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Random Sensory Networks: A Delay Analysis
Cedric Florens, Masoud Sharif, and Robert J. McEliece, Fellow, IEEE

Abstract—A fundamental function performed by a sensory
network is the retrieval of data gathered collectively by sensor
nodes. The metrics that measure the efficiency of this data col-
lection process are time and energy. In this paper, we study via
simple discrete mathematical models, the statistics of the data
collection time in sensory networks. Specifically, we analyze the
average minimum delay in collecting randomly located/distributed
sensors data for networks of various topologies when the number
of nodes becomes large. Furthermore, we analyze the impact of
various parameters such as size of packet, transmission range,
and channel erasure probability on the optimal time performance.
Our analysis applies to directional antenna systems as well as
omnidirectional ones. This paper focuses on directional antenna
systems and briefly presents results on omnidirectional antenna
systems. Finally, a simple comparative analysis shows the respec-
tive advantages of the two systems.

Index Terms—Broadcasting, data collection, delay, directional
antenna, sensor networks.

I. INTRODUCTION

R ECENT technological advances in the very large scale
integration (VLSI) field have contributed much to the de-

velopment of microsensor systems. These combine various sen-
sors, signal processing, data storage, wireless communication
capabilities, and energy sources on a single chip. Such compu-
tational devices are referred to as sensor nodes and a collec-
tion of sensor nodes, possibly distributed over a wide area, con-
nected through the wireless medium, form a sensory network.
Applications for such networks are numerous and include en-
vironmental monitoring (seismic, meteorological) and military
surveillance [1]. Sensory networks belong to the family of wire-
less ad hoc networks and as such lack an infrastructure present
in traditional wireless networks such as cellular networks. In
the very near future it is expected that these sensor networks au-
tonomously extract information about their surroundings, per-
forming basic collective processing, and transmit the collected
data to the end user for further processing and analysis. It should
be noted that in a sensory network while each node may be
mobile, it is typically the case that once the target site of the
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particular sensing application is reached a semi-permanent sta-
tionary configuration is adopted for the purpose of gathering
information.

In the field of general ad hoc networks and particularly sen-
sory networks, research efforts focusing on design issues of the
network communication architecture have been widespread. A
detailed investigation of current protocol and algorithm pro-
posals in the physical, data link, network, transport, and appli-
cation layers are discussed for example in [2]. Technical issues
and applications requirements to be dealt with by these proto-
cols are multiple and often specific to the class of sensory net-
works. Among those, efficient management of energy budget is
of paramount importance to the lifetime of the networks. Fur-
thermore, depending on the application under consideration a
tradeoff between data collection delay and energy consumption
has to be achieved. Finally, the throughput of a sensory net-
work is an important characteristic measure which is closely
related to the delay of the data collection process. Theoretical
results regarding capacity of general static ad hoc networks has
appeared in [3]. Also relevant to our research is the so-called
packet routing problem which consists in moving packets of
data from one location to another as quickly as possible in a
network and has been studied in conjunction with wireline and
wireless network models (see, for example, [4]–[7]). In [8], the
authors studied the problem in sensory networks of collecting
sensors data at the network base station. They describe optimal
strategies to perform data collection under various assumptions
and derive corresponding time performances with respect to a
simple discrete mathematical model for a sensor network. In
this model, the amount of data accumulated at each sensor node
(characterized by a number of unit data packets) after some
given observation period is assumed finite and determined. In
typical scenarios, however, the exact amount of data accumu-
lated at each sensor node is unknown.

In this paper, we model the number of data packets as a
random variable and analyze the delay (which is now a random
variable) in collecting sensor data at the base station. More
specifically, we derive the distribution and the expected value
of the delay for a line network using the optimal scheduling.
Furthermore, we look into the effect of various parameters in-
cluding size of packet, transmission range, and channel erasure
probability. We also propose a simple scheduling and anlayze
its delay performance. Finally, we extend our result to more
general topologies such as multiline netwroks.

This paper is organized as follows: In Section II, we present
our sensory network model and recap results from [8] that will
be used in the remainder of the paper. We present results on a
line network in Section III. In Section IV, we expose our deriva-
tion regarding multiline networks. Finally, we give comparative
results between directional and omnidirectional antenna sys-
tems in Section VI.
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II. MODEL AND PROBLEM STATEMENT

In this section, we describe the sensor network model on
which the subsequent analysis is based and formulate our
problem within the framework of this model. Furthermore, we
briefly review results in [8] that are relevant to this study. As
noted in the Introduction, in most sensing applications sensor
nodes adopt a stationary configuration while information is
being gathered. Correspondingly, our models will be static. In
stationary state, after the nodes have organized themselves into
a network, we distinguish between two phases of operation.
In the first phase or observation phase, area monitoring results
in an accumulation of data at each sensor node. In the second
phase or data transfer, the collected data is transmitted to some
processing center located within the sensor network (we refer
to this node as the base station (BS) of the sensor network). In
this paper, we investigate the efficiency limits with respect to
time of such data transfers.

We define a sensor network as a collection of identical
nodes and a BS. Each node is associated with
an integer that represents the number of data packets stored
at this node at the end of the observation phase. The BS is also
denoted by . In this paper, we first study the data collection
problem in line networks and then generalize the results to mul-
tiline networks and tree topologies. Here, a line network with
nodes refers to the case where the BS is at one side of the net-
work and and being the closest and farthest nodes to the
BS, respectively.

We assume that transmission time is slotted with nodes are
synchronized. Each transmission hop consumes one time slot
(TS). In this paper, we assume that nodes are in a half-duplex
mode, i.e., a node can only transmit or receive (and not both)
one data packet per time slot. All the nodes including the BS
have a common transmission range . Inspired by the interfer-
ence model of [3], we assume all nodes within distance

of a transmitting node with omnidirectional antenna cannot
transmit or receive any other packet (otherwise collision hap-
pens) for some . This implies that simultaneous transmis-
sions within the interference range is avoided. However, mul-
tiple transmissions may occur within the network in one TS
under this interference model by virtue of spatial separation ex-
ploiting the path loss or directional antennas. In fact, directional
antennas can be exploited to cause interference only in the trans-
mitting direction.

Such a network may be represented by a weighted rooted
graph where denotes the set
of links and . In this graph model, the root
represents the BS and an edge represents an existing wire-
less connection between two sensor nodes, or a sensor node and
the BS. In this paper, we mainly deal with the case of systems
with directional antennas and single-hop transmissions such that

and , and then generalize the results to the
case where nodes equipped with omnidirectional antennas and
can have multihop transmissions.

The data collection problem in a given sensory network is
defined as the problem of routing all the data collected by the
sensor nodes to the BS as efficiently as possible with respect
to time and energy. The data distribution problem, on the other
hand, is the problem of routing data to sensor nodes in a timely

and energy-efficient manner. In the following work, we shall
focus on the time efficiency alone of the data collection (or dis-
tribution) task.

In [9], an optimal strategy is proposed to minimize the data
collection time when the transmission range is a single hop.
Moreover, it is proved that for a one-sided line network of
length1 in which the th node has packets and is equipped
with directional antennas, the minimum collection time of the
packets at the BS, achieved by the proposed optimal strategy
and denoted by , is

(1)

where and it is assumed that each single-hop
transmission only causes interference to the neighbor node of
the destination (in the direction of the transmission). The op-
timal distribution algorithm is a greedy scheduling in which BS
sends the packets intended for the farthest node first and then
second farthest node, and so on. The factor of two in the sum-
mation of (1) is due to the interference constraint as the link
between and and the link between and cannot be
used simultaneously and therefore it takes two TS to send each
packet to/from the BS to .

Furthermore, it is proved that the distribution and collection
problems are essentially the same and that the minimum data
distribution time is the same as the minimum data collection
time. It is worth mentioning that the optimal scheduling strategy
of [9] assumes the full knowledge of all ’s and controls the
scheduling of all transmissions (and therefore, collection and
distribution problems become equivalent). Although these as-
sumptions may be too restrictive in practice, the performance of
this optimal algorithm can serve as the benchmark for perfor-
mance comparison of different algorithms with less coordina-
tions and less side information about the number of packets at
all nodes (see Section III-E).

We illustrate the optimal schedules on the following example
where

. In this
example, there are six packets to be collected (or distributed)
as shown in Fig. 1. The schedules of transmissions are drawn
below the network for the distribution and collection tasks, re-
spectively. Arrows represent a single data packet transmission
from a node to its neighbor. Either way it is performed in 11 TS.
In the distribution case, the BS strategy is as follows: send first
data packets destined for the furthest node, then data packets for
the second furthest one, and so on, as fast as possible while re-
specting the channel reuse constraints. Nodes between the BS
and its destinations are required to forward packets as soon as
they arrive (that is, in the TS following their arrival). For ex-
ample, at TS 1, the packet destined for node 7 is transmitted
by the BS to node 1, at TS 2 from node 1 to node 2, and so
on, and arrives at TS 7. Note that the collection schedule is ob-
tained from the distribution schedule by simple symmetry as

1By a line network, we mean one-sided line network. A line network where
the BS is in the middle of the line, can be seen as a two-line network. Results
for the case where we have more than one line is discussed in Section IV.
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Fig. 1. eight-node line network �� � �� � � � � � � � � �� � � ��
� ��� followed by optimal transmission schedules for the distribution (upper
schedule) and collection (lower schedule) problems. They are symmetric of one
another. The job is performed in 11 TS.

shown in the next figure and vice versa. Such a procedure is al-
ways possible and in the rest of this paper, results will apply to
either problems (i.e., collection/distribution), unless otherwise
specified.

III. RANDOM LINE NETWORKS

In this section, we characterize the delay in collecting random
amount of data randomly spread over a sensor network after
the observation phase. More specifically, for a one-sided line
network, we first derive a recursion to compute the probability
distribution function of and also we asymptotically
analyze the average of when is sufficiently large.
Throughout this paper, we assume the number of packets at
nodes are identically and independently distributed.

We further look into the delay when each node is allowed to
transmit over hops and also the effect of packet splitting
on the delay in Subsections III-C and III-D. In Section III-E, we
also propose a simple scheme that does not use the knowledge
of the number of packets at other nodes and achieves the same
scaling law for the average delay. Finally, in the last subsection,
we consider the effect of error in the channel on the delay.

A. The Distribution of the Delay

In this subsection, we derive, by means of a recursion, the
cumulative distribution function (CDF) of for a line
network. Let us assume that corresponds to the number of
packets at node for and also ’s areindepen-
dent and identically distributed (i.i.d.) random variables chosen
from the set . It is clear that CDF of the
minimum delay for a network with one node is just the distribu-
tion of the number of packets at node 1 as these packets can be
transmitted one at a time to the BS. In the following theorem,
we compute the CDF of the minimum delay for a network with

nodes using that of a network with nodes. This would

enable us to compute the CDF for a network of general size nu-
merically using a simple recursion.

Theorem 1: Let be the CDF of the minimum delay
, i.e., . Then sat-

isfies the following recursion:

for (2)

where

if
otherwise

and

if
otherwise.

Proof: In the proof, we consider the (equivalent) data dis-
tribution problem. We may write by conditioning on

for as

(3)

To compute the conditional probability in (3), we use (1) and
the fact that for all

. Therefore, replacing and assuming
, we get

(4)

which basically implies that it takes at least TS
to send packets to the ’s node. Thus, if ,
then . Using the definition of
the function , for any , and using the optimal greedy
scheduling explained in Section II that first sends out all the
packets for the farthest node, we may then write the conditional
probability as

(5)

Replacing (5) in (3), we get

which leads to (2).

We can use the result of Theorem 1 to compute the CDF of
. This is illustrated in Figs. 2 and 3. Fig. 2 shows the

distribution of the delay for 40-sensor node line net-
works in which each node carries either or packet with prob-
ability . Fig. 3 shows the distribution of the delay
for 40-sensor node line networks in which each node carries ei-
ther or packet with probability and , respectively.
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Fig. 2. Distribution of data collection time in 40-node line network. Each node in the particular network considered carries � or � data packet with probability ���.

Fig. 3. Distribution of data collection time in 40-node line network. Each node in the considered network carries � or � data packet with probability ��� and ���
respectively.
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Fig. 4. Average collection time as a function of average number of packets per node and number of nodes in line network. Nodes carry � or � data packet with
probability � � � and �, respectively.

Fig. 5. Average collection time as a function of average number of packets per node in 500-node line network. Nodes carry � or � data packet with probability
� � � and �, respectively.

Remark: It is worth noting that the result of Theorem 1 holds
for any distribution of the data packets. In particular, the ’s
need not be i.i.d., however, in this paper we deal with the case
that ’s are i.i.d.

Interestingly, if we plot the expected value of as in
Figs. 4 and 5, we observe that the average delay scales linearly
with the number of nodes and the linear factor depends on the

average number of packets per node . In the next section, we
analyze the average delay and prove the observation rigorously.

B. Asymptotic Analysis of the Average Delay

In this subsection, we study the asymptotic behavior of the
minimum average delay in collecting data from a line network
as the number of nodes becomes large.
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Theorem 2: Let ’s be i.i.d. random variables with
mean , variance where are all constants indepen-
dent of . We have

if
if

(6)

Proof: We consider the case first: Let us define
. Using (1), we get

(7)

where the inequality follows by upper-bounding by
zero as and replacing by as

. In order to find a bound for , we
first state the following lemma which based on a result of Erdos
and Kac [10] where a convergence theorem for the distribution
of the maximum of partial sums was proven.

Lemma 3: Let for , then
for any and

(8)

where and is as defined in Theorem 2.
Proof: We first define the event as the event that the

partial sum exceeds the threshold only after the th
term added to the summation as

(9)

which is inspired by [10]. Events ’s are disjoint and their
union is equal to the event that .
Therefore, we can state the following using the union bound:

(10)

To evaluate the second term on the right-hand side (RHS) of
(10), we note that and

imply . Then using the fact that
is independent of for , we may write

(11)

where in the second inequality we used Chebychev’s inequality
and the last inequality follows form the definition of the events

and noting that

since the events are disjoint events. Therefore, Lemma 3 fol-
lows from (11) and (10).

Now we can use Chebychev’s inequality to evaluate the RHS
of Lemma 3 as follows:

Therefore, substituting we get

(12)

Equation (12) implies that, with high probability,
is less than . Therefore, we may

write

(13)

which follows from the fact that .
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We now derive a lower bound on : From (1), we
get . Taking the expectation of both
sides, we get

(14)

Considering (14) and the upper bound derived in (13), we de-
duce that

which leads to (6) for .
Next we consider the case : Let us define

. Using (1), we get

Taking the expectation of both sides and using inequality (13)
we get

(15)

On the other hand, it is clear that if there is any packet in dis-
tance , it takes at least TS to be collected. Furthermore, the
probability that there are no packets in the last nodes of
the line network is . Therefore, noting that

is a fixed number, we may write

(16)

which leads to (6) for .

Remark: Theorem 2 can be easily generalized to the case that
’s are independent and have mean and variance and

where is a constant. In fact, we can assume
is also going to infinity as well. Considering (13), the theorem
goes through as long as .

Fig. 4 shows the ratio of the average delay to the number of
sensor nodes, i.e., , for a line network where each
sensor node carries or data packet with probabilities
and , respectively, as a function of the number of sensor nodes

in the network and the average number of packets per node
. Fig. 5 shows the ratio of the average delay to the number of

sensor nodes in a line network (where again each node carries
either or packet with probabilities and , respectively)
for a fixed number of sensor nodes (500) as a function of the
average number of packets per node .

C. Multihop Case

In this subsection, we consider the problem of scheduling
when each node is allowed to use up to hops. In our model,
any hop size (from one up to ) will cause interference for all
the nodes that we hop over and also for the neighbor node of the

destination that is not within the transmitter and receiver nodes.
Therefore, these nodes cannot have a simultaneous transmis-
sion/reception of other packets. Of course, having the freedom
of using up to hops and a longer transmission range, leads to
faster data collection compared to the case where . This
is quantified in the following theorem, where the minimum data
collection time is expressed as a function of the
transmission range (hops). This theorem is basically a gener-
alization of the result of (1) where .

Theorem 4: For a one-sided line network of length in which
the th node has packets and is equipped with directional
antennas, the minimum collection time of the packets at the BS
as a function of the transmission range in hops is

(17)

where

(18)

where is the unique solution to such that
.

Remark: Note that when , (17) reduces to the familiar
equation (1) proved in [8].

Proof: This theorem was proven in [8] when . Here
we only outline the generalization. The proof has two parts. First
we need to show that the RHS of (17) is a lower bound for the
collection time. Second, we prove it is an upper bound as well
by exhibiting a schedule with this time performance.

In order to show that the RHS is a lower bound, we first con-
sider the nodes closest to the BS. They need to
forward packets. If , this can be done in

TS or more. This takes exactly TS if all packets
to be distributed are located at node and more otherwise.
If , this can be done in TS or more. So,
in general, it takes at least TS. More generally
if denotes the number of packets to be forwarded by the
nodes , it can be shown that it takes at least

TS to do so. Therefore,
the maximum of the previous expression over gives a lower
bound for the data collection time performance. We are not done
though. Indeed, this lower bound is not achievable when there
are packets to be distributed at distance where .
An additional lower bound may be derived to handle this case
by reconsidering the first nodes. They must not only forward

packets, but also receive packets. The lower
bound may be adjusted (to ) to take this fact into account.

A possible (optimal) schedule for the distribution problem is
as follows: It consists of transmitting data packets first to the
furthest node, then to the second furthest node, and so on, as
fast as possible until all packets at distance greater than have
been served. Packets at distance are served in the
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Fig. 6. Minimum length data distribution schedule of a 10-node line network when maximum transmission range is three hops.

reversed order, i.e., from closest to the BS to furthest. To prove
this is indeed optimal, we compute its time performance and
show it achieves the lower bound previously exhibited. This is
similar to what was done in [8] and is left out here for the sake
of brevity.

In order to gain insight into the result of Theorem 4, we give a
simple illustrative example before obtaining the asymptotic be-
havior of the expected minimum delay as approaches infinity
in the next theorem. Theorem 5, in fact, quantifies the depen-
dency between the minimum collection time and the transmis-
sion range.

Example: We consider a line network of length , where
each node carries exactly one data packet and has a transmission
range of hops. Direct application of Theorem 4 gives the
minimum collection time as

(19)

Fig. 6 shows an instance of this network: and .
Hence the data collection time is 12 TS. The associated distri-
bution schedule accompanies the figure.

Theorem 5: Let be the transmission range, let ’s be i.i.d.
random variables with mean and
variance where are constants independent of .

if
if

(20)

Proof: The theorem follows by using the same machinery
as in the proof of Theorem 2 and we omit the proof for the sake
of brevity.

We can now evaluate the gain in increasing the transmission
range of a sensor node. Theorem 5 shows that a maximum gain
of on the collection time may be obtained by increasing the
transmission range (in the limit when approaches infinity)
from . One should note, however, that this gain neces-
sitates a significant amount of energy, in fact in the order of

if the energy expanded is taken to be
proportional to the square of the distance traveled by a packet,
whereas the minimum energy expanded (case ) is of the
order .

D. Packet Splitting to Improve the Average Delay

As (6) implies, if the network is under-loaded (i.e., ),
the ratio of the expected collection time to the expected number
of packets in the network is and is rather high. One approach
to decrease this ratio for small is to artificially increase the ex-
pected number of packets at each node by splitting each packet
into packets with length times of the original one. Clearly,
this increases by a factor of , and therefore, can potentially
decrease the delay. It is also worth noting that the time needed
for sending the smaller size packets is of the time to send of the
original packets. We should further remark that splitting packets
needs to be handled with care in practice as there is generally
a constant overhead associated with each packet that limits the
gain in packet splitting. In this paper, however, we do not deal
with this tradeoff.

In this subsection, we examine the potential gain obtained by
splitting data packets into subpackets. As a first step, we prove
that the delay is a decreasing function of in the next theorem.

Theorem 6: Given a line network there is a gain
in splitting the data packets into subpackets.

Furthermore, is a nondecreasing function of and the
maximum achievable gain is

(21)

Proof: In general, if each packet is split into subitems,
the gain satisfies

(22)

It is easy to check that . Furthermore,
is a nondecreasing function of as the denominator

decreases as increases. The limit when goes to infinity can
be also computed by noticing that the denominator of (22) for
large simplifies to as ’s are nonnegative.
This completes the proof of (21).
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Fig. 7. Suboptimal data collection strategy described in Section III-E.

Next we derive the average collection time in random sensor
network in the limit when goes to infinity and when packets
have been split into subpackets.

Theorem 7: Let ’s be i.i.d. random variables with
mean , variance where are all constants indepen-
dent of . If each packet is split into subpackets we have

if
if

(23)

Proof: The proof falls along the same line as the proof
of Theorem 2 substituting with , for all
and noting that the smaller size packets are transmitted times
faster.

The limit in (23) should be compared to the data collection in
the case where packets are not split as shown in (6). We conclude
that in the asymptotic case, data splitting results in gain in the
collection time for networks with low data load, i.e., . It is
also worth noting that (23) and (6) imply that if there is
no gain in further increasing ; the expected delay remains the
same as further increases. For example, if , the expected
delay behaves like , and for , and ,
respectively. In other words, increasing beyond does not
lead to any improvement on the scaling law of the average delay.

E. A Simple Suboptimal Strategy

It is important to note that the minimum collection time in
(1) is achieved under the assumption that each sensor node has
a perfect knowledge of the network topology and data packets
locations. A more practical strategy that does not require knowl-
edge of the packets’ locations and therefore can be run in a dis-
tributed fashion is as follows: nodes at odd (resp., even) distance
from the BS transmit to their closest neighbors toward the BS at
odd (resp., even) TS. We refer to this scheduling as Strategy 1.
It is illustrated in Fig. 7.

The following theorem compares the performance of this
strategy to the minimal collection time derived in (1).

Theorem 8: For a one-sided line network of length in which
the th node has packets and is equipped with directional an-
tennas, the collection time of the packets at the BS under simple
scheduling strategy, denoted by , is

(24)

This further assumes that the closest, third closest, edges to
the BS are activated at TS whereas the second closest,
fourth closest, edges are activated at TS . In the op-
posite case the data collection time is

(25)

Proof: In the remainder of this paper, we refer to the closest
edge to the BS as edge , second closest as edge , and so
on. Assume nodes can only transmit at TS
and receive at TS . The BS may receive at most one
packet/TS at TS . Either it is busy at all , or
it is busy at all those , or at all , etc. In gen-
eral, if the BS is busy at all and the packet received
at TS comes from node or , the data collection time is

TS. This completes the proof for (24). Equa-
tion (25) follows similarly.

The aforementioned absence of knowledge (packets location)
translates into a delay cost . More gen-
erally, we have the following relationship between and

, which follows from (1) and (25):

(26)

The worst performance of this simple strategy relative to the
optimal strategy occurs when packets are located at distance
from the BS (indeed, and then). However,
on average, achieving the upper bound in (26) is unlikely and we
have the following asymptotic comparative result, according to
which the simple scheduling strategy is asymptotically optimal
with respect to time.

Theorem 9: Let ’s be i.i.d. random variables
with mean and variance where

are constants independent of .

if
if

(27)

That is, .
Proof: This proof is similar to the proof of Theorem 2.

F. Imperfect Channel

In this final subsection, we introduce noise in the channel.
Specifically, we model the channel as an erasure channel with
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Fig. 8. Suboptimal data collection strategy described in Section III-E. Erasure channel. An erased packet is marked with a cross.

erasure probability and measure the time performance degra-
dation as a function of . We assume that a node is instanta-
neously informed that a packet has not reached its (interme-
diate) destination and immediately retransmits the erased packet
at the next available TS (that is 2 TS later). For reasons discussed
at the biginning of this section, we focus on the simple sched-
uling strategy introduced in Section III-E. Fig. 8 illustrates the
process. This is the same network as shown in Fig. 7 but it is now
affected by three erasures (each shown by a crossed arrow). The
new transmission time is 15 TS, an increase of 2 TS.

Theorem 10: Given a probability of packet erasure, the av-
erage data collection time in a line network when
the simple scheduling strategy is used is as shown in (28) at the
bottom of the page.

Proof: The collection time may be expressed as an av-
erage of collection times. The probability that the entire col-
lection process is not affected by any error is .
In that case, the collection time is . The probability that
the collection process is affected by exactly errors is

. Notice that a packet erasure along a specific edge
increases the collection time from to , where

is the vector of length whose th component is and other
components are and where is the source node for the packet.
For a given source node there are choices of
erasures. One needs to consider all the possible schedules with
exactly erasures. This can be done by solving the equation

.

In order to see the impact of the erasure probability on
the data collection time the ratio is plotted
for increasing values of for a specific line network

in Fig. 9. It shows a degradation
of 50% for an erasure probability . However, the insight
provided by Theorem 10 is limited. In the following theorem,
instead of considering the expected delay for a specific net-
work, we consider a random line network and obtain an upper

bound for the expected delay as a function of the packet erasure
probability.

Theorem 11: Let ’s be i.i.d. random variables
with mean and variance where

are constants independent of then

(29)

Proof: In order to find an upper bound for the expected
delay, we may use any strategy in scheduling. Here, we assume
that whenever an erasure occurs, the transmitting node retrans-
mits the packet until it gets through and all the other nodes re-
main silent at that period. Denoting for as
the number of extra time slots needed to transmit the packet at
the th transmission, we may write

(30)

where has geometric distribution, i.e.,

(31)

Taking expectation of both sides of (30), we obtain\

(32)

which completes the proof of our theorem.

In particular, Theorem 11 implies that for networks of large
size, a probability of erasure of order does not signifi-
cantly affect the time performance of the data collection process.

IV. RANDOM MULTILINE NETWORKS

In this section, we consider a more general network, i.e., a
network consisting of lines. Here we assume these lines

(28)
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Fig. 9. Ratio as a function of � for specific line network.

are separated in space and therefore there is no crossover in-
terference between the transmissions in different lines.2 How-
ever, only one of the links between BS and the first node of dif-
ferent lines can be used at a time. For simplicity, we assume each
line has nodes. This is illustrated in Fig. 10. Furthermore,
each node carries packets with probability distribution

. We will later argue that the results for the
more general case follows along the same line of this simple
case.

It is quite easy to state a lower bound for the average delay.
Assuming ’s are i.i.d., and denoting as the minimum
data collection time for a multiline network with lines of
length , we have

(33)

which follows by taking the expectation of both sides of the
inequality (number of packets in network).

In what follows, we shall prove that as increases, the ex-
pected collection time converges toward this lower bound. To
prove our asymptotic result, we describe a suboptimal proce-
dure to collect the data at the BS: we may divide the network
into two subnetworks consisting of odd lines and con-
sisting of even lines. For , nodes at even distance from
the BS transmit toward the BS at even time slots and nodes at
odd distance from the BS transmit toward the BS at odd time

2It should be mentioned that as the number of lines grows, this assumption
may not be valid. However, in this paper, we only deal with the case where there
is no cross interference for simplicity.

Fig. 10. Multiline network.

slots. If , the opposite happens, i.e., nodes at even dis-
tance transmit toward the BS at odd time slots and vice versa.
However, if at a given TS multiple nodes at distance from the
BS carry data packets, only one packet (randomly chosen from
all available packets) gets transmitted to the BS (since this BS
can only receive one packet at a time). Remaining packets are
stored for later transmission. This strategy is followed until all
packets in the network have reached the BS or a node at distance
one from the BS. At this point, packets at distance one from the
BS are simply transmitted to the BS in turn so that the BS does
not become idle until all packets have been collected.
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With this scheduling and assuming each node carries at most
data packets it is clear that after TS

(assuming that ), all the packets are within distance one
of the BS (since it is true in the worst case where each node
carries exactly packets). Therefore, we may think of data
collection as two separate phases: first collecting all the packets
to the nodes with distance one of the BS which at most takes

TS, and in the second phase, the nodes within
distance one of BS are the only nodes with packets and they try
to send their packets to BS.

Theorem 12: Consider a multiline network with lines
of length , and ’s are i.i.d. chosen from
with an arbitrary distribution. Let

, where . Further assume that
Then

(34)

In particular

i if

(35)

ii if and

(36)

iii if (37)

where and are constants independent of .
Proof: The lower bound follows from (33) and noting that

. To prove the upper bound, we use the suboptimal
scheduling described before to collect the data packets. We also
define the random variable , for

, such that if the BS is busy at TS , and
if it is not.

Considering the steps in collecting packets in the network
with our scheduling, if the total number of packets is greater
than , then the time needed to collect the data
packets is equal to the total number of packets in the network
(denoted by ) plus the number of times that the BS was not
busy during which is equal to

. Therefore, we can write an upper bound for
the delay as

(38)

To find an upper bound for the expected delay, we have to find
and . It is clear that

for , to find an upper bound for the expected
delay, we find and . It is
clear that

having at least packets at dist

at least one node at dist. has packets

(39)

A similar expression can be written for . Fur-
thermore, using Chebychev’s inequality and noting that is the
total number of packets in the network, i.e., , we
may write

(40)

which implies that . Now
we can take the expectation from both sides of (38) to get

(41)

that completes the proof for the first part.

Theorem 15 shows that the difference of the expected delay
and is converging to zero as and grows
slower than (or, equivalently, grows faster than ).
It is a reasonable hypothesis in general. Indeed, as the number of
sensor nodes per unit of observation area increases, noting that
is the number of sensors within reach of the BS, it can be shown
that scales like where [11]. Therefore,
fixing the area of the network, having go to infinity, and noting
that , the aforementioned condition is satisfied.

In the more general case, where the number of sensors per line
is for (instead of for all ’s) the lower bounds
on the expected delay becomes . We can
further find an upper bound by replacing by in (38)
and noting that is equal to the lower bound. The result fol-
lows in a similar fashion. Therefore, as long as

and grows to infinity, the expected delay con-
verges to . In Fig. 11, the data collection time for multiline
networks is plotted as the function of the number of lines for var-
ious average number of packets per node (and a fixed number of
nodes per line, ) using Monte Carlo simulation. Each
instance of a random network has lines of nodes. Each
node caries either or packet with probability and ,
respectively. The exact collection time for a particular instance
is known and given in [8] and this is averaged over multiple in-
stances (20000) to yield Fig. 11.

A. Delay Analysis for More General Topologies

Insightful results about the delay in collecting data from
sensory networks forming more general topologies may be
inferred from Sections III and IV. In this section we discuss the
implications of previous results for networks of more general
topologies.

Clearly for a sensor network of any topology, the expected
minimum collection delay satisfies: where
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Fig. 11. Average collection time as a function of average number of packets per node and number of lines in multiline network (25 nodes per line). Nodes carry
� or � data packet with probability � � � and �, respectively.

is the number of sensor nodes in the network. However, in the
particular case where only a single path exists from the sensors
to the BS (i.e., the degree of the BS is one), this lower bound is
not tight and may be improvede to using Theorem 1.

If the degree of the BS is , It is shown in [9] that the
network may be thought of as a line network—for analysis
purposes—by combining nodes at the same distance from the
BS without impeding the time performance of a particular data
collection strategy. In the resulting “linearized” network the
number of data packets at a given distance from the BS is the
sum of the packets at that distance in the original network.
Consequently, results in Section III-A may be applied to this
type of networks to derive the exact delay distribution. Results
in Section III-B hold as well (in the case where and

the number of packets at distance in the
linearized network is and our claim is a matter of
extending Lemma 3 to binomial distributions of packets). That
is the delay is asymptotically in the first order.

If the degree of the BS is greater than , it is straightforward to
extend the previous results on multiline networks to tree topolo-
gies (given what was said earlier, a tree may be thought of as a
multiline network). On general topologies it holds that the av-
erage collection delay converges toward the average number of
packets in the network when the number of sensors is large.
The proof is based on Section IV by extracting a shortest path
spanning tree of the considered network and noticing that the
maximum distance of a sensor to the BS (the distance being the
length in number of hops of a shortest path to the BS) grows
slower than where is the number of sensors within reach
of the BS.

V. COMPARISON OF OMNIDIRECTIONAL/DIRECTIONAL

SYSTEMS

The previous analysis of directional antenna systems may be
extended to omnidirectional systems. In these systems, nodes
are equipped with omnidirectional antennas generating inter-
ference for all surrounding nodes. In particular, in a line net-
work this implies that a packet transmission to the left (or right)
neighbor creates interference at both the left and right neighbors.
This in turns increases the length of the optimum data collection
schedule (when compared to directional systems). In fact, it was
shown in [9] that the minimum data collection time
over a line network of length equipped with omnidirectional
antennas in which the th node has packets becomes

(42)

where . It was shown in [8] that this repre-
sents a maximum increases of 50% over the data collection time
achieved by a directional antenna system for the same consid-
ered line network. In the example of section of Fig. 1, the min-
imum data collection time becomes 14 TS, a 40% increase.

In the following subsections, we presents results for the delay
analysis for the network equipped with ominidirectional an-
tennas. Results are analogous to the results stated in Section III
and we omit the proofs for the sake of brevity.
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A. Delay Distribution

In this subsection, we derive, by means of a recursion,CDF
of for a line network. Let us assume that ’s are i.i.d.
random variables chosen from the set .

Theorem 13: Let be the CDF of the minimum delay
, i.e., . Then satisfies

the following recursion:

(43)

where
if
otherwise

and
if
otherwise

B. Asymptotic Analysis of the Average Delay

In this subsection, we study the asymptotic behavior of the
minimum average delay in collecting data from a line network
as the number of nodes becomes large.

Theorem 14: Let ’s be i.i.d. random variables with
mean , variance where are all constants indepen-
dent of . We have

if
if

(44)

C. Multiline/Omnidirectional Case

Theorem 15: Consider a multiline network with lines of
length , and ’s are i.i.d. chosen from such that

where . Further assume
that Then

(45)

In particular

i if

(46)

ii if and

(47)

iii if (48)

where and is a constant independent of when
is fixed.

VI. CONCLUSION

This work is concerned with characterizing the statistics of
the minimum delay in collecting (or distributing) data packets
in sensory networks at the BS. We study the statistics of the
minimum delay achieved by the optimal (greedy) algorithm pro-
posed in [9] for different topologies including line and multiline
networks with directional or omnidirectional antennas. For a
line network, we obtain the distribution of the minimum delay in
collecting the packets using a recursion. Under the assumption
that the number of data packets accumulated by a sensor node is
identically and independently distributed across different nodes,
we further analyze the asymptotic behavior of the average min-
imum delay for a large number of nodes and show that it con-
verges to twice the average number of packets in the network
when the average number of packets per node is greater than

. We show that a simple time division scheduling of nodes
can also achieve the same scaling law for the average minimum
delay without requiring the knowledge of the number of packets
in each node. For a multiline network, we show that the average
minimum delay converges to the expected number of packets
in the network for large number of nodes. We further study the
impact of packet size, transmission range, and channel erasure
probability on the delay performance of optimal collection/dis-
tribution of packets.
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