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Abstract—A single-input–single-output (SISO) Poisson fading
channel with perfect channel state information (CSI) at the trans-
mitter and the receiver is considered. For a fixed basic rate ��, a
service outage occurs when the instantaneous transmission rate
falls below the rate ��. The objective of this paper is to maximize
the expected transmission rate subject to peak and average trans-
mitter power constraints and a constraint on the service outage
probability. The optimal power allocation scheme is shown to be
a combination of the ergodic capacity-achieving power allocation
and the outage capacity-achieving power allocation schemes
with a randomization between the two deterministic schemes in
a boundary set. This randomization is not necessary when the
channel fade distribution is continuous. By combining the con-
cepts of ergodic and outage capacity, the proposed optimal scheme
judiciously resolves the conflicting objectives of high expected
transmission rate and low outage probability.

Index Terms—Adaptive transmission, channel state information
(CSI), ergodic capacity, outage capacity, Poisson fading channel,
service outage.

I. INTRODUCTION

F REE-SPACE OPTICS (FSO) has gained much popularity
in the recent years as a low-cost, high-data rate commu-

nication strategy. It has been proposed as a viable solution to
the last mile problem, i.e., the final leg of delivering connec-
tivity from a communication provider to a customer, especially
in the urban setting [19]. The many benefits of wireless op-
tical systems include rapid deployment time, inexpensive com-
ponents, seamless wireless extension of the optical fiber back-
bone, immunity from radio-frequency (RF) interference, high
security, and lack of licensing regulations. Consequently, FSO
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communication has received much recent attention in the litera-
ture [2]–[4], [7], [8], [11], [12], [20], [21]. In free-space optical
communication links, atmospheric turbulence causes random
fluctuations in the refractive index of air at optical wavelengths,
which in turn cause random fluctuations in the intensity of a
propagating optical signal [9]. Hence, the FSO communication
channel can be modeled as a slowly varying fading channel with
occasional deep fades that can affect millions of consecutive bits
[2], [7].

In time-varying channels, e.g., wireless RF communication,
dynamic allocation of resources, e.g., transmit power and in-
formation rate, can lead to improved communication perfor-
mance over fixed resource allocation schemes. The communica-
tion performance, which can be characterized in terms of the rate
of information transferred from the transmitter to the receiver, is
often application specific. For example, for delay-sensitive ap-
plications the capacity versus outage probability is an important
design parameter whereas for nonreal-time applications the ex-
pected information rate or ergodic capacity is an appropriate
measure of communication performance. Therefore, different
classes of applications will benefit from adaptive transmission
schemes that provide better communication performance with
respect to the specific design parameters. For a comprehensive
review in the context of RF communication, see [16]. One pop-
ular technique to combat the detrimental effects of fading is
to estimate the time-varying channel conditions at the trans-
mitter and the receiver and use the channel state information
(CSI) to dynamically adapt transmit power and rate according
to the existing channel conditions. In this paper, we assume
that perfect CSI is available to the transmitter and the receiver,
so that the transmitter can dynamically adjust its power level
and instantaneous rate based on perfect CSI. While ergodic ca-
pacity-achieving power allocation leads to maximum average
throughput [6], for real-time applications in slow fading envi-
ronments, it is not a good performance measure since averaging
over a large number of channel states can lead to unacceptable
delay. On the other hand, outage capacity-achieving power al-
location for a given outage probability guarantees a constant
basic rate for channel states not in outage [1]. There are several
variable-rate real-time applications for which different levels of
quality of service, quantified in terms of the allocated rate for
each of these levels, can be guaranteed for different applica-
tions. For example, in an application with simultaneous voice
and data transmissions, as soon as a basic rate has been
guaranteed for the voice service, any excess available rate can
be used to transmit data in a best effort fashion such that the
long-term average rate is maximized for the delay-insensitive
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data applications. Motivated by these practical considerations,
in [14] and [15], Luo et al. studied variable rate adaptive trans-
mission schemes subject to a maximum outage probability con-
straint on a basic rate requirement in a slow fading RF envi-
ronment. The notions of ergodic and outage capacity were judi-
ciously combined in a service-outage-based problem formula-
tion, where the long-term average rate was maximized subject
to a basic rate requirement in addition to the customary trans-
mitter average power constraint. In this paper, we apply similar
ideas in the context of a free-space optical fading channel.

