h+ g

g

(

ln
h+ g

g

)

gdν,

= ‖g‖L1(ν)

∫

E

h+ g

g
ln
h+ g

g

g

‖g‖L1(ν)
dν

= ‖g‖L1(ν)

∫

E

λ

(

h+ g

g

)

dν̃,

where the measure dν̃ = g
‖g‖L1(ν)

dν is a probability measure and λ(x) = x lnx is a

convex function on (0,∞). Let M0 = ‖g‖L1(ν). By Jensen’s inequality

M0

∫

E

λ

(

h+ g

g

)

dν̃

≥ M0λ

(
∫

E

h+ g

g
dν̃

)

= M0λ

(
∫

E

h

M0
dν +

∫

E

dν̃

)

= M0λ

(

1

M0

∫

E

h dν + 1

)

=

(
∫

E

h dν +M0

)

ln

(

1

M0

∫

E

h dν + 1

)

.

Thus we can bound the integral in (7) from below:

∫

E

(h+ g) ln
h+ g

g
− hdν

≥

(
∫

E

h dν +M0

)

ln

(

1

M0

∫

E

h dν + 1

)

−

∫

E

h dν

=

∫

E

h dν ln

(

1

M0

∫

E

h dν + 1

)

+M0 ln

(

1

M0

∫

E

h dν + 1

)

−

∫

E

h dν.
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If
∫

E
h dν = 0, then the integral in (7) is non-negative. The more interesting case

is when
∫

E h dν 6= 0. Then,

φ[g + h] − φ[g] − δGφ[g;h]

‖h‖L∞(ν)

≥

∫

E
h dν

‖h‖L∞(ν)
ln

(

1

M0

∫

E

h dν + 1

)

+
M0

‖h‖L∞(ν)
ln

(

1

M0

∫

E

h dν + 1

)

−

∫

E h dν

‖h‖L∞(ν)

≥

∫

E
h dν

‖h‖L∞(ν)
ln

(

1

M0

∫

E

h dν + 1

)

+





M0 ln
(

1
M0

∫

E
h dν + 1

)

∫

E
h dν

− 1





∫

E
h dν

‖h‖L∞(ν)
.

As
∫

E h dν → 0,

ln

(

1

M0

∫

E

h dν + 1

)

→ 0,

and

M0 ln
(

1
M0

∫

E h dν + 1
)

∫

E
h dν

− 1 → 0.

We finish the proof by showing that there is a constant K which is independent of
h such that

(8)

∣

∣

∣

∣

∫

E

h dν

∣

∣

∣

∣

≤ ‖h‖L1(ν) ≤ K‖h‖L∞(ν).

If (8) is shown, then
∫

E
h dν → 0 and ‖h‖L1(ν) → 0 as ‖h‖L∞(ν) → 0, and coupling

those relationships with the fact that
∣

∣

∫

E
h dν

∣

∣

‖h‖L∞(ν)
≤ K

establishes (5). Because h ∈ G, h can be expressed as

h =
v
∑

i=0

βiIVi ; β0 = 0,

where {Vi}vi=0 is a collection of mutually disjoint measurable sets with the property
that X =

⋃v
i=0 Vi. Also, because h dν ≪ g dν, there is a set N(h) such that

ν(N(h)) = 0 and
v
⋃

i=1

Vi ⊂

(

t
⋃

i=1

Ti ∪N(h)

)

.

This implies that there is a K independent of h such that

v
∑

i=1

ν(Vi) ≤
t
∑

i=1

ν(Ti) = K.
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Finally,
∫

|h| dν =

v
∑

i=1

|βi| ν(Vi)

≤ ‖h‖L∞(ν)

v
∑

i=1

ν(Vi)

≤ ‖h‖L∞(ν)K.

2.2. Relationship to Other Bregman Divergence Definitions. Two propo-
sitions establish the relationship of the functional Bregman divergence to other
Bregman divergence definitions.

Proposition 2.2 (Functional Bregman Divergence Generalizes Vector Bregman
Divergence). The functional definition (1) is a generalization of the standard vector
Bregman divergence

(9) dφ̃(x, y) = φ̃(x) − φ̃(y) −∇φ̃(y)T (x− y),

where x, y ∈ R
n, and φ̃ : R

n → R is strictly convex and twice differentiable.

Jones and Byrne describe a general class of divergences between functions using a
pointwise formulation [7]. Csiszár specialized the pointwise formulation to a class of
divergences he termed Bregman distances Bs,ν [16], where given a σ-finite measure
space (X,Ω, ν), and non-negative measurable functions f(x) and g(x), Bs,ν(f, g)
equals

(10)

∫

s(f(x)) − s(g(x)) − s′(g(x))(f(x) − g(x))dν(x).

The function s : (0,∞) → R is constrained to be differentiable and strictly convex,
and the limit limx→0 s(x) and limx→0 s

′(x) must exist, but not necessarily finite.
The function s plays a role similar to the function φ in the functional Bregman
divergence; however, s acts on the range of the functions f, g, whereas φ acts on
the pair of functions f, g.

Proposition 2.3 (Functional Definition Generalizes Pointwise Definition). Given
a pointwise Bregman divergence as per (10), an equivalent functional Bregman di-
vergence can be defined as per (1) if the measure ν is finite. However, given a
functional Bregman divergence dφ[f, g], there is not necessarily an equivalent point-
wise Bregman divergence.

3. Minimum Expected Bregman Divergence

Consider two sets of functions (or distributions), M and A. Let F ∈ M be a
random function with realization f . Suppose there exists a probability distribution
PF over the set M, such that PF (f) is the probability of f ∈ M. For example,
consider the set of Gaussian distributions, and given samples drawn independently
and identically from a randomly selected Gaussian distribution N , the data imply a
posterior probability PN (N ) for each possible generating realization of a Gaussian
distribution N . The goal is to find the function g∗ ∈ A that minimizes the expected
Bregman divergence between the random function F and any function g ∈ A. The
following theorem shows that if the set of possible minimizers A includes EPF [F ],
then g∗ = EPF [F ] minimizes the expectation of any Bregman divergence.
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The theorem applies only to a set of functions M that lie on a finite-dimensional
manifold M for which a differential element dM can be defined. For example,
the set M could be parameterized by a finite number of parameters, or could be
a set of functions that can be decomposed into a finite set of d basis functions
{ψ1, ψ2, . . . , ψd} such that each f can be expressed as

f =

d
∑

j=1

cjψj ,

where cj ∈ R for all j. The theorem requires slightly stronger conditions on φ than
the definition of the Bregman divergence (1) requires.

