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Abstract

Variable-to-variable codes are very attractive yet not well understood data com-
pression schemes. In 1972 Khodak claimed to provide upper and lower bounds for the
achievable redundancy rate, however, he did not offer explicit construction of such codes.
In this paper, we first present a constructive and transparent proof of Khodak’s result
showing that for memoryless sources there exists a code with the average redundancy
bounded by D−5/3, where D is the average delay (e.g., the average length of a dictionary
entry). We also describe an algorithm that constructs a variable-to-variable length code
with a small redundancy rate for large D. Then, we discuss several generalizations. We
prove that the worst case redundancy does not exceed D−4/3. Furthermore we provide
similar upper bounds for Markov sources (of order 1). Finally, we consider bounds that
are valid for almost all memoryless and Markov sources for which the set of exceptional
source parameters has zero measure. In particular, for all memoryless sources outside
this exceptional class, we prove there exists a variable-to-variable code with the average
redundancy rate bounded by D−4/3−m/3+ε and the worst case redundancy rate bounded
by D−1−m/3+ε, where m is the cardinality of the alphabet. We complete our analysis
with a lower bound showing that for all variable-to-variable codes the average and the
worst case redundancy rates are at least D−2m−1−ε for almost all memoryless sources
in the sense that the set of exceptional source parameters has zero measure. We prove
these results using techniques of Diophantine approximations.

Index Terms: Variable-to-variable length codes, average and maximal redundancy rates,

metric Diophantine approximations.
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1 Introduction

A variable-to-variable (VV) length code partitions a source sequence into variable length

phrases that are encoded into strings of variable lengths. While it is well known that

every VV (prefix) code is a concatenation of a variable-to-fixed length code (e.g., Tunstall

code) and a fixed-to-variable length encoding (e.g., Huffman code), an optimal VV code

has not yet been found. Fabris [9] proved that greedy, step by step, optimization (that is,

a concatenation of Tunstall and Huffman codes) does not lead to an optimal VV code. In

order to assess performance of VV codes, one needs to evaluate (at least asymptotically)

the redundancy rate of (optimal) VV codes, which is still unknown. By redundancy rate

we mean the excess of the code length over the optimal code length per source symbol.

Our goal is to shed some light on the (average and maximal) redundancy rates of VV

codes by re-examining and expanding a thirty year old paper by Khodak [14], who in 1972

claimed to provide upper and lower bounds for the achievable redundancy rate of VV length

codes. However, Khodak did not offer explicit VV length codes that satisfy these bounds.

Here, we present a transparent (and simplified) proof, generalize Khodak’s results (i.g.,

we analyze maximal redundancy, Markov sources of order 1, typical sources in the sense

that the exceptional set in the parameter space has zero measure), and describe an explicit

algorithm that constructs a VV code with redundancy rates decaying to zero as the average

delay increases.

Let us first briefly describe a VV encoder. A VV encoder has two components, a parser

and a string encoder. The parser partitions the source sequence x into phrases x1, x2, . . .

from a predetermined dictionary C. We shall write d or di for a dictionary entry, and by

D we denote the average dictionary (phrase) length also known as the average delay. A

convenient way of representing the dictionary C is by a complete tree that we shall call the

parsing tree. Next, the string encoder in a VV scheme maps each dictionary phrase into its

corresponding binary codeword C(d) of length |C(d)| = `(d). Throughout this paper, we

assume that the string encoder is a slightly modified Shannon code1 and we concentrate on

building a parsing tree for which log P (d) (d ∈ C) is close to an integer. This allows us to

construct a VV code with redundancy rates (per symbol) approaching zero as the average

delay increases.

More precisely, for large delay D we shall show in Theorem 1 that there exist VV codes

such that for memoryless sources the average redundancy rates decay as D−5/3. This result

basically belongs to Khodak [14], except we present here a transparent proof and an easily

constructible VV code. Next, we extend this result in several directions. First, we show

that for such codes the worst case redundancy rates decay as D−4/3. Similar bounds hold

also for Markov sources. More importantly, we study new bounds for almost all memoryless

and Markov sources, that is, we prove bounds that hold for all possible source parameters

with an exception of a set that has zero measure in the parameter space.2 In particular, we

1A variant of Shannon code that is used here assigns to d ∈ C a binary word of length `(d) close to

− log P (d) when log P (d) is slightly larger or smaller than an integer. Naturally, Kraft’s inequality will not

be automatically satisfied but this is handled in Lemma 6 when proving Theorem 1.
2For example, if we consider memoryless sources with parameters p1, p1, . . . , pm, then the term “almost
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show that for almost all memoryless sources there exists a VV code such that its average

redundancy rate is bounded by D−4/3−m/3+ε and the worst case redundancy by D−1−m/3+ε,

where m is the alphabet size. We conclude our analysis with a lower bound showing that

for all VV codes and for almost all memoryless sources the average and the worst case

redundancy rates are at least D−2m−1−ε. The latter result seems to contradict one of the

lower bounds proposed by Khodak.

The results of this paper should be compared to redundancy rates of fixed-to-variable

(FV) code lengths (e.g., Shannon and Huffman codes) and variable-to-fixed code lengths

(e.g., Tunstall codes). Abrahams [1] discusses literature on fixed-to-variable length codes.

For a memoryless source, [21] provides an asymptotic analysis of the Huffman and other

codes for fixed length blocks of source symbols. While it has been known since Shannon that

the redundancy rate (per symbol) for such codes is O(1/D) (in this case D is fixed and equal

to the block length), in [21] it is shown that the average redundancy rate either converges

to a c/D for some constant c (e.g., 0.5/D in the case of the Shannon code) or it exhibits

very erratic behavior fluctuating between 0 and 1/D. For variable-to-fixed codes Savari and

Gallager [17] present precise analysis of the dominant term in the asymptotic expansion of

the Tunstall code redundancy. Basically, it was shown that the average redundancy rate

decays as O(1/D) (cf. [8] for some recent results). From this brief discussion, we conclude

that while FV and VF codes waste a fraction of a bit per source symbol, we construct a

VV code that loses a negligible information per symbol.

There is scarcely any literature on VV codes with a few exceptions such as [9, 10, 14, 18].

The most interesting, as already mentioned, is a thirty year old work by Khodak [14]. To the

best of our knowledge not much was done since then, except that Fabris [9] (cf. also [10, 18])

analyzed Tunstall–Huffman VV code and provided a simple bound on their redundancy rate.

Finally, we say a word about our proof techniques. The main tool is the Diophantine

approximation [5, 19]. This theory shows how to find a good approximation of linear forms

like k1γ1 + · · ·+ kmγm by rationals where ki are integers and γi are irrational numbers. In

the present context we have to construct a parsing tree for which log P (d) is close to an

integer. Here log P (d) is of the form k1 log p1 + · · · + km log pm. Therefore it is natural to

apply techniques from Diophantine approximation. Since p1 + ... + pm = 1, the coefficients

log p1, ..., log pm in the linear form are not independent and our almost sure results require

non-trivial results on metric Diophantine approximation on manifolds.

The paper is organized as follows. In the next section, we first briefly discuss precise

definitions of the average and the worst case redundancy rates for VV codes, followed by the

presentation of our main results. We first consider redundancy rates for all (memoryless or

Markov) sources (cf. Theorem 1) and then for almost all (memoryless or Markov) sources

(cf. Theorem 2). To underline our constructive approach, we also briefly describe an

algorithm that builds a VV code with vanishing redundancy rates as the average phrase

all sources” means that the set of (p1, p1, . . . , pm) ∈ R
m with pj > 0 and p1 + · · · + pm = 1 for which our

statement does not hold has zero Lebesgue measure on the (m−1)-dimensional hyperplane x1+· · ·+xm = 1.