In this paper, we consider a shot-noise limited single-
input–single-output (SISO) free-space intensity modulation
direct detection (IM/DD) optical channel in which information
is transmitted by modulating the intensity of the transmitted
signal, and individual photon arrivals are observed at the direct
detection receiver. In [2], a block fading channel model [10]
was proposed to account for the slowly varying nature of
optical fade in FSO communication channels. The channel
fade is assumed to remain unvarying for a coherence interval
of fixed duration time units, and change across successive
such intervals in an independent and identically distributed
(i.i.d.) manner. In this paper, we assume the same fading
channel model. The IM/DD optical block fading channel with
Poisson receiver statistics is succinctly called the Poisson
fading channel. In [2], the ergodic capacity of the SISO
Poisson fading channel was derived, and properties of the ca-
pacity-achieving power allocation schemes were characterized.
The multiple-input–multiple-output (MIMO) Poisson fading
channel was studied in [3], [4], and [7]. While upper and lower
bounds on ergodic and outage capacity were derived in [7],
exact expressions for ergodic and outage capacity were obtained
in [3] and [4], respectively. A complete characterization of
optimal power allocation schemes that achieve outage capacity
was also derived in [4]. However, a complete characterization
of optimal power allocation schemes that achieve ergodic
capacity for the MIMO Poisson fading channel still remains
open [3]; a few special cases have been solved. In this paper,
we restrict ourselves to the SISO case, and assume that perfect
CSI is available to the transmitter and the receiver.

It is important to note that our model ignores bandwidth
limitations associated with practical transmitter and receiver
devices. We also incorporate the effects of signal shot noise
and background radiation into a constant rate dark current
parameter. These simplifying assumptions lead to an idealized
channel model that is amenable to an exact analysis. Other
channel models have been proposed in the literature, which
describe the background radiation as additive white Gaussian
(cf., e.g., [8], [11], [12], and [21]), or consider spectrally
constrained transmitted signals (cf., e.g., [17] and [18]).

The remainder of this paper is organized as follows. In
Section II, a formal description of the service-outage-based
power and rate allocation problem for Poisson fading channel
is outlined. The optimal power allocation scheme is derived
in Section III, and several interesting properties are identified
in Section IV. A numerical example with lognormal fading
channel model is provided in Section V. Finally, Section VI
contains a discussion of the main results and directions for
future research.

II. PROBLEM FORMULATION

The following notation will be used consistently throughout
the paper. Random variables are denoted by uppercase letters
and their realizations are denoted by lowercase letters. The fol-
lowing letters will be exclusively used to denote specific system
parameters: denotes peak power, denotes the background
noise rate, denotes the average-to-peak power ratio, de-
notes the probability of outage, and denotes the basic rate.
The instantaneous rate (mutual information) is denoted by the
function and the maximum rate (capacity) is denoted by .
A deterministic power allocation scheme is denoted by , and
a probabilistic power allocation scheme by . A superscript

usually denotes an optimal solution, and a subscript de-
notes a special definition, e.g., is the optimal ergodic ca-
pacity-achieving (deterministic) power allocation. Sets are de-
noted by calligraphic font, e.g., denotes the outage floor
set corresponding to a basic rate of . The complement of a set
is denoted by and the closure by .

We consider a service-outage-based power and rate allocation
problem for the SISO Poisson fading channel when the trans-
mitter and the receiver are provided with perfect CSI. A general
class of probabilistic power allocation schemes are considered,
akin to the approach proposed in [15] for the parallel Gaussian
fading channel.

A block schematic diagram of the channel model is
given in Fig. 1. For a given -valued transmitted signal

, the corresponding received signal at the
channel output is a Poisson counting
process (PCP) with rate

(1)

where is the i.i.d. -valued random fade
in the th coherence interval , and
is the background noise (dark current) rate which is assumed
to be constant. In (1), we denote by the smallest integer
greater than or equal to . With being the interval of
transmission and reception, the input
is proportional to the transmitted optical power, and satisfies
peak and average power constraints

(2)

where the peak power and the ratio of average-to-peak
power , , are fixed.

In [2], a single-letter characterization of ergodic capacity of
the SISO Poisson fading channel was derived and the proper-
ties of the capacity-achieving power allocation scheme were
identified. It was shown that a binary ON–OFF keying (OOK)
signaling scheme with arbitrarily fast intertransition times1 can
achieve capacity. The probability that the transmit aperture, i.e.,
the transmitting photoemitter, will remain ON as a function of

1In OOK signaling, a state transition occurs when the transmit aperture shifts
from the ON state to the OFF state, or vice versa. The minimum time interval
between two consecutive state transitions is the intertransition time.
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Fig. 1. Poisson fading channel.