Theorem 3.1 (Minimizer of the Expected Bregman Divergence). Let δ2φ[f ; a, a]
be a strongly positive quadratic form, and let φ ∈ C3(L1(ν); R) be a three-times
continuously Fréchet-differentiable functional on L1(ν). Let M be a set of functions
that lie on a finite-dimensional manifold M , and have associated differential element
dM . Suppose there is a probability distribution PF defined over the set M. Suppose
the function g∗ minimizes the expected Bregman divergence between the random
function F and any function g ∈ A such that

g∗ = arg inf
g∈A

EPF [dφ(F, g)].

Then, if g∗ exists, it is given by

(11) g∗ =

∫

M

fP (f)dM = EPF [F ].

4. Bayesian Estimation

Theorem II.1 can be applied to a set of distributions to find the Bayesian estimate
of a distribution given a posterior or likelihood. For parametric distributions pa-
rameterized by θ ∈ R

n, a probability measure Λ(θ), and some risk function R(θ, ψ),
ψ ∈ R

n, the Bayes estimator is defined [19] as

(12) θ̂ = arg inf
ψ∈Rn

∫

R(θ, ψ)dΛ(θ).

That is, the Bayes estimator minimizes some expected risk in terms of the param-

eters. It follows from recent results [15] that θ̂ = E[Θ] if the risk R is a Bregman
divergence, where Θ is the random variable whose realization is θ.

The principle of Bayesian estimation can be applied to the distributions them-
selves rather than to the parameters:

(13) ĝ = arg inf
g∈A

∫

M

R(f, g)PF (f)dM,

where PF (f) is a probability measure on the distributions f ∈ M, dM is a differ-
ential element for the finite-dimensional manifold M , and A is either the space of
all distributions or a subset of the space of all distributions, such as the set M.
When the set A includes the distribution EPF [F ] and the risk function R in (13)
is a Bregman divergence, then Theorem II.1 establishes that ĝ = EPF [F ].

For example, in recent work, two of the authors derived the mean class posterior
distribution for each class for a Bayesian quadratic discriminant analysis classifier
[6], and showed that the classification results were superior to parameter-based
Bayesian quadratic discriminant analysis.
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Of particular interest for estimation problems are the Bregman divergence ex-
amples given in Section 2.1: total squared difference (mean squared error) is a
popular risk function in regression [18]; minimizing relative entropy leads to use-
ful theorems for large deviations and other statistical subfields [20]; and analyzing
bias is a common approach to characterizing and understanding statistical learning
algorithms [18].

4.1. Case Study: Estimating a Scaled Uniform Distribution. As an illus-
tration, we present and compare different estimates of a scaled uniform distribution
given independent and identically drawn samples. Let the set of uniform distribu-
tions over [0, θ] for θ ∈ R

+ be denoted by U . Given independent and identically
distributed samples X1, X2, . . . , Xn drawn from an unknown uniform distribution
f ∈ U , the generating distribution is to be estimated. The risk function R is taken
to be squared error or total squared error depending on context.

4.1.1. Bayesian Parameter Estimate. Depending on the choice of the probability
measure Λ(θ), the integral (12) may not be finite; for example, using the likelihood
of θ with Lebesgue measure the integral is not finite. A standard solution is to use
a gamma prior on θ and Lebesgue measure. Let Θ be a random parameter with
realization θ, let the gamma distribution have parameters t1 and t2, and denote the
maximum of the data as Xmax = max{X1, X2, . . . , Xn}. Then a Bayesian estimate
is formulated [19, p. 240, 285]:

E[Θ|{X1, X2, . . . , Xn}, t1, t2]

=

∫∞
Xmax

θ 1
θn+t1+1 e

−1
θt2 dθ

∫∞
Xmax

1
θn+t1+1 e

−1
θt2 dθ

.(14)

The integrals can be expressed in terms of the chi-squared random variable I2
v with

v degrees of freedom:

E[Θ|{X1, X2, . . . , Xn}, t1, t2] =

1

t2(n+ t1 − a)

P (χ2
2(n+t1−1) <

2
t2Xmax

)

P (χ2
2(n+t1) <

2
t2Xmax

)
.(15)

Note that (12) presupposes that the best solution is also a uniform distribution.

4.1.2. Bayesian Uniform Distribution Estimate. If one restricts the minimizer of
(13) to be a uniform distribution, then (13) is solved with A = U . Because the
set of uniform distributions does not generally include its mean, Theorem II.1 does
not apply, and thus different Bregman divergences may give different minimizers
for (13). Let PF be the likelihood of the data (no prior is assumed over the set U),
and use the Fisher information metric ( [21–23]) for dM . Then the solution to (13)
is the uniform distribution on [0, 21/nXmax]. Using Lebesgue measure instead gives
a similar result: [0, 21/(n+1/2)Xmax]. We were unable to find these estimates in the
literature, and so their derivations are presented in Appendix C.