The statement “almost all Markov sources” has to be interpreted in a similar way. Here we use the Lebesgue

measure on the corresponding parameter space of the transition probabilities pij .
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length increases. We finish this section with a lower bound on redundancy rates valid for all

VV codes and almost all sources (cf. Theorem 3) and an extension of our results to Markov

sources (cf. Theorem 4). The next two sections, Sections 3 and 4, are devoted to the proofs

of Lemma 3 and Lemma 4 which are the main ingredients for the proofs of Theorem 1 and

Theorem 2. Finally, in the last Section 5 we prove Theorem 4 for Markov sources.

2 Main Results and Their Consequences

In this section we first define the average and the maximal redundancy rates for VV length

codes. Then we present our main results valid for all sources (cf. Theorem 1) on the

average and the maximal redundancy rates. We also propose an explicit algorithm that

constructs a VV code with small redundancy rates. Almost all sources are discussed next

(cf. Theorem 2). Finally, we present some lower bounds for the redundancy (cf. Theorem 3)

and extend our results to Markov sources (cf. Theorem 4).

2.1 Redundancy Rates for VV Codes

Let us first formally introduce redundancy rates for VV codes by defining (asymptotic)

average redundancy rate and maximal or worst case (i.e., for individual sequences) redun-

dancy rate. To the best of our knowledge the worst case redundancy was not discussed

before for VV codes.

Let A = {a1, . . . , am} be the input alphabet of m ≥ 2 symbols with known probabilities

p1, . . . , pm. A memoryless source S generates a sequence X with the underlying probability

PS . We denote by P (d) := PC(d) the probability induced by the dictionary C and define

the average delay or the average phrase length D as

D =
∑

d∈C

PC(d)|d|, (1)

where |d| is the length of d ∈ C. The (asymptotic) average redundancy rate r is usually

defined as

r = lim
n→∞

∑

|x|=n PS(x)(L(x) + log PS(x))

n
, (2)

where L(x) is the code length assigned to the source sequence x of length |x| = n. We shall

call r the average redundancy rate. Using renewal reward theory as in [18] we arrive at

lim
n→∞

∑

x:|x|=n PS(x)L(x)

n
=

∑

d∈C PC(d)`(d)

D
. (3)

An application of the Conservation of Entropy Theorem [15, 16, 20], as in [18], leads to

r =

∑

d∈C PC(d)`(d) −HC

D
=

∑

d∈C PC(d)(`(d) + log P (d))

D
, (4)
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which we adopt as our definition of the average redundancy rate.3 Above, HC denotes

the entropy of PC . Furthermore, since we mostly deal with the probability induced by the

dictionary, so we shall write P = PC .

Observe that (4) decomposes the redundancy rate of the VV length code into two terms.

The denominator represents the expected length of a dictionary phrase and the numerator

is the redundancy of a fixed-to-variable length code over an auxiliary source with “symbol”

probabilities P . Therefore, by analogy we define the maximal redundancy rate r∗ as follows

r∗ =
maxd∈C [`(d) + log P (d)]

D
. (6)

The main purpose of this work is to construct a (complete) prefix free set (dictionary)

C (i.e., a complete tree) on the input alphabet A and a bijective mapping C (a VV code)

to another prefix free set on the binary alphabet {0, 1} with small average and maximal

redundancy rates that decay to zero as the average delay increases.

2.2 Redundancy Rates for All Sources

We now start constructing a VV code with small redundancy rates. We recall that a VV

coder consists of a parser and a string encoder. We fix throughout the string encoder to be

a slightly modified Shannon code that assigns to a dictionary word d ∈ C the code length

that is close to − log d. Our goal is to build a dictionary (i.e., a complete parsing tree) that

achieves this objective.

For every d ∈ C we can represent P (d) as P (d) = pk1

1 · · · p
km
m , where ki = ki(d) is

the number of times symbol ai appears in d. In what follows we will also use the notation

type(d) = (k1, k2, . . . , km) for all strings with this probability. The numerator of the average

redundancy rate for the Shannon code is

R =
∑

d∈C

P (d)[d− log P (d)e+ log P (d)]

=
∑

d∈C

P (d) · 〈k1(d)γ1 + k2(d)γ2 + · · ·+ km(d)γm〉

where γi = log pi and 〈x〉 = x − bxc is the fractional part of x. We are to find integers

k1 = k1(d), . . . km = km(d) such that the linear form k1γ1 + k2γ2 + · · · + kmγm is close to

an integer. Actually, we will do a little better by not using exactly the Shannon code with

`(d) = d− log P (d)e but a variant of it in which `(d) is the closest integer to − log P (d).

Nevertheless, we will need some properties, discussed below, of the distribution of 〈k1γ1 +

k2γ2 + · · · + kmγm〉 when at least one of γi is irrational. We first need to introduce the

notion of dispersion and recall some properties of continued fractions.

3Observe that in (4) we ignore the rate of convergence in (3) since the redundancy rate (2) is explicitly

defined as a limit.
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Continued Fraction. A finite continued fraction expansion is a rational number of the

form (cf. [2])

c0 +
1

c1 + 1
c2+

1

c3+

...+ 1
cn

,

where c0 is an integer and cj are positive integers for j ≥ 1. We denote this rational number

as [c0, c1, . . . , cn]. With help of the Euclidean algorithm, it is easy to see that every rational

number has a finite continued fraction expansion.4 Furthermore, if cj is a given sequence

of integers (that are positive for j > 0), then the limit θ = limn→∞[c0, c1, . . . , cn] exists and

is denoted by the infinite continued fraction expansion θ = [c0, c1, c2 . . .]. Conversely, if θ is

a real irrational number and if we recursively set

θ0 = θ, cj = bθjc, θj+1 = 1/(θj − cj),

then θ = [c0, c1, c2 . . .]. In particular, every irrational number has a unique infinite continued

fraction expansion.

The convergents of an irrational number θ with infinite continued fraction expansion

θ = [c0, c1, c2 . . .] are defined as

pn

qn
= [c0, c1, . . . , cn],

where integers pn, qn are coprime. These integers can be recursively determined by

pn = cnpn−1 + pn−2, qn = cnqn−1 + qn−2.

In particular, pn and qn are growing exponentially quickly. Furthermore, the convergents
pn

qn
are the best rational approximations of θ in the sense that

|qnθ − pn| < min
0<q<qn, p∈Z

|qθ − p|.

In particular one has [5]
∣

∣

∣

∣

θ −
pn

qn

∣

∣

∣

∣

<
1

q2
n

. (7)

The denominators qn are called best approximation denominators.

Dispersion. Let ‖x‖ = min(〈x〉, 〈−x〉) = min(〈x〉, 1− 〈x〉) be the distance to the nearest

integer. The dispersion δ(X) of the set X ⊆ [0, 1) is defined as

δ(X) = sup
0≤y<1

inf
x∈X
‖y − x‖,

that is, for every y ∈ [0, 1) there exists x ∈ X with ‖y−x‖ ≤ δ(X). Since ‖y+1‖ = ‖y‖, the

same assertion holds for all real y. Dispersion tells us that points of X are at most 2δ(X)

apart in [0, 1]. Therefore, there exist distinct points x1, x2 ∈ X with 〈y − x1〉 ≤ 2δ(X) and

〈y − x2〉 ≤ 2δ(X).

The following property will be used throughout this paper.

4This finite continued fraction expansion is unique if we assume that cn > 1. There is only one alternative

representation given by [c0, c1, . . . , cn − 1, 1].
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Lemma 1. Suppose that θ is an irrational number and let N = qn be a best approximation

denominator (i.e., pn/qn = [c0, c1, . . . , cn] is a convergent of the continued fraction expansion

of θ = [c0, c1, c2, . . .]). Then

δ ({〈kθ〉 : 0 ≤ k < N}) ≤
2

N
.

Proof. For N = qn we find from (7)

∣

∣

∣

∣

θ −
pn

qn

∣

∣

∣

∣

<
1

q2
n

or

θ =
pn

qn
+

η

q2
n

for some |η| < 1. Consequently the numbers 〈kθ〉 (0 ≤ k < N = qn) are quite close

to the numbers 0, 1/N, 2/N, . . . , (N − 1)/N , in particular, for every k < N there exists

l = kpn mod N < N with ‖kθ − l/N‖ < (N − 1)/N 2 < 1/N . Since pn and N = qn are

coprime it also follows that for every l < N there exists k < N with ‖kθ − l/N‖ < 1/N .

Consequently, if y in an arbitrary number in [0, 1) then there exists l < N with < 1/(2N)

and another number kθ with k < N and < 1/N . Thus

‖y − kθ‖ ≤ ‖y − l/N‖+ ‖kθ − l/N‖ <
2

N
.

In conclusion, the dispersion of the set {〈kθ〉 : 0 ≤ k < N} is bounded by 2/N .

Remark. The proof of Lemma 1 shows that we can work with every N that satisfies

∣

∣

∣

∣

θ −
M

N

∣

∣

∣

∣

<
1

N2
(8)

for some integer M . It is well known that Dirichlet’s approximation theorem (cf. [2, 5])

ensures the existence of infinitely many N for which (8) is satisfied. (A simple but non-

constructive proof uses the pigeonhole principle.) The advantage of continued fraction

theory is that the convergent pn/qn, satisfies (8) and it can be effectively computed.

The first consequence of Lemma 1 is the following property.

Lemma 2. Let (γ1, . . . , γm) be an m-vector of real numbers such that at least one of its

coordinates is irrational. Let N be the best approximation denominator of the irrational

number. Then the dispersion of the set

X = {〈k1γ + · · ·+ kmγ〉 : 0 ≤ kj < N (1 ≤ j ≤ m)}

is bounded by

δ(X) ≤
2

N
.
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Existence of a VV Code. The central step of all existence results of this paper is the

observation that a bound on the dispersion of linear forms of log2 pj implies the existence

of a VV code with small redundancy.

Our main result of this section follows directly from the below lemma whose proof is

presented in Section 3.

Lemma 3. Let pj > 0 (1 ≤ j ≤ m) with p1 + · · · + pm = 1 be given and suppose that for

some N ≥ 1 and η ≥ 1 the set

X = {〈k′
1 log2 p1 + · · · + k′

m log2 pm〉 : 0 ≤ k′
j < N (1 ≤ j ≤ m)},

has dispersion

δ(X) ≤
2

Nη
. (9)

Then there exists a VV code with the average code length D = Θ(N 3), the maximal length

of order Θ(N 3 log N), and the average redundancy rate

r ≤ c′m ·D
− 4+η

3 .

Furthermore, there exists another VV code with the average code length D = Θ(N 3) (and

possible infinite maximal length) and the maximal redundancy rate

r∗ ≤ c′′m ·D
−1− η

3 ,

where the constants c′m, c′′m > 0 depend on m.

Clearly, Lemma 2 and Lemma 3 directly imply our main result presented below by set-

ting η = 1 if one of the log2 pj is irrational. (If all log2 pj are rational, then the construction

presented in section 3 is much simpler; see the Remark at the end of section 3).

Theorem 1. Let m ≥ 2 and S be a memoryless source on an alphabet of size m. Then

for every D0 ≥ 1, there exists a VV code with average delay D ≥ D0 such that its average

redundancy rate satisfies

r = O(D−5/3), (10)

and the average code length is O(D log D). Furthermore, there also exists a VV code with

average delay D ≥ D0 such that worst case redundancy rate satisfies

r∗ = O(D−4/3), (11)

however, maximal code length might be infinite.

The estimate (10) for r is the same as in Khodak [14]. However, the proof presented in

[14] is rather sketchy and complicated. Our method uses similar ideas as that of [14] but is

more transparent and leads to an explicit construction of a VV code with small redundancy

rates that we discuss next.
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2.3 Algorithm

In what follows we present an algorithm for designing a VV-code with arbitrarily large aver-

age dictionary length D; given a memoryless source with probability distribution p1, . . . , pm >

0 on alphabet a1, . . . , am, the algorithm achieves redundancy rate smaller than cD−4/3. In

fact, we construct a code with redundancy r ≤ ε/D, where ε > 0 is given and D ≥ c/ε3 (for

some constant c). Note that we will not use the full strength of Theorem 1 that guarantees

the existence of a code with the average redundancy smaller than cD−5/3. This allows, how-

ever, some simplification of the algorithm, in particular we just use the (standard) Shannon

code.

We will also make the assumption that all pj are given rational numbers. (Otherwise we

would have to assume that pj is known to an arbitrary precision.) We then know that log2 pj

is either irrational or an integer (which means that pj = 2−k). Thus, we can immediately

decide whether all log2 pj are rational or not. If all pj are negative powers of 2, then we

can use a perfect code with zero redundancy. Thus, we only have to treat the case where

pm is not a negative powers of 2. We also assume that continued fraction expansion of

log2 pm = [c0, c1, c2, . . .] is given and one determines a convergent [c0, c1, c2, . . . , cn] = M/N

for which the denominator N satisfies N > 4/ε.

The main goal of the algorithms is to construct a prefix free set of words d with the

property that for most words 〈log2 P (d)〉 is small. The reason for this philosophy is that

if one uses the Shannon code as the string encoder, that is `(d) = d− log2 P (d)e, then the

difference `(d) − log(1/P (d)) = 〈log2 P (d)〉 is small and gives only a small contribution to

the redundancy.

The main step of the algorithm is a loop of the same subroutine, The input is a pair

C, B of sets of words with the property that C ∪ B is a prefix free set. Words d in C are

already good in the sense that 〈log2 P (d)〉 ≤ 3
4ε, whereas words r in B are bad because they

do not satisfy this condition. In the first step of the subroutine, one chooses a word r ∈ B

of minimal length and computes an integer k with 0 ≤ k < N that satisfies

1

N
≤ 〈kM/N + x + log2 P (r)〉 ≤

2

N
.

Here x is an abbreviation of x =
∑m

j=1 k0
j log2 pj, where k0

j = bpjN
2c, 1 ≤ j ≤ m. The

computation of k can be done by solving the congruence kM ≡ 1−b(x+log2 P (r))Nc mod N

(e.g., with help of the Euclidean algorithm). This choice of k ensures that

0 ≤ 〈k log2 pm + x + log2 P (r)〉 ≤ 3/N ≤
3

4
ε.

For this k we determine the set C ′ of all words d of type(d) = (k0
1 , . . . , k

0
m−1, k

0
m + k). By

construction all d′ ∈ C′ satisfy

〈log2 P (r · d′)〉 = 〈k log2 pm + x + log2 P (r)〉 ≤
3

4
ε.

We now replace C by C ∪ r · C ′ and B by (B \ {r}) ∪ r · (An \ C′). This construction ensures

that (again) all word in d ∈ C satisfy

〈log2 P (d)〉 ≤
3

4
ε.
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The algorithm terminates when P (C) > 1 − ε/4; that is, most words in C ∪ B are good.

(The proof of Theorem 1 shows that this actually occurs when the average dictionary length

D is of order O(N 3). In particular, the special choice of integers k0
j = bpjN

2c ensures that

the probability P (C) increases step by step as quickly as possible, compare with (23).)

As already mentioned, we finally use the Shannon code C : C ∪ B → {0, 1}∗, that is

`(d) = d− log2 P (d)e for all d ∈ C ∪ B. The redundancy can be estimated by

r =
1

D

∑

d∈C∪B

P (d)

(

`(d) − log2
1

P (d)

)

=
1

D

∑

d∈C∪B

P (d) 〈log2 P (d)〉

=
1

D

(

∑

d∈C

P (d)〈log2 P (d)〉+
∑

d∈B

P (d)〈log2 P (d)〉

)

≤
1

D

(

P (C)
3

4
ε + P (B)

)

≤
1

D

(

3

4
ε +

1

4
ε

)

=
ε

D
.

Thus we have constructed a parsing tree and a VV code with a small redundancy rate. A

more formal description of the algorithm follows.

Algorithm KhodCode:

Input: (i) m, an integer ≥ 2; (ii) positive rational numbers p1, . . . , pm with p1+· · ·+pm = 1,

pm is not a power of 2; (iii) ε, a positive real number < 1.

Output: A VV-code, that is, a complete prefix free set on an m-ary alphabet and a prefix

code C : C → {0, 1}∗, with redundancy r ≤ ε/D, where the average dictionary code length

D satisfies D ≥ c(m, p1, . . . , pm)/ε3 (for some constant c(m, p1, . . . , pm)).

Notation: For a word w ∈ A∗ that consists of kj copies of aj (1 ≤ j ≤ m) we set

P (w) = pk1

1 · · · p
km
m for the probability of w and type(w) = (k1, . . . , km). By ω we denote

the empty word and set P (ω) = 1.

1. Calculate the convergent M
N = [c0, c1, . . . , cn] of the irrational number log2 pm for

which N > 4/ε (cf. the continued fraction expansions discussed in the previous

subsection).

2. Set k0
j = bpjN

2c (1 ≤ j ≤ m), x =
∑m

j=1 k0
j log2 pj, and n0 =

∑m
j=1 k0

j .

3. Set C = ∅, B = {ω}, and p = 0

while p < 1− ε/4 do

Choose r ∈ B of minimal length

b← log2 P (r)

Find 0 ≤ k < N that solves the congruence kM ≡ 1− b(x + b)Nc mod N

10



n← n0 + k

C′ ← {d ∈ An : type(d) = (k0
1 , . . . , k

0
m−1, k

0
m + k)}

C ← C ∪ r · C′

B ← (B \ {r}) ∪ r · (An \ C′)

p← p + P (r)P (C ′), where

P (C′) =
n!

k0
1 ! · · · k

0
m−1!(k

0
m + k)!

p
k0
1

1 · · · p
k0

m−1

m−1 pk0
m+k

m .

end while.

4. C ← C ∪ B.

5. Construct a Shannon code C : C → {0, 1}∗ with `(d) = d− log2 P (d)e for all d ∈ C.

Let us consider an example.

Example. Assume m = 2 with p1 = 2/3 and p2 = 1/3. In the first iteration of the

algorithm we assume that both B and C are empty. Easy computations show that

log(1/3) = [−2, 2, 2, 2, 3, . . .], and [−2, 2, 2, 2] = −
19

12
,

hence M = −19 and N = 12. Let us set ε = 0.4 so 4/ε = 10 < 12 = N . Therefore, k0
1 = 96,

k0
2 = 48 so that n0 = 144 = N 2. Solving the congruence

−19k = 1 + 1587 mod 12

gives k = 8 and therefore

C′ = {d ∈ A152 : type(d) = (96, 56)}

with P (C′) = 0.04425103411. Observe that B = A152 \ C.

In the second iteration we can pick up any string from B, say the string r = 00 . . . 0

with 152 zeros. We find, solving the congruence with b = 152 log2(2/3) = −88.91430011,

that k = 5. Hence C ′ = {d ∈ A149 : type(d) = (96, 53)} and C = {d ∈ A152 : type(d) =

(96, 56)} ∪ r · C ′. We continue along the same path until the total probability of all “good”

strings in C reaches the value 3/4 · ε = 0.3, which may take some time.

2.4 Redundancy Rates for Almost All Memoryless Sources

In this section we present better estimates for the redundancy rates but valid only for

almost all memoryless sources. This means that the set of exceptional pj (i.e., those pj with
∑m

j=1 pj = 1 and pj > 0 for all 1 ≤ j ≤ m that do not satisfy the proposed property) has

zero Lebesgue measure on the (m− 1)-dimensional hyperplane x1 + · · · + xm = 1. From a

mathematical point of view, these results are more challenging.

While Lemma 1 and 2 laid foundation for Theorem 1, the next lemma, which we prove

in Section 4, is crucial for our main result of this section.
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Lemma 4. Suppose that ε > 0. Then for almost all pj (1 ≤ j ≤ m) with pj > 0 and

p1 + p2 + · · ·+ pm = 1 the set

X = {〈k1 log2 p1 + · · ·+ km log2 pm〉 : 0 ≤ kj < N (1 ≤ j ≤ m)}

has dispersion

δ(X) ≤
1

Nm−ε
(12)

for sufficiently large N . In addition, for almost all pj > 0 there exists a constant C > 0

such that

‖k1 log2 p1 + · · ·+ km log2 pm‖ ≥ C

(

max
1≤j≤m

|kj |

)−m−ε

(13)

for all non-zero integer vectors (k1, . . . , km).

We should point out that for m = 2 we shall slightly improve the estimate of the lemma.

Indeed, we shall show that for almost all p1 > 0, p2 > 0 with p1 + p2 = 1 there exists a con-

stant κ and infinitely many N such that the set X = {〈k1 log2 p1 + k2 log2 p2〉 : 0 ≤ k1, k2 < N}

has dispersion

δ(X) ≤
κ

N2
. (14)

The estimate (14) is a little bit sharper than (12). However, it is only valid for infinitely

many N and not for all but finitely many.5

By combining Lemma 3 and Lemma 4 we directly obtain our second main result valid

for almost all sources.

Theorem 2. Let m ≥ 2 and S be a memoryless source on an alphabet of size m. Then

for almost all source parameters, and for every sufficiently large D0, there exists a VV code

with the average delay D satisfying D0 ≤ D ≤ 2D0 such that its average redundancy rate is

bounded by

r ≤ D− 4

3
−m

3
+ε, (15)

where ε > 0 and maximal length is O(D log D).

Also, there exists a VV code with the average delay D satisfying D0 ≤ D ≤ 2D0 such that

maximal redundancy is bounded by

r∗ ≤ D−1−m
3

+ε. (16)

for any ε > 0.

This theorem shows that the typical best possible average redundancy r can be mea-

sured in terms of negative powers of D that are linearly decreasing in the alphabet size m.

However, it seems to be a very difficult problem to obtain the optimal exponent (almost

surely). Nevertheless, these bounds are best possible through the methods we applied.

5We point out that (12) and (14) are optimal. Since the set X consists of Nm points the dispersion must

satisfy δ(X) ≥ 1

2
N−m.
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2.5 Lower Bound for Almost All Sources

We now present a lower bound for redundancy rates which is valid for almost all sources.

It will follow from (13) of Lemma 4 and the following simple lower bound (cf. Corollary 1

in [14]).

Lemma 5. Let C be a finite set with probability distribution P . Then

r ≥
1

2

1

D

∑

d∈D

P (d)‖ log2 P (d)‖2.

Proof. Suppose that |x| ≤ 1. Then we have 2−x = 1 − x log 2 + η(x) with ((log 4)/4)x2 ≤

η(x) ≤ (log 4)x2. Thus, by using the representation

x = (1− 2−x + η(x))/(log 2)

we obtain

r =
1

D

∑

d∈D

P (d)(`(d) + log2 P (d))

=
1

D log 2

∑

d∈D

P (d)
(

1− 2−`(d)−log2 P (d) + η(`(d) + log2 P (d))
)

=
1

D log 2

(

1−
∑

d∈D

2−`(d)

)

+
1

D log 2

∑

d∈D

P (d)η(`(d) + log2 P (d)).

Hence, by Kraft’s inequality and by the observation

η(x) ≥ min {η(〈x〉), η(〈1 − x〉)} ≥
log 4

4
‖x‖2

the result follows immediately.

We are now in a position to present our finding regarding a lower bound on the redun-

dancy rates for almost all sources.

Theorem 3. Let S be a memoryless source on an alphabet of size m ≥ 2. Then for almost

all source parameters, and for every VV code with average delay D ≥ D0 (where D0 is

sufficiently large) we have

r∗ ≥ r ≥ D−2m−1−ε, (17)

where ε > 0.

Proof. By Lemma 5 we have

r ≥
1

2D

∑

d∈D

P (d)‖ log2 P (d)‖2.

Suppose that P (d) = pk1

1 · · · p
km
m holds, that is

log2 P (d) = k1 log2 p1 + · · ·+ km log2 pm.
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By Lemma 4, we conclude from (13) that for all pj and for all non-zero integer vectors

(k1, . . . , km)

‖k1 log2 p1 + · · ·+ km log2 pm‖ ≥ C

(

max
1≤j≤m

|kj |

)−m−ε

,

and therefore

‖ log2 P (d)‖ ≥

(

max
1≤j≤m

|kj |

)−m−ε

≥





∑

1≤j≤m

kj





−m−ε

= |d|−m−ε.

Consequently, by Jensen’s inequality, we obtain

r ≥
1

2D

∑

d∈D

P (d)|d|−2m−2ε

≥
1

2D

(

∑

d∈D

P (d)|d|

)−2m−2ε

≥ D−2m−1−2ε.

This completes the proof of Theorem 3.

Note that Theorem 4 of [14] states a lower bound for the redundancy rate in the form

r ≥ D−9(log D)−8 (for almost all memoryless sources). In view of Theorem 2 this cannot

be true for large m.

2.6 Markov sources

Finally, we state corresponding properties for Markov sources. The proof is almost the same

as for memoryless sources except that it is technically more challenging. In section 5 we

shortly comment on the differences.

Theorem 4. Let m ≥ 2 and S be a Markov source of order 1 on an alphabet of size m with

transition matrix P = (pij)1≤i,j≤m with pij > 0 (1 ≤ i, j ≤ m). Furthermore let D0 > 1 be

an arbitrary real number.

(i) Then there exists a VV code with average delay D ≥ D0 such that its average redundancy

rate satisfies

r = O(D−m+4

m+2 ), (18)

and maximal length is O(D log D). There also exists a VV code with average delay D ≥ D0

for which worst case redundancy rate satisfies

r∗ = O(D−m+3

m+2 ), (19)

however, the maximal length might be infinite.

(ii) For almost all source parameters, and for every sufficiently large D0, there exists a VV

code with the average delay D satisfying D0 ≤ D ≤ 2D0 such that its average redundancy

rate is bounded by

r ≤ D−m2
+4

m+2
+ε, (20)
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where ε > 0 and the maximal length is O(D log D). There also exists a VV code with the

average delay D satisfying D0 ≤ D ≤ 2D0 such that the maximal redundancy is bounded by

r∗ ≤ D−m2+3

m+2
+ε. (21)

for any ε > 0.

(iii) Finally, for almost all source parameters, and for every VV code with average delay

D ≥ D0 (where D0 is sufficiently large) we have

r∗ ≥ r ≥ D−2m2+2m−3−ε, (22)

where ε > 0.

3 Proof of Lemma 3

This section is devoted to the proof of our crucial Lemma 3 We shall use techniques similar

to those already presented in [14].

The main thrust of the proof is to construct a complete prefix free set C of words (i.e., a

dictionary) on an alphabet of size m such that log2 P (d) is very close to an integer `(d) with

high probability. This is accomplished by constructing an m-ary tree T in which edges are

labeled from left to right by the symbol of the alphabet A = {a1, . . . , am}. Leaves of such an

m-ary tree can be identified with a complete prefix free set C. Furthermore, the sequence

of labels on a path from the root to a leaf translates into symbols of the corresponding

word d in the complete prefix free set C. Finally, we apply Kraft’s inequality (cf. Lemma 6

below) to conclude that there exists a (VV) code C with |C(d)| = `(d) and small average

redundancy rate.

In the first step, we set k0
i := bpiN

2c (1 ≤ i ≤ m) and

x = k0
1 log2 p1 + · · ·+ k0

m log2 pm.

By our assumption (9) of Lemma 3, there exist integers 0 ≤ k1
j < N such that

〈

x + k1
1 log2 p1 + · · ·+ k1

m log2 pm

〉

=
〈

(k0
1 + k1

1) log2 p1 + · · ·+ (k0
m + k1

m) log2 pm

〉

<
4

Nη
.

Now consider all paths in a (potentially) infinite m-ary tree starting at the root with k0
1 +k1

1

edges of type a1, k0
2 + k1

2 edges of type a2,. . ., and k0
m + k1

m edges of type am. Let C1 denote

the set of the corresponding words over the input alphabet. (These are the first words of

our prefix free set we are going to construct.) By an application of Stirling’s formula it

follows that there are two positive constants c′, c′′ with

c′

N
≤ P (C1) =

(

(k0
1 + k1

1) + · · ·+ (k0
m + k1

m)

k0
1 + k1

1 , . . . , k
0
m + k1

m

)

p
k0
1+k1

1

1 · · · pk0
m+k1

m
m ≤

c′′

N
(23)

uniformly for all k1
j with 0 ≤ k1

j < N . In summary, by construction all words d ∈ C1 have

the property that

〈log2 P (d)〉 <
4

Nη
,
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that is, log2 P (d) is very close to an integer. Note further that all words in d ∈ C1 have

about the same length

n1 = (k0
1 + k′

1) + · · · + (k0
m + k′

m) = N2 + O(N),

and words in C1 constitute the first crop of “good words”. Finally, let B1 = An1 \ C1 denote

all words of length n1 not in C1 (cf. the first full tree in Figure 1). Then

1−
c′′

N
≤ P (B1) ≤ 1−

c′

N
.

In the second step, we consider all words r ∈ B1 and concatenate them with appropri-

ately chosen words d2 of length ∼ N 2 such that log2 P (rd2) is close to an integer with high

probability. The construction is almost the same as in the first step. For every word r ∈ B1

we set

x(r) = log2 P (r) + k0
1 log2 p1 + · · ·+ k0

m log2 pm.

By (9) there exist integers 0 ≤ k2
j (r) < N (1 ≤ j ≤ m) such that

〈

x(r) + k2
1(r) log2 p1 + · · ·+ k2

m(r) log2 pm

〉

<
4

Nη
.

Now consider all paths (in the infinite tree T ) starting at r ∈ B1 with k0
1 + k2

1(r) edges of

type a1, k0
2 + k2

2(r) edges of type a2, . . ., and k0
m + k2

m(r) edges of type am (that is, we

concatenated r with properly chosen words d2) and denote this set by C+
2 (r). We again

have that the total probability of these words is bounded from below and above by

P (r)
c′

N
≤ P (C2(r)) = P (r)

(

(k0
1 + k2

1(r)) + · · ·+ (k0
m + k2

m(r))

k0
1 + k2

1(r), . . . , k
0
m + k2

m(r)

)

p
k0
1
+k2

1
(r)

1 · · · pk0
m+k2

m(r)
m

≤ P (r)
c′′

N
.

Furthermore, by construction we have

〈log2 P (d)〉 <
4

Nη

for all d ∈ C+
2 (r).

Similarly, we can construct a set C−2 (r) instead of C+
2 (r) for which we have 1−〈log2 P (d)〉 <

4/Nη . We will indicate in the sequel whether we will use C+
2 (r) or C−2 (r).

Let C2 =
⋃

(C+
2 (r) : r ∈ B1) (or C2 =

⋃

(C−2 (r) : r ∈ B1)). Then all words d ∈ C2 have

almost the same length

|d| = 2N 2 + O(2N),

their probabilities satisfy

〈log2 P (d)〉 <
4

Nη

(

or 1− 〈log2 P (d)〉 <
4

Nη

)
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dr

r

“good” word in Dj

“bad” word in Bj

N2

N2 + O(N)

2N2 + O(2N)

3N2 + O(3N)

KN2 + O(KN)
K = N log N

.

