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On the Throughput of Secure Hybrid-ARQ Protocols

for Gaussian Block-Fading Channels

Xiaojun Tang, Ruoheng Liu, Predrag Spasojević, and H. Vincent Poor

Abstract

The focus of this paper is an information-theoretic study ofretransmission protocols for reliable

packet communication under a secrecy constraint. Thehybrid automaticretransmission request (HARQ)

protocol is revisited for a block-fading wire-tap channel,in which two legitimate users communicate over

a block-fading channel in the presence of a passive eavesdropper who intercepts the transmissions through

an independent block-fading channel. In this model, the transmitter obtains a1-bit ACK/NACK feedback

from the legitimate receiver via an error-freepublic channel. Both reliability and confidentiality of secure

HARQ protocols are studied by the joint consideration of channel coding, secrecy coding, and retrans-

mission protocols. In particular, the error and secrecy performance ofrepetition time diversity(RTD) and

incremental redundancy(INR) protocols are investigated based ongood Wyner code sequences, which

ensure that the confidential message is decoded successfully by the legitimate receiver and is kept in

total ignorance by the eavesdropper for a given set of channel realizations. This paper first illustrates

that there exists agood rate-compatible Wyner code family which ensures a secure INR protocol. Next,

two types of outage probabilities,connection outageand secrecy outageprobabilities are defined in

order to characterize the tradeoff between the reliabilityof the legitimate communication link and the

confidentiality with respect to the eavesdropper’s link. For a given connection/secrecy outage probability

pair, an achievable throughput of secure HARQ protocols is derived for block-fading channels. Finally,

both asymptotic analysis and numerical computations demonstrate the benefits of HARQ protocols to

throughput and secrecy.
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Index Terms

Information-theoretic secrecy, HARQ, block-fading, ratecompatible punctured codes, incremental

redundancy, time diversity.

I. INTRODUCTION

Reliable communication is essential in applications of wireless packet-oriented data networks. A class

of special coding schemes, the so-called hybrid automatic retransmission request (HARQ), combine

powerful channel coding with retransmission protocols to enhance the reliability of communication links.

Among currently available HARQ protocols, the most elementary form is therepetition-coding-based

HARQ which combines several noisy observations of the same packet by using a suitable diversity

technique at the receiver, such as maximal-ratio combining, equal-gain combining, or selection combining.

A more powerful HARQ scheme is the so-calledincremental redundancyHARQ, which achieves higher

throughput efficiency by adapting its error correcting coderedundancy to fluctuating channel conditions.

In an incremental redundancy scheme, the message is encodedat the transmitter by a “mother” code.

Initially, only a selected number of coded symbols are transmitted. The selected number of coded symbols

form a codeword of a punctured mother code. If a retransmission is requested, additional redundancy

symbols are sent under possibly different channel conditions. An information-theoretic analysis of the

throughput performance of HARQ protocols over block-fading Gaussian collision channels is found in

[1]. By assuming Gaussian random coding and typical-set decoding, the results of [1] are independent of

the particular coding/decoding technique and can be regarded as providing a limiting performance in the

information-theoretic sense. Another line of recent research on HARQ concerned with various mother

codes and their puncturing can be found in [2]–[8].

Confidentiality is a basic requirement for secure communication over wireless networks. We note that

the broadcast nature of the wireless medium gives rise to a number of security issues. In particular, wireless

transmission is very susceptible to eavesdropping since anyone within communication range can listen

to the traffic and possibly extract information. Traditionally, confidentiality has been provided by using

cryptographic methods, which rely heavily on secret keys. However, the distribution and maintenance of

secret keys are still open issues for large wireless networks. Fortunately, confidential communication is

possible without sharing a secret key between legitimate users. This was shown by Wyner in his seminal

paper [9]. In the discrete memoryless wire-tap channel model he proposed, the communication between

two legitimate users is eavesdropped upon via a degraded channel (the eavesdropper channel). The level
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of ignorance of the eavesdropper with respect to the confidential message is measured by the equivocation

rate. Perfect secrecy requires that the equivocation rate should be asymptotically equal to the message

entropy rate. Wyner showed that perfect secrecy can be achieved via a stochastic code, referred to as

Wyner secrecy code. Csiszár and Körner generalized this result and determined the secrecy capacity

region of the broadcast channel with confidential messages in [10]. Recent research investigates multi-

user communication with confidential messages, e.g., multiple access channels with confidential messages

[11], [12], multiple access wire-tap channels [13], and interference channels with confidential messages

[14]. The effect of fading on secure communication has been studied in [15]–[18]. More specifically,

assuming that all communicating parties have perfect channel state information (CSI) prior to the message

transmission, [15] has studied the delay limited secrecy capacity of wireless channels, while [16]–[18]

have studied the secrecy capacity of an ergodic fading channel. [18] has also considered the ergodic

scenario in which the transmitter has no CSI about the eavesdropper channel.

In this paper, we investigate secure packet communication based on HARQ protocols. The challenge

of this problem is twofold: first, the encoder at the transmitter needs to provide sufficient redundancy for

the legitimate receiver to decode its message successfully; on the other hand, too much redundancy may

help adversarial eavesdropping. As an example, retransmission is an effective way to enhance reliability,

but nevertheless it may also compromise confidentiality. This motivates the joint consideration of channel

coding, secrecy coding, and retransmission protocols.

We consider a frequency-flat block-fading Gaussian wire-tap channel. In this model, a transmitter sends

confidential messages to a legitimate receiver via a block-fading channel in the presence of a passive

eavesdropper who intercepts the transmission through an independent block-fading channel. We assume

that the transmitter has no perfect CSI, but receives a1-bit ACK/NACK feedback from the legitimate

receiver via a reliable public channel. Under this setting,we study the secure HARQ protocols from an

information theoretic point of view. In particular, the error and secrecy performance ofrepetition time

diversity(RTD) andincremental redundancy(INR) protocols are investigated based ongoodWyner code

sequences, which ensure that the confidential message is decoded successfully by the legitimate receiver

and is kept completely secret from the eavesdropper for a given set of channel realizations of both the

main and the eavesdropper channels. Next, we show that thereexists agood rate-compatible Wyner

code family which suits the secure INR protocol. Due to the absence of CSI, the transmitter cannot

adapt its code and power level to channel conditions. Instead, for a given mother code, we consider the

outage performance of secure HARQ protocols. Specifically,we define two types of outage:connection

outageand secrecy outage. The outage probabilities (i.e., the probabilities of connection and secrecy
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outage) are used to characterize the tradeoff between the reliability of the legitimate communication link

and the confidentiality with respect to the eavesdropper’s link. We evaluate the achievable throughput of

HARQ protocols under the constraints on these two outage probabilities. Finally, we compare the secrecy

throughput of two HARQ protocols through both numerical computations and an asymptotic analysis,

and illustrate the benefit of HARQ schemes to information secrecy.

Generally speaking, when the coding parameters (main channel code rate and secrecy information rate

for ensuring reliability and secrecy, respectively) can befreely chosen, INR can achieve a significantly

larger throughput than RTD, which concurs with the results not involving secrecy where it has been

shown that mutual-information accumulation (INR) is a moreeffective approach than SNR-accumulation

(RTD) [1]. However, when one is forced to ensure small connection outage for the main channel even

when it is bad, one is forced to reduce the main channel code rate. The INR scheme, having a larger

coding gain (to both the intended receiver and the eavesdropper), needs to sacrifice a larger portion of

the main channel code rate in order to satisfy the secrecy requirement. Hence, when the main channel

code rate is bounded due to the connection outage constraint, the achievable secrecy throughput of INR

may be smaller than that of RTD. This result deviates from that not involving secrecy.

The remainder of this paper is organized as follows. We describe the system model and preliminaries in

Section II. In Section III, we prove the existence of good Wyner codes for parallel channel communication

and define outage events, while these results are applied to INR and RTD protocols in Section IV. We

derive the secrecy throughput of two protocols over block fading channels in Section V, and present an

asymptotic analysis in Section VI. We illustrate and compare the various results and protocols numerically

in Section VII. Finally, we give conclusions and some interesting directions for future research in

Section VIII, The proofs of the results are provided in appendices.

II. SYSTEM MODEL AND PRELIMINARIES

A. System Model

As shown in Fig. 1, we consider a model in which a transmitter sends confidential messages to a

destination via a source-destination channel (the main channel) in the presence of a passive eavesdropper

which listens to the transmission through a source-eavesdropper channel (the eavesdropper channel). Both

the main channel and the eavesdropper channel experienceM -block fading, in which the channel gain

is constant within a block while varying independently fromblock to block [19], [20]. We assume that

each block is associated with a time slot of durationT and bandwidthW ; that is, the transmitter can
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Fig. 1. System model: hybrid ARQ protocols for the block-fading channel in the presence of a passive eavesdropper

sendN = ⌊2WT ⌋ real symbols in each slot. Additionally, we assume that the number of channel uses

within each slot (i.e.,N ) is large enough to allow for invoking random coding arguments.1

At the transmitter, a confidential messagew ∈ W is encoded into a codewordxMN , which is then

divided intoM blocks [xN1 , xN2 , . . . , xNM ], each of lengthN . The codewordxMN occupiesM slots; that

is, for i = 1, . . . ,M , thei-th blockxNi is sent in sloti and received by the legitimate receiver through the

channel gainhi and by the eavesdropper through the channel gaingi. A discrete time baseband-equivalent

block-fading wire-tap channel model can be expressed as follows:

y(t) =
√

hix(t) + v(t)

and z(t) =
√
gix(t) + u(t) for t = 1, . . . ,MN, i = ⌈t/N⌉ , (1)

wherex(t) denotes the input signal,y(t) and z(t) denote the output signals at the legitimate receiver

and the eavesdropper, respectively, at timet (t = 1, . . . ,MN ), {v(t)} and {u(t)} are independent and

identically distributed (i.i.d.)N (0, 1) random variable sequences, andhi andgi, for i = 1, . . . ,M , denote

the normalized (real) channel gains of the main channel and the eavesdropper channel, respectively.

Furthermore, we assume that the signalx(t) has constant average energy per symbol

E[|x(t)|2] ≤ P̄ . (2)

1For example, in a 64 kb/s down-link reference data channel for universal mobile telecommunications system (UMTS) data-

transmission modes, each slot can contain up toN ≈ 10000 dimensions [21].
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Let h = [h1, . . . , hM ] andg = [g1, . . . , gM ] denote vectors whose elements are the main channel gains

and the eavesdropper channel gains, respectively. We referto (h,g) as achannel pairand assume that

the legitimate receiver knows its channelh, while the eavesdropper knows its channelg.

B. Wyner Codes

In this subsection, we consider a single-block transmission, i.e.,M = 1 and introduce Wyner codes

[9], which are the basis of our secure HARQ protocols.

Let C(R0, Rs, N) denote a Wyner code of size2NR0 to convey a confidential message setW =

{1, 2, . . . , 2NRs}, whereR0 ≥ Rs andN is the codeword length. The basic idea of Wyner codes is to

use a stochastic encoder to increase the secrecy level [9], [10]. Hence, there are two rate parameters

associated with the Wyner code: the main channel code rateR0 and the secrecy information rateRs.2

The Wyner codeC(R0, Rs, N) is constructed based on random binning [9] as follows. We generate

2NR0 codewordsxN (w, v), wherew = 1, 2, . . . , 2NRs , and v = 1, 2, . . . , 2N(R0−Rs), by choosing the

N2NR0 symbolsxi(w, v) independently at random according to the input distribution p(x). A Wyner

code ensembleC(R0, Rs, N) is thesetof all possible Wyner codes of lengthN , each corresponding to

a specific generation and a specific labeling.

The stochastic encoder ofC(R0, Rs, N) is described by a matrix of conditional probabilities so that,

given w ∈ W, we randomly and uniformly selectv from {1, 2, . . . , 2N(R0−Rs)} and transmitxN =

xN (w, v). We assume that the legitimate receiver employs a typical-set decoder. GivenyN , the legitimate

receiver tries to find a pair(w̃, ṽ) so thatxN (w̃, ṽ) andyN are jointly typical [22], i.e.,

{xN (w̃, ṽ), yN} ∈ TN
ǫ (PXY ).

If there is no such jointly typical pair, then the decoder claims failure.

Assume that signalsyN andzN are received at the legitimate receiver and the eavesdropper, respec-

tively, via a channel pair(h, g). The average error probability is defined as

Pe(h) =
∑

w∈W

Pr
{
φ
(
Y N (w)

)
6= w|h,w sent

}
Pr(w), (3)

whereφ
(
Y N (w)

)
is the output of the decoder at the legitimate receiver andPr(w) is the prior probability

that messagew ∈ W is sent.

2We callR0 −Rs the secrecy gap as the rate sacrificed to ensure the secrecy requirement.
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The secrecy level, i.e., the degree to which the eavesdropper is confused, is measured by the equivo-

cation rate at the eavesdropper.Perfect secrecyis achieved if for allǫ > 0 the equivocation rate satisfies

1

N
H(W |g, ZN ) ≥ 1

N
H(W )− ǫ. (4)

For conciseness, we say that a codeC of lengthN is goodfor a wire-tap channel with the channel pair

(h, g) if Pe(h) ≤ ǫ and the perfect secrecy requirement (4) can be achieved, forall ǫ > 0 and sufficiently

largeN .

C. Secure HARQ Protocols

We first consider a general (inM ) secure HARQ protocol for a block-fading wire-tap channel.The

transmitter encodes the confidential information (and cyclic redundancy check (CRC) bits) by using a

mother code of lengthMN . The obtained codewordxMN is partitioned intoM blocks represented as

[xN1 , xN2 , . . . , xNM ]. At the first transmission, the transmitter sends the blockxN1 under the channel gain pair

(h1, g1). Decoding of this code is performed at the intended receiver, while the secrecy level is measured

at the eavesdropper. If no error is detected, the receiver sends back an acknowledgement (ACK) to stop

the transmission; otherwise a negative acknowledgement (NACK) is sent to request retransmission, and

the transmitter sends the blockxN2 under the channel gain pair(h2, g2). Now, decoding and equivocation

calculation are attempted at the receiver and eavesdropperby combining the previous blockxN1 with the

new blockxN2 . The procedure is repeated after each subsequent retransmission until allM blocks of

the mother code are transmitted or an HARQ session completesdue to the successful decoding at the

intended receiver.

Now, we focus on the error performance and secrecy level after m transmissions,m = 1, 2, . . . ,M .

Let

x(m) = [xN1 , . . . , xNm], y(m) = [yN1 , . . . , yNm ], and z(m) = [zN1 , . . . , zNm ]

denote the input, the output at the intended receiver, and the output at the eavesdropper afterm transmis-

sions, respectively. For a given channel pair(h,g), the average error probability after them transmissions

is defined as

Pe(m|h) =
∑

w∈W

Pr
{
φ
(
Ym(w)

)
6= w|w sent,h

}
Pr(w), (5)

whereφ
(
Ym(w)

)
denotes the output of the decoder at the legitimate receiverafterm transmissions.

The secrecy level afterm transmissions is given by

1

mN
H(W |Zm,g).
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We say that perfect secrecy is achieved afterm transmissions if, for allǫ > 0, the equivocation rate

satisfies
1

mN
H(W |Zm,g) ≥ 1

mN
H(W )− ǫ. (6)

We note that this definition implies that the perfect secrecycan also be achieved afterj transmissions,

for j = 1, . . . ,m− 1.

Similar to the definition of good codes for a single-block transmission, we say that a codeC of length

mN is good for the m-block transmission and a channel pair(h,g) if Pe(m|h) ≤ ǫ and the perfect

secrecy requirement (6) can be achieved, for allǫ > 0 and sufficiently largeN .

In particular, we consider the following two secure HARQ protocols based on different mother codes

and different combination techniques.

1) Incremental Redundancy:In the INR secure HARQ protocol, the mother code is a Wyner code of

lengthMN , i.e.,

C ∈ C(R0, Rs,MN).

In the first transmission, the transmitted coded symbolsx(1) = [xN1 ] form a codeword of a punctured

Wyner code of lengthN ,

C1 ∈ C (MR0,MRs, N) .

Similarly, afterm transmission,m = 1, . . . ,M , the (all) transmitted coded symbolsx(m) = [xN1 , . . . , xNm]

form a codeword of a punctured Wyner code of lengthmN ,

Cm ∈ C
(
MR0

m
,
MRs

m
,mN

)

.

At the legitimate receiver and the eavesdropper, decoding and equivocation calculation are attempted,

respectively, based on the punctured codeCm.

We note that the punctured codes{CM , CM−1, . . . , C1} form a family of rate-compatibleWyner

codes with the secrecy rates
{

Rs,
M

M − 1
Rs, . . . , MRs

}

.

Hence, we refer to this protocol as the INR protocol based on rate-compatible Wyner codes.

2) Repetition Time Diversity:We also consider a simple time-diversity HARQ protocol based on the

repetition of a Wyner code. In this case, the mother codeC is a concatenated code consisting of the

Wyner codeC1 ∈ C (MR0,MRs, N) as the outer code and a simple repetition code of lengthM as the

inner code, i.e.,

C = [C1, C1, . . . , C1
︸ ︷︷ ︸

M

]. (7)
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After each transmission, decoding and equivocation calculation are performed at the receiver and the

eavesdropper, respectively, based on maximal-ratio packet combining.

III. SECURE CHANNEL SET AND OUTAGE EVENTS

In this section, we study the error performance and the secrecy level when a mother Wyner code is

transmitted overM parallel channels. Results given in this section form the basis for the performance

analysis of secure HARQ protocols.

For a given Wyner code, an important practical question is: under what channel conditions will the

communication be reliable and secure? In the following theorem, we describe asecure channel setand

demonstrate that there exists a Wyner code sequence good forall channel pairs in this set.

Theorem 1. Let P denote the union of all channel pairs(h,g) satisfying

1

M

M∑

i=1

I(X;Y |hi) ≥ R0 (8)

and
1

M

M∑

i=1

I(X;Z|gi) ≤ R0 −Rs, (9)

whereI(X;Y |hi) and I(X;Z|gi) are single letter mutual information characterizations ofthe channel

(1). There exists a Wyner codeC ∈ C(R0, Rs,MN) good for all channel pairs(h,g) ∈ P.

Proof: A proof of Theorem 1 is provided in Appendix A.

In the system model described in Section II, the transmitterdoes not have any channel state information;

that is, one cannot choose the code based on a particular fading channel state. Hence, it is important to

show that there exists a Wyner code sequence good for all channel pairs in the secure channel setP.

To facilitate the formulation of outage-based throughput,we define that an outage event occurs when

the channel pair does not belong to the secure channel set, i.e., (h,g) /∈ P. Specifically, we distinguish

two types of outage:connection outage3 and secrecy outage. In particular, we say that a connection

outage occurs if

1

M

M∑

i=1

I(X;Y |hi) < R0, (10)

3The main channel is viewed as a communication link. The link is connected if a packet can be delivered to the intended receiver

successfully within the delay constraint (withinM transmissions), otherwise it is in the connection outage. The connection outage

probability defined in this paper is also referred to asinformation outage probabilityin [19].
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while we say that a secrecy outage occurs if

1

M

M∑

i=1

I(X;Y |gi) > R0 −Rs. (11)

Accordingly, we can evaluate both connection outage and secrecy outage probabilities, which are the

probabilities of each of the outage events averaged over allpossible fading states. In fact, the connection

outage probability can be interpreted as the limiting errorprobability for large block length packets; the

secrecy outage probability can be regarded as an upper boundon the probability of unsecured packets.

Moreover, Theorem 1 implies that the connection outage probability and the secrecy outage probability

are not just average probabilities over a code ensemble, butthey can be achieved by a deterministic code

sequence.

IV. SECURE HARQ WITH WYNER CODES

In this section, we evaluate the error performance and measure the secrecy level during secure HARQ

sessions.

A key part of an ARQ protocol is that decoding errors should bedetected, so that ACKs or NACKs can

be generated accurately. Acomplete decoding function(e.g. maximum a posteriori probability decoding

or maximum-likelihood decoding) requires the encoder to add extra redundancy to the information bits,

which decreases the throughput slightly. The authors of [1]have shown that error detection can be

accomplished by using the built-in error detection capability of suboptimal decoders.

Lemma 1. [1, Lemma3] For all ǫ > 0 and channelh, any codeC of lengthMN satisfies

Pr (undetected error|h, C) < ǫ,

for all sufficiently largeN .

Proof: The proof follows similarly to that given in [1].

A. Incremental Redundancy

To evaluate the performance of the INR protocol, we employ the following M -parallel channel model.

Let us focus on the decoding afterm transmissions, i.e., the coded blocksx(m) = [xN1 , . . . , xNm] are

transmitted,m = 1, . . . ,M . As shown in Fig. 2, the blockxNi experiences channel pair(hi, gi), i =

1, . . . ,m. We assume that each of the punctured blocks[xNm+1, . . . , x
N
M ] is sent to a dummy memoryless

component channel whose output is independent of the input.
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Fig. 2. M -parallel channel model for the INR protocol: the firstm punctured blocks are actually transmitted (solid lines);

the remainingM −m punctured blocks are assumed to be sent viaM −m dummy memoryless channels whose outputs are

independent of the inputs (dashed lines).

In this case, the mother codeword is transmitted overM parallel channels. At the legitimate receiver, the

decoder combines the real signaly(m) = [yN1 , . . . , yNm ] with M−m dummy signal blocks[bN1 , . . . , bNM−m]

to form

[yN1 , . . . , yNm , bN1 , . . . , bNM−m].

Similarly, the processed symbols at the eavesdropper are

[zN1 , . . . , zNm , dN1 , . . . , dNM−m],

where[dN1 , . . . , dNM−m] areM −m dummy signal blocks. We note that the added dummy blocks do not

affect either the decoding at the legitimated receiver or the equivocation calculation at the eavesdropper



12

since they are independent of the confidential message.

The codewords of the mother Wyner codeC are transmitted in at mostM transmissions during the

secure HARQ session. By using the equivalent parallel channel model, we can describe this secure HARQ

problem as communication overM parallel wire-tap channels and, hence, establish the following theorem.

Theorem 2. Consider the secure INR protocol based on rate compatible Wyner codes

{CM , CM−1, . . . , C1},

where

Cm ∈ C
(
MR0

m
,
MRs

m
,mN

)

, m = 1, . . . ,M.

Let P(m) denote the union of all channel pairs(h,g) satisfying

1

M

m∑

i=1

I(X;Y |hi) ≥ R0, (12)

and
1

M

m∑

i=1

I(X;Z|gi) ≤ R0 −Rs. (13)

Then, there exists a family of rate compatible Wyner codes{CM , CM−1, . . . , C1} such thatCm is good

for all channel pairs(h,g) ∈ P(m), for i = 1, . . . ,M .

Proof: We provide a proof of Theorem 2 in Appendix B.

B. Repetition Time Diversity

In the RTD secure HARQ protocol, both the legitimate receiver and the eavesdropper combine several

noisy observations of the same packet based on diversity techniques. The optimal receivers perform

maximal-ratio combining (MRC), which essentially transforms the vector channel pair(h,g) into a

scalar channel pair(ĥ(m), ĝ(m)). Hence, afterm transmissions, the equivalent channel model can be

written as follows:

y(t) =

√

ĥ(m)x(t) + v(t) and z(t) =
√

ĝ(m)x(t) + u(t) (14)

for t = 1, . . . , N , whereĥ(m) =
∑m

i=1 hi and ĝ(m) =
∑m

i=1 gi.

Let L(m) denote the union of all channel pairs(h,g) satisfying

I(X;Y |ĥ(m)) ≥ MR0, (15)

and I(X;Z|ĝ(m)) ≤ M(R0 −Rs), (16)
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where I(X;Y |ĥ(m)) and I(X;Z|ĝ(m)) are single letter mutual information characterizations ofthe

channel (14). For a given (finite)M , we have the following result for the RTD secure HARQ protocol.

Corollary 1. There exists a Wyner codeC1 ∈ C (MR0,MRs, N) such that itsm-repeating code

Cm = [C1, C1, . . . , C1
︸ ︷︷ ︸

m

]

is good for all channel pairs(h,g) ∈ L(m), for m = 1, . . . ,M .

Proof: The proof follows directly from Theorem 1 by settingM = 1.

V. SECRECY THROUGHPUT OFHARQ PROTOCOLS

In this section, we study the achievable secrecy throughputfor HARQ protocols. We focus on Rayleigh

independent block fading channels for illustration; othertypes of block fading channels can be studied

in a similar way.

We note that the optimal input distribution of the channel (1) is not known in general when the

transmitter has no CSI. For the sake of mathematical tractability, we consider Gaussian inputs. For INR,

the mutual informationI [INR]
XY (m) andI [INR]

XZ (m) can be written as

I
[INR]
XY (m) =

1

2M

m∑

i=1

log2 (1 + λi)

and I
[INR]
XZ (m) =

1

2M

m∑

i=1

log2 (1 + νi) , (17)

where

λi = hiP̄ and νi = giP̄ , i = 1, . . . ,M, (18)

are the signal-to-noise ratios (SNRs) at the legitimate receiver and the eavesdropper, respectively, during

transmissioni. For RTD, we can express the mutual information quantitiesI
[RTD]
XY (m) andI [RTD]

XZ (m) as

I
[RTD]
XY (m) =

1

2M
log2

(

1 +

m∑

i=1

λi

)

and I
[RTD]
XZ (m) =

1

2M
log2

(

1 +

m∑

i=1

νi

)

. (19)

Although we consider only Gaussian signaling here, the results in Section IV can be applied to other

input distributions, for example, discrete signaling under modulation constraints.
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Let M denote the number of transmissions within a HARQ session. Given a distribution of the main

channel SNRλ, for both INR and RTD protocols, the probability mass function of M can be expressed

as

p[M = m] = Pr {IXY (m− 1) < R0 andIXY (m) ≥ R0}

= Pr {IXY (m− 1) < R0} − Pr {IXY (m) < R0} , m = 1, . . . ,M − 1,

and p[M = M ] = Pr {IXY (M − 1) < R0} , (20)

whereIXY (m) andIXZ(m) are chosen either from (19) or from (17) corresponding to a specific HARQ

protocol. LetPe denote the connection outage probability, andPs denote the secrecy outage probability.

The definition in (20) implies thatPe andPs can be written as follows:

Pe = Pr {IXY (M) < R0} , (21)

and Ps =

M∑

m=1

p[m]Pr {IXZ(m) > R0 −Rs} . (22)

Now, we study the secrecy throughput based onPe andPs. We first consider a target secrecy outage

probability ξs; that is, at least a fraction1 − ξs of the confidential message bits sent by the transmitter

are kept completely secret. Under this constraint, the secrecy throughputη, measured in bits per second

per hertz, is defined to be the average number of bits decoded at the legitimate receiver,

η = lim
t→∞

a(t)

tN
, (23)

where againN is the number of symbols in each block anda(t) is the number of information bits

successfully decoded by the intended receiver up to time slot t (when a total oftN blocks are sent). The

event that the transmitter stops sending the current codeword is recognized to be arecurrent event[23].

A randomreward R is associated with the occurrence of the recurrent event. Inparticular,R = MRs

bits/symbol if transmission stops because of successful decoding, andR = 0 bits/symbol if it stops

because successful decoding has not occurred afterM transmissions. By applying the renewal-reward

theorem [1], [23], we obtain the secrecy throughput as

η(R0, Rs) =
E[R]

E[M]
=

MRs

E[M]
(1− Pe), (24)

whereE[M] is the expected number of transmissions in order to completea codeword transmission, i.e.,

E[M] =
M∑

m=1

mp[M = m]

= 1 +
M∑

m=1

Pr {IXY (m) < R0} . (25)
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We can properly choose the mother code parameters (R0 andRs) to obtain the maximum throughput

while satisfyingξs-secrecy requirement. Hence, we consider the following problem

max
R0,Rs

η(R0, Rs) (26)

s.t. Ps ≤ ξs.

The optimization problem (26) imposes a probabilistic service requirement in terms of confidentiality;

that is, the service quality is acceptable as long as the probability of the secrecy outage is less than

ξs, a parameter indicating the outage tolerance of the application. Note thatPs is a decreasing function

of Rs, andη is linearly proportional toRs. Hence, we can solve the optimization problem (26) in the

following two steps: first, for givenM , R0, andξs, we find the maximum valueR∗
s(R0); next, we obtain

the optimumR∗
0, which maximizes the secrecy throughputη(R0, R

∗
s(R0)).

On the other hand, reliability is another important qualityof service parameter. To achieve both the

connection outage targetξe and the secrecy outage targetξs, we consider the following problem

max
R0,Rs

η(R0, Rs) (27)

s.t. Ps ≤ ξs, Pe ≤ ξe.

In addition to the service requirement of confidentiality, problem (27) also imposes a probabilistic service

requirement on the connection outage, i.e., at least a fraction 1−ξs of HARQ sessions are successful. The

connection outage constraint ensures that, at the expense of possibly lower average throughput, the delay

constraint (that a packet can be delivered withinM transmissions) is satisfied1− ξs of the time, hence

enabling applications which trade average rate for decoding delay like voice communication systems,

e.g., CDMA2000 [24]. A similar constraint has been considered in [25] in terms ofservice outagefor

parallel fading channels.

To evaluatep[m], Pe andPs, we need the cumulative distribution functions (CDFs) ofIXY (m) and

IXZ(m). For the RTD protocol, we can use the fact that
∑m

i=1 λi and
∑m

i=1 νi are gamma distributed to

express the CDFs ofI [RTD]
XY (m) andI [RTD]

XZ (m) in terms of incomplete gamma functions. In the case of the

INR protocol, the distributions ofI [INR]
XY (m) andI [INR]

XZ (m) cannot be written in a closed form. Hence, we

resort to Monte-Carlo simulation in order to obtain empirical CDFs. Note that Monte Carlo simulation is

needed only to estimate empirical CDFs, while(R∗
0, R

∗
s) is found numerically by a (non-random) search.
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VI. A SYMPTOTIC ANALYSIS

In general, the secrecy throughput of the INR protocol is difficult to calculate since there is no closed

form available forPr{IXY (m) < R0}. In this section, we consider the asymptotic secrecy throughput,

which does have a closed form.

We are interested in asymptotic results asM increases without bound. Note that this asymptote

corresponds to a delay-unconstrained system. In this case,secure HARQ protocols yield zero packet

loss probability, i.e., the transmission of a codeword endsonly when it is correctly decoded. As a result,

the problems (26) and (27) yield the same throughput, which can be obtained from (24) as follows:

η(R0, Rs) =
MRs

E[M]
=

MRs

1 +
∑M

m=1 Pr {IXY (m) < R0}
. (28)

Let us consider how to choose a mother Wyner code for the INR protocol in order to meet reliability

and confidentiality constraints whenM is large. Letλ and ν denote the instantaneous SNRs at the

legitimate receiver and the eavesdropper, respectively.

Lemma 2. Consider an INR secure HARQ protocol with the mother Wyner codeC ∈ C(R0, Rs,MN).

Then

lim
M→∞

P [INR]
e = 0 and lim

M→∞
P [INR]
s = 0, (29)

if and only if

R0 ≤
1

2
E[log2(1 + λ)]

and R0 −Rs ≥ R0
E[log2(1 + ν)]

E[log2(1 + λ)]
, (30)

where the expectations are overλ and/or ν. Furthermore, if (30) does not hold, then

either lim
M→∞

P [INR]
e = 1 or lim

M→∞
P [INR]
s = 1. (31)

Proof: A proof of Lemma 2 is given in Appendix C.

For comparison, we consider the situation in which the WynercodeC is transmitted overM -block

fading channel without using the HARQ protocol. We refer to this case as theM -fading-block (MFB)

coding scheme. Theorem 1 implies that, by using the MFB scheme, the requirement (29) can be achieved

if and only if

R0 ≤
1

2
E[log2(1 + λ)]

and R0 −Rs ≥
1

2
E[log2(1 + ν)]. (32)
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We note that the condition (30) for the INR protocol is weakerthan the condition (32) for the MFB

scheme. In other words, the INR scheme can achieve the confidentiality and reliability requirements more

easily than can the MFB coding scheme by using the same Wyner code. This result illustrates the benefit

of the INR secure HARQ protocol.

Based on Lemma 2, we have the following asymptotic result concerning the achievable throughput for

secure HARQ protocols.

Theorem 3. We consider the secure HARQ protocols over a block-fading wire-tap channel. If the secrecy

information rateR0 satisfies

lim
M→∞

1

MRs
= 0, (33)

then the secrecy throughput of RTD and INR protocols can be written as follows:

lim
M→∞

max
R0,Rs

η(R0, Rs) =







0 RTD

(1/2)E [log2(1 + λ)− log2(1 + ν)] INR
,

whereλ and ν are the instantaneous SNRs at the legitimate receiver and the eavesdropper, respectively.

Proof: We provide a proof in Appendix D.

We note that the RTD protocol involves suboptimal coding schemes, for whichE[M] grows faster

thanMRs in (28). Hence, the limiting secrecy throughputη is zero. Theorem 3 again asserts the benefit

of INR over RTD.

VII. N UMERICAL RESULTS

In our numerical examples, we consider Rayleigh block fading, i.e. the main channel instantaneous

SNR λ has the probability density function (PDF)f(λ) = (1/λ̄)e−λ/λ̄, and the eavesdropper channel

instantaneous SNRν has the PDFf(ν) = (1/ν̄)e−ν/ν̄ , whereλ̄ and ν̄ are the average SNRs of the main

and eavesdropper channels, respectively.

To illustrate how the secrecy throughputη is related to the choice ofR0 (andRs), we give a numerical

example ofη versusR0 in Fig. 3, in which the parameter settings are as follows: themain channel average

SNR λ̄ is 15dB, the eavesdropper channel average SNRν̄ is 5dB, the maximum number of transmissions

M is 8. (We observe that similar results are obtained by using other parameter settings.) For eachR0, we

obtain the maximumR∗
s(R0) that meets the secrecy constraintξs = 1, 10−2 or 10−4, respectively. When

there is no secrecy constraint (ξs = 1), due to the sub-optimality of the RTD scheme, the RTD curve

is uniformly below the INR curve. This does not happen when there is a secrecy constraint. The reason
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Fig. 3. Secrecy throughputη versus the main channel code rateR0 under different secrecy requirementsξs, where the main

channel average SNR is 15dB, the eavesdropper channel average SNR is5dB, and the maximum number of transmissions is

M = 8.

is that INR not only favors the information transmission to the intended receiver, but also benefits the

eavesdropping by the eavesdropper. Hence, INR needs to sacrifice a larger portion of the main channel

code rate than RTD in order to keep the eavesdropper ignorantof the confidential messages. This is

reflected in Fig. 3 that a largerR0 has to be chosen for INR (than RTD) in order to obtain a positive

secrecy throughput.

It is clear from Fig. 3 that there exists a uniqueR∗
0 (and thereforeR∗

s(R
∗
0)) to maximizeη for each

parameter setting. For all secrecy constraints (ξs = 1, 10−2 or 10−4), if the bestR∗
0 and R∗

s(R
∗
0) are

chosen for each scheme accordingly, INR yields higher secrecy throughput than RTD does, which shows

the benefit of INR over RTD.

According to (21), the choice ofR0 decides the reliability performance. This is shown in Fig. 4, where

we plot the connection outage probabilityPe versus the value ofR0. For both INR and RTD,Pe increases

with the value ofR0. Note that a more strict secrecy constraint requires a larger R∗
0 (as shown in Fig.

3), which however causes the degradation of the reliabilityperformance. We can see that there exists a
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Fig. 4. Connection outage probabilityPe versus the main channel code rateR0, where the main channel average SNR is15dB,

the eavesdropper channel average SNR is5dB, andM = 8.

tradeoff between secrecy and reliability.

Given a strict connection outage constraintPe < ξe, the choice ofR∗
0 (and R∗

s(R
∗
0)) might not be

feasible. For instance, in order to obtainPe < 10−3, we need to chooseR[RTD]
0 ≤ 0.38 andR[INR]

0 ≤ 1.25

(marked with ‘A’ and ‘B’ respectively in Fig. 3 and Fig. 4). Specifically, for a connection outage constraint

Pe < 10−3, R∗
0 is not feasible for INR whenξs = 10−2, andR∗

0 is not feasible for both INR and RTD

when ξs = 10−4 in Fig. 3. Note that for the case ofξs = 10−4 (and ξe = 10−3), positive secrecy

throughput cannot be obtained for INR, but can be obtained for RTD. This implies that RTD might

outperform INR, when we have strict secrecy and connection outage constraints. This is a surprising

result in the view of the well-known HARQ performance when there is no secrecy constraint, where INR

always outperforms RTD [1].

In Fig. 5 and Fig. 6, we show the secrecy throughputη under different target secrecy outage probabilities

ξs. There is no connection outage requirement in Fig. 5. There is an additional connection outage

requirement ofpe ≤ ξe = 10−3 in Fig. 6. The parameter settings areλ̄ = 15dB, ν̄ = 5dB andM = 8.

We can see that small secrecy outage probability can be achieved when the throughput is small for

both protocols. The INR protocol outperforms the RTD protocol uniformly when there is no connection



20

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ξ
s

η
INR 

RTD 

Fig. 5. Throughputη versus target secrecy outage probabilityξs, when the main channel average SNR is15dB, the eavesdropper

channel average SNR is5dB, andM = 8.

outage requirement. However, when there is a strict connection outage requirement, the RTD protocol

outperforms the INR protocol whenξs is small (e.g.,ξs ≤ 10−4).

Fig. 7 illustrates the relationship between the secrecy throughputη and the main channel average SNR

λ̄ when there is a target secrecy outage probabilityξs = 10−3 and no connection outage requirement. The

average SNR of the eavesdropper channel is fixed to be5dB. We find that the INR protocol outperforms

the RTD protocol significantly, especially when the main channel SNR is large.

In Fig. 8, we show the secrecy throughputη versus the maximum number of transmissionsM .

Comparing with the secrecy throughput without the connection outage constraint, the secrecy throughput

with a connection outage constraint (Pe ≤ 10−3) suffers some loss whenM is small due to insufficient

diversity. Both secrecy throughputs converge when sufficient diversity can be obtained asM increases. In

particular, whenM → ∞, both throughputs are the same and are given by (28) in the asymptotic analysis.

For INR, the secrecy throughputη[INR] increases monotonically withM . For RTD,η[RTD] decreases with

M due to its strongly suboptimal coding scheme. This concurs with the asymptotic analysis that, when

M → ∞, a constant (nonzero) secrecy throughput (0.5∗E [log2(1 + λ)− log2(1 + ν)] = 1.31 according

to Theorem 3) can be achieved for INR, while zero throughput can be obtained for RTD.
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Fig. 6. Throughputη versus target secrecy outage probabilityξs under connection outage probabilityξe = 10
−3, when the

main channel average SNR is15dB, the eavesdropper channel average SNR is5dB, andM = 8.

VIII. C ONCLUSIONS ANDFUTURE DIRECTIONS

In this paper, we have studied secure packet communication over frequency-flat block-fading Gaussian

channels, based on secure HARQ protocols with the joint consideration of channel coding, secrecy

coding and retransmission protocols. From an information theoretic point of view, we have considered

two secure HARQ protocols: a repetition time diversity scheme with maximal-ratio combining (RTD),

and an incremental redundancy scheme based on rate-compatible Wyner secrecy codes (INR). We have

proved the existence of good Wyner code sequences, which ensure that the legitimate receiver can decode

the message and the eavesdropper can be kept ignorant of it for an HARQ session under certain channel

realizations.

To facilitate the formulation of the outage-based throughput, we have defined two types of outage:

connection outage and secrecy outage. The outage probabilities, more specifically, the connection and

secrecy outage probabilities have been used to characterize the tradeoff between the reliability of the

legitimate communication link and the confidentiality withrespect to the eavesdropper’s link. We have

evaluated the achievable throughput of RTD and INR protocols under probabilistic requirements (con-

straints) on secrecy outage and/or connection outage, and have illustrated the benefits of HARQ schemes
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Fig. 7. Throughputη versus main channel average SNRλ̄ under a target secrecy outage probabilityξs = 10
−3, when the

eavesdropper channel average SNR is5dB andM = 8.

to information secrecy through some numerical results and an asymptotic analysis.

In general, INR can achieve a significantly larger throughput than RTD, which concurs with the results

not involving secrecy that mutual-information accumulation (INR) is a more effective approach than

SNR-accumulation (RTD). However, when one is forced to ensure small connection outage for the main

channel even when it is bad, one is forced to reduce the main channel code rate. The INR scheme,

having a larger coding gain (to both the intended receiver and the eavesdropper), needs to sacrifice a

larger portion of the main channel code rate (i.e., requiresa larger secrecy gap) in order to satisfy the

secrecy requirement. Hence when the main channel code rate is bounded due to the connection outage

constraint, the achievable secrecy throughput of INR may besmaller than that of RTD.

We conclude this work by pointing out some future research directions.

First, as pointed out in [26], many practical encoders are separated from the modulator and therefore

the performance of HARQ protocols is impacted by modulationconstraints. Although we have assumed

Gaussian signaling, it is possible and also meaningful to extend the analysis to take discrete signaling

into account.

In our analysis, we have assumed random coding and typical set decoding. Future work should consider



23

1 3 5 7 9 11 13
0  

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M

η

INR 

INR under ξ
e
=10−3 

RTD 

RTD under ξ
e
=10−3 

Fig. 8. Throughputη versus the maximum number of transmissionsM under a target secrecy outage probabilityξs = 10
−3,

when the main and eavesdropper channel average SNRs are15dB and5dB, respectively.

practical coding and decoding schemes for secure HARQ protocols. Existing work on the practical secrecy

code design includes coset coding [27], low-density paritycheck (LDPC) code design [28], and nested

codes [29]. The design of practical rate compatible secrecycodes for Gaussian channels remains a

challenging problem.

APPENDIX A

PROOF OFTHEOREM 1

For convenience, letp , (h,g) andP∗ denote the set of channel pairs(h,g) so that

1

M

M∑

i=1

I(X;Y |hi) = R0 + δ (34)

and
1

M

M∑

i=1

I(X;Z|gi) = R0 −Rs + δ, (35)

whereδ > 0 is arbitrarily small. It is clear thatP∗ ⊆ P whenδ → 0.

In order to prove Theorem 1, we first consider the following lemma.

Lemma A.1. There exists a codeC ∈ C(R0, Rs,MN) that is good for any channel pairp ∈ P∗.
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A. Proof of LemmaA.1

Proof: Following standard continuity arguments [22], we considera quantization of the input and

output of the channel (1) and work on the resulting discrete channel. Given a channel pairp = (h,g),

on every fading blocki ∈ [1,M ], the channel is time-invariant and memoryless. Letx denote the input,

and lety and z denote the outputs at the legitimate receiver and the eavesdropper, respectively. From

the weak law of large numbers, we have the following limits inprobability:

lim
N→∞

1

N
log2 Pr(x) = −MH(X),

lim
N→∞

1

N
log2 Pr(y) = −

M∑

i=1

H(Y |hi),

lim
N→∞

1

N
log2 Pr(z) = −

M∑

i=1

H(Z|gi),

lim
N→∞

1

N
log2 Pr(x,y) = −

M∑

i=1

H(X,Y |hi),

and lim
N→∞

1

N
log2 Pr(x, z) = −

M∑

i=1

H(X,Z|gi),

whereH(X) is the input entropy per letter;H(Y |hi) and H(Z|gi) are the output entropy per letter

at the intended receiver and the eavesdropper, respectively, in block i = 1, . . . ,M ; and H(X,Y |hi)
andH(X,Z|gi) are the joint entropies per letter in blocki. Define the typical setTN

ǫ as the set of all

sequences(x,y, z) for which the above sample means are withinǫ of their limits.

The random coding ensembleC = C(R0, Rs,MN) is constructed by generating2NMR0 codewords

x(w, v), wherew = 1, 2, . . . , 2NMRs and v = 1, 2, . . . , 2NM(R0−Rs), by choosing the(MN)2NMR0

symbols independently at random. Givenw ∈ W = {1, 2, . . . , 2NMRs}, the encoder randomly and

uniformly selects av from {1, 2, . . . , 2NM(R0−Rs)} and transmitsx(w, v).

1) Error Analysis: Given a messagew ∈ W, the legitimate receiver declares thatx was transmitted, if

x is the only codeword that is jointly typical withy. An error is declared if eitherx is not jointly typical

with y, or there is another codeword̃x jointly typical with y. Let us denote this type of error asE1. By

following the same steps in [22, Theorem8.7.1], we obtain thatEC∈C [Pr(E1|p, C)], the probability of

error E1 averaged over the code ensembleC is

EC∈C [Pr(E1|p, C)] ≤ E






Pr
[
(x,y) /∈ TN

ǫ (PXY )
]
+
∑

x̃ 6=x

Pr
[
(x̃,y) ∈ TN

ǫ (PXY )
]







≤ ǫ+ (2NMR0 − 1)E
{
Pr
[
(x̃,y) ∈ TN

ǫ (PXY )
]}
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= ǫ+ (2NMR0 − 1)2−N[
P

M

i=1
I(X;Y |hi)−ǫ]

≤ ǫ+ 2−N(δ−ǫ).

By choosingδ > ǫ, we have

EC∈C[Pr(E1|p, C] ≤ ǫ1, (36)

for every channel pairp ∈ P∗ as the codeword lengthN is sufficiently large, whereǫ1 = ǫ+ 2−N(δ−ǫ).

Let B(w) denote the set of codewords corresponding to messagew ∈ W (bin w). Suppose that the

eavesdropper gets to knoww a priori, based on which it tries to determine which codewordwas sent.

The eavesdropper declares thatx was sent, ifx is the only codeword inB(w) that is jointly typical with

z. An error is declared if eitherx is not jointly typical withz, or there is another codeword̃x in B(w)

jointly typical with z. Denoting this type of error asE2, we obtain thatEC∈C [Pr(E2|p, C)], the average

probability of error averaged over the code ensembleC is

EC∈C [Pr(E2|p, C)] ≤ E






Pr
[
(x, z) /∈ TN

ǫ (PXY )
]
+
∑

x̃ 6=x

Pr
[
(x̃, z) ∈ TN

ǫ (PXZ), x̃ ∈ B(w)
]







≤ ǫ+ (2NMR0 − 1)E
{
Pr
[
(x̃, z) ∈ TN

ǫ (PXZ)
]
Pr [x̃ ∈ B(w)]

}

≤ ǫ+ 2NM(R0−Rs)2−N[
P

M

i=1
I(X;Z|gi)−ǫ]

≤ ǫ+ 2−N(δ−ǫ).

By choosingδ > ǫ, we have

EC∈C [Pr(E2|p, C] ≤ ǫ2 (37)

for every channel pairp ∈ P∗ when the codeword lengthN is sufficiently large, whereǫ2 = ǫ+2−N(δ−ǫ).

Now we define an error eventE , which occurs wheneverE1 or E2 occurs, i.e.

E , E1 ∪ E2. (38)

According to (36) and (37), by using the union bound, we have for anyp ∈ P∗,

EC∈C [Pr(E|p, C)] ≤ EC∈C[Pr(E1|p, C)] + EC∈C [Pr(E2|p, C)]

≤ ǫ1 + ǫ2 = ǫ3.

It is clear that the average error probability, averaged over the channel setP∗ is

Ep∈P∗
[EC∈C [Pr(E|p, C)]] ≤ ǫ3.
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Interchanging expectations with respect top ∈ P∗ and with respect toC ∈ C (since the integrand is

nonnegative and bounded by 1) yields

EC∈C [Ep∈P∗
[Pr(E|p, C)]] ≤ ǫ3.

Then, there exists a sequence of codesC∗ ∈ C (for increasingN ) such that

Ep∈P∗
[Pr(E|p, C∗)] ≤ ǫ3,

wherePr(E|p, C∗) is a random variable that is a function of the channel pairp. According to the Markov

inequality, we have

Pr (Pr(E|p, C∗) ≥ √
ǫ3) ≤

Ep∈P∗
[Pr(E|p, C∗)]√

ǫ3
≤ ǫ3√

ǫ3
=

√
ǫ3.

By letting
√
ǫ3 = ǫ4 (ǫ4 is still arbitrarily small), we obtain that, for anyp ∈ P∗,

Pr (Pr(E|p, C∗) ≥ ǫ4) ≤ ǫ4

or Pr (Pr(E|p, C∗) < ǫ4) ≥ 1− ǫ4. (39)

SincePr(E1|p, C∗) andPr(E2|p, C∗) are both upper bounded byPr(E|p, C∗), we have that

Pr (Pr(E1|p, C∗) < ǫ4) ≥ 1− ǫ4 (40)

and Pr (Pr(E2|p, C∗) < ǫ4) ≥ 1− ǫ4. (41)

According to (40), there exists a (non-random) sequence of codesC∗ ∈ C(R0, Rs,MN), which when

used, the legitimate receiver can decode the message with arbitrarily small error probability for allp ∈ P∗

with probability 1. Inequality (41) will be used in the equivocation calculation as followed.

2) Equivocation Calculation:Now we calculate the equivocation rate to check whether the perfect

secrecy requirement can be satisfied when codebookC∗ is used.

We bound the equivocation at the eavesdropper as follows:

H(W |Z,h,g) = H(W,Z|h,g) −H(Z|h,g)

= H(W,Z,X|h,g) −H(Z|h,g) −H(X|W,Z,h,g)

= H(X|h,g) +H(W,Z|X,h,g) −H(Z|h,g) −H(X|W,Z,h,g)

≥ H(X|h,g) − I(X;Z|h,g) −H(X|W,Z,h,g).

For the first term, we notice that

H(X|h,g) = NMR0. (42)
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To bound the second term, we define

µ(X,Z|h,g) =







1 if (X,Z) /∈ TN
ǫ (PXZ)

0 otherwise.

Now

I(X;Z|h,g) ≤ I(X, µ;Z|h,g)

= I(X;Z|h,g, µ) + I(µ;Z|h,g)

=
1∑

j=0

Pr(µ = j)I(X;Z|h,g, µ = j) + I(µ;Z|h,g). (43)

Note thatI(µ;Z|h,g) ≤ h(µ) ≤ 1,

Pr(µ = 1)I(X;Z|h,g, µ = 1) ≤ NPr
[
(X,Z) /∈ TN

ǫ (PXZ)|h,g
]
log2 |Z|

≤ Nǫ log2 |Z|,

and

Pr(µ = 0)I(X;Z|h,g, µ = 0) ≤ I(X;Z|h,g, µ = 0)

= H(X|h,g, µ = 0) +H(Z|h,g, µ = 0)−H(X,Z|h,g, µ = 0)

≤ N

[

MH(X) +
M∑

i=1

H(Z|gi)−
M∑

i=1

H(X,Z|gi) + 3ǫ

]

= N

[
M∑

i=1

I(X;Z|gi) + 3ǫ

]

.

Therefore, we can bound the second term as

I(X;Z|h,g) ≤ N

[
M∑

i=1

I(X;Z|gi) + (log2 |Z|+ 3)ǫ

]

+ 1

= NM [R0 −Rs + δ − (log2 |Z|+ 3)ǫ− 1/N ]

= NM(R0 −Rs + δ1). (44)

To bound the third term, we need to use (41), according to which the eavesdropper can decodeX with

arbitrarily small error probability, given thatW is known in prior andZ is observed. Fano’s inequality

implies that

H(X|W,Z,h,g) ≤ 1 +NM(R0 −Rs)Pr(E2|p, C⋆) , NMδ2 (45)

for every channel pairp ∈ P∗.
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Now we can combine (42), (44) and (45) into the equivocation calculation:

H(W |Z,h,g) ≥ NMR0 −NM(R0 −Rs + δ1)−NMδ2

= NM(Rs − δ3). (46)

Note that the above equivocation calculation is obtained when (non-random) codeC∗ is used, instead

of the random code ensembleC(R0, Rs,MN). Equation (46) implies that the perfect secrecy requirement

is met. This, together with the error probability analysis,implies that codeC∗ is good for all channel

pairsp ∈ P∗ with probability 1.

B. Proof of Theorem 1

Proof: Now we show that codeC∗ is also good for any channel pairp ∈ P. Note that for every

p = (h,g) ∈ P, there always existsat leasta channel pairp∗ = (h∗,g∗) ∈ P∗, such thath � h∗ and

g � g∗. With the inputX, we denote the outputs from the channel(h,g) at the legitimate receiver and the

eavesdropper byY andZ, respectively. We also denote byY1 andZ1 the outputs at the corresponding

receivers from(h∗,g∗). Since codeC∗ is good for(h∗,g∗), Y1 can be decoded with arbitrarily small error

probability at the legitimate receiver and the equivocation at the eavesdropper withZ1 being observed

satisfies

H(W |Z1,g∗) ≥ H(W )−Nǫ (47)

for all ǫ > 0 and sufficiently largeN . Sinceh � h∗, Y1 is a degraded version ofY, and thus ifY1

can be decoded at the legitimate receiver with arbitrarily small error probability, then so canY. We also

have that

H(W |Z,g)−H(W |Z1,g∗)

= I(W ;Z1|g∗)− I(W ;Z|g) ≥ 0,

where we use the fact thatZ is a degraded version ofZ1, sinceg � g∗. Therefore,

H(W |Z,g) ≥ H(W |Z1,g∗) ≥ H(W )−Nǫ, (48)

for all ǫ > 0 and sufficiently largeN , which is the perfect secrecy requirement.

APPENDIX B

PROOF OFTHEOREM 2

Proof: We note that the punctured codeCm is obtained by taking the firstm blocks, x(m) =

[xN1 , . . . , xNm], of the mother codeC, where the blockxNi is transmitted over a wire-tap channel with
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channel pairs(hi, gi), for i = 1, . . . ,m. Based on the equivalentM -parallel channel model, we can form

a new sequence of channel pairs by adding otherM −m dummy memoryless channels whose outputs

are independent of the input. For example, we can lethi = 0 andgi = 0 for all i = m+ 1, . . . ,M . The

dummy channel pairs have zero mutual information between the input and output; that is,

M∑

i=1

I(X;Y |hi) =
m∑

i=1

I(X;Y |hi)

and
M∑

i=1

I(X;Z|gi) =
m∑

i=1

I(X;Z|gi).

Now, by using Theorem 1 and the factP(m) ⊆ P, we have the desired result.

APPENDIX C

PROOF OFLEMMA 2

Applying the weak law of large numbers, we have the followinglemma that is used in the proofs of

Lemma 2 and Theorem 3.

Lemma C.1. Let Ai be i.i.d. random variables with meansµA and variancesσ2
A. Then, for alll ǫ > 0,

lim
M→∞

Pr

[

1

M

M∑

i=1

(Ai − µA) < ǫ

]

= 1

and lim
M→∞

Pr

[

1

M

M∑

i=1

(Ai − µA) < −ǫ

]

= 0. (49)

Now, we consider the proof of Lemma 2.

Proof: DefineAi = (1/2) log2(1 + λi) and its meanµA = E[Ai], andBi = (1/2) log2(1 + νi) and

its meanµB = E[Bi], for i = 1, . . . ,M . The connection outage probabilityP [INR]
e , defined in (21), can

be rewritten as follows:

P [INR]
e = Pr

(

1

M

M∑

i=1

Ai < R0

)

= Pr

(

1

M

M∑

i=1

(Ai − µA) < R0 − µA

)

.

By using Lemma C.1, we have, for allǫ > 0,

lim
M→∞

P [INR]
e =







0, R0 ≤ µA − ǫ

1, R0 ≥ µA + ǫ.
(50)
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We first prove the sufficiency given by (29) in Lemma 2 and show that if

R0 ≤ µA − ǫ and R0 −Rs ≥ R0

(
µB

µA − ǫ
+ ǫ

)

, (51)

then (29) holds.

Define

M1 =

⌊
MR0

µA − ǫ

⌋

. (52)

Note that (51) implies thatM1 ≤ M . Hence, we can bound the secrecy outage probabilityP
[INR]
s , defined

in (22), as follows:

P [INR]
s =

M1∑

m=1

p[m]Pr

(

1

M

m∑

i=1

Bi ≥ R0 −Rs

)

+
M∑

m=M1+1

p[m]Pr

(

1

M

m∑

i=1

Bi ≥ R0 −Rs

)

≤
(

M1∑

m=1

p[m]

)

Pr

(

1

M

M1∑

i=1

Bi ≥ R0 −Rs

)

+
M∑

m=M1+1

p[m]

≤ Pr

[
M1∑

i=1

Bi ≥ M(R0 −Rs)

]

+ Pr

(
M1∑

i=1

Ai < MR0

)

= Pr

[
M1∑

i=1

Bi − µB

M1
≥ M(R0 −Rs)

M1
− µB

]

+ Pr

(
M1∑

i=1

Ai − µA

M1
<

MR0

M1
− µA

)

≤ Pr

[
M1∑

i=1

Bi − µB

M1
≥ ǫ(µA − ǫ)

]

+ Pr

(
M1∑

i=1

Ai − µA

M1
<

MR0

M1
− µA

)

(53)

where the last step follows from the condition (51) and the definition of M1 in (52). Applying Lemma C.1,

we have

lim
M→∞

Pr

[
M1∑

i=1

Bi − µB

M1
≥ ǫ(µA − ǫ)

]

= 0 (54)

and

lim
M→∞

(
M1∑

i=1

Ai − µA

M1
<

MR0

M1
− µA

)

= lim
M→∞

Pr

(
M1∑

i=1

Ai − µA

M1
< −ǫ

)

= 0. (55)

Combining (50), (53), (54), and (55), we have (29).

Next, we prove the necessity given by (31) in Lemma 2. Based on(50) we need only to show that if

R0 −Rs ≤ R0

(
µB

µA
− ǫ

)

and R0 < µA + ǫ, (56)
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then limM→∞ P
[INR]
s = 1. Define

M2 =

⌈
M(R0 −Rs)

µB − ǫ2

⌉

(57)

whereǫ2 = (µA − ǫ)ǫ. Note that the condition (56) implies thatM2 ≤ M . In this case, we obtain the

following lower bound onP [INR]
s :

P [INR]
s ≥

M∑

m=M2

p[m]Pr

[
m∑

i=1

Bi ≥ M(R0 −Rs)

]

≥
(

M∑

m=M2

p[m]

)

Pr

[
M2∑

i=1

Bi ≥ M(R0 −Rs)

]

= Pr

(
M2−1∑

i=1

Ai < MR0

)

Pr

[
M2∑

i=1

Bi ≥ M(R0 −Rs)

]

= Pr

(
M2−1∑

i=1

Ai − µA

M2 − 1
<

MR0

M2 − 1
− µA

)

Pr

[
M2∑

i=1

Bi − µB

M2
≥ M(R0 −Rs)

M2
− µB

]

. (58)

Based on the condition (56) and the definitions ofM2 andǫ2, we have

MR0

M2 − 1
− µA =

MR0

⌈M(R0 −Rs)/(µB − ǫ2)⌉ − 1
− µA

≥ R0

R0 −Rs
(µB − ǫ2)− µA

≥ µAǫ
2

µB − ǫµA

> 0.

By applying Lemma C.1, we have

lim
M→∞

Pr

(
M2−1∑

i=1

Ai − µA

M2 − 1
<

MR0

M2 − 1
− µA

)

= 1. (59)

On the other hand, since

M(R0 −Rs)

M2
− µB ≤ −ǫ2 < 0,

Lemma C.1 implies that

lim
M→∞

Pr

(

1

M2

M2∑

i=1

(Bi − µB) ≥
R0 −Rs

M2
− µB

)

= 1. (60)

Finally, combining (50), (58), (59), and (60), we have the necessity of Lemma 2.
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APPENDIX D

PROOF OFTHEOREM 3

To derive Theorem 3, we need the following lemmas from [1].

Lemma D.1. SupposeA be a random variable with CDFFA. Then, for alla and ã. we have

FA(a) ≤ FA(ã) + 1(a ≥ ã) (61)

where1(·) denote the indicator function.

Lemma D.2. Suppose{Ai} is a sequence of i.i.d. zero mean random variables with variancesσ2
A. Then,

for all ǫ > 0 and sufficiently largen,

Pr

(

1√
n

n∑

i=1

Ai < −√
nǫ

)

≤ exp

(

−n
ǫ2

2σ2
A

)

. (62)

We note that Lemma D.2 follows from the central limit theoremand the bound on the Gaussian tail

function,Q(a) ≤ exp(−a2/2), whereQ denotes the tail function of the standard Gaussian distribution.

A. INR Protocol

Proof: Again, we defineAi = (1/2) log2(1 + λi) with meanµA = E[Ai] and varianceσ2
A, Bi =

(1/2) log2(1 + νi) with meanµB = E[Bi], for i = 1, . . . ,M , and

M4 =

⌊
MR0

µA + ǫ

⌋

.

The reliability condition in (50) impliesM4 ≤ M .

We first consider an upper bound ofη[INR] based on (28):

η[INR] ≤ MRs

[
M4∑

m=1

Pr

(
m∑

i=1

Ai < MR0

)]−1

≤ MRs

[
M4∑

m=1

Pr

(
M4∑

i=1

Ai < MR0

)]−1

=
MRs

M4

{

Pr

[
M4∑

i=1

Ai − µA

M4
<

MR0

M4
− µA

]}−1

.

SinceMR0/M4 − µA ≥ ǫ > 0, according to Lemma C.1, we have

lim
M→∞

Pr

[
M4∑

i=1

Ai − µA

M4
<

MR0

M4
− µA

]

= 1. (63)
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Hence,

lim
M→∞

η[INR] ≤ lim
M→∞

MRs

M4
=

Rs

R0
µA. (64)

Next, we consider a lower bound onη[INR]. Let M5 = ⌊MR0/(µA − ǫ)⌋. We have

1

η[INR]
≤ 1

MRs
+

1

MRs

M∑

m=1

[

Pr

(
m∑

i=1

Ai

m
< µA − ǫ

)

+ 1

(
MR0

m
≥ µA − ǫ

)]

(65)

=
1 + L(M)

MRs
+

M5

MRs
,

where (65) follows from Lemma D.1 and

L(M) =
M∑

m=1

Pr

(

1

m

m∑

i=1

(Ai − µA) < −ǫ

)

. (66)

By Lemma D.2, there exists an integern, finite and independent ofR0, so that

L(M) =

n∑

m=1

Pr

(

1

m

m∑

i=1

(Ai − µA) < −ǫ

)

+

M∑

m=n+1

Pr

(

1

m

m∑

i=1

(Ai − µA) < −ǫ

)

≤
n∑

m=1

Pr

(

1

m

m∑

i=1

(Ai − µA) < −ǫ

)

+

∞∑

m=n+1

exp

(

−m
ǫ2

2σ2
A

)

.

Since the first sum contains a finite number of terms (each being less than1), and the second converges

for all ǫ > 0, we have that

lim
M→∞

1 + L(M)

MRs
= 0.

Hence, we have that

lim
M→∞

η[INR] ≥ lim
M→∞

MRs

M5
=

Rs

R0
µA. (67)

Combining (64) and (67), we obtain

lim
M→∞

η[INR] =
Rs

R0
µA =

Rs

2R0
E [log2(1 + λ)] . (68)

Furthermore, Lemma 2 implies that

Rs

R0
≤ 1− E[log2(1 + ν)]

E[log2(1 + λ)]
. (69)

Finally, combining (68) and (69), we have the desired resultthat

lim
M→∞

η[INR] =
1

2
E [log2(1 + λ)− log2(1 + ν)] .
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B. RTD Scheme

Proof: We first consider the connection outage probabilityP
[RTD]
e . Let Ai = λi with meanµA =

E[λi], for i = 1, . . . ,M . Based on (21) we have

P [RTD]
e = Pr

[

1

2M
log2

(

1 +

M∑

i=1

Ai

)

< R0

]

= Pr

(
M∑

i=1

Ai − µA

M
<

22MR0 − 1

M
− µA

)

.

By using Lemma C.1, we have, for allǫ > 0,

lim
M→∞

P [RTD]
e =







0, 1
M (22MR0 − 1) ≤ µA − ǫ

1, 1
M (22MR0 − 1) ≥ µA + ǫ.

(70)

Hence, to ensure the connection outage requirement,R0 should satisfy

22MR0 − 1

M
< µA + ǫ. (71)

Now, we consider an upper bound onη[RTD]. Let

M3 =

⌊
22MR0 − 1

µA + ǫ

⌋

< M,

where the inequality follows from (71). By using (28), we have

η[RTD] ≤ MRs

[

1 +

M3∑

m=1

Pr

(
m∑

i=1

Ai < 22MR0 − 1

)]−1

≤ MRs

[
M3∑

m=1

Pr

(
M3∑

i=1

Ai < 22MR0 − 1

)]−1

≤ MR0

M3

[

Pr

(
M3∑

i=1

Ai − µA

M3
<

22MR0 − 1

M3
− µA

)]−1

.

Since(22MR0 − 1)/M3 − µA ≥ ǫ > 0 and Lemma C.1, we have that

lim
M→∞

Pr

(
M3∑

i=1

Ai − µA

M3
<

22MR0 − 1

M3
− µA

)

= 1.

Therefore,

lim
M→∞

η[RTD] ≤ lim
M→∞

MR0

M3
= lim

M→∞

MR0(µA + ǫ3)

22MR0 − 1
= 0.
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