the instantaneous channel fade is denoted by ,
and can be seen as the conditional duty cycle of the transmitted
signal, conditioned on the channel fade. The instantaneous mu-
tual information of the SISO Poisson fading channel, as a func-
tion of the channel fade and the duty cycle is given by [2]

(3)

where we define2

(4)

A single-letter characterization of the ergodic capacity can be
posed in terms of an optimization problem as in [2, Th. 1]. The
optimal power allocation scheme, which was outlined in [2, Th.
2], can be interpreted as the allocation of the conditional trans-
mitter duty cycle that maximizes the expected information rate
subject to the peak and average power constraints. The outage
capacity of MIMO Poisson fading channels was characterized
in [4], again in terms of an optimization problem involving the
conditional duty cycles of the transmit apertures. In this paper,
we consider a service-outage-based power allocation problem,
which combines the concepts of ergodic and outage capacity,
and aims to resolve the conflicting objectives of achieving high
expected transmission rate and low outage probability.

When OOK signaling scheme is used, the transmitted power
is directly proportional (with a scaling factor equal to the peak
transmit power ) to the probability that the transmit aperture
is ON, or equivalently to the duty cycle of the transmit aperture.
Therefore, the duty cycle can be viewed as a power allocation
parameter for the transmit aperture, and henceforth, we use the
terms duty cycle and power allocation interchangeably. A prob-
abilistic power allocation is a random variable (rv) with a con-
ditional probability density function (pdf) . Each realization

of corresponds to a particular deterministic power alloca-
tion (which corresponds to the instantaneous duty cycle of the
transmit aperture) given a particular channel realization , and

specifies the proportion of time the power allocation
is used when the channel state is . In a probabilistic power

allocation scheme, each realization of the power allocation is as-
sociated with a coding scheme; a service outage occurs when the
code rate is less than the basic rate specified by the applica-
tion [15]. For each channel fade, a service outage occurs with a
nonzero probability, since among the multiple codes associated
with the probabilistic power allocation scheme, some code rates

2All logarithms are natural logarithms.

can exceed or fall below . For notational convenience, we de-
note by a probabilistic power allocation scheme with con-
ditional pdf , and a deterministic power allocation scheme
is denoted by .

For a given probabilistic power allocation , the average
rate, the average power, and the outage probability are, respec-
tively, given by

(5)

(6)

and

(7)

where is as defined in (3), and denotes the indicator
function.

The service-outage-based power and rate allocation problem
is stated below. In the following, we assume that , ,

, , and are fixed.

Problem 1: Determine the maximum average information
rate

(8)

subject to the constraints

w.p. (9)

(10)

(11)

where the conditional pdf is a set of functions satisfying

for every (12)

The maximum average rate in (8) is called the service-
outage-based achievable rate.

III. OPTIMAL POWER ALLOCATION SCHEME

In this section, the solution of Problem 1 is derived in a
systematic manner. We begin by introducing two determin-
istic power allocation schemes which will later turn out to be
the components of the optimal solution. These deterministic
schemes are themselves solutions of two well-known problems.
The first scheme is the solution of the ergodic capacity problem
(introduced as Problem 2). The second scheme, which solves
the basic rate allocation problem (introduced as Problem 3) is
intimately related to the outage capacity problem (introduced
as Problem 4). After outlining these deterministic schemes, we
discuss the conditions under which Problem 1 has a feasible
solution. Finally, the solution of Problem 1 is derived in a
sequence of steps. The basic idea is to show that the optimal
solution is a two-layer power allocation problem, where the first
layer comprises the ergodic capacity power allocation, and the
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second layer comprises an additional level of power allocation
for the states in which the first layer cannot guarantee the basic
rate requirement. Our proof technique is very similar to [15] in
which the same problem was solved for the RF fading channel.

In stating our results, it is convenient to use the following
notation:

(13)

whence from (4) it can be verified that

(14)

and from (3), it readily follows that

(15)

A. Deterministic Power Allocation Schemes

We introduce two deterministic power allocation schemes,
which will later be used to characterize the solution of Problem
1. The first scheme corresponds to the optimal solution of the
ergodic capacity problem, and the second scheme corresponds
to the basic rate power allocation that requires the minimum
average power to maintain a basic rate at each channel fade.

Consider first the ergodic capacity problem, which is stated in
Problem 2. Its solution is a power allocation scheme that max-
imizes the average mutual information subject to the peak and
average power constraints.

Problem 2: Determine the maximum average information
rate

(16)

subject to the average power constraint .

The solution of Problem 2 has been outlined in [2, Corollary
2] and is stated here for the sake of completeness. The optimal
power allocