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Sampling Theorems for Signals from the

Union of Finite-Dimensional Linear Subspaces
Thomas Blumensath, Member, IEEE, Mike E. Davies, Member, IEEE

Abstract

Compressed sensing is an emerging signal acquisition technique that enables signals to be sampled

well below the Nyquist rate, given that the signal has a sparse representation in an orthonormal basis. In

fact, sparsity in an orthonormal basis is only one possible signal model that allows for sampling strategies

below the Nyquist rate. In this paper we consider a more general signal model and assume signals that

live on or close to the union of linear subspaces of low dimension. We present sampling theorems for

this model that are in the same spirit as the Nyquist-Shannon sampling theorem in that they connect the

number of required samples to certain model parameters.

Contrary to the Nyquist-Shannon sampling theorem, which gives a necessary and sufficient condition

for the number of required samples as well as a simple linear algorithm for signal reconstruction, the

model studied here is more complex. We therefore concentrate on two aspects of the signal model, the

existence of one to one maps to lower dimensional observation spaces and the smoothness of the inverse

map. We show that almost all linear maps are one to one when the observation space is at least of the same

dimension as the largest dimension of the convex hull of the union of any two subspaces in the model.

However, we also show that in order for the inverse map to have certain smoothness properties such as

a given finite Lipschitz constant, the required observation dimension necessarily depends logarithmically
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on the number of subspaces in the signal model. In other words, whilst unique linear sampling schemes

require a small number of samples depending only on the dimension of the subspaces involved, in

order to have stable sampling methods, the number of samples depends necessarily logarithmically on

the number of subspaces in the model. These results are then applied to two examples, the standard

compressed sensing signal model in which the signal has a sparse representation in an orthonormal basis

and to a sparse signal model with additional tree structure.

Index Terms

Compressed sensing, unions of linear subspaces, sampling theorems, embedding and restricted isom-

etry

I. INTRODUCTION

A. Compressed sensing

Since Nyquist [1] and Shannon [2] we are used to sampling continuous signals at a rate that is twice

the bandwidth of the signal. However, during the last decades, the focus has shifted and the problem of

recovering signals from fewer measurements than would be required by the Nyquist rate has been posed

[3]. Over the last few years interest in this problem has dramatically increased, fuelled by several recent

publications, including the work by Vetterli et al. [4] and by Eldar [5] on sampling of continuous signals

and the seminal papers by Candes, Romberg and Tao [6], [7], [8] and by Donoho [9] on sampling of

signals with finite dimensional discrete representations. Many of these publications have given theoretical

justification for many of the previously proposed approaches. In particular, it is now known that finite

dimensional signals with certain structures (to be made more concrete below) can be sampled at a lower

rate without incurring any loss of information. While the sampling operation is a simple linear mapping,

the reconstruction becomes non-trivial. The papers by Candes, Romberg and Tao [6], [7], [8] and by

Donoho [9] have shown that under certain conditions on the signal structure and the sampling operator

(which are often satisfied by certain random matrices), the original signal can be reconstructed using

weakly polynomial time algorithms.

The problem can be formulated as follows. A continuous or discrete signal f from an N < ∞

dimensional Hilbert space is to be sampled. This is done by using M linear measurements {〈f, φn〉}n,

where 〈·, ·〉 is the inner product and where {φn} is a set of N dimensional vectors from the Hilbert space

under consideration. Let x be the vector of elements xi such that f =
∑N

i=1 ψixi for some orthonormal

basis ψi of the signal space. As f and x are equivalent, we will from now on assume that x is the signal.
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Let Φ ∈ RM×N be the matrix with entries 〈ψi, φj〉. The observation can then be written as

y = Φx. (1)

In compressed sensing it is paramount to consider signals x that are highly structured and in the original

papers, x was assumed to be an exact k-sparse vector, i.e. a vector with not more than k non-zero

entries. Related models of x were considered in [9], [10], [11], [12], [13] and [14] and extensions to

noisy observations were presented in [10], [15] and [16].

B. Unions of Linear Subspaces

In this paper we consider a quite general signal model and assume the signal x to be an element from

a union of linear subspaces A, defined formally as

A =
L⋃
j

Sj , Sj = {x = Ωja,Ωj ∈ RN×kj ,a ∈ Rkj}, (2)

where the Ωj are bases for linear subspaces and where kj ≤ k <∞. This model is a special case of the

union of subspaces model introduced in [17] with the difference that we will restrict the discussion to

mixtures of finitely many finite dimensional subspaces, i.e we assume L <∞.

If Si,j is the convex hull of the set Si
⋃
Sj , we define

kmax = max
i 6=j

dim(Si,j), (3)

that is, the maximum dimension of the convex hull of the unions of two distinct subspaces in the model.

In this paper we follow a similar approach to that in [17] and rely heavily on the difference between any

two vectors xi − xj , both from A. The vectors xi − xj lie in a union of subspaces Si,j and kmax gives

the largest dimensions of any of these subspaces.

This quite general signal model incorporates many, though not all, previously considered compressed

sensing settings. It includes, for example

• The ‘traditional’, noiseless k-sparse model as considered by Candes et al. in for example [6] and

by Donoho in [9], in which x is assumed to have no more than k non-zero elements.

• The set of vectors with a k-sparse representation in a general, possibly overcomplete and non-

orthogonal dictionary Ψ as considered in [12] and [13], i.e. x = Ψz, where Ψ is a general matrix

with unit norm columns and possibly more columns than rows and where z is a vector with no more

than k non-zero elements.

• The set of k-sparse signals in which the non-zero elements form a tree as considered in [18].
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• The simultaneous sparse approximation problem [19] [20] [21] [22] [23], where a number of

observations yi is assumed to follow the model yi = Φixi where the xi are constrained to have the

same non-zero elements.

• The set consisting of the union of statistically independent k-dimensional subspaces Si as considered

by Fletcher et al. in [14].

C. Contribution

Many of the previous papers in compressed sensing have addressed two important aspects, namely,

the specification of conditions that guarantee an efficient reconstruction of the original signal from the

measurement samples and practical constructions of measurement ensembles. In this paper we will study

the problem of compressed sensing of signals which are known to lie in A. In particular we address two

fundamental aspects, for each of which, the primary question is the relationship between the required

observation space dimension as a function of both, the maximum dimension of any of the subspaces as

well as the total number of subspaces.

The first aspect studied is that of characterising linear maps that map each x ∈ A to a unique observation

y. We here study necessary and sufficient conditions for the existence of such one to one maps. This

one to one property of Φ for elements of A is clearly an important aspect in sampling as it specifies a

‘minimal’ requirement that allows us to sample a signal without loss of information. Whilst this property

has previously been studied in [17], our first main contribution is to show that under appropriate conditions

almost all linear maps are one to one. For the mixture model with finitely many finite dimensional

subspaces, our results are therefore stronger than those derived in [17], which only states that the set of

one to one maps is a dense subset of all linear maps.

Fletcher et al. also studied a similar formulation of the problem but assumed statistically independent

subspaces. They have shown that for this probabilistic model and for certain probability models on x,

almost all x can be mapped one to one under even milder conditions. In this paper we show that a similar

result also holds for the more general union of subspaces model considered here.

The second important aspect addressed is a theoretical characterisation of the inverse map. Here we

are particularly interested in the Lipschitz property of this inverse map and we derive conditions for

the existence of a bi-Lipschitz embedding from A into a subset of RN . This Lipschitz property is an
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important aspect of the map which ensures stability and controls the behaviour of any reconstruction1 to

perturbations of the observation, i.e. it controls the amount by which small perturbations are amplified in

the reconstruction. This in effect specifies the robustness of compressed sensing against noise, quantisation

errors and perturbations of the signal from the exact subspace model. Furthermore, in the k-sparse model,

the Lipschitz property is also an important aspect for the existence of efficient and robust reconstruction

algorithms.

Whilst sufficient conditions for the existence of Lipschitz inverses have been extensively studied

(however, under a different name) in the context of k-sparse signal models, necessary conditions have to

our knowledge not been reported (see however the discussion below). The derivation of such conditions,

for the general model considered here, constitute the second main contribution of this paper. In particular,

we derive novel sufficient conditions for the existence of maps whose inverse has a specific Lipschitz

constant. In the special case of k-sparse signals, the theorem reduces to well known results.

D. Notation

The set A will denote the union of L subspaces in an N dimensional ambient space. Each subspace

will have dimension not more than k and is often denoted by Si. When talking about dimension in this

paper, we in general mean the box counting dimension. Let N(ε) be the minimum number of boxes,

each of side length ε, required to cover a given set. The box counting dimension is then defined as [24,

p. 185]

dimbox := lim
ε→0

log(N(ε))
log(1/ε)

. (4)

For linear subspaces, this is equivalent to the normal Euclidean notion of dimension. The set of signals

x will be assumed to be taken from the set A. The linear map Φ will map any element from A into

an M dimensional observation space, elements of which will be denoted by y. We will often use the

notation BNρ (p) to refer to the ball in RN , i.e. the set of points {x : ‖p − x‖2 ≤ ρ,x ∈ RN}. If p = 0

we will write BNρ . A similar notation is used for the sphere which is denoted by SN−1
ρ (p), which will

be the sphere living in RN .

1It is important to stress that this is a property of the inverse map itself, which is uniquely (but indirectly) defined for any

one to one map. This property has therefore nothing to do with any particular algorithm one might design to (approximately)

calculate this inverse map.
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E. Paper Overview

The first main section of this paper, section II, derives two theorems that give conditions under which

the map Φ is one to one for elements from A. The developed theory is strongly inspired by work on

embedding theory, some of the relevant results of which are reviewed in subsection II-A. This is followed

by two subsections stating the main results for the existance of one to one maps for the two conditions

M ≥ kmax (subsection II-B) and k < M ≤ kmax − 1 (subsection II-C), where kmax is defined in (3). In

section III we tighten the requirements on Φ. Not only do we require Φ to be one to one for elements of

A, we further assume that Φ and its inverse have certain properties such as a given Lipschitz constant.

This requirement leads to stricter necessary as well as to more stringent sufficient conditions on the

number of observations to be taken. To demonstrate the generality of the results of section III, section IV

looks at two particular cases that fit the union of subspace model studied. The first case is the standard

k-sparse signal model traditionally considered in compressed sensing (subsection IV-A) while the second

example is a k-sparse signal model in which non-zero coefficients are constrained to form a tree structure

(subsection IV-B). Most of the proofs are stated in the appendices.

II. EXISTENCE OF A UNIQUE INVERSE MAP

One quite natural property to be required from any signal acquisition or sampling system is that the

system preserves (at least most) of the information contained in the signal. In compressed sensing it

is therefore often required that the system maps any x from the set under consideration to a unique

observation y. Under this condition, knowledge of y is, at least in theory, equivalent to knowledge of x.

A map Φ that maps different points x to unique vectors y is said to be one to one. In this section we

derive conditions under which Φ is one to one for all x ∈ A.

This section considers sufficient conditions relating M and k. We here distinguish two cases, M ≥ kmax

and k < M ≤ kmax − 1. We prove that almost all linear maps are one to one whenever M ≥ kmax,

whilst for k < M ≤ kmax − 1 it can be shown that almost all linear maps are one to one for almost all

x ∈ A (where almost all requires the definition of a smooth measure on A). However, before stating the

main results, the next subsection recalls some motivating results from embedding theory, which form the

basis of the main theorems.

A. Embedding of low dimensional compact sets

Whitney’s Embedding Theorem [25, chapter 10] states that “Every compact metrizable k-dimensional

topological space (or alternatively every smooth k-manifold) can be embedded into RM if M > 2k”.
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Dimension here generally refers to the (Lebesgue) covering dimension as defined in for example [24, p.

96].

An extension of this theorem by Sauer et al. [26] is

Theorem 2.1 (Theorem 2.3 [26]): Assume a compact subset C of RN with box counting dimension k

and let M > 2k, then almost all smooth maps F from RN to RM have the property that F is one to

one on C.

As pointed out by Sauer et al., the space of smooth maps is infinite-dimensional and there is no

Lebesgue measure on such a space. The term “almost all” in the above theorem has therefore to be

understood in terms of prevalence [27]. As we are dealing with finite dimensional spaces of linear maps

in this paper, we will from now on use the term “almost surly” to mean that the complement will have

Lebesgue measure zero. The distinction between this definition and that in terms of prevalence is therefore

not required here and we refer the interested reader to the original literature cited above.

These results can be seen in terms of a quite general compressed sensing problem. Assume that the

data lives on a k dimensional compact subset of the data-space. It is then clear that we would only need

M > 2k observations to exactly specify the data. This suggests an extension of compressed sensing to

more general low dimensional data structures. An example of this, where the data was assumed to lie on

a smooth manifold was already considered by Baranuick and Wakin in [28]. The above theorem further

suggests the use of non-linear measurements, i.e. the use of smooth maps. To our knowledge, such maps

have not been considered for compressed sensing so far.

It is important to note that Whitney’s result and Sauer’s extension hold for general low dimensional

compact manifolds as well as general smooth embeddings (not necessarily linear). We show below that,

in the case of a unions of k-dimensional linear subspaces and for linear embeddings, we can actually get

an embedding into RM if M ≥ 2k (rather than the strict inequality of the above theorems).

B. The case M ≥ kmax

The theorem by Sauer et al. sheds new light on the more traditional compressed sensing problem that

considers signals that are well approximated as lying on the union of linear subspaces and mappings that

are assumed to be linear. In this context, the paper of Lu and Do [17] derived results related to those

of Sauer et al. In particular [17] shows that the set of maps from the union of linear subspaces into

RM with M ≥ kmax is dense. For the k sparse model, [3] (see also Corollary 4 in [29]) presented the

following result

Theorem 2.2: A linear system y = Φx for which all possible combinations of M of the N columns
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of Φ are linearly independent and for which x has k < M/2 non-zero elements does not admit any other

solution with less than M − k + 1 non-zero elements.

The property2 that all combinations of M of the N columns of Φ are linearly independent was termed

the Unique Representation Property (URP) in [3]. Combining this theorem with the fact that almost all

linear maps have the URP gives a similar result to the one we derive below, but for the special case of

k-sparse signals. See also lemma 2.1 in [30] for an alternative statement of the same result. A related

result has also been presented in [31, Theorem 2.1] in which sparse signals are considered and in which

the measurement ensemble was a matrix with Gaussian distributed entries.

We derive our result based on the analysis of Sauer et al. and show that for signals from finite unions

of low dimensional linear subspaces, almost all linear maps are one to one whenever M ≥ kmax. This

result is a restriction of the more general results of Sauer et al. to unions of linear subspaces and linear

mappings and allows us to reduce the required observation dimension by one and therefore extends the

results from [17] and [31]. In particular, we can use a slight variation of the proof used by Sauer et al.

[26] to derive the following theorem

Theorem 2.3: Almost all linear maps Φ : A → RM are one to one if M ≥ kmax.

The somewhat lengthy and rather involved proof can be found in Appendix I. In [17] a very similar result

was derived for a countably infinite union of subspaces. The difference to our result is that for the finite

union of subspaces, our theorem states that almost all maps have the desired property, whilst in [17] it

was shown that the set of maps with the property is dense, which is a slightly weaker statement (though

derived for a more general model) as density of a set does not imply anything about the measure of the

set.

This theorem tells us that, not only is there a map that will map the union of subspaces of interest one

to one into an M ≥ kmax dimensional observation space, but also, that almost all linear maps will do.

Therefore, if we chose the maps at random (as is often advertised in compressed sensing) we will find

such a map with probability one. We are then guaranteed that there also exists a unique inverse map that

will get us back to the original signal. However, the theorem does not give any insight into the behaviour

of this inverse map, which is the topic of the next section.

It is also important to note that the above theorem is tight as is shown by the following necessary

condition.

Theorem 2.4: A necessary condition for the map Φ : A → RM to be one to one is that M ≥ kmax.

2Note that this property is equivalent to spark(Φ) = M + 1, where spark is defined as in [29].
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This is Proposition 3 in [17]. For completeness, a proof can also be found in Appendix II.

C. The case k < M ≤ kmax − 1

The paper [26] sports a further theorem that is of interest for compressed sensing.

Theorem 2.5 (Self-Intersection Theorem [26]): For any compact subset C of a metric space RN , let C

have box-counting dimension k and let M ≤ 2k be an integer. For any δ and almost all smooth maps

F : A → RM , the set

{x1 ∈ A : ∃x2 ∈ A,F (x1) = F (x2), ‖x1 − x2‖2 ≥ δ} (5)

has box-counting dimension at most 2k −M .

The self-intersection theorem of Sauer et al. hints at a further possible reduction in the number of

required observations if we can specify a smooth measure on each of the subspaces. We can decompose

A =
⋃k
i=1Ai, where the sets Ai are unions of subspaces of dimension exactly i. We define a measure

on A by assuming a measure defined on each of the Ai in one of the possible decomposition of A. The

measures on Ai are assumed to be such that all subsets of Ai of dimension less than i are of measure

zero3.

The argument given in Appendix III then proves the following theorem.

Theorem 2.6: Assume a measure defined on A as outlined above, then almost all linear maps Φ :

RN → RM are one to one on almost all elements of A whenever k < M ≤ kmax − 1.

While the theorem in the previous subsection was valid for all x ∈ A, the theorem in this subsection

assumes that the elements x are drawn randomly from A.

Again note that a similar result for sparse signals and Gaussian measurement ensembles has been

presented in [31, Theorem 2.1]. Our results again extend these results to more general linear subspaces

and to almost all linear measurements. In this context, it is also interesting to note the result by Fletcher

et al. [14] who considered a mixture of statistically independent k dimensional subspaces with a Gaussian

measure on each subspace. Using information theoretic arguments, they have shown that with probability

one compressed sensing does not lose any information for their model, whenever M > k. Our results

are a more general version of this observation.

3For example, this models includes the standard sparse signal model in which one randomly selects the number of non-zero

coefficients (constrained to be no more than k), their position and their value.
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III. PROPERTIES OF THE INVERSE MAP

While the existence of a one to one map is important as it guarantees the existence of a unique inverse

map, in practical applications more stringent requirements are often called for. Two such requirements

are that the observations are robust to noise and the existence of efficient algorithms for the recovery of

the original signal. Both of these properties can be shown to be strongly related to distance preserving

properties of the map. For example, it is not only required that two distinct signals are mapped to distinct

observations, it is also important that the distance between distinct signals is not changed too much in the

observation domain [6], [10], [16], [32], [16]. A mathematical tool to measure this property for k-sparse

signals is the k-restricted isometry constant δk [33] defined as follows

Definition: (k-restricted isometry) For any matrix Φ and integer k we define the k-restricted isometry

constant δk(Φ) to be the smallest quantity such that

(1− δk(Φ)) ≤ ‖Φx‖22
‖x‖22

≤ (1 + δk(Φ)), (6)

holds for all x with no more than k non-zero elements.

The restricted isometry constant δk bounds the amount by which the length of any K-sparse vector is

changed by Φ. If we normalise Φ, such that both inequalities in (6) are tight, then, if δ2K = 0, then

there are vectors for which no change takes place. In order for each K-sparse signal to admit a one to

one map, it is therefore necessary that there exist a normalisation of Φ such that δ2K < 1 for otherwise

there would be a 2k sparse vector x that is the linear combination of two k-sparse vectors x = x1 − x2

for which Φx = 0, which would imply that Φ cannot be one to one for all k-sparse signals, i.e. we

would have Φx1 = Φx2. We therefore have the following corollary to Theorem 2.3:

Corollary 3.1: If M > 2k−1, then almost all linear maps Φ can be normalised such that δ2k(Φ) < 1.

A natural extension of the k-restricted isometry for the more general union of subspaces model would

be

Definition: (A-restricted isometry) For any matrix Φ and any subset A ⊂ RN we define the A-

restricted isometry constant δA(Φ) to be the smallest quantity such that

(1− δA(Φ)) ≤ ‖Φx‖22
‖x‖22

≤ (1 + δA(Φ)), (7)

holds for all x ∈ A.

If we define the set Ā = {x = x1 + x2 : x1,x2 ∈ A} (Note that δĀ(Φ) ≥ δA(Φ).), then a similar

argument to the one above shows that a necessary condition for the existence of a one to one map would
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require that δĀ < 1 for otherwise there would exist x1 6= x2 such that Φx1 = Φx2, i.e. such that

Φx1 −Φx2 = 0. We again get a corollary to Theorem 2.3.

Corollary 3.2: If M ≥ kmax, then almost all linear maps Φ can be normalised such that δĀ(Φ) < 1.

Interestingly, this result does not depend on the ambient dimension of the signal space nor on the

number of subspaces in the signal model. However, the corollary only guarantees that almost all (suitably

normalised) linear maps of correct dimension satisfy δĀ(Φ) < 1, but allows δĀ(Φ) to get arbitrarily

close to one. We therefore turn now to a more stringent requirement on δĀ(Φ), namely we require

δĀ(Φ) ≤ c < 1 for some given constant c. The theorems of this section show that the existence of a

fixed restricted isometry constant requires a logarithmic dependence on the number of subspaces.

One important interpretation of the restricted isometry constant is in terms of the “smoothness” of the

inverse map from y to x. Denote the inverse map by f(y) say. This “smoothness” can, for example, be

measured by the Lipschitz constant KI (I for inverse), defined as the smallest number KI such that

‖f(y1)− f(y2)‖2 ≤ KI‖y1 − y2‖2. (8)

If xi,xj ∈ A and if δĀ < 1, then we can write

‖x1 − x2‖2 = ‖f(y1)− f(y2)‖2 ≤
1√

1− δĀ
‖y1 − y2‖2, (9)

i.e. 1√
1−δĀ

is a bound on the Lipschitz constant KI of the inverse map from the observations to the

signal space. Similarly, the Lipschitz constant KF (F for forward) of the map Φ (defined as the map

from A to Φ(A)) can be bound by
√

1 + δĀ. It is important to note that in the definition of the Lipschitz

constant KF used throughout this paper, we consider Φ to be restricted to elements from A. One should

therefore think of KF as a restricted Lipschitz constant.

A. A sufficient condition for the existence of a Φ with required δA

We first state a sufficient condition that guarantees the existence of a fixed δA < 1. The proof can be

found in Appendix IV

Theorem 3.3: For any t > 0, let

M ≥ 1
c(δA/6)

(
ln(2L) + k ln

(
36
δA

)
+ t

)
, (10)

then there exist a matrix Φ ∈ RM×N and a function c(δ) > 0 depending only on δ such that

(1− δA)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δA)‖x‖22 (11)
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holds for all x from the union of L arbitrary k dimensional subspaces A. What is more, if Φ is generated

by randomly drawing i.i.d. entries from an appropriately scaled subgaussian distribution4, then this matrix

satisfies equation (11) with probability at least

1− e−t. (12)

The function c(δ) then only depends on the distribution of the entries in Φ and is c(δ) = δ2/4 − δ3/6

if the entries of Φ are i.i.d. normal or if the entries are either 1/
√
N or −1/

√
N with equal probability.

Note that, in contrast to the results of the previous section, this sufficient condition is logarithmic in the

number of subspaces considered. In the next subsection we show that this logarithmic dependence is in

fact necessary.

We have here stated the results for a general union of subspace model A. By choosing the appropriate

values for L and k, results for A, Ā or other unions of subspaces can be derived. For example, assume

xi,xj ∈ A. The vectors xi−xj lie in Ā, which is the union of L̄ = (L2−L)/2 subspaces of dimension

no more than kmax. We therefore get the following corollary

Corollary 3.4: For any t > 0, let

M ≥ 1
c(δĀ/6)

(
ln(2L̄) + kmax ln

(
36
δĀ

)
+ t

)
, (13)

then there exists a matrix Φ ∈ RM×N and a function c(δ) > 0 such that

KI ≤
1√

1− δĀ
, (14)

and

KF ≤
√

1 + δĀ. (15)

If Φ is generated by randomly drawing i.i.d. entries from an appropriately scaled subgaussian distribution,

the matrix will satisfy the conditions with probability at least 1− e−t.

B. A necessary condition for the existence of a Φ with required δĀ

In this subsection we study a necessary condition for the existence of a map Φ with a required Lipschitz

constant for points in A and with an inverse, also with a given Lipschitz constant. To derive this result,

we relate the distance between p unit norm vectors packed optimally into A to the number of required

4Examples of these distributions include the Gaussian distribution and random variables that are ± 1√
N

with equal probability

[34] [12].
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observations. To formalise the notion of optimal packing, we define the maximum packing distance of a

set A as follows

Definition: (maximum packing distance ωp(A)) Let Pp be a set of p unit norm vectors from A. For

any set A, the maximum packing distance is defined as

ωp(A) = max
Pp

 min
xi,xj∈Pp

xi 6=xj

‖xi − xj‖2

 , (16)

where the maximum is taken over all sets of p unit norm vectors taken from the set A and where the

minimum is taken over all combinations of distinct elements from that set of p vectors.

In words, we are looking for a set of p vectors in A, for which the closest vectors are as far apart from

each other as possible. In this set of vectors, the maximum packing distance is the smallest distance

between any two vectors.

We are now able to state a necessary condition for the existence of a map Φ with a prescribed δĀ. In

fact, we derive a slightly more general theorem in terms of the Lipschitz constants KF of Φ (for values

in A) and KI of the inverse map. This automatically gives the necessary condition for the existence of a

restricted isometry constant δĀ by using KF =
√

(1 + δĀ) and KI =
√

1
(1−δĀ) . We have the following

theorem proven in Appendix V.

Theorem 3.5: Let A be the union of L subspaces of dimension no more than k. In order for a linear

map Φ : A 7→ RN to exist such that it has a Lipschitz constant KF and such that its inverse map

f : Φ(A) 7→ A has a Lipschitz constant KI , it is necessary that for all integers p > 0

M ≥ ln(p)

ln
(

4KFKI

ωp(A)

) . (17)

The above inequality must hold for all integer p > 0. A tighter bound would therefore require the

study of the bound for varying p. This requires a detailed analysis of ωp(A). Instead of following this

route further here, we use a simpler approach based on a different geometric property of A defined as

follows.

Definition: (∆(A) subspace separation) Let A =
⋃
i Si be the union of L subspaces Si and let P =

{xi ∈ Si : ‖xi‖2 = 1}i∈{1,2,...,L}, that is, P is a set of L unit length vectors, each being an element of a

different subspace. The subspace separation of A is defined as

∆(A) = max
P

 min
xi,xj∈P
xi 6=xj

‖xi − xj‖2

 . (18)
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In words, we are looking for a set of L vectors in A, where each vector is in a different subspace, for

which the closest vectors are as far apart from each other as possible. The subspace separation ∆(A)

is the smallest such distance and measures the separation of subspaces in the model. It depends on A

and in particular on the number of subspaces in A. However, for a given model A one might be able

to add additional subspaces without changing ∆(A). There is however a limit to this, depending on N .

For example, in order for A to have a separation ∆(A) it is necessary that there are L vectors that can

be packed into RN with an `2 distance between any two vectors given by ∆(A).

As the set of L vectors over which we maximise in the definition of ωL(A) includes all the sets over

which we maximise in the definition of ∆(A), we have

ωL(A) ≥ ∆(A). (19)

This bound can then be used in Theorem 3.5 to derive the following necessary condition relating the

number of subspaces L to the number of required observations.

Corollary 3.6: Let A be the union of L subspaces of dimension no more than k. In order for a linear

map Φ : A 7→ RN to exist such that it has a Lipschitz constant KF and such that its inverse map

f : Φ(A) 7→ A has a Lipschitz constant KI , it is necessary that

M ≥ ln(L)

ln
(

4KFKI

∆(A)

) . (20)

Therefore, if we keep the subspace separation of the model fixed, increasing the number of subspaces

(and possibly increasing the ambient dimension), whilst keeping the dimension of the subspaces fixed, we

see that it is necessary for the number of samples to grow logarithmically with the number of subspaces.

It is again worth stressing the difference between the results of this section and those of the previous

section. In the previous section we have analysed the existence of one to one maps. While this one to

one property implies the existence of an inverse map, it does not give any guarantees on the Lipschitz

constant of this map, which might be arbitrary large. The theorems in this section differ in that they are

asking for conditions that give a fixed Lipschitz constant. Under this additional constraint we see that

it is not only necessary that M ≥ kmax, but that M necessarily has to depend logarithmically on the

number of subspaces considered.

IV. EXAMPLES

A. k-Sparse Signals

As a specific example, we now return to the “traditional” compressed sensing model in which x is

assumed to have k non-zero elements. Using Stirling’s formula, we can bound the number of subspaces
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in the k-sparse model by

(N/k)k ≤ L =

 N

k

 ≤ (eN/k)k. (21)

With this bound, the sufficient condition from the previous section reduces immediately to the results

similar to those first presented in [33] for the Gaussian case. In particular we see that with probability

at least

1− e−t (22)

a matrix with i.i.d. Gaussian (or Bernoulli) entries satisfies the δk(Φ)-restricted isometry condition

whenever

M ≥ 1
c(δk/6)

(
k ln(eN/k) + k ln

(
36
δk

)
+ ln(2) + t

)
, (23)

where c is as in Theorem 3.3.

In the k-sparse case, ∆(A) ≥
√

2/k, because we can always choose L k-sparse vectors which differ

in their support (i.e. which lie on a different subspace) and for which all the non-zero elements have

magnitude 1/
√
k. Two such vectors are closest if they differ only in two elements, from which we get

the bound.

Therefore, the following corollary is a simple consequence of Theorem 3.6.

Corollary 4.1: Let A be the union of subspaces spanned by all k-sparse vectors. In order for a linear

map Φ : A 7→ RN to exist such that it has a Lipschitz constant KF and such that its inverse map

f : Φ(A) 7→ A has a Lipschitz constant KI , it is necessary that

M ≥ k ln(N/k)

ln
(√

8kKFKI

) . (24)

It is interesting to note the following argument [35]5 showing the necessity of the logarithmic depen-

dence on the signal space dimension for signals with bounded lp “norm” (p ≤ 1). It has been shown that

the restricted isometry constant implies the recovery of these signals to within a given error bound (See

for example [8]). On the other hand, it is also known that the best attainable error bound is related to the

Gelfand width of the signal classes. This relationship shows that the given error bound is only attainable

if the observation dimension depends logarithmically on the signal space dimension. See [11] for details

on Gelfand width and the relationship to the restricted isometry condition.

5We would also like to thank Joel Tropp for pointing this argument out to us.



VERSION: DECEMBER 3, 2009 15

B. k-Sparse Rooted Sub-Trees

Let us consider another example. For many images, it is known that significant non-zero wavelet

coefficients have certain tree structures. A more powerful signal model will take such structure into

account. One recent example is the model considered by La and Do [18] who also presented a practical

algorithm to recover the non-zero coefficients in such a model.

Assume that x has k non-zero elements as in the k-sparse model. In addition, the elements in x are

assumed to form a binary tree and we restrict the k non-zero coefficients of x to form a rooted sub-tree.

The number of sub-trees with k elements is in general much smaller than the number of all k-sparse

vectors. Each sub-tree with k nodes defines a subspace and we need to bound the total number of these

subspaces to use the theory developed above. The number of different sub-trees with k nodes is clearly

bounded by the total number of different trees with k nodes. The number of different trees with k nodes

is known to be the Catalan number

Ck =
1

k + 1

 2k

k

 , (25)

which we can bound using Stirling’s formula

Ck ≤
(2e)k

k + 1
. (26)

Therefore, we have a bound on the number of k-dimensional subspaces in the k-sparse tree model

L ≤ (2e)k

k + 1
. (27)

Importantly, and in contrast to the bound (21) for the k sparse model, L does not depend on the ambient

dimension N .

Using this bound in theorems 3.3 gives the following corollary

Corollary 4.2: Let A be the set of signals with k non-zero elements that form a rooted sub-tree. There

exists a matrix Φ such that with probability at least

1− e−t. (28)

(1− δA(Φ))‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δA(Φ))‖x‖22 (29)

for all x ∈ A, whenever

M ≥ 1
c(δA/6)

(
k ln

(
72e
δA

)
− ln

(
k + 1

2

)
+ t

)
. (30)

Again, c is as in Theorem 3.3.
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A general lower bound for L is not available, but if we assume that the height of the tree is larger

than k (note that this implies that k ≤ log2(N −1)−1), then the Catalan number gives the exact number

of k element rooted sub-trees. Under this assumption we have

2k

k + 1
≤ L. (31)

Therefore, (again using ∆(A) ≥
√

2/k) we get the necessary condition.

Corollary 4.3: Let A be the set of signals with k non-zero elements that form a rooted sub-tree and

assume that 2 ≤ k ≤ log2(N − 1)− 1. In order for a linear map Φ : A 7→ RN to exist such that it has a

Lipschitz constant KF and such that its inverse map f : Φ(A) 7→ A has a Lipschitz constant KI , it is

necessary that

M ≥ k ln(2)− ln(k + 1)

ln
(√

8kKFKI

) . (32)

V. DISCUSSION AND CONCLUSION

The union of linear subspaces model considered in this paper is a general signal model that includes

many of the signal models previously studied in compressed sensing. Results derived for this model have

therefore a wide applicability and can provide new insight into the traditional sparse coding problem. In

this paper we have studied two aspects of this general model, the existence of one to one maps into low

dimensional observation spaces and the properties of the inverse maps. We were particularly interested

in the behaviour of these properties in terms of the observation dimension, thereby deriving theorems

that are in the same spirit to the Nyquist-Shannon sampling theorem.

The first new result presented was that almost all linear maps are one to one, whenever the observation

dimension is at least twice the largest subspace dimension in the model considered. This is an interesting

result similar to that given in [17]6 showing that one to one maps are relatively “easy” to come by and

do not depend on either, the signal ambient dimension nor on the number of subspaces in the model.

While the one to one property is clearly desirable for signal acquisition as it guarantees that the

observation contains the same information as the original signal, in practical applications two other

important properties have to be taken into account, the robustness to noise and the existence of efficient

algorithms to calculate the inverse map. The second part of this paper therefore concentrated on properties

of the inverse map and in particular its smoothness. In order to guarantee a given smoothness of the

6The differenc being that our results show that almost all maps have the desired property, whilst in [17] it was shown that

for the countably infinite union of subspaces, the set of maps having the one to one property is dense.
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inverse map, we showed that the observation dimension had to depend at least logarithmically on the

number of subspaces in the signal model and we showed that this logarithmic dependence was sufficient

for the existence of a smooth inverse. This is a much stricter condition than the one required for the

existence of one to one maps, however, for these stricter conditions we get the additional guarantee of

the existence of an inverse map with a fixed Lipschitz constant.

An important realisation is that linear one to one embeddings only require twice as many observations

as the dimension of the largest subspace in the model, however, these sampling schemes can be arbitrarily

unstable. In order to control the stability of such sampling schemes, the number of samples must depend

logarithmically on the number of subspaces in the model. Similar results are known for the sparse

signal model in compressed sensing and we have here shown that this behaviour is valid in a much

more general settings. In fact we could show that for the k sparse signal, we directly recovered know

sufficient conditions, though the derived necessary conditions are novel. In particular, we showed that

the logarithmic dependence of the observation space dimension on the signal ambient dimension is

necessary for the k-sparse model. The dependence on the ambient dimension is however a result of

the growth of the number of subspaces in the k-sparse model when the ambient space dimension is

increased. Interestingly, if we further constrain the model and assume the non-zero coefficients to have

tree structures, the dependence on the signal ambient space dimension disappears.

We have here studied theoretical properties of a compressed sensing approach for signals from the union

of linear subspaces and specified theoretical properties of the inverse map f(y). Whilst a small Lipschitz

constant of f(y) clearly specifies a robustness against noise, we also believe that this constant controls

other important aspects of f(y). It is for example well known that in the k-sparse signal model, f(y)

can be implemented efficiently using linear programming algorithms whenever the restricted isometry

constant is sufficiently small. The problem of calculating f(y) for the more general unions of subspace

model has not been addressed in this paper, however, we believe that the ability to implement f(y)

efficiently might well be related to the Lipschitz constant of f(y) or to the restricted isometry constant

and we hope that the developments of this paper are instrumental in such a theory, but a detailed study

of these issues has to be relegated to future publications.

We have here concentrated on the union of finitely many finite dimensional subspaces. Extensions to

unions of infinitely many finite dimensional subspaces were considered previously in [17], where the

existence of one to one maps for this model was studied. The question now arises whether our results

are extendable to this setting. In particular the conditions for the existence of stable embeddings is of

interest. For a model with infinitely many subspaces, a result like that of Theorem 3.3 would clearly not be
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desirable, in that it would imply the requirement of infinitely many observations. However, the necessary

condition in Theorem 3.5 also depends on how well we can pack L vectors onto the subspaces. In order

to get a finite result, one important issue therefore seems to be the necessity to control this geometric

property.

APPENDIX I

PROOF OF THEROEM 2.3

For the proof we need to consider the set C defined as the union of hyper-spheres of dimension kj − 1

C =
L⋃
j

Cj , Cj = {x = Ωja,Ωj ∈ RN×kj ,a ∈ Rkj , ‖x‖ = 1}, (33)

which can be used as an alternative definition of A

A = {x̂ : x̂ = αx,x ∈ C, α ∈ R}. (34)

Note that the set C has box counting dimension k − 1, where k is the maximum of the kj .

The goal is then to show that, for the set defined below, almost all linear maps Φ ∈ RM×N are one

to one under appropriate conditions on M . We proceed as follows. First we state a lemma that bounds

the volume of the subset of any bounded set, that maps into a ball centred at zero. Later, shrinking the

diameter of the ball in this lemma, it can be shown that the set that exactly maps to zero must have a

bounded dimension. This dimension depends on M and the dimension of the set. To prove that this holds

for almost all maps, we also need to consider a neighbourhood of an arbitrary linear map and show that

the property holds for almost all maps in the neighbourhood of any map. This approach mirrors closely

the derivation in [26] from where we borrow the first lemma

Lemma 1.1 (Lemma 4.2 from [26]): Let θΘ(α) = Θα+ d be an affine map from RT to RM , where

Θ is a T ×M matrix and d ∈ RM . Given a positive integer r, let σ denote the rth largest singular value

of the matrix Θ. Let BTt be the ball centred at the origin in RT space with radius t. Similarly, let BMm
be the ball centred at the origin in RM space with radius m. Then the portion of the volume of BTt that

overlaps with the set θΘ(α)−1(BMm ) can be upper bounded by

V ol(BTt ∩ θΘ(α)−1(BMm ))
V ol(BTt )

< 2
T

2

(m
σt

)r
. (35)

The second lemma also follows closely the development in [26], with the main difference that we here

concentrate on linear maps. As this lemma does most of the work in proving the main result, it is given

here for completeness. Let us, however, first introduce the set

B = {b : b = x1 + x2; x1,x2 ∈ A, ‖b‖ = 1}. (36)
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Note that B has dimension no more than kmax − 1.

Lemma 1.2: Let the set {Φi}i∈{0,1,...,T} be a basis for linear maps from RN to RM . For any Φ0 we

define Φα = Φ0 +
∑T

i αiΦi for α ∈ Rt, or in the language of the previous lemma, Φb = θΘb
(α) =

Θbα+ d =
∑T

i αiΦib + Φ0b. Let kb = kmax− 1 be the box counting dimension of B. Then for almost

all α ∈ RT , the set Φ−1
α (0), i.e. the set of b ∈ B for which Φαb = 0, has lower box counting dimension

at most kb −M and in particular, if M > kb = kmax − 1, then Φ−1
α (0) = ∅.

Proof: Φα(b) is a bilinear map. In order to prove the lemma, we are considering the set Φα(b)

for both, α and b taking values in some ball in their respective spaces. Lemma 1.1 can then be used to

bound the probability for the set Φα(b) to overlap with a ball centred at zero. This probability can be

made arbitrary small, from which the lemma will follow. We proceed in several steps.

1) Because of the linearity of Φα as a function of α, it suffices to prove the result for α ∈ BTt for

some t > 0. This defines a neighbourhood of linear maps and we need to show that almost all

maps in this neighbourhood do not map any b into zero.

2) Let Br ⊆ B be the set of b ∈ B,b 6= 0 for which the matrix

Θb = {Φ1b,Φ2b, . . . ,Φtb} (37)

has rank M with the M th largest singular value of Θb greater than σ. Let kr be the lower box

counting dimension of Br. Note that Θb is of rank M almost surely.

3) We next consider the ball BMm ⊂ RM of radius m and centred at zero. Lemma 1.1 shows that for

a fixed b the maximum overlap of the set BTt and the set Φ−1
α (BMm ) is less than 2

T

2 (mσt)
r, i.e. for a

fixed b the probability of any of the Φα, α ∈ BTt mapping b into a ball centred at zero is bounded.

In other words, for fixed b, Φα(b) is more than t away from zero except with probability 2
T

2 (mσt)
r.

4) Next we consider a third ball, this time in RN , centred at an arbitrary b and with radius n, say

BNn (b) ⊂ Rk. Because of the linearity of Φα, the image of any BNn (b) under Φα, α ∈ BTt is a

subset of some ball in RM with bounded radius Cn for some C. If Φα maps b (the centre of our

ball) further away from zero than Cn, i.e. if |Φα(b)| > Cn, then the image of the ball BNn (b) does

not contain zero. We can therefore bound the probability that the image of the ball BNn (b) under

Φα, α ∈ BTt contains zero with the probability that Φα, α ∈ BTt maps b to a point within the ball

with radius Cn. By the argument above, this probability is bounded by 2
T

2 (Cnσt )r. For σ > 0 and

t > 0 fixed, we have a bound of C1n
r.

5) Because Br is bounded, we can cover Br with say p balls of radius n. Furthermore, we can bound

p using p ≤ n−k, where we can make k arbitrary close to the box counting dimension kr of Br
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by choosing n small enough. Therefore, the probability that q of the images of the p balls contain

zero can be bounded by C1n
r−k/q. Writing q = n−k, i.e. writing the probability as C1n

d−(k−r),

we see that if d > k − r we can make the probability arbitrary small by decreasing n.

6) We can therefore decrease n such that fewer than n−d balls cover the subset of B that maps into

zero except with a probability approaching zero as n → 0. By the definition of box counting

dimension, we realise that b is a bound on the box counting dimension of the set Φ−1
α (0) ⊂ B.

The argument holds for all d > kr − r, which therefore gives the bound in the lemma.

7) The above argument holds for all σ > 0 and therefore holds for all Θb almost surely.

Proof: [Proof of Theorem 2.3] Let x1,x2 ∈ C, then αx1, βx2 ∈ A if α, β ∈ R . Assume there

were x1,x2, α, β such that αx1 6= βx2 and Φαx1 = Φβx2. W.l.o.g. α 6= 0 so that c = β
α . Then

Φx1 = Φcx2. We can write cx2 = x1 + γb for some γ and some b ∈ B. Φαx1 = Φβx2 implies

therefore that γΦb = 0. If γ = 0, then we would have γx2 = x1 which is impossible by the assumption

that αx1 6= βx2, therefore γ 6= 0 which means that Φb = 0. By definition b is from a bounded set of

box counting dimension kmax− 1. But by the previous lemma Φb 6= 0 for almost all Φ if M > 2d− 1,

from which the theorem follows.

APPENDIX II

PROOF OF THEOREM 2.4

Proof: [Proof of Theorem 2.4] The one to one property implies that

Φ(xi − xj) 6= 0, (38)

for all xi 6= xj where xi,xj ∈ A.

Let B = {b = xi − xj : xi ∈ Si,xj ∈ Sj ,b 6= 0}, where the subsets Si and Sj are chosen such that

the dimension of B is kmax. Φ(xi − xj) 6= 0 then implies that Φ(b) 6= 0. For any set of kmax linearly

independent vectors b1 ∈ B we know that
∑

i αibi 6= 0 holds for all αi 6= 0. This implies that the set

of kmax vectors Φbi is also linearly independent. This can be shown by contradiction. Assume Φbi is

linearly dependent, i.e. there exist αi 6= 0 such that
∑

i αi(Φbi) = 0. By linearity, this would imply that

Φ
∑

i αi(bi) = 0. Now
∑

i αi(bi) ∈ B. But none of the elements of B are in the null space of Φ, so that

Φb = 0 would imply
∑

i αi(bi) = b = 0. But by the linear independence of the bi this is impossible

if αi 6= 0. Therefore, the Φbi are linearly independent and span a kmax dimensional subspace of RM ,

which is only possible if M ≥ kmax.
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APPENDIX III

PROOF OF THEOREM 2.6

For the Ai in the definition of the measure in the theorem, we define Ci similarly to the definitions of

C. Let the sets

Bi,j = {bi,j : bi,j = yi + yj ,yi ∈ Ci,yj ∈ Ai}. (39)

The sets Bi,j are then of dimension i+ j − 1.

Proof: [Proof of Theorem 2.6] If M > i+j−1, we can apply Theorem 2.3 and almost all Φ do not

map any subset Bi,j to zero. If i+ j− 1 ≥M > k > i and assume that without loss of generality i ≥ j,

we have from Lemma 1.2 that the set for which Φb = 0, with b ∈ Bi,j has dimension i+ j−1−M < i,

which by definition of the measure on Ai has measure zero. Taking the union of these measure zero

events is also a measure zero event showing that for almost all Φ, and almost all b, Φb 6= 0.

APPENDIX IV

PROOF OF THEOREM 3.3

The proof of Theorem 3.3 follows closely the approach set out in [34] and [12].

Proof: [of Theorem 3.3] For a fixed x, any matrix Φ with entries drawn i.i.d. form subgaussian

distribution satisfies [12]

P (|‖Φx‖22 − ‖x‖22| ≥ ε‖x‖22) ≤ 2e−
M

2
c(ε). (40)

From lemma 5.1 in [34] we know that if

P{|‖Φy‖22 − ‖y‖22| > δ‖y‖22} ≤ 2e−c(δ/2)N , (41)

then

(1− δ)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + δ)‖x‖2 (42)

holds with probability more than

1− 2
(

12
δ

)k
e−c(δ/2)M . (43)

Let δA = 3δ, then

(1− δA)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δA)‖x‖22 (44)

holds with probability more than

1− 2
(

36
δA

)k
e−c(δA/6)M . (45)
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A union bound tells us that for L subspaces, the probability of failure will be bounded by

1− L2
(

36
δA

)k
e−c(δA/6)M . (46)

from which the theorem follows.

APPENDIX V

PROOF OF THEOREM 3.5

Proof: [of Theorem 3.5]

The proof of this theorem is based on the following inequality which we will show to hold for a

particular subset of p vectors from A.

1
K2
I

≤ ‖Φ(xi − xj)‖22
‖xi − xj‖22

≤ 1
ω2
p(A)

‖Φ(xi − xj)‖22 (47)

The first inequality is due to the definition of the Lipschitz constants. The second inequality follows

from the definition of ωp(A), which guarantees the existence of p vectors taken from A that satisfy the

required bound.

The vectors xi are unit length. We require that ‖Φ(xi−xj)‖22 ≤ K2
F . Therefore, the vectors yi = Φxi

all lie within a ball of radius KF and the vectors ŷi = yi

KF
lie in a ball of unit radius. This, with inequality

(47), shows that we require ‖ŷi − ŷj‖22 ≥
ω2

p(A)

K2
IK

2
F

for i 6= j. We therefore see that it is necessary for the

vectors ŷi to be separated by at least d =
√

ω2
p(A)

K2
IK

2
F

and we can use a packing argument to complete the

proof.

Lemma 5.1: We can pack p points within the unit ball in RM with a separation of d only if

M ≥ 1
ln(2/d+ 1)

ln(p). (48)

Proof: [of Lemma 5.1] A set of points within the unit ball which constitutes such an d separated

set, also constitutes a d/2 packing. Consider the ball with radius 1 +d/2. We need a necessary condition

on the number of d/2 balls which can be packed into such a ball. We know that the volume of all of

the d/2 balls in such a packing must be smaller than the total volume of the ball.

p Vol(B(d/2)) ≤ Vol(B1+d/2) (49)

p ≤
Vol(B1+d/2)
Vol(Bd/2)

p ≤ (1 + d/2)M

(d/2)M

p ≤ (2/d+ 1)M . (50)
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Therefore, a necessary condition to be able to find such a packing is that we have p ≤ (2/d+ 1)M balls,

or, equivalently that

M ≥ 1
ln(2/d+ 1)

ln(p). (51)

Using this lemma with d = ωp(A)
KIKF

we get the necessary condition that

ln(p)
M
≤ ln

(
2KIKF

ωp(A)
+ 1
)
. (52)

Theorem 3.5 follows then by recognising that 1 < 2KIKF

ωp(A) .
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