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Abstract— The necessary and sufficient condition of the chan-

nel capacity is rigorously formulated for the N-user discrete
memoryless multiple-access channel (MAC). The essence dfet
formulation is to invoke an elementary MAC where sizes of input
alphabets are not greater than the size of output alphabet. fie
main objective is to demonstrate that the channel capacity fo
an MAC is achieved by an elementary MAC included in the
original MAC. The proof is quite straightforward by the very
definition of the elementary MAC. Moreover it is proved that
the Kuhn-Tucker conditions of the elementary MAC are strictly
sufficient and obviously necessary for the channel capacityrhe
latter proof requires some steps such that for the elementayr
MAC every solution of the Kuhn-Tucker conditions reveals itself
as local maximum on the domain of all possible input probabity
distributions and then it achieves the channel capacity. Asa
result, in respect of the channel capacity, the MAC in genera
can be regarded as an aggregate of a finite number of elementar
MAC's.

Index Terms—multiple-access channel (MAC), elementary
MAC, master elementary set, channel capacity, Kuhn-Tucker
conditions, capacity region, boundary equation

I. INTRODUCTION

elementary set to be denoted by2y. We demonstrate that
the channel capacity of th&/-user MAC is achieved by the
channel capacity oén elementary MAC of the setQy. The
proof here appears quite straightforward by merely appgali
to the very definition of the elementary MAC without asking
for any other features such that the Kuhn-Tucker conditions
are sufficient.

Thus an MAC in general can be regarded as simply an
aggregate of elementary MAC’s where the Kuhn-Tucker con-
ditions are necessary and sufficient for the channel capacit
Roughly speaking, an MAC comprises a finite number of
elementary MAC’s. This statement is a basic idea behind our
formulation of this paper.

Here we must emphasize that several steps are required to
prove the sufficiency of the Kuhn-Tucker conditions of the
elementary MAC. In fact, we need to prove two distinctive
features: The first is that for the elementary MAC every
solution of the Kuhn-Tucker conditions Iscal maximum on
the domain of all possible input probability distributioi?D)

(or the probability simplex, see Cover [1] for this termiogy
and we refer to them as IPRectors for our purposes). The

HE channel capacity is without question recognized as aacond is that for the elementary MAC a set of IPD vectors

essential subject of the (discrete memoryless) multiplésr which the value of the mutual information is not smaller
access channel (MAC) withy input-terminals and one output-than the arbitrary positive numberdsnnected on the domain
terminal. Since it is defined as the maximum of the mutuaf all possible IPD vectors. To prove the second property of
information, we are familiar with the so-called Kuhn-Tuckeconnectedness we require the first property of local maximum
conditions as necessary to achieve the channel capacity. Then it follows after a bit of procedures that solutions & th
to now, however, the Kuhn-Tucker conditions are not entireKuhn-Tucker conditions are uniquely determined, thatashe
examined as sufficient for th&/-user MAC except for the solution takes the same value for the mutual information and
simplest case of single user discrete memoryless chantirefore it achieves the channel capacity.
(DMC). Thus it is natural to ask how the sufficiency could For the explicit description of our concept we take a logical

be formulated for the case of MAC in general.

stream as follows: After defining the elementary MAC and

In this paper, we demonstrate that there exists a nondtrivitietermining the sef);, we first prove as the main theorem
MAC where the Kuhn-Tucker conditions are strictly suffidienthat the channel capacity of ai-user MAC is achieved by the
(and obviously necessary) for the channel capacity. We reféhannel capacity of an elementary MAC Qfy and then we
to it asan elementary MAC whose sizes of input alphabetsprove as the second theorem that the Kuhn-Tucker conditions
are not greater than the size of output alphabet. Evidehdy tare sufficient for the channel capacity of the elementary MAC
DMC is an elementary MAC. The most of this paper is devotéthese are the main objective of this paper.
to the proof that the Kuhn-Tucker conditions are sufficient After Shannon [2], the study of multiuser channel (multi-

(the necessity is self-evident) for the channel capacityhef
elementary MAC.
On the other hand, for any giveiV-user MAC we can

terminal network) has long been carried out in various fields
including MAC, broadcast channel, relay channel, intenfiee
channel, two-way channel and so forth. The channel coding

uniguely determine a finite set of elementary MAC’s. It is atheorem was proved independently by Liao [3], Ahlswede [4]
aggregate ofhe largest possible elementary MAC's includedand Meulen [5]. These are followed by many authors ([6],

in the given N-user MAC and is referred to athe master
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[71, [8], [9], [10], [11], [12]) to provide a deeper insighhto

the capacity region. Recently, information-theoretic rapgh

has been adopted to large scale networks, such that code
division multiple-access channel, continuous time midtip
access channel and space-time multiple-access changel (e.
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[13], [14], [15], [16], [17]), as we know. Also a computationP(j|i1,---,iny) = 1. Assume that there is no zero row in

procedure for the channel capacity of MAC has been devét; n, > 2, m > 2, and transmission is synchronized. The

oped (e.g., [18]). model thus defined is called aN-user MAC with a type
The purpose of the study of MAC is mostly to inves{ni,---,ny;m).

tigate the multiuser coding that retains both reliabilityda  The IPD vector p,, is assigned to amy-tuple column set
efficiency. The investigation has been carried out mostly @ input probability (px (0), - - -, pe(ne — 1))T, k =1,---, N,

the computational calculations for practical applicasioNot where (- --)T implies a transposition, defined ofy, with the
much has been made for the mathematical rigorousness of ghgbability constraintzf”f_lpk(ik) = 1. Thus eachp,, is

formulation since it appears rather hard to solve a noretinggcated on an(nj, — 1)l-kd:imensi0nalsimpI@( X, with ny,
optimization problem of the mutual information with severayerticesey, ¢ = 0,---,n, — 1. Here ey, is a unit column
variables under constraints. We have been highly expeetingector and takesl in the ¢th column component and

theoretical foundation, in particular, for the rigorousieration  elsewhere. Obviously eacki;, is convex and is observed as
of the channel capacity and the exact determination of t@gmain of p,.

capacity region for the MAC in general. These can provide USThe face F, of X, is defined by an(fi — 1)-
with the mathematical essence as well as the fine Structiffe ansional simplex whosg, vertices are chosen from ver-
inherent in the MAC. Also we believe that these can i ese, ., exm 1) Of Xy, where fy, < ny. A set of fy
part complement the computational approaches to varigy§ices c’)ka’ is Zﬁanoted byA(F}) = {€|:3kfz € F.}. There

applications as well. _ are several choices fqf, indices. Obviously\ (F;) C A(X})

In the past, for the MAC of two-user and binary output [19]and A(X3) = {0,---,n; — 1}. Zero-dimensional faces are
we have shown that the Kuhn-Tucker conditions are necessgi¥tices. one-dimensional faces are lines, and so fortan |f
and sufficient for the channel capacity. The basic idea was, sy, vectorp, is on the boundary ofX}, then there exists
identify the channel matrix of the MAC a& linear mapping a minimum face F;, which containsp, exactly inside (and
from the convex-closure of IPD vectors to the range of OUtPHbt on the boundary off. Thus if p,, is px(iz) = 0 for
probability distributions. Now we expand the idea and ren‘ninl-k ¢ A(F,) and py(ix) > 0 for iy € A(F), then F, for

a cle_ar conception to describe the MAC as a pair of chanr}ngk) is the minimum face which contaigs, and is uniquely
matrix P and domainX where X is a set of IPD vectors and jatermined. lfox (i) > 0 for all i’s, then the minimum face

Pisinterpreted as a mapp_ingc(_n-li.near. in general) from IPD which contains thep,, is X, itself. Here Fj, is also referred
vectors to output probability distributions. Any quant8ych i, o< a sub-domain of Xp. Also py, with p(iy) > 0 for

as mutual information and so forth is considered as a functip - A(Fy,) and pg(ix) = 0 for i:’gz A(Fy), is naturally
of IPD vectors defined on a restricted domain (a sub-sek .of regarded as aff; — 1)-dimensional vector ofF; even it is

These are seemingly non-standard in contrast to the osdin@f| 4 (n), — 1)-dimensional vector on the whole domaif,.

description of information theory as in [1]. However, we . .
assure ourselves that these conceptions including théiorota The Kronecker product of p, andp; is defined here by

adopted in this paper are so successful to overcome some

difficulties and cumbersome procedures underlying in the no P1(0)po

linear optimization problem relating to the mutual infottina Py X Py = :

of the MAC. ’
p1(n1 —1)p,

In Section[Il we describe some expressions and defini-
tions to be used in this paper. In particular we introduce
an elementary MAC and the master elementary set for tABd then the Kronecker product pf,-- -, p; is defined by
MAC. In Section[Tll we prove the main theorem of thidhductionip, x --- x p; = (py X -+ X Pp_1) X P, k =
paper as Theorefd 1 followed by indicating the value of this - - - V. In the same way we arrange the Kronecker product
theorem. In Sectiof IV we investigate distinctive featuogs Of X1,---, Xy as
the elementary MAC that are required to prove the succeeding
Theorem[2. In Sectiof ]V we investigate an special case of X=X, xx Xn.
binary-inputs MAC. In Section VI we prove Theoréin 2. In the

last Sectiof VIl we summarize the paper with some comments. . )
The setX is a domain of the IPD vectgs = p; X --- X py

of the N-user MAC. Remark thak is not convex as a whole

but eachX}, is convex. Also we can set a Kronecker product
In this section we introduce an elementary MAC with somef facesF,---, Fiy asF' = Fy x --- x Fy which is a sub-

expressions and definitions to be used in this paper. domain of X. Obviously F is not convex as a whole even
An N-user MAC is specified byN input alphabetsd, €achFy is convex.

with size of ng, kK = 1,---,N, an output alphabetB A pair (P, X) is assigned to théV-user MAC to specify

Il. ELEMENTARY MAC

with size of m, and anm by (n; x --- x ny) chan- a channel matrix? and a domainX. Here P has columns
nel matrix P = [P(jli1,---,in)] of transmission prob- (P(0|iy,---,in), -+, P(m — 1]i1,---,in))T arranged in the
abilities P(jli1,---,in)'s to be given a priori for the order of the components @f x - - xp,. An MAC is denoted

MAC, where j=0,---,m — 1, ix=0,- -+, ng — 1, andZ}”:’O1 in more detail byN-user(nq,---,ny;m)-MAC (P, X).



The mutual information of the N-user (ni,---,ny;m)- and the domain is assigned to a non-empty subseif X.
MAC (P, X) is defined by In the subsequent discussions we focus mostly on the sub-
MAC (P,Y) whereY is restricted to a sub-domaif’ =

I(py x -~ X py) Fi x -+ x Fy C X,. Here if p is an IPD vector of the
= > pi() - pn(in)Plin, - in) sub-MAC (P, F), then eachp, of p acts as an(f, — 1)-
Jyity e nin dimensional vector orfy; (i.e., pi(ix) = 0 for iy, & A(Fy))
log P(jli1, -+, in) L even it is still an(n; — 1)-dimensional vector on the whole
q(j) domain X, as mentioned before. The mutual information of

where q(j) = Y, . pi(in) - pr(in) P(ilin, -~ in) is an NTuser ;ub—MAC(R F) is given by I(p € F) where
an output probability of thgth symbol of B andlog is the the (i1,---,ik,---,in)th columns of P for i & A(Fj)
natural logarithm. For any’,p” € X, a convex-linear com- do not affect the mutual informatiofl(1). The Kuhn-Tucker
bination \p’ + (1 — \)p”, 0 < A < 1, does not always belong conditions f(_)r anN-user sub-MAC(P, F) are also given by
to X, sinceX is not convex excepN = 1. Therefore,P is the expressiorL{3) wheng € F'.

considered in general @ non-linear mapping fromp € X The elementary MAC now we define in general as follows:
to g = (q(0),---,qim —1)T: g=Pp= P(p, x --- x py). |f N-user(ny,---,ny;m)-MAC (P, X) satisfiesny, < m
Also I(p, x---x py) is regarded as a multi-variables functiorfor all £ = 1,---, N, then it is referred to asn elementary
defined on the domaiiX = X; x --- x X and is concave MAC. The elementary MAC is an MAC whose sizes of input

(convex-above) on eachi;,, whenp,’s, ¢ # k, are fixed, but alphabets are not greater than the size of output alphabet.

is not concave on the whole domalkh. The elementary (face) set @5@”) of X is defined by the set
The channel capacity of the N-user(ny,---,nx;m)-MAC  of faces as follows: Ify;, > m, thenFy, is put to an(m — 1)-
(P, X) is defined as usual by the maximum value of the mutudimensional face o, and if n;, < m, thenFy, is put to the
information [1): (n, — 1)-dimensionalX}, itself. Thus the dimension of each
F}, is less than or equal ton—1). If X is formed byn, < m
C= I e ) 2
g nax APy X py) @ forall - 1,---,N, then®{?” = {X}.
An IPD vector which achieves the channel capacity is reterre A master (elementary) MAC (P, F') of an N-user MAC
to asan optimal IPD vector. (P, X) is defined as the MAC with a domaifi € <I>§\’,”).

The Kuhn-Tucker conditionsare introduced as the conditionsHere eachp, € Fj acts as ar(f; — 1)-dimensional vector
to obtain the local extrema of a function of several variableas mentioned above, whepg, (i) = 0 for iy, ¢ A(Fy),
subject to one or more constraints. For the mutual informatiz = 1,..., N. Note that the master MAQP, F ¢ @5@”))
(@ of the N-user(ny,---,ny;m)-MAC (P, X), the condi- is regarded athe largest possible elementary MAC dfP, X)
tions to take the maximum value (channel capacity) aredtat@ the sense that there is no elementary MAR, F’) such

as follows: If p; x --- x py is optimal, then it satisfies that (P, F) is an elementary sub-MAC dfP, F’). A set of all
, =C, pulin) >0 master MAC's is referred to as the master (elementary) set of
J(py x -+ % PNﬂk){ C\ the N-user MAC (P, X) and is denoted by2y. Obviously
<C, pk(lk) 0 (3) C s . . .
g =0, np—1, k=1,-- N Qu is finite and is uniquely determined. If an MAQ, X)

is itself elementary, thefly = {MAC(P, X)}. The channel

C — I X -0 X
(P, Py) capacity of an MAC(P, F) € Qy is denoted byC'(F).

where In later discussions we investigate the IPD vegiowhich
J(py X - X pyiig) = 01(p, x xPy) +1 satisfies the Kuhn-Tucker conditioris (3).plf(ix) > 0 for all

Opr (i) ig=0,---,n,— 1, k=1,--- N, thenp is located exactly

inside (not on the boundary ofX. If p;(ix) = 0 for iy, &

= > p1(i1) - Pr—1(ik—1)Pr+1(ik+1) A(Fy,) andp(ix) > 0 for ix € A(F}), k = 1,---, N, then
Ty, k=151 N the sub-domairF’ = F; x --- x Fy of X formed byA(Fy)

. - : P(jli1, - ,in) is the minimum domain which contains exactly insider".
cpn(nN)P(Glit, -+, in) log ———1—~. ) )
q(j) More importantly, the non-elementary MAC has in essence

These equation§](3) are collectively referred tottmsKuhn- @ degenerate property as follows: ifny > m for an N-user
Tucker conditions for the mutual information[{1). These are(n1,---,nn;m)-MAC, then for a fixedp, € Fj, C X, with

quite easy to obtain, for example, by a method of Lagrande > m, there exists an IPD vectgy, € F] wherep’ # p,

multipliers to maximize the mutual informatiofil (1) subject’). C (#)Fk, fr, = m, andp = p; X --- X p; X --- X Py,

to the constraints op,: Z?:;Olpk(ik) =1, k=1,---,N. P =p; x--Xp)x---Xpy, suchthay = Pp’ = Pp. The

Remark that the Kuhn-Tucker conditioris (3) are obviousgiementary MAC has in general no such property. This notion

necessary but not in general sufficient for the channel égpads crucial to the subsequent discussions.

of the MAC (P, X). In the case of DMC, however, they are Finally for this section, we remark that we are going to

necessary and sufficient for the channel capacity [20]. investigate various types of MAC'’s. For example, we examine
A sub-MAC (P,Y), or a sub-channel, of anV-user an MAC (P,Y) with a domainy’ =Y; x---xYy C X where

(n1,---,nn;m)-MAC (P, X) is reasonably defined as @+ eachYy, k=1, --- N, is formed bythe line segment of IPD

user MAC where the channel matrix is set to the safhe vectors of X;.. Even then we can examine the Kuhn-Tucker



conditions in the same way as mentioned above. in general can be regarded as simply an aggregate of a finite
number of elementary MAC’s where the Kuhn-Tucker condi-
1. M AIN RESULT tions for the channel capacity are necessary and sufficient.

The master elementary séty as defined above has an
intrinsic property with respect to th¥-user(nq,---,ny;m)-
MAC (P, X). We can state it as a main theorem:

Theorem 1. The channel capacityC' of an N-user
(n1,---,ny;m)-MAC (P,X) is achieved by the channel
capacityC(F') of an N-user elementary MAQP, F' € <I>(m))
of Qn as follows:

IV. FEATURES OFELEMENTARY MAC

In this section we prepare basic properties that are redjuire
to prove the sufficiency of Theoreh 2.
The first propertyA is the chain rules [1]: We recall that the
mutual information of anV-user MAC is in general decom-
C = max C(F). (4) posed intoN components withV! different decompositions
Fealy” by the chain rules.
O The second propert is the capacity region: We describe
Proof: It is sufficient to prove the case that the originathat the capacity region of th&'-user MAC is given by the
MAC (P, X) is not elementary. Lah = p, x- - -xp, X---xpy  convex-closure of all achievable rate regions of Nledecom-
be an optimal IPD vector that achieves the channel capagigsitions for the mutual information [4]. It is summarizesl a
C. Let F, be the minimum face of\; which containsp, Propositior{lL.
exactly insidef, k = 1,--- N. It is sufficient to assume that The third propertyC is the boundary equations: We inves-
F}, is them or more dlmenSIonal face. Then by the degenerafigate that a boundary of an achievable rate region satisfies
property there exists afm —1)-dimensional facé’, C (#)F: by a method of Lagrange multipliers a set of conditions to be
such that for an IPD vectgp, € Fj, referred to as the boundary equations for the capacity megio
of the N-user MAC.