.

.

P D1( ) c
N
----=

P D2( ) 1 c
N
----– 

 = c
N
----

P D3( ) 1 c
N
----– 

  2
= c

N
----

P Dk( ) 1 c
N
----– 

  k 1–
= c

N
----

Figure 1: Illustration to the construction of the VV code.
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and the total probability is bounded by

c′

N

(

1−
c′′

N

)

≤ P (C2) ≤
c′′

N

(

1−
c′

N

)

.

The variant of the Shannon code to which we alluded in several places above, is now

constructed. For every r ∈ B1, let B+(r) (or B−(r)) denote the set of paths (resp. words)

starting with r of length 2(k0
1 + · · · + k0

m) + (k1
1 + k2

1(r) + · · · + k1
m + k2

m(r)) that are not

contained in C+
2 (r) (or C−2 (r)) and set B2 =

⋃

(B+
2 (r) : r ∈ B1) (or B2 =

⋃

(B−2 (r) : r ∈ B1)).

Observe that the probability of B2 is bounded by

(

1−
c′′

N

)2

≤ P (B2) ≤

(

1−
c′

N

)2

.

We continue this construction, and in step j we define sets of words Cj and Bj such that

all words d ∈ Cj satisfy

〈log2 P (d)〉 <
4

Nη

(

or 1− 〈log2 P (d)〉 <
4

Nη

)

and the length of d ∈ Cj ∪ Bj is given by

|d| = jN 2 +O (jN) .

The probabilities of Cj and Bj are bounded by

c′

N

(

1−
c′′

N

)j−1

≤ P (Cj) ≤
c′′

N

(

1−
c′

N

)j−1

,

and
(

1−
c′′

N

)j

≤ P (Bj) ≤

(

1−
c′

N

)j

.

This construction is terminated after K = O(N log N) steps so that

P (BK) ≤ c′′
(

1−
c′

N

)K

≤
1

Nβ

for some β > 0. This also ensures that

P (C1 ∪ · · · ∪ CK) > 1−
1

Nβ
.

The complete prefix free set C on the m-ary alphabet is given by

C = C1 ∪ · · · ∪ CK ∪ BK .

By the above construction, it is also clear that the average delay of C is bounded by

c1N
3 ≤ D =

∑

d∈C

P (d) |d| ≤ c2N
3
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for certain constants c1, c2 > 0. Notice further that the maximal code length satisfies

max
d∈C
|d| = O

(

N3 log N
)

= O (D log D) .

For every d ∈ C1 ∪ · · · ∪ CK we can choose a non-negative integer `(d) with

|`(d) + log2 P (d)| <
2

Nη
.

In particular, we have

0 ≤ `(d) + log2 P (d) <
2

Nη

if 〈log2 P (d)〉 < 2/N η and

−
2

Nη
< `(d) + log2 P (d) ≤ 0

if 1− 〈log2 P (d)〉 < 2/N η . For d ∈ BK we simply set `(d) = d− log2 P (d)e.

The (final) problem is now to adjust the choices of “+” resp. “−” in the above con-

struction so that Kraft’s inequality is satisfied. For this purpose we use the following easy

property (that we adopt from Khodak [14]).

Lemma 6 (Khodak, 1972). Let C be a finite set with probability distribution P and suppose

that for every d ∈ C we have |`(d) + log2 P (d)| ≤ 1 for a nonnegative integer `(d). If

∑

d∈C

P (d)(`(d) + log2 P (d)) ≥ 2
∑

d∈C

P (d)(`(d) + log2 P (d))2, (24)

then there exists an injective mapping C : C → {0, 1}∗ such that C is a prefix free set and

|C(d)| = `(d) for all d ∈ C.

Proof. We again use the local expansion 2−x = 1 − x log 2 + η(x) for |x| ≤ 1, where

((log 4)/4)x2 ≤ η(x) ≤ (log 4)x2. Hence

∑

d∈C|

2−`(d) =
∑

d∈C|

P (d)2−(`(d)+log2 P (d))

= 1− log 2
∑

d∈C

P (d)(`(d) + log2 P (d)) +
∑

d∈C

P (d)η (`(d) + log2 P (d))

≤ 1− log 2
∑

d∈C

P (d)(`(d) + log2 P (d)) + 2 log 2
∑

d∈C

P (d)(`(d) + log2 P (d))2

(24)

≤ 1

If (24) is satisfied, then Kraft’s inequality follows, and there exists an injective mapping

C : C → {0, 1}∗ such that C is a prefix free set and |C(d)| = `(d) for all d ∈ C.

We set

Ej =
∑

d∈Cj

P (d)(`(d) + log2 P (d)).
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Then Ej > 0 if we have chosen “+” in the above construction and Ej < 0 if we have chosen

“−”. In any case we have

|Ej | ≤ P (Cj)
2

Nη
≤

2c′′

N1+η

(

1−
c′

N

)j−1

≤
2c′′

N1+η
.

Suppose for a moment that we have always chosen “+”, that is Ej > 0 for all j ≥ 1, and

that
K
∑

j=1

Ej ≤
8 + 2c′′

N1+η
. (25)

We can assume that N is large enough that 2/N η ≤ 1/2. Hence, the assumptions of Lemma

6 are trivially satisfied since 0 ≤ `(d) + log2 P (d) < 1/2 implies 2(`(d) + log2 P (d))2 <

`(d) + log2 P (d) for all d ∈ C. If (25) does not hold (if we have chosen always “+”), then

one can select “+” and “−” so that

8

N1+η
≤

K
∑

j=1

Ej ≤
8 + 4c′′

N1+η
.

Indeed, if the partial sum
∑K

j=i Ei ≤ (8 + 2c′′)N−1−η , then the sign of Ej is chosen to be

“+” and if
∑K

j=i Ei > (8 + 2c′′)N−1−η then the sign of Ej is chosen to be “−”. Since

∑

d∈C

P (d)(`(d) + log2 P (d))2 ≤
4

N2η
≤

4

N1+η
≤
∑

d∈C

P (d)(`(d) + log2 P (d))

the assumption of Lemma 6 is satisfied. Thus, there exists a prefix free coding map C :

C → {0, 1}∗ with |C(d)| = `(d) for all d ∈ C. Furthermore, the average redundancy rate is

bounded by

r ≤
1

D

∑

d∈C

P (d)(|C(d)| + log2 P (d)) ≤ (8 + 4c′′)
1

DN1+η
.

Since the average code length D is of order N 3 we have

r = O
(

D−1− 1+η

3

)

= O
(

D− 4+η

3

)

.

This proves the upper bound for r of Lemma 3.

The proof of the upper bound for r∗ is very similar. The only difference is that we

always use the “+” in the above construction and do not stop. We set

C = C1 ∪ C2 ∪ · · · .

By construction, every word d ∈ C satisfies

〈log2 P (d)〉 ≤
4

Nη

and the average delay of C is bounded by

c1N
3 ≤ D =

∑

d∈C

P (d) |d| ≤ c2N
3.
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Consequently, if we set `(d) = d− log2 P (d)e, then Kraft’s inequality is trivially satisfied and

there exists a code C with |C(d)| = `(d) for all d ∈ C (the Shannon code). Furthermore, we

have

r∗ =
1

D
sup
d∈C

(|C(d)|+ log2 P (d)) ≤
2

DNη
= O

(

D−1− η

3

)

as proposed. This completes the proof of Theorem 3.

Remark. If all log2 pj are rational, then the above construction is (almost) trivial. There

are lots of integers kj such that

P (d) =
k
∑

j=1

kj log2 pj

is an integer. Thus, the redundancy can be estimated by the probability of the remaining

set BK .

4 Proof of Lemma 4

Lemma 4 states that for almost all pj > 0 (with p1 + · · ·+ pm = 1) the set

X = {〈k1 log2 p1 + · · ·+ km log2 pm〉 : 0 ≤ kj < N (1 ≤ j ≤ m)}

has dispersion

δ(X) ≤ N−m+ε (26)

for all sufficiently large N and for all non-zero integer vectors (k1, . . . , km) we have

‖k1 log2 p1 + · · ·+ km log2 pm‖ ≥ C

(

max
1≤j≤m

|kj |

)−m−ε

(27)

for some constant C > 0.

In view of the above, we just have to show (26) and (27) for almost all pj . These kind

of problems fall into the field of metric Diophantine approximation that is well established

in number theory (see [4, 5, 19, 23]). One of the problems in this field is to obtain some

information about the following linear forms

L = k0 + k1γ1 + · · ·+ kmγm,

where kj are integers and γj are randomly chosen real numbers. In fact, one is usually

interested in lower bounds for |L| in terms of max |kj |.

In our context, we have γj = log2 pj so that the γj ’s are related by 2γ1 + · · ·+ 2γm = 1.

This means that they cannot be chosen independently. They are situated on a proper sub-

manifold of the m-dimensional space. It has turned out that metric Diophantine approxi-

mation in this case is much more complicated than in the independent case. Fortunately,

there exist now proper results that we can use for our purpose.
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Theorem 5 (Dickinson and Dodson [6]). Suppose that m ≥ 2 and 1 ≤ k < m. Let U be an

open set in Rk and, for 1 ≤ j ≤ m, let Ψj : U → R be C1 real functions. Let η > 0 be real.

Then for almost all u = (u1, . . . , uk) ∈ U , there exists N0(u) such that for all N ≥ N0(u)

we have

|k0 + k1Ψ1(u) + · · · + kmΨm(u)| ≥ N−m+(m−k)η(log N)m−k

for all non-zero integer vectors (k0, k1, . . . , km) with

max
1≤j≤k

|kj | ≤ N and max
k<j≤m

|kj | ≤ N1−η/(log N).

Remark. More precisely, let us define a convex body consisting of all real vectors (y1, . . . , ym)

with

|y0 + y1Ψ1(u) + . . . + ymΨm(u)| ≤ N−m+(m−k)η(log N)m−k,

|yj| ≤ N, (j = 1, . . . , k), (28)

|yj| ≤ N1−η (log N)−1, (j = k + 1, . . . ,m).

Dickinson and Dodson [6, p. 278] showed in the course of the proof of their Theorem 2 that

the set

S(N) :=

{

u ∈ U : ∃ (k0, k1, . . . , km) ∈ Zm+1 with 0 < max
1≤j≤m

|kj | < N1−η satisfying (28)

}

satisfies
∣

∣

∣

∣

lim sup
N→∞

S(N)

∣

∣

∣

∣

= 0,

where | · | denotes the Lebesgue measure. This means that almost no u belongs to infinitely

many sets S(N). In other words, for almost every u, there exists N0(u) such that u /∈ S(N)

for every N ≥ N0(u). And this is stated in Theorem 5.

For m = 2, Theorem 5 can be improved as shown below.

Theorem 6 (R.C. Baker [3]). Let Ψ1 and Ψ2 be C3 real functions defined on an interval

[a, b]. For x in [a, b], set

k(x) = Ψ′
1(x)Ψ′′

2(x)−Ψ′′
1(x)Ψ′

2(x).

Assume that k(x) is non-zero almost everywhere and that |k(x)| ≤M for all x in [a, b] and

set κ = min{10−3, 10−8M−1/3}. Then for almost all x in [a, b], there are infinitely many

positive integers N such that

|k0 + k1Ψ1(x) + k2Ψ2(x)| ≥ κN−2

for all integers k0, k1, k2 with 0 < max{|k1|, |k2|} ≤ N .

Using Theorem 5 and Theorem 6 we are now in a position to prove (26) and (27).

22



Proof of (27). For this purpose we can directly apply Theorem 5, where k = m− 1 and

U is an open set contained in ∆ = {u = (u1, . . . , um−1) ∈ Rm−1 : u1 ≥ 0, . . . , um−1 ≥

0, u1 + · · · + um−1 ≤ 1} and Ψj(u) = log2(uj) (1 ≤ j ≤ m − 1), resp. Ψm(u) = log2(1 −

u1− · · ·−um−1). We also know that, for almost all u, the numbers 1,Ψ1(u), . . . ,Ψm(u) are

linearly independent over the rationals, hence,

L := k0 + k1Ψ1(u) + · · ·+ kmΨm(u) 6= 0

for all non-zero integer vectors (k0, k1, . . . , km).

Set J = max1≤j≤m |kj | and define N by N 1−η = J log N . Assume that J is large enough

to give N ≥ N0(u). We then have (for suitable constants c1, c2 > 0)

|L| ≥ N−m+η(log N) ≥ c1J
−m−(m−1)η/(1−η)(log J)(1−m)/(1−η) ≥ c2J

−m−ε

for ε = 2(m− 1)η/(1 − η) and J large enough. This completes the proof of (27).

Proof of (26). To simplify our presentation, we first apply Theorem 6 in the case of m = 2

and then briefly indicate how it generalizes. First of all we want to point out that Theorems 5

and 6 are lower bounds for the homogeneous linear form L = k0 +k1Ψ1(u)+ · · ·+kmΨm(u)

in terms of max |kj |. Using techniques from “Geometry of Numbers” (see below) these

lower bounds can be transformed into upper bounds for the dispersion of the set X =

{〈k1Ψ1(u) + · · ·+ kmΨm(u)〉 : 0 ≤ k1, . . . , km < N}.

In particular we will use the notion of successive minima of convex bodies. Let B ⊆

Rd be a 0-symmetric convex body. Then the successive minima λj are defined by λj =

inf{λ > 0 : λB contains j linearly independent integer vectors}. One of the first main

results of “Geometry of Numbers” is Minkowski’s Second Theorem saying that 2d/d! ≤

λ1 · · · λdVold(B) ≤ 2d, see [5, 19].

Let x and N be the same as Theorem 6 and consider the convex body B ⊆ R3 that is

defined by the inequalities

|y0 + y1Ψ1(x) + y2Ψ2(x)| ≤ κN−2,

|y1| ≤ N,

|y2| ≤ N.

By Theorem 6 the set B does not contain a non-zero integer point. Thus, the first minimum

λ1 of B is ≥ 1. Note that Vol3(B) = 8κ. Then from Minkowski’s Second Theorem we

conclude that the three minima of this convex body satisfy λ1λ2λ3 ≤ 1/κ. Since 1 ≤ λ1 ≤ λ2

we thus get λ3 ≤ λ1λ2λ3 ≤ 1/κ and consequently λ1 ≤ λ2 ≤ λ3 ≤ 1/κ. In other words,

there exist constants κ2 and κ3, and three linearly independent integer vectors (a0, a1, a2),

(b0, b1, b2) and (c0, c1, c2) such that

|a0 + a1Ψ1(x) + a2Ψ2(x)| ≤ κ2N
−2,

|b0 + b1Ψ1(x) + b2Ψ2(x)| ≤ κ2N
−2,

|c0 + c1Ψ1(x) + c2Ψ2(x)| ≤ κ2N
−2,

max{|ai|, |bi|, |ci|} ≤ κ3N.
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Using these linearly independent integer vectors, we can show that the dispersion of

X = {〈k1Ψ1(x) + k2 log2 Ψ2(x)〉 : 0 ≤ k1, k2 ≤ 7κ3N}

is small.

Let ξ be a real number (that we want to approximate by an element of X) and consider

the (regular) system of linear equations

−ξ + θa(a0 + a1Ψ1(x) + a2Ψ2(x))+

+θb(b0 + b1Ψ1(x) + b2Ψ2(x)) + θc(c0 + c1Ψ1(x) + c2Ψ2(x)) = 4κ2N
−2,

θaa1 + θbb1 + θcc1 = 4κ3N, (29)

θaa2 + θbb2 + θcc2 = 4κ3N.

Denote by (θa, θb, θc) its unique solution and set

ta = bθac, tb = bθbc, tc = bθcc,

and

kj = taaj + tbbj + tccj (j = 0, 1, 2).

Of course, k0, k1, k2 are integers and from the second and third equation of (29) combined

with max{|ai|, |bi|, |ci|} ≤ κ3N it follows that

κ3N ≤ min{k1, k2} ≤ max{k1, k2} ≤ 7κ3N,

in particular, k1 and k2 are positive integers. Moreover, by considering the first equation of

(29) we see that

κ2N
−2 ≤ −ξ + k0 + k1Ψ1(x) + k2Ψ2(x) ≤ 7κ2N

−2.

Since this estimate is independent of the choice of ξ this implies

δ(X) ≤ 7κ2N
−2.

Clearly, we can apply this procedure for the functions Ψ1(x) = log2 x and Ψ2(x) =

log2(1− x) and for any interval [a, b] with 0 < a < b < 1.

This also shows that we can choose ε = 0 in the case m = 2 for infinitely many N in

Lemma 3, provided that we introduce an (absolute) numerical constant.

Finally, we discuss the general case m ≥ 2 (and prove Lemma 4). We consider the

convex body B ⊆ Rm+1 that has volume 2m+1 and is defined by (28):

|y0 + y1Ψ1(u) + . . . + ymΨm(u)| ≤ N−m+(m−k)η(log N)m−k,

|yj| ≤ N, (j = 1, . . . , k),

|yj| ≤ N1−η (log N)−1, (j = k + 1, . . . ,m).
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By assumption, the first minimum λ1 of B satisfies λ1 ≥ N−η, thus, by Minkowski’s Second

Theorem, its last minimum λm is bounded by λm ≤ Nnη. Consequently, we have n + 1

linearly independent vectors q(i), i = 0, . . . ,m, such that

‖q(i) ·Ψ(u)‖ ≤ N−m+(m−k)η+mη(log N)k, ‖q(i)‖∞ ≤ N1+mη .

We now argue as above, and consider a system of linear equations analogous to (29). Hence,

for any real number ξ, there are positive integers k1, . . . , km such that

‖ − ξ + k1Ψ1(u) + . . . + kmΨm(u)‖ <
1

Nm−ε
, max kj ≤ N,

where ε > 0 can be made arbitrarily small by taking sufficiently small values of η. Applied

to the functions Ψj(u) = log2(uj) (1 ≤ j ≤ m− 1) and Ψm(u) = log2(1− u1 − · · · − um−1),

this proves (26). This completes the proof of Lemma 4.

5 Proof for Markov Sources

In this section, we extend our results to Markov sources of order 1 (Theorem 4) by indicating

necessary changes in our previous proofs.

We assume that the transition matrix of the Markov source is given by

P = (pij)1≤i,j≤m,

where pij = Pr{Xk+1 = j |Xk = i} > 0. The stationary distribution p1, . . . , pm is then

uniquely defined by pj =
∑m

i=1 pipij . For example, for m = 2 we have

p1 =
p21

p21 + p12
and p2 =

p12

p21 + p12
.

The probability of a message xn
1 becomes

P (xn
1 ) = p̂

m
∏

i,j=1

p
kij

ij ,

where p̂ = p` if x0 = ` and kij is the size of the set {k ∈ {1, . . . , n− 1} : (xk, xk+1) = (i, j)}.

Note that there are some consistency conditions:

m
∑

i,j=1

kij = n− 1,

m
∑

i=1

kij =
m
∑

i=1

kji + νj(x
n
1 ) (1 ≤ j ≤ m),

where ν = νj(x
n
1 ) ∈ {0, 1,−1} depending on x1 and xn. For example, if x1 = xn then

ν = 0. We call a vector k = (kij) of integers admissible if it satisfies these conditions. This
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means that if n is not fixed then we can only vary m2 −m + 1 of the m2 “parameters” kij

“independently”. For example, if m = 2 then we can represent log2 P (xn
1 ) by

log2 P (xn
1 ) = c0 + k11 log2 p11 + k12 log2(p12p21) + k22 log2 p22, (30)

where c0 = c0(x1, xn) attains finitely many possible values.

We will further need the following asymptotic expansions which can be found in [12,

Theorem 5] and Whittle [25]. For a, b ∈ {1, . . . ,m} and an admissible integer vector k =

(kij) let Na,b
k

denote the number of sequences of length n =
∑m

i,j=1 kij + 1, where x0 = a,

xn = b. Then

Na,b
k
∼

kba

kb
· det bb(I− k∗) ·

(

k1

k11, . . . , k1m

)

· · ·

(

km

km1, . . . , kmm

)

, (31)

where kj =
∑m

i=1 kij , k∗ = (kij/ki)1≤i,j≤m and detbb(I− k∗) is the determinant of I− k∗ in

which row b and column b are deleted.

With the help of these formulae, we can prove corresponding properties for Markov

sources. In particular, we get a slightly modified Lemma 2. Instead of X = {〈k1γ1 + · · ·+

kmγm〉 : 0 ≤ kj < N (1 ≤ j ≤ m)} we must work with

X =







〈

c0 +
m
∑

i,j=1

kijγij

〉

: k admissible and 0 ≤ kij < N (1 ≤ i, j ≤ m)







(32)

for some c0. In particular, for m = 2 such a set can be represented as

X = {〈c0 + k11γ1 + k12(γ12 + γ21) + k22γ22〉 : 0 ≤ k11, k12, k22 < N}

Clearly, we get the same result for this modified set X.

Next we have to get an analogue to Lemma 3. We assume that the dispersion of the

set as in 32) is bounded by δ(X) ≤ 2/N η and show that there exist codes with average

code length D = Θ(Nm+2), of maximal code length of order Θ(Nm+2 log N) and of average

redundancy rate r = O(D−1− η+1

m+2 ). Furthermore there exist codes with average code length

D = Θ(Nm+2) and worst case redundancy r∗ = O(D−1− η

m+2 ).

The only difference in the proof is that (23) has to be replaced by a similar inequality.

Suppose that pij > 0 constitute the transition probabilities and let pj be the stationary

distribution. Set kij = bpipijN
2c (i, j ∈ {1, . . . ,m}) and suppose that 0 ≤ k ′

ij ≤ N

(i, j ∈ {1, . . . ,m}) with k′
01 = k′

1,0. Then we have for some constants c′, c′′.

c′

Nm
≤ Na,b

k+k′ pa

m
∏

i,j=1

p
kij+k′

ij

ij ≤
c′′

Nm

where Na,b
k

is defined above (31). As in the proof of (23), this follows from (31) and Stirling’s

formula.

Now the (modified) proof of Lemma 3 follows the same footsteps as in the memoryless

case. Instead of k0
i = bpiN

2c we use kij = bpipijN
2c and so on.
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Now part (i) of Theorem 4 follows immediately. We just have to set η = 1.

There is even a modified Lemma 4. We have to apply Theorem 5 for properly chosen

Ψj(u) (1 ≤ j ≤ m2−m +1) with k = m2−m. Hence the upper bound of (ii) of Theorem

4 holds by applying the modified Lemma 3 with η = m2 −m + 1− ε.

There is only one slight change in the proof of part (iii) of Theorem 4. Since the linear

form in (30) is not homogeneous in kij we have to add an additional variable that is always

set to 1 and apply the above procedure. This results in showing that for almost all Markov

sources we have for all probabilities P (xn
1 )

‖ log2 P (xn
1 )‖ ≥ C (max kij)

−(m2−m+2)−ε .

This is the reason why the exponent m2 −m + 2 appears instead of “expected exponent”

m2 −m + 1.
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