4.1.3. Unrestricted Bayesian Distribution Estimate. When the only restriction placed
on the minimizer g in (13) is that g be a distribution, then one can apply Theo-
rem II.1 and solve directly for the expected distribution EPF [F ]. Let PF be the
likelihood of the data (no prior is assumed over the set U), and use the Fisher
information metric for dM . Solving (11), noting that the uniform probability of x
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is f(x) = 1/a if x ≤ a and zero otherwise, and the likelihood of the n drawn points
is (1/Xmax)

n if a ≥ Xmax and zero otherwise,

g∗(x) =

∫∞
max(x,Xmax)

(

1
a

) (

1
an

) (

da
a

)

∫∞
Xmax

1
an

da
a

=
n (Xmax)

n

(n+ 1)[max(x,Xmax)]n+1
.(16)

4.1.4. Projecting the Unrestricted Estimate onto the Set of Uniform Distributions.
Consider what happens when the unrestricted solution g∗(x) given in (16) is pro-
jected onto the set of uniform distributions with respect to squared error. That is,
we solve for the uniform distribution h(x) over [0, a] such that:

(17) â = arg min
a∈[0,∞)

∫ ∞

0

(h(x) − g∗(x))2dx.

The problem is straightforward to solve using standard calculus and yields the
solution â = 21/nXmax. This is also the solution to the problem (13) when the min-
imizer is restricted to be a uniform distribution and the Fisher information metric
over the uniform distributions is used (as discussed in Section 4.1.3). Thus, the
projection of the unrestricted solution to (13) onto the set of uniform distributions
is the same as the solution to (13) when the minimizer is restricted to be uniform.
We conjecture that under some conditions this property will hold more generally:
that the projection of the unrestricted minimizer of (13) onto the set M will be
equivalent to solving (13) where the solution is restricted to the set M.

4.2. Simulation. A simulation was done to compare the different Bayesian estima-
tors and the maximum likelihood estimator. The simulation was run 1, 000 times;
each time n data points were drawn independently and identically from the uni-
form over [0, 1], and estimates were formed. Figure 1 is a log-log plot of the average
squared errors between the estimated distribution and the true distribution.

For the Bayesian parameter estimator given in (15), estimates were calculated
for three different sets of Gamma parameters, (t1 = 1, t2 = 1), (t1 = 1, t2 = 3),
and (t1 = 1, t2 = 100). The plotted error is the minimum of the three averaged
errors for the different Gamma priors for each n. The plotted Bayesian distribution
estimates used the Fisher information metric (very similar simulation results were
obtained with the Lebesgue measure).

Given more than one random sample from the uniform, the unrestricted Bayesian
distribution estimator (thick line) always performed better than the other estima-
tors (as it should by design). Of course, asymptotically as n → ∞, all of the
estimates will converge to the true value. For n = 1, the Bayesian parameter esti-
mate performs better; we believe this is due to the (in this case correct) bias of the
prior used for the Bayesian parameter estimate. The dotted line rises at n = 155
because the Bayesian parameter estimate was uncomputable for more than 155
data samples (we used Matlab v. 14 to evaluate (15), and for 155 data samples or
more the numerator and denominator of (15) were determined to be 0, leading to
an indeterminate estimate).

Three interesting conclusions are supported by the simulation results. First, the
Bayesian estimates do improve significantly over the maximum likelihood estimate
(dashed line). Second, although the truth is uniform, the unrestricted Bayesian
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Figure 1. The plot shows the log of the squared error between an
estimated distribution and a uniform [0, 1] distribution, averaged
over one thousand runs of the estimation simulation. The dashed
line is the maximum likelihood estimate, the dotted line is the
Bayesian parameter estimate, the thick solid line is the Bayesian
distribution estimate that solves (13), and the thin solid line is the
Bayesian distribution estimate that solves (13) when the minimizer
is restricted to be uniform.

distribution estimate chooses a non-uniform solution (thick line), which does signif-
icantly better than either of the Bayesian uniform estimates (thin line and dotted
line). Third, the Bayesian parameter estimate (dotted line) and the Bayesian uni-
form distribution estimate (thin line) perform quite similarly. For n < 10, the
Bayesian parameter estimate works better, but for n > 10, the Bayesian uniform
distribution estimate is slightly better. Although these two estimates perform sim-
ilarly, the Bayesian uniform distribution estimate [0, 21/nXmax] is a more elegant
solution than the parameter estimate (15), and is easier to compute and to work
with analytically.

5. Further Discussion and Open Questions

We have defined a general Bregman divergence for functions and distributions
that can provide a foundation for results in statistics, information theory and signal
processing. Theorem II.1 is important for these fields because it ties Bregman
divergences to expectation. As shown in Section 4, Theorem II.1 can be directly
applied to distributions to show that Bayesian distribution estimation simplifies to
expectation when the risk function is a Bregman divergence and the minimizing
distribution is unrestricted.

It is common in Bayesian estimation to interpret the prior as representing some
actual prior knowledge, but in fact prior knowledge often is not available or is diffi-
cult to quantify. Another approach is to use a prior to capture coarse information
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from the data that may be used to stabilize the estimation [6,9]. In practice, priors
are sometimes chosen in Bayesian estimation to tame the tail of likelihood distri-
butions so that expectations will exist when they might otherwise be infinite [19].
This mathematically convenient use of priors adds estimation bias that may be un-
warranted by prior knowledge. An alternative to mathematically convenient priors
is to formulate the estimation problem as a minimization of an expected Bregman
divergence between the unknown distribution and the estimated distribution, and
restrict the set of distributions that can be the minimizer to be a set for which
the Bayesian integral exist. Open questions are how such restrictions affect the
estimation bias and variance, and how to find or define a “best” restricted set of
distributions for this estimation approach.

Finally, there are some results for the standard vector Bregman divergence that
have not been extended here. It has been shown that a standard vector Bregman
divergence must be the risk function in order for the mean to be the minimizer of
an expected risk [15, Theorems 3 and 4]. The proof of that result relies heavily on
the discrete nature of the underlying vectors, and it remains an open question as
to whether a similar result holds for the functional Bregman divergence. Another
result that has been shown for the vector case but remains an open question in the
functional case is convergence in probability [15, Theorem 2].
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Appendix A: Relevant Definitions and Results from Functional

Analysis

This appendix explains the basic definitions and results from functional analysis
used in this paper. This material can also be found in standard books on the
calculus of variations, such as the text by Gelfand and Fomin [24].

Let
(

R
d,Ω, ν

)

be a measure space, where ν is a Borel measure d is a positive

integer, and define a set of functions A =
{

a ∈ Lp(ν) subject to a : R
d → R, a ≥ 0

}

where 1 ≤ p ≤ ∞. The subset A is a convex subset of Lp(ν) because for a1, a2 ∈ A
and 0 ≤ ω ≤ 1, ωa1 + (1 − ω)a2 ∈ A.
Definition of continuous linear functionals

The functional ψ : Lp(ν) → R is linear and continuous if

(1) ψ[ωa1 + a2] = ωψ[a1] + ψ[a2] for any a1, a2 ∈ Lp(ν) and any real number
ω; and

(2) there is a constant C such that |ψ[a]| ≤ C‖a‖ for all a ∈ Lp(ν).

Functional Derivatives

(1) Let φ be a real functional over the normed space Lp(ν). The bounded linear
functional δφ[f ; ·] is the Fréchet derivative of φ at f ∈ Lp(ν) if

φ[f + a] − φ[f ] = △φ[f ; a]

= δφ[f ; a] + ǫ[f, a] ‖a‖Lp(ν)(18)

for all a ∈ Lp(ν), with ǫ[f, a] → 0 as ‖a‖Lp(ν) → 0.
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(2) When the second variation δ2φ and the third variation δ3φ exist, they are
described by

△φ[f ; a] = δφ[f ; a] +
1

2
δ2φ[f ; a, a]

+ ǫ[f, a] ‖a‖2
Lp(ν)(19)

= δφ[f ; a] +
1

2
δ2φ[f ; a, a]

+
1

6
δ3φ[f ; a, a, a]

+ ǫ[f, a] ‖a‖3
Lp(ν) ,

where ǫ[f, a] → 0 as ‖a‖Lp(ν) → 0. The term δ2φ[f ; a, b] is bilinear with

respect to arguments a and b, and δ3φ[f ; a, b, c] is trilinear with respect to
a, b, and c.

(3) Suppose {an}, {fn} ⊂ Lp(ν), moreover an → a, fn → f , where a, f ∈
Lp(ν). If φ ∈ C3(Lp(ν); R) and δφ[f ; a], δ2φ[f ; a, a], and δ3[f ; a, a, a] are
defined as above, then δφ[fn; an] → δφ[f ; a], δ2φ[fn; an, an] → δ2φ[f ; a, a],
and δ3φ[fn; an, an, an] → δ3φ[f ; a, a, a], respectively.

(4) The quadratic functional δ2φ[f ; a, a] defined on normed linear space Lp(ν)
is strongly positive if there exists a constant k > 0 such that δ2φ[f ; a, a] ≥

k ‖a‖2
Lp(ν) for all a ∈ A. In a finite-dimensional space, strong positivity of

a quadratic form is equivalent to the quadratic form being positive definite.
(5) From (19),

φ[f + a] = φ[f ] + δφ[f ; a] +
1

2
δ2φ[f ; a, a]

+o(‖a‖2),

φ[f ] = φ[f + a] − δφ[f + a; a] +

1

2
δ2φ[f + a; a, a] + o(‖a‖2),

where o(‖a‖2) stands for a function that goes to zero as ‖a‖ goes to zero,
even if it is divided by ‖a‖2. Adding the above two equations yields

0 = δφ[f ; a] − δφ[f + a; a] +
1

2
δ2φ[f ; a, a]

+
1

2
δ2φ[f + a; a, a] + o(‖a‖2),

which is equivalent to

δφ[f + a; a] − δφ[f ; a] = δ2φ[f ; a, a] + o(‖a‖2),(20)

because
∣

∣δ2φ[f + a; a, a] − δ2φ[f ; a, a]
∣

∣

≤ ‖δ2φ[f + a; ·, ·] − δ2φ[f ; ·, ·]‖‖a‖2,

and we assumed φ ∈ C2, so δ2φ[f + a; a, a]− δ2φ[f ; a, a] is of order o(‖a‖2).
This shows that the variation of the first variation of φ is the second varia-
tion of φ. A procedure like the above can be used to prove that analogous
statements hold for higher variations if they exist.
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Functional Optimality Conditions For a functional J to have an extremum

(minimum) at f = f̂ , it is necessary that

δJ [f ; a] = 0 and δ2J [f ; a, a] ≥ 0,

for f = f̂ and for all admissible functions a ∈ A. A sufficient condition for a

functional J [f ] to have a minimum for f = f̂ is that the first variation δJ [f ; a] must

vanish for f = f̂ , and its second variation δ2J [f ; a, a] must be strongly positive for

f = f̂ .

Appendix B: Properties of the Functional Bregman Divergence

The Bregman divergence for random variables has some well-known properties, as
reviewed in [10, Appendix A]. Here, we establish that the same properties hold for
the functional Bregman divergence (1).
1. Non-negativity

The functional Bregman divergence is non-negative. To show this, define φ̃ : R → R

by φ̃(t) = φ [tf + (1 − t)g], f, g ∈ A. From the definition of the Fréchet derivative,

(21)
d

dt
φ̃ = δφ[tf + (1 − t)g; f − g].

The function φ̃ is convex because φ is convex by definition. Then from the mean
value theorem there is some 0 ≤ t0 ≤ 1 such that

(22) φ̃(1) − φ̃(0) =
d

dt
φ̃(t0) ≥

d

dt
φ̃(0).

Because φ̃(1) = φ[f ], φ̃(0) = φ[g], and (21), subtracting the right-hand side of (22)
implies that

(23) φ[f ] − φ[g] − δφ[g, f − g] ≥ 0.

If f = g, then (23) holds in equality. To finish, we prove the converse. Suppose
(23) holds in equality; then

(24) φ̃(1) − φ̃(0) =
d

dt
φ̃(0).

The equation of the straight line connecting φ̃(0) to φ̃(1) is ℓ(t) = φ̃(0) + (φ̃(1) −
φ̃(0))t, and the tangent line to the curve φ̃ at φ̃(0) is y(t) = φ̃(0)+ t ddt φ̃(0). Because

φ̃(τ) = φ̃(0)+
∫ τ

0
d
dt φ̃(t)dt and d

dt φ̃(t) ≥ d
dt φ̃(0) as a direct consequence of convexity,

it must be that φ̃(t) ≥ y(t). Convexity also implies that ℓ(t) ≥ φ̃(t). However, the
assumption that (23) holds in equality implies (24), which means that y(t) = ℓ(t),

and thus φ̃(t) = ℓ(t), which is not strictly convex. Because φ is by definition strictly
convex, it must be true that φ[tf + (1 − t)g] < tφ[f ] + (1 − t)φ[g] unless f = g.
Thus, under the assumption of equality of (23), it must be true that f = g.
2. Convexity

The Bregman divergence dφ[f, g] is always convex with respect to f . Consider

△dφ[f, g; a] = dφ[f + a, g] − dφ[f, g]

= φ[f + a] − φ[f ] − δφ[g; f − g + a] +

δφ[g; f − g].
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Using linearity in the third term,

△dφ[f, g; a]

= φ[f + a] − φ[f ] − δφ[g; f − g] − δφ[g; a]

+δφ[g; f − g],

= φ[f + a] − φ[f ] − δφ[g; a],

(a)
= δφ[f ; a] +

1

2
δ2φ[f ; a, a] + ǫ[f, a] ‖a‖2

L(ν) − δφ[g; a]

⇒ δ2dφ[f, g; a, a] =
1

2
δ2φ[f ; a, a] > 0,

where (a) and the conclusion follows from (19).
3. Linearity

The functional Bregman divergence is linear in the sense that

d(c1φ1+c2φ2)[f, g]

= (c1φ1 + c2φ2)[f ] − (c1φ1 + c2φ2)[g] −

δ(c1φ1 + c2φ2)[g; f − g],

= c1dφ1 [f, g] + c2dφ2 [f, g].

4. Equivalence Classes

Partition the set of strictly convex, differentiable functions {φ} on A into classes
with respect to functional Bregman divergence, so that φ1 and φ2 belong to the
same class if dφ1 [f, g] = dφ2 [f, g] for all f, g ∈ A. For brevity we will denote dφ1 [f, g]
simply by dφ1 . Let φ1 ∼ φ2 denote that φ1 and φ2 belong to the same class, then ∼
is an equivalence relation because it satisfies the properties of reflexivity (because
dφ1 = dφ1), symmetry (because if dφ1 = dφ2 , then dφ2 = dφ1), and transitivity
(because if dφ1 = dφ2 and dφ2 = dφ3 , then dφ1 = dφ3).

Further, if φ1 ∼ φ2, then they differ only by an affine transformation. To see this,
note that, by assumption, φ1[f ] −φ1[g] −δφ1[g; f−g] = φ2[f ]−φ2[g] −δφ2[g; f−g],
and fix g so φ1[g] and φ2[g] are constants. By the linearity property, δφ[g; f − g] =
δφ[g; f ]−δφ[g; g], and because g is fixed, this equals δφ[g; f ]+c0 where c0 is a scalar
constant. Then φ2[f ] = φ1[f ] + (δφ2[g; f ] − δφ1[g; f ]) + c1, where c1 is a constant.
Thus,

φ2[f ] = φ1[f ] +Af + c1,

where A = δφ2[g; ·] − δφ1[g; ·], and thus A : A → R is a linear operator that does
not depend on f .
5. Linear Separation

Fix two non-equal functions g1, g2 ∈ A, and consider the set of all functions in A
that are equidistant in terms of functional Bregman divergence from g1 and g2:

dφ[f, g1] = dφ[f, g2]

⇒ −φ[g1] − δφ[g1; f − g1] = −φ[g2] − δφ[g2; f − g2]

⇒ −δφ[g1; f − g1] = φ[g1] − φ[g2] − δφ[g2; f − g2].
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Using linearity the above relationship can be equivalently expressed as

−δφ[g1; f ] + δφ[g1; g1] = φ[g1] − φ[g2] − δφ[g2; f ] +

δφ[g2; g2],

δφ[g2; f ] − δφ[g1; f ] = φ[g1] − φ[g2] − δφ[g1; g1] +

δφ[g2; g2].

Lf = c,

where L is the bounded linear functional defined by Lf = δφ[g2; f ]− δφ[g1; f ], and
c is the constant corresponding to the right-hand side. In other words, f has to be
in the set {a ∈ A : La = c}, where c is a constant. This set is a hyperplane.
6. Dual Divergence

Given a pair (g, φ) where g ∈ Lp(ν) and φ is a strictly convex twice-continuously
Fréchet-differentiable functional, then the function-functional pair (G,ψ) is the Le-
gendre transform of (g, φ) [24], if

φ[g] = −ψ[G] +

∫

g(x)G(x)dν(x),(25)

δφ[g; a] =

∫

G(x)a(x)dν(x),(26)

where ψ is a strictly convex twice-continuously Fréchet-differentiable functional,
and G ∈ Lq(ν), where 1

p + 1
q = 1.

Given Legendre transformation pairs f, g ∈ Lp(ν) and F,G ∈ Lq(ν),

dφ[f, g] = dψ [G,F ].

The proof begins by substituting (25) and (26) into (1):

dφ[f, g] = φ[f ] + ψ[G] −

∫

g(x)G(x)dν(x)

−

∫

G(x)(f − g)(x)dν(x)

= φ[f ] + ψ[G] −

∫

G(x)f(x)dν(x).(27)

Applying the Legendre transformation to (G,ψ) implies that

ψ[G] = −φ[g] +

∫

g(x)G(x)dν(x)(28)

δψ[G; a] =

∫

g(x)a(x)dν(x).(29)

Using (28) and (29), dψ[G,F ] can be reduced to (27).
7. Generalized Pythagorean Inequality

For any f, g, h ∈ A,

dφ[f, h] = dφ[f, g] + dφ[g, h] + δφ[g; f − g] − δφ[h; f − g].
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This can be derived as follows:

dφ[f, g] + dφ[g, h]

= φ[f ] − φ[h] − δφ[g; f − g] − δφ[h; g − h]

= φ[f ] − φ[h] − δφ[h; f − h] + δφ[h; f − h]

−δφ[g; f − g] − δφ[h; g − h]

= dφ[f, h] + δφ[h; f − g] − δφ[g; f − g],

where the last line follows from the definition of the functional Bregman divergence
and the linearity of the fourth and last terms.

Appendix C: Proofs

5.1. Proof of Proposition I.2. We give a constructive proof that there is a corre-
sponding functional Bregman divergence dφ[f, g] for a specific choice of φ : A1 → R,
where A1 is the set of functions A with p = 1, and where ν =

∑n
i=1 δci and

f, g ∈ A1. Here, δx is the Dirac measure (such that all mass is concentrated at x)
and {c1, c2, . . . , cn} is a collection of n distinct points in R

d.

For any x ∈ R
n, define φ[f ] = φ̃(x1, x2, . . . , xn), where f(c1) = x1, f(c2) =

x2, . . . , f(cn) = xn. Then the difference is

∆φ[f ; a] = φ[f + a] − φ[f ]

= φ̃ ((f + a)(c1), . . . , (f + a)(cn)) − φ̃ (x1, . . . , xn)

= φ̃ (x1 + a(c1), . . . , xn + a(cn)) − φ̃ (x1, . . . , xn) .

Let ai be short hand for a(ci), and use the Taylor expansion for functions of several
variables to yield

∆φ[f ; a] = ∇φ̃(x1, . . . , xn)T (a1, . . . , an) + ǫ[f, a]‖a‖L1.

Therefore,

δφ[f ; a] = ∇φ̃(x1, . . . , xn)
T (a1, . . . , an) = ∇φ̃(x)T a,

where x = (x1, x2, . . . , xn) and a = (a1, . . . , an). Thus, from (3), the functional
Bregman divergence definition (1) for φ is equivalent to the standard vector Breg-
man divergence:

dφ̃[f, g] = φ[f ] − φ[g] − δφ[g; f − g]

= φ̃(x) − φ̃(y) −∇φ̃(y)T (x− y).(30)

5.2. Proof of Proposition I.3. First, we give a constructive proof of the first part
of the proposition by showing that given a Bs,ν , there is an equivalent functional
divergence dφ. Then, the second part of the proposition is shown by example: we
prove that the squared bias functional Bregman divergence given in Section 2.1.2
is a functional Bregman divergence that cannot be defined as a pointwise Bregman
divergence.

Note that the integral to calculate Bs,ν is not always finite. To ensure finite
Bs,ν , we explicitly constrain limx→0 s

′(x) and limx→0 s(x) to be finite. From the
assumption that s is strictly convex, s must be continuous on (0,∞). Recall from
the assumptions that the measure ν is finite, and that the function s is differentiable
on (0,∞).
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Given a Bs,ν , define the continuously differentiable function

s̃(x) =

{

s(x) x ≥ 0

−s(−x) + 2s(0) x < 0.

Specify φ : L∞(ν) → R as

φ[f ] =

∫

X

s̃(f(x))dν.

Note that if f ≥ 0,

φ[f ] =

∫

X

s(f(x))dν.

Because s̃ is continuous on R, s̃(f) ∈ L∞ whenever f ∈ L∞, the integrals always
make sense.

It remains to be shown that δφ[f ; ·] completes the equivalence when f ≥ 0. For
h ∈ L∞,

φ[f + h] − φ[f ] =

∫

X

s̃(f(x) + h(x))dν −

∫

X

s(f(x))dν

=

∫

X

s̃(f(x) + h(x)) − s(f(x))dν

=

∫

X

s̃′(f(x))h(x) + ǫ (f(x), h(x)) h(x)dν

=

∫

X

s′(f(x))h(x) + ǫ (f(x), h(x)) h(x)dν,

where we used the fact that

s̃(f(x) + h(x))

= s̃(f(x)) + (s̃′(f(x)) + ǫ(f(x), h(x))) h(x)

= s(f(x)) + (s′(f(x)) + ǫ(f(x), h(x))) h(x),

because f ≥ 0. On the other hand, if h(x) = 0 then ǫ(f(x), h(x)) = 0, and if
h(x) 6= 0 then

|ǫ(f(x), h(x))| ≤

∣

∣

∣

∣

s̃(f(x) + h(x)) − s̃(f(x))

h(x)

∣

∣

∣

∣

+ |s′(f(x))| .

Suppose {hn} ⊂ L∞(ν) such that hn → 0. Then there is a measurable set E
such that its complement is of measure 0 and hn → 0 uniformly on E. There
is some N > 0 such that for any n > N , |hn(x)| ≤ ǫ for all x ∈ E. Without
loss of generality, assume that there is some M > 0 such that for all x ∈ E,
|f(x)| ≤ M . Since s̃ is continuously differentiable, there is a K > 0 such that
max{s̃′(t) subject to t ∈ [−M − ǫ,M + ǫ]} ≤ K, and by the mean value theorem

∣

∣

∣

∣

s̃(f(x) + h(x)) − s̃(f(x))

h(x)

∣

∣

∣

∣

≤ K,

for almost all x ∈ X . Then

|ǫ(f(x), h(x))| ≤ 2K,

except on a set of measure 0. The fact that h(x) → 0 almost everywhere implies that
|ǫ(f(x), h(x))| → 0 almost everywhere, and by Lebesgue’s dominated convergence
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theorem, the corresponding integral goes to 0. As a result, the Fréchet derivative
of φ is

(31) δφ[f ;h] =

∫

X

s′(f(x))h(x)dν.

Thus the functional Bregman divergence is equivalent to the given pointwise Bs,ν .
We additionally note that the assumptions that f ∈ L∞ and that the measure

ν is finite are necessary for this proof. Counterexamples can be constructed if
f ∈ Lp or ν(X) = ∞ such that the Fréchet derivative of φ does not obey (31). This
concludes the first part of the proof.

To show that the squared bias functional Bregman divergence given in Section
2.1.2 is an example of a functional Bregman divergence that cannot be defined as
a pointwise Bregman divergence we prove that the converse statement leads to a
contradiction.

Suppose (X,Σ, ν) and (X,Σ, µ) are measure spaces where ν is a non-zero σ-finite
measure and that there is a differentiable function f : (0,∞) → R such that

(32)

(
∫

ξdν

)2

=

∫

f(ξ)dµ,

where ξ ∈ A1, the set of functions A with p = 1. Let f(0) = limx→0 f(x), which
can be finite or infinite, and let α be any real number. Then

∫

f(αξ)dµ =

(
∫

αξdν

)2

= α2

(
∫

ξdν

)2

= α2

∫

f(ξ)dµ.

Because ν is σ-finite, there is a measurable set E such that 0 < |ν(E)| < ∞. Let
X\E denote the complement of E in X . Then

α2ν2(E) = α2

(
∫

IEdν

)2

= α2

∫

f(IE)dµ

= α2

∫

X\E
f(0)dµ+ α2

∫

E

f(1)dµ

= α2f(0)µ(X\E) + α2f(1)µ(E).

Also,

α2ν2(E) =

(
∫

αIEdν

)2

.

However,
(
∫

αIEdν

)2

=

∫

f(αIE)dµ

=

∫

X\E
f(αIE)dµ+

∫

E

f(αIE)dµ

= f(0)µ(X\E) + f(α)µ(E);
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so one can conclude that

α2f(0)µ(X\E) + α2f(1)µ(E)

= f(0)µ(X\E) + f(α)µ(E).(33)

Apply equation (32) for ξ = 0 to yield

0 =

(
∫

0dν

)2

=

∫

f(0)dµ = f(0)µ(X).

Since |ν(E)| > 0, µ(X) 6= 0, so it must be that f(0) = 0, and (33) becomes

α2ν2(E) = α2f(1)µ(E) = f(α)µ(E) ∀α ∈ R.

The first equation implies that µ(E) 6= 0. The second equation determines the
function f completely:

f(α) = f(1)α2.

Then (32) becomes
(
∫

ξdν

)2

=

∫

f(1)ξ2dµ.

Consider any two disjoint measurable sets, E1 and E2, with finite nonzero mea-
sure. Define ξ1 = IE1 and ξ2 = IE2 . Then ξ = ξ1 + ξ2 and ξ1ξ2 = IE1IE2 = 0.
Equation (32) becomes

(34)

∫

ξ1dν

∫

ξ2dν = f(1)

∫

ξ1ξ2dµ.

This implies the following contradiction:

(35)

∫

ξ1dν

∫

ξ2dν = ν(E1)ν(E2) 6= 0,

but

(36) f(1)

∫

ξ1ξ2dµ = 0.

5.3. Proof of Theorem II.1. Let

J [g] = EPF [dφ(F, g)] =

∫

M

dφ[f, g]P (f)dM

=

∫

M

(φ[f ] − φ[g] − δφ[g; f − g])P (f)dM,(37)

where (37) follows by substituting the definition of Bregman divergence (1). Con-
sider the increment

∆J [g; a] = J [g + a] − J [g](38)

= −

∫

M

(φ[g + a] − φ[g])P (f)dM

−

∫

M

(δφ[g + a; f − g − a]

−δφ[g; f − g])P (f)dM,(39)
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where (39) follows from substituting (37) into (38). Using the definition of the
differential of a functional (see Appendix A, (18)), the first integrand in (39) can
be written as

φ[g + a] − φ[g] = δφ[g; a] + ǫ[g, a] ‖a‖L1(ν) .(40)

Take the second integrand of (39), and subtract and add δφ[g; f − g − a],

δφ[g + a; f − g − a] − δφ[g; f − g]

= δφ[g + a; f − g − a] − δφ[g; f − g − a]

+ δφ[g; f − g − a] − δφ[g; f − g]

(a)
= δ2φ[g; f − g − a, a] + ǫ[g, a] ‖a‖L1(ν) + δφ[g; f − g]

− δφ[g; a] − δφ[g; f − g]

(b)
= δ2φ[g; f − g, a] − δ2φ[g; a, a] + ǫ[g, a] ‖a‖L1(ν)

− δφ[g; a](41)

where (a) follows from (20) and the linearity of the third term, and (b) follows from
the linearity of the first term. Substitute (40) and (41) into (39),

△J [g; a] = −

∫

M

(

δ2φ[g; f − g, a] − δ2φ[g; a, a]

+ ǫ[g, a] ‖a‖L1(ν)

)

P (f)dM.

Note that the term δ2φ[g; a, a] is of order ‖a‖2
L1(ν), that is,

∥

∥δ2φ[g; a, a]
∥

∥

L1(ν)
≤

m ‖a‖2
L1(ν) for some constant m. Therefore,

lim
‖a‖L1(ν)→0

‖J [g + a] − J [g] − δJ [g; a]‖L1(ν)

‖a‖L1(ν)

= 0,

where,

δJ [g; a] = −

∫

M

δ2φ[g; f − g, a]P (f)dM.(42)

For fixed a, δ2φ[g; ·, a] is a bounded linear functional in the second argument, so
the integration and the functional can be interchanged in (42), which becomes

δJ [g; a] = −δ2φ

[

g;

∫

M

(f − g)P (f)dM, a

]

.

Using the functional optimality conditions (stated in Appendix A), J [g] has an
extremum for g = ĝ if

(43) δ2φ

[

ĝ;

∫

M

(f − ĝ)P (f)dM, a

]

= 0.

Set a =
∫

M (f − ĝ)P (f)dM in (43) and use the assumption that the quadratic

functional δ2φ[g; a, a] is strongly positive, which implies that the above functional
can be zero if and only if a = 0, that is,

0 =

∫

M

(f − ĝ)P (f)dM,(44)

ĝ = EPf
[F ],(45)
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where the last line holds if the expectation exists (i.e. if the measure is well-defined
and the expectation is finite). Because a Bregman divergence is not necessarily
convex in its second argument, it is not yet established that the above unique
extremum is a minimum. To see that (45) is in fact a minimum of J [g], from the
functional optimality conditions it is enough to show that δ2J [ĝ; a, a] is strongly
positive. To show this, for b ∈ A, consider

δJ [g + b; a]− δJ [g; a]

(c)
= −

∫

M

(

δ2φ[g + b; f − g − b, a]

− δ2φ[g; f − g, a]
)

P (f)dM

(d)
= −

∫

M

(

δ2φ[g + b; f − g − b, a] − δ2φ[g; f − g − b, a]

+ δ2φ[g; f − g − b, a] − δ2φ[g; f − g, a]
)

P (f)dM

(e)
= −

∫

M

(

δ3φ[g; f − g − b, a, b] + ǫ[g, a, b] ‖b‖L1(ν)

+ δ2φ[g; f − g, a] − δ2φ[g; b, a]

− δ2φ[g; f − g, a]
)

P (f)dM

(f)
= −

∫

M

(

δ3φ[g; f − g, a, b]− δ3φ[g; b, a, b]

+ ǫ[g, a, b] ‖b‖L1(ν) − δ2φ[g; b, a]
)

P (f)dM,(46)

where (c) follows from using integral (42); (d) from subtracting and adding δ2φ[g; f−
g−b, a]; (e) from the fact that the variation of the second variation of φ is the third
variation of φ [25]; and (f) from the linearity of the first term and cancellation of
the third and fifth terms. Note that in (46) for fixed a, the term δ3φ[g; b, a, b] is of

order ‖b‖2
L1(ν), while the first and the last terms are of order ‖b‖L1(ν). Therefore,

lim
‖b‖L1(ν)→0

∥

∥δJ [g + b; a] − δJ [g; a] − δ2J [g; a, b]
∥

∥

L1(ν)

‖b‖L1(ν)

= 0,

where

δ2J [g; a, b] = −

∫

M

δ3φ[g; f − g, a, b]P (f)dM

+

∫

M

δ2φ[g; a, b]P (f)dM.(47)
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Substitute b = a, g = ĝ and interchange integration and the continuous functional
δ3φ in the first integral of (47), then

δ2J [ĝ; a, a] = −δ3φ

[

ĝ;

∫

M

(f − ĝ)P (f)dM, a, a

]

+

∫

M

δ2φ[ĝ; a, a]P (f)dM

=

∫

M

δ2φ[ĝ; a, a]P (f)dM(48)

≥

∫

M

k ‖a‖2
L1(ν) P (f)dM

= k ‖a‖2
L1(ν) > 0,(49)

where (48) follows from (44), and (49) follows from the strong positivity of δ2φ[ĝ; a, a].
Therefore, from (49) and the functional optimality conditions, ĝ is the minimum.

5.4. Derivation of the Bayesian Distribution-based Uniform Estimate Re-

stricted to a Uniform Minimizer. Let f(x) = 1/a for all 0 ≤ x ≤ a and
g(x) = 1/b for all 0 ≤ x ≤ b. Assume at first that b > a; then the total squared
difference between f and g is

∫

x

(f(x) − g(x))2dx = a

(

1

a
−

1

b

)2

+ (b− a)

(

1

b

)2

=
b− a

ab

=
|b− a|

ab
,

where the last line does not require the assumption that b > a.
In this case, the integral (13) is over the one-dimensional manifold of uniform

distributions U ; a Riemannian metric can be formed by using the differential arc
element to convert Lebesgue measure on the set U to a measure on the set of
parameters a such that (13) is re-formulated in terms of the parameters for ease of
calculation:

(50) b∗ = arg min
b∈R+

∫ ∞

a=Xmax

|b− a|

ab

1

an

∥

∥

∥

∥

df

da

∥

∥

∥

∥

2

da,

where an is the likelihood of the n data points being drawn from a uniform distri-
bution [0, a], and the estimated distribution is uniform on [0, b∗]. The differential

arc element
∥

∥

∥

df
da

∥

∥

∥

2
can be calculated by expanding df/da in terms of the Haar or-

thonormal basis { 1√
a
, φjk(x)}, which forms a complete orthonormal basis for the

interval 0 ≤ x ≤ a, and then the required norm is equivalent to the norm of the
basis coefficients of the orthonormal expansion:

(51)

∥

∥

∥

∥

df

da

∥

∥

∥

∥

2

=
1

a3/2
.

For estimation problems, the measure determined by the Fisher information
metric may be more appropriate than Lebesgue measure [21–23]. Then

(52) dM = |I(a)|
1
2 da,
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where I is the Fisher information matrix. For the one-dimensional manifold M
formed by the set of scaled uniform distributions U , the Fisher information matrix
is

I(a) = EX

[

(

d log 1
a

da

)2
]

=

∫ a

0

1

a2

1

a
dx =

1

a2
,

so that the differential element is dM = da
a .

We solve (13) using the Lebesgue measure (51); the solution with the Fisher
differential element follows the same logic. Then (50) is equivalent to

arg min
b
J(b) =

∫ ∞

a=Xmax

|b− a|

ab

1

an+3/2
da

=

∫ b

a=Xmax

b− a

ab

da

an+3/2
+

∫ ∞

b

a− b

ab

da

an+3/2

=
2

(n+ 1/2)(n+ 3/2)bn+3/2
−

1

b(n+ 1
2 )X

n+ 1
2

max

+
1

(n+ 3/2)X
n+3/2
max

.

The minimum is found by setting the first derivative to zero:

J ′(b̂) =
2

(n+ 1/2)(n+ 3/2)

(n+ 3/2)

b̂n+5/2

+
1

b̂2(n+ 1/2)X
n+1/2
max

= 0

⇒ b̂ = 2
1

n+1/2Xmax.

To establish that b̂ is in fact a minimum, note that

J ′′(b̂) =
1

b̂X
n+1/2
max

=
1

2
3

n+1/6X
n+7/2
max

> 0.

Thus, the restricted Bayesian estimate is the uniform distribution over [0, 2
1

n+1/2Xmax].
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