Pp = P(p XD e X D). 5
P (P > X Py % X< P) ®) The fourth propertyD is a relation between the Kuhn-
Put Tucker eguations and the boundary equations: We prove as
o i . i Propositiod 2 that a solution of the Kuhn-Tucker conditiofis
K(0) = 1(py > -+ x 0Py + (1= 0)py) X -+ X Puy) an N-user MAC with some restrictions satisfies the boundary

for the mutual information of the original MACP, X ), where equations.
0 < 6 < 1. The derivativedK (#)/00 is constant by[(5) and  The fifth propertyE is local maximum: We prove as Propo-
moreoverdK (6) /06 is equal to zero sincg is optimal. Then sition[3 that every solution of the Kuhn-Tucker conditiorfs o
it holds an elementary MAG P, X) is local maximum in the domain
~ ~ . ~ X. To prove Propositiof]3 we need Propositidn 2.

I(p) =I(py X - X Py X - X Py). Finally, the sixth property is connectedness: We prove as
This |mpI|es that the optlmal IPD vector exists in a domaiRropositiorL 4 that a set of IPD vectors of an elementary MAC
F=F x - xF,x---xFy€ q)(m) Thus Theoreml]1 is (P, X), for which the value of the mutual information is not

proved. m smaller than the arbitrary positive number, is connecteithén
TheorentL states that the channel capaCityf any N-user domainX. To prove Propositiohl4 we use Propositidn 3.
(n1,---,nn;m)-MAC (P, X) is rigorously determined by the ~We emphasize here that the last two properties,|oeal

channel capacity’(F) of an N-user master elementary MAC maximum and connectedness, are the most distinctive features

(P, F) € Q. In other words, an optimal IPD vector exists aéxclusive to the elementary MAC. However the first four
least on a domaitF” € ®'"). However Theorerfil1 does notProperties, although they hold for any MAC in general, are
guarantee that the opt|mal IPD vector exists only on a domd®duired to step by step prove the last two.

Fe <I>§V ), that is, theramight exist in general an optimal IPD

vector that is located exactly insid€ and not on anyF’ €

<I>§\’,”). Note that if theN-user(ny,---,ny;m)-MAC (P,X) A. Chain Rules

is elementary, then Theordm 1 appears self-evident $hee

contains only an MAQ(P, X) itself. The mutual information of anV-user (nq,---,ny;m)-

In the remaining section of this paper we focus on tHYAC (£ X) is decomposed intd/ components by the chain
les [1]. For the IPD vectorg,, - - -, Py _1, Pi» Pry1, " PN

proof that the Kuhn-Tucker conditions of an elementary MA

(P, X) are necessary and sufficient for the channel capacity. P{u..w} be a Kronecker product @by, k & {u,---,w},

We will state it in advance as a second theorem. nd let o, ...y be a Kronecker product opy, k €
Theorem 2: The Kuhn-Tucker conditions for the channeﬁ“ -, w}. Obviouslyo (,y = p,,.

capacityC' of an N-user elementarjnl ,n;m)-MAC The mutual information[{1) is decomposed into two com-
(P, X), wheren;, < m for all k = 1,---, N, are necessary PON€nts as
and sufficient. O

It is sufficient to prove only the sufficiency since the I(py x -+ xpy) =

necessity is self-evident. From these two theorems the MAC I(o gy lpguy) + 1(pruy/ o fuy)-



Here B. Capacity Region
A set of all achievable rates for a@i-user(ny, - - -, ny;m)-
I("{u}|p{u}) = MAC (P, X) is called a capacity region (e.g., [1], [3], [4]).
Z p1(in) - pnGN)P(liv, - in) By a decomposition we obtain
Jyi1, e iN

P(]|Zla 7ZN)
thu(h)P(]|Zla 7h7 aZN)
which is the conditional mutual information gf, with respect
to P, '7pu717pu+1 PNy and

-log

I(py x - X py) =
I(py|py x -+ x py) + I(P2|p3 X -+ X Pn/P1)
+1(p3lpy X - X Py /P1 X Do) + -+
o+ I(py/PL X X PN_1)- (6)

There exist as a whol&/'! different decompositions as men-
tioned above. Define a sub-regiéh as

I(ppy /o)) =
Z pi(i1) - pn(in)P(liv, -, in) pLEJX( (P1]py % xpn)s o LN /Pr % X Pn-1))
Jst1siN L . .
S pu(R)PGilin, -+ By i) This is |der_1t|f|ed as a set of achlevable_ ra@s for the
-log decomposition[{6). OtheN! — 1 sets of achievable rates,,

q(j)

, Gy are also defined in the same way @s. Then the

which is the mutual information of anN — 1)-user MAC capacity region is determined by those sub-regio@is's as
with the channel matrix|>>, pu(h)P(jli1, -, h,---,iy)]. follows [Theorem 15.3.6 in [1]]:

Moreover we decompose the latter into

Proposition 1: The capacity region of an N-user

(n1,---,nn;m)-MAC (P, X) is given by

I(ppuy/owy) = o N!G ,
I(pw|p{uw}/o'{u}) + I(p{u,w}/o'{u,w}) B COEJl v ( )
In general, where “co” implies the convex-closure. O

I(p{u7,..7w}/0{u,~~~,w}) =
I(pz|p{u,m,w}/o-{uyw})

C. Boundary Equations

A boundary of each sub-regio&;, i = 1,---, N!, for an
N-user(nq,---,ny;m)-MAC (P, X), can be determined by

FHP w0} O e w})- a method of Lagrange multipliers. The boundary(f, for
Here example, is evaluated by a Lagrange multiplier function,
L(pla'"1pN1A11'"aAN—17<11"'7<N) -
I(pm|p{u,,m,,w}/a{uw}) = I(p1|p2 X+ X pN)
Z pi(in) - pr(in)P(jliv, -, iN) —MI(py x -+ X py)
j,i17...7i1\<] P> _)\21(p2|p3 X oo XpN/pl)_
-log Sk ), —AN—1(Py_1lPN/PL X X Py )
(O (u, oz} - P) N
=3 G > pilin)
k=1 ix
I e w}) =
(p{“"”’””""’w}/c.r{ o ’.}) N , where \,---,Ay_1 and ¢y, ---,(n are so-called Lagrange
> pi(i) - pn(in)P(jlin, - sin) multipliers. The conditions that an IPD vectpr x - -- X py
Jtasesin takes extremum (maximum or minimum) f6f; are given by
log (O fuyz, oy - P) the equations (see Figl 1 fov = 3)
a(7) OI(py|py % -~ x py)  OL(py X -~ X py)
where Ip1(i1) Ip1(i1)
det : :
e wl T P) = u hu T Pw hw 3 5
(o oy P) hth( ) pulho) OI(plpy X -+ X py)  Ol(py X -+ X py)
'P(j|i17"'7hua"'7hw7"'7iN)' ~ apN(ZN) apN(ZN)
. 9I(pylps X -+ X pn/P1)

If {u,---,w} is empty, then(oy,,.. .} - P) reduces to

P(jli1,---,in). Thus successively reducing the suffices
{u, - ,w} of pry oy Upto {1, k=1, k+1,--- N},
I(p; x --- x py) is decomposed intdv components. Note
that there exist as a whol¥'! different decompositions.

Ip1(ir)

OL(palps X - X Py /P1)
Opn(in)




3 Then the second column dfl (8) reduces to zeros. Thergfore
I(py|ps/py) = a2

L is a solution of the boundary equatidg (8). ]
Remark that Propositidd 2 holds for any MAC including the
mi elementary MAC if it satisfies the conditiorld (9).

I(p,|py X P3)

/ cross-séction E. Local Maximum

An IPD vectorp is calleda local maximum point for the
mutual information/ (p), if there exists a neighborhodd, of
P such thatl/(p) < I(p) for anyp € Up. We prove here that
for the elementary MAC every solution of the Kuhn-Tucker
max conditions is local maximum. We state it as a proposition:
/ Proposition 3: If an N-user(ni,---,ny;m)-MAC (P, X)
R, is elementary, i.eny, <m, k=1,---, N, then every solution
p* =p] x - x py € X of the Kuhn-Tucker conditions for
the mutual informatior? (p) is local maximum inX. O
~ Before proceeding we remark that Propositidn 3 does not
OI(py_1IPN/DP1 X - - X PN_2) hold in general for the non-elementary MAC by the degenerate
51)1(@'1) property as is stated in the beginning of the proof of Theo-
. rem[d. In fact, we note without proof that a non-elementary

Fig. 1. Sub-regiornG; of three-user MAC.

two-user (3, 3;2)-MAC (P, X), for example, withN = 2,

81(171\7_1|PJ\~//1’1 XX Pn_g) ny = ng = 3, m = 2, for some channel matrix°, has
Opn (in) a solution of the Kuhn-Tucker conditions which is not local
=0, ip=0,---,np —2,k=1,---,N. (8) Maximum inX. _ _
i ) o ' Proof: Since theN-user MAC (P, X) is elementary, it
Here, we define partial derivatives as: is sufficient to investigate two cases for the solutjph of
I(--+) _ AI(---) ori---) . ” ) the Kuhn-Tucker conditions: the first is that every(ix) is
—~ = — — 7 ng — L. _ ; e
dpe(in)  Opk(in)  Opr(ng — 1) k k non-zero and the second is that at least ong¢f;)’s is zero.

In the first case, sincg; (i) > 0 for all componentsp*

Total (n; —1) x - x (ny — 1) equations[(g) are collectively s e the Kuhn-Tucker conditions:

referred to ashe boundary equations for GG; . Solutions of [(8)
ipcll:de both maxtimizzt;\t:ior;)anddminimizatipn a(sﬁ;sual.c?scce J(p} x -+ X piiix) = Mp
sively we can set up the boundary equationsder - - -, Gy ¥ (s 0. ir—0.-.. 1 k—1.-. N
with totally the same form ad(8). Note that the boundary Pi(ik) > N U T T T
equations have the same form Bk (8) for the different choices My = I(py X -+ X pN)- (10)
of starting Lagrange multiplier function. and there exisp’ andp” in X such that
D. A relation t_)etween the Kuhn-Tucker equations and the p* = (0p! + (1 — 05)p}) x - x (05D + (1 — 05)ply)
boundary equations
The boundary equations thus obtained have an importafierep; # py, p; # pj., and0 < 0; < 1.
property which we state as a proposition: Here we put by usingy, 0 < 0,<1, k=1,---,N,
Proposition 2: If a solutionp = p; x --- X pyy € X of
the Kuhn-Tucker conditions for the mutual informatid(p) K(0r,---,0n) =

of an N-user(n,,---,ny;m)-MAC (P, X) satisfies I((01p] + (1 = 61)p)) x -+ x (OnpT + (1 — On)DP))
J(py X -+ X pyiin) = C, and investigate the Kuhn-Tucker conditions and the bouyndar

i,b=0,---,npy—1,k=1,---,N equations with respect to thi&k(6;,---,0x). The Kuhn-
C=1(p, % xXpy) (9) Tucker conditions are simple to see as

thenp is a solution of the boundary equations for sub-regions Kr(01,---,08) =0, k=1,---,N (11)

G;,i=1,---,N\. O

Proof: It is sufficient to prove thap satisfies the boundary where ICy. (01, ---,0n) = 0K(61,---,0n)/00r. Also by a
equation[(8) forG;. By the assumptior{9), it holds decomposition
é](p1~X"'XpN) — Ic(olvvoN):
apk(lk) P =P, ik =0, n—2 IC(91|92779N)+’C(92|93779N/01)
J(Py X - X Pyiik) = J(Py X - X Pying — 1) +K(03]04---,0n/01,02) + - --

=0. +IC(9N/917"'79N—1)



i X The cross-sectionG; (R1, Ry) is a region in the two-
R(07,---,0N) dimensional R,-Ry) plain as shown in Fid.]2. Since it holds

/

Ry K1(02103,---,0n/601) = 0

gradient> —1 boundary :
gradient< —1 Ki(ON-1l0n/01,---,0N—2) = 0
M'T by the restrictions[{14), then we havé,(6,,---,0n) =
Rl K1(91|92, oo ,9]\[_1) —+ ICl(GN/Gl, oo ,9]\[_1). Thus the gra-

Fig. 2. Boundary of cross-sectiofii (R1, Ry) in Ri-Ry plain. Rates dient of the boundary of (RlvRN) appears
Ry, -+, Ry_ are fixed as specified bz {{14).

Ki(On/01,---,0n_1) Ki(01,---,0N)
=—-1+ . (15
K1 (61162, 6x) KOl 0x) )
we obtain a set of achievable rates _ . ) )
The right-hand side of (15) is estimated as
Gi= |J (K@O:l02,--0n),-- K(On /61, 0N 1))
Bimn Cqy Rl fn) (>)n (16)
(12) K1(01]02,---,0N)

which leads us to the boundary equation faras follows: . L L "
y eq @ according to the maximization (minimization) conditionk o

K1(01162,---,0n)  Ki(01,---,0n) K(01]02,---,0n) subject to[(IW) where it holds
det : : Ki(81, - 08)K1 (61102, -, 0x) < (=) 0.
Kn(01162,--,0n) Kn(61,---,0N)
Also the gradient of the boundaries of any cross-section
K1(62103,---,05/01) - Gi1(R1,Ri) (2 <k <N —1)is given by [16).
: . For any regiorg; of N! decompositions, the gradient of the
: boundary ofg; at 6* takes the same condition as that@f.
K (02105, -+, 0n/01) Since the inequalitie$(16) are valid for apy, p}, k =
1,---, N, there exists a neighborhodd,- of p* in X, such
Ki(On-1|0n /01, -, 0n—2) that I(p*) > I(p € Up-). This means thap* is local
: =0 (13) maximum inX.
/CN(9N—1|9N/'91, e Ono) In the second case, since at least onefi)'s is zero,

p* satisfies the Kuhn-Tucker conditions:

where (- -+) = 0K(--+)/00.

Since p* satisfies [(10),(6;5,---,0%) is a solution of the J(pt x -+ % p}*\,;ik){
Kuhn-Tucker conditiong(11). Then by Propositidn 2 it J&tis
the boundary equatiof (IL3) add, = (65, --,0%).

Now we examine a gradient of the boundarygfat 6* =
(07,---,0%)- Note that the solutio = (6:,---,60xn) of the
boundary equatiod (13) arourid defines a set of achievableSuch thaip* € F. This implies thap* is local maximum inF

rates [(I2) agji (R, -+ -, Ry). Obviously K(0") = Mr. At 3¢ qescribed in the first case and there exists a neighborhood
this step we investigate a cross-section[of (12) subjechéo .. ¢ F such thatl (p*) > I(p € Uop-)
P = p*):

restrictions such that

ZMT, ikEA(Fk)
< My, ip & A(Fy) a7
kzlvaNa ]\4'1121(1)1'< Xxp}‘\[)

wherep; (ix) > 0 for iy, € A(Fy) andpj(ix) = 0 for iy &
A(Fy). Thus there exists a sub-domafh= F; x --- x Fy

For anyp’ = p} x --- x pj. x --- x ply € Upp~, consider

. . "=p' x .o xplx---xply, wherep! € X, andp/
K(0a103,+,0n/01) = K(O3105, 0% /0]) FoPuttro <o o1 N P = Sk AP

: e / o« o . // — / S /
KON 1|0x /00, 0n2) = KBk 10k /00 - 04_y). O = 11X (Oppt (1=0)pp) < - X Ply).

(14) 1t holds dK(0)/df |gp=o < 0, since K(0) is concave, differ-
entiable, andp* satisfies [(1l7). Therefor& (6) is monotone
non-increasing ford. Thus there exist¥ > 0 such that
I(py x - x (0'p) + (1 = 0")p}) x -+ x py) < I(p").
_ Hence, there exists a neighborhddg- C X of p* such that
R(0y,---,0n) = I(p*) > I(p € Up+). This means thap* is local maximum

(K:(6‘1|6‘27'"79N)7K:(9§|9§7"'797\//9T)7"'7 in X.

K(On_110n_1/07, -+, 0n_2), K(ON/O1,---,0Nn_1)). By these two cases Propositibh 3 is proved. [ |

We denote a cross-section (subset)daf subject to [(I#) as
G1(Ry, Ry). This is composed of



1 : exists a neighborhool,- of p* in X such that/(p) < ao
’ for anyp € Up-.
On the other hand, by the properties Bf and D, there
; existsp’ in eitherUp- N.D; or Up+ N Dy such thatl (p’) > ao.
i Dy This is inconsistent with thagh* is local maximum. Therefore
S S - — D(a) is connected.
: For the second case, consider the minimum donfais
; Fy x---x Fy € X which contains the* exactly inside (and
D, not on the boundary offy,, wherepy(ix,) = 0 for iy, & A(Fy)
: and py(ix) > 0 for iy, € A(Fy), k = 1,---,N. In the same
: way as in the first case, it is proved thata) N F' is connected.
o] ) 1 ThereforeD(a) is connected. [ |
1

Fig. 3. Pattern oD (ag) = D1 U D> for the case ofV = 2, n1 = na =2,
p1(0) = 01, p2(0) = 62.

V. BINARY-INPUTS MAC

In this section, we investigate av-user binary-inputs MAC
(P,Y) of the N-user (ny,---,nn;m)-MAC (P, X) where
F. Connectedness eachY; of Y is formed by a line segment. For any given
Finally in this section, we prove the property of connectegy, p € Xy, k=1,---, N, define a line segmerlt, by
ness for the elementary MAC as a proposition: , "
Proposition 4: If an N-user(ny,---,ny;m)-MAC (P, X) Vi = {0kp), + (1 = Or)pil0 <O <1}, k=1,---,N

is elementary, i.eny <m, k=1,---, N, then the set and denoteY = Y; x --- x Yy. Reasonably we se =

D(a) = {p|I(p € X)>a} (18) (01, --,0n) and writedy € Yj, @ € Y. Thus we can build
up anN-user binary-input$2, - - -, 2; m)-MAC (P,Y) whose

is connected for any > 0. D channel matrix is? and domain is a subs&t of X . Obviously

Proof: Assqme that for any > 0, ther_e e.xistmo >0 tis an elementary MAC since: > 2.
such thatD(aQ) is connected and(ay + ¢) is dlscc_mnected. The mutual information of theV-user (2, - - -, 2; m)-MAC
Sincel(p) is concave on eacJX_k, then there exist subsets(R Y) is given by
D, and Dy of D(ap) with properties as follows:
1) D(ao) = D1 U D3, andI(p*) = ao, for p* € D1 N D,. Z(r,-- 0N, p") = 1((01p1 + (1 — 01)p)) x
2) For anyp) x---xpj, x---xply € Dy, all IPD vectors cx (Onply + (1= 08)P%) (20)
pll X oo X P X oo xplN' P, € in k = 1’...7]\7’
satisfying(p} x --- x py, x --- x ply) > ao belongs to Where0 < 6, <1, k=1,---,N, andp’ = p| x -+ X py,
D, and also for any// x --- x p{ x --- x pl\, € Dy, p" = p! x---x pf. It depends on the choice @f, p”. The
all IPD vectorsp/ x --- X pj, X --- X P, P € Xr, Kuhn-Tucker conditions fo (20) are given by
k=1,---,N,satisfyingI (p} x- - -xpy x- - -xp%) > ao

RPN/ _
belongs toD; (cf. Fig.[3). Li(On, -, On;p5p") = 0, Ok >0
Thus for anye > 0, D(ag +¢) is separated into subsely C < 0 0=0
D, andD}, C D, such thatD(a) = DjUD} andDiND} = ¢. k=1,---,N (21
Itis easy to see that for any" = pj x---xpj x---xpjy € o o L
Dy Dy, k=1,--- N, it holds whereZy(---; 0/, p") = 0Z(---; p', p")/00. For simplicity

we omitp’, p” from the expression and dendf€9; p’, p”’) =
I(py X -+ Xpp X - xXpy) < ag, P € Xk (19) Z(6), in the subsequent discussions.

since for anyp — p, x- - -xpy€D1 (01 p € Ds), p & DiNDs, We prove the lemma to be used for the proof of Thedrém 2

everyp, X --- X pp X -+ X by, k=1,---, N, satisfyin as follows:
YPy P Py, B= S 4 9 Lemma 1: The Kuhn-Tucker conditions for th&-user bi-
I(py X -+ X Py X+ X DPy) < ag,pi, € Xk nary (2,---,2;m)-MAC (P,Y) as defined above are neces-
. . sary and sufficient for optimality. O
belong; to neitheD; nor D, by the property 2)_(see Figl 3). Proof: It is sufficient to prove the sufficiency. Assume
Consider two cases: Every componentspdfis non-zero that there exist two solutiond — (G, ---,0x) and & —

and at least a component pf is zero.
In the first case, it holds by (119) that € D; N D, satisfies
the Kuhn-Tucker conditions

(91_,-~-,9AM) of the Kuhn-Tucker conditiond (21) such that
Z(0) # Z(0). Without loss of generality, assume tH&(0) >

J(pi > X pyiin) = a0, Pilix) #0 Since theN-user binary(2, - - -, 2;m)-MAC (P,Y) is ele-
i =0, mp =1 mentary, by Propositiop] 3 the solutighis local maximum

k=1, N. in Y and there exists a neighborhoddg, of 6 such that
Thereforep* is local maximum forp € X by PropositiofB Z(0) > Z(6 € U,). Also by Proposition}4 the sdd(Z(0)) =

since(ny,---,ny;m)-MAC (P, X) is elementary. Then there {0|Z(6)>Z(9),0 < Y} is connected and includes both



02

01

Fig. 4. Two solutions of the Kuhn-Tucker conditions for tweer case.

and 6. Then for anyd € D(Z(6)) N
7(0) = Z(6).

Let #* and 87 be any points inD(Z(8)) N U, and set
Z(O7, -, (a0 + (1 Q)GZ),”-,@}‘V) as a function of the
variable «. SinceZ(0) is concave for each variablg, and

Uy, it is easy to see

7(6*) = Z(6') = 1(8), we haveZ(d;, -, (ab; + (1
a)fl),---,0%) = Z(8) for 0 < a < 1. Therefore, it holds
dI( f,---,(aez-}-(l—04)9};),---,9?\[) _
do
(0% — 0Tk (07, -+, (b} + (1 — a)B]), -+, O3)
=0.

This implies that anyd € D(I(é)) N U, satisfies the Kuhn-
Tucker conditions[(21)Zy (6, --,6k,---,0n) = 0, k =
1,---,N, even ifd is located on the boundary af.
Let A(0) be a set
AB) ={017:(0) =0, k=1,
7(0) =1(0), 6 < D(I(6))}.
Clearly, this includesD(Z(8)) N U, and it holdsZ(6) = Z(8)
for & € A(09) (see Figl¥). Note that each point ix(6)
is local maximum. Then for ang’ € A(), there exists a
neighborhood’y/, such thatZ(0) < Z(8')(= Z(8)) for any
0cUy.
Here we define a subset &fyy asV = {0|60 € Uy ,0 ¢

N

3

Theorem [ The Kuhn-Tucker conditions for the channel
capacityC of an N-user elementaryn,---,ny;m)-MAC
(P, X), wheren;, < m forall k =1,---,N, are necessary
and sufficient. O
Proof: It is sufficient to prove the sufficiency. Lgg =

- X py a solution of the Kuhn-Tucker conditions
(3) for the N-user elementaryn,, - --,ny;m)-MAC (P, X),
wheren, < m, k = 1,---, N. We prove thaip is uniquely
determined in the sense that any solutipof the Kuhn-Tucker
conditions [(B) gives the same fd(p).

For an arbitraryp), € Xy, k=1,---
X, andé, such that

Py X

, N, there existp) €

Py = Okpl + (1= 0k)pi, 0<6, <1 (22)
since X, is simplex. Thenp is represented by
p = (61py + (1 —6,)p))x
x (NPl + (1 = 0n)PY)- (23)
Here we define a function of variableg,(---,0y) = 0
(0< 6, <1)by
Z(6;p', p") = I((01p} + (1 — 61)p])x
x (OInpy + (1 = 0n)DPY)) (24)
wherep’ = p} x --- x ply andp” = pf x --- x p%. The

function [24) can be regarded as the mutual information of
an N-user(2,---,2;m)-MAC (P,Y) with the domainY” =
Y x - X Yy, WhereYk = {Hkpjc + (1 — Gk)p%|0 <0 <
1}, k=1,---,N. The N-user(2,---,2;m)-MAC (P,Y) is
denoted by(P,Y") ), Since it depends op’, p”.

Sincep is a solution of the Kuhn-Tucker conditiord (3) for
(P, X), then@ is a solution of the Kuhn-Tucker conditions for
the mutual information(24) ofP,Y) 11

Ik(e;plvpll) = Ca 0k >0
< C, 6,=0
k=1,--- N, C=1I(6;p,p") (25)

A(6)}ND(Z(6)). Assume thal” is non-empty. Then it holds where Z,.(6; p’, p”) = 0Z(6;p/,p")/96). Therefore, it fol-

Z(0) < Z(0) for any @ € V, sinced € {0|0 € Uy ,0 ¢
A(@)}. On the other hand, it holds th@() > Z(6) for any
6 € V since@ e D(Z()) by the definition of V. This is
inconsistent with the assumption thet is non-empty. Thus
V is empty andA (6 ) D(Z(0)).
Since bothd and @ belong toD(Z (6 ), it holds Z(6) =
7(8). Therefore the assumptidf(8) > Z(0) is invalid. This

means that any solutiof of the Kuhn-Tucker condition§ (21)

for (P,Y’) gives the same value f@r(@)and then it is optimal.
Thus the sufficiency is proved. ]

Note that the Lemmid 1 holds for any dom&irof X formed
by p’ and p”.

VI. PROOF OFTHEOREM[Z

lows from Lemmd[L thaf is optimal for(P,Y), ), which
means

7(6;p',p") > 1(6;p', p") (26)
forany@ €Y.
Since@ is given by [28), it holds
7(6;p".p") = 1(P) (27)

for any p’ € X, wherep” satisfies[(22). Thus since{(26) and
(22) are valid for any’ € X, it holds

I(p) > I(p)

In this section, we prove Theorelh 2 by using Lempha ©n the whole domairX. This implies thatp is optimal.

We state again Theorem 2:

Thus we proved the theorem. [ ]
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VII. CONCLUSIONS since we provide for a formalism to determine the channel

i _capacity of the MAC. We are confident that two distinctive
After Shannon [2] multiuser channel has long been Stl‘d"i"é{’altures of local maximum (Propositibh 3) and connectesines

in various fields. However not much works have been magg, . sitior[%) represent an intrinsic structure of the MAC
for the fundamental property of the channel capacity ofNan 4 vever we are not content ourselves with this stage. We
user(pl, ~-,nn)-MAC (P, X) in general except for some 5.0 expecting that our results will be a mathematical base fo
specific cases. ) B various subjects of the MAC including the numerical and/or
We have shown that there exists a non-trivial MAC whergy ot evaluation of the capacity region, the analysis of the
the Kuhn-Tucker conditions are necessary and sufficient fofac with feedback as well as the structured approach to the

the channel capacity. We called it as @ementary MAC that
was defined by the MAC whose sizes of input alphabets must
be not greater than the size of output alphabet. Obviougly th
N-user binary inputg2, ---,2;m)-MAC (P, X) is a typical
example of the elementary MAC. Also the DMC is a trivial [
elementary MAC. 2]

We believe that there is considerable merit in a concept of
elementary MAC for which the channel capacity is evaluate%]
precisely by the necessary and sufficient condition as in the
case of DMC. In fact, we have proved as Theolgm 1 thd#l
the channel capacity of any MAC is achieved by the channel
capacity ofan elementary MAC contained in the original [s5]
MAC. Thus an MAC in general can be regarded as simply
an aggregate of elementary MAC's. This statement is a basic
idea behind our formulation of this paper. 6]

The most of this paper was devoted to the proof of The-
orem[2 such that the Kuhn-Tucker conditions are sufficierlf!
(the necessity is self-evident) for the channel capacityhef
elementary MAC. We have shown as Propositidn 2 that &l
solution of the Kuhn-Tucker conditions if it satisfies thaial [9]
ity portion of the conditions satisfies the boundary equntio
which define the boundary of the capacity region. Then we
could prove the property of local maximum as Proposifibn 30
followed by the property of connectedness as Proposiiion 4.
By using these two distinctive features we could prove thEl
any solution of the Kuhn-Tucker conditions of the elementar
MAC was uniquely determined, that is, each solution takes]
the same value for the the mutual information and therefore
it achieves the channel capacity. [t

In this respect, we remark that the non-elementary MAC has
a degenerate property as explained in Sedfibn II. If it exis{14]
then it is difficult to identify which IPD vectors are exactly
contributed to the mutual information of the MAC. Howevefis]
we overcome these difficulties by introducing the concept
of elementary MAC where there exists no such degenerﬁgl
property. Since the well-known DMC is elementary, then the
elementary MAC is identified as an extension of the DMC. 171

Incidentally, our notation introduced in this paper seenﬁs
rather non-standard including expressions of IPD vegtor
Kronecker product® = p; x --- x py, the channel matrix
P regarded as a non-linear mapping, domainface F, and
so force. However we emphasize that the notation appefu%
effective to resolve the cumbersome procedures relatirigeto
extremum evaluation of the multi-variable mutual inforioat
with constraints for the MAC.

Before closing we remark that the very essence of infor-
mation theory consists in two major subjects such as source
coding and channel coding as we know. This paper seems to be
quite effective in working out the subject of channel coding

(18]

[20]

multiuser coding, and so force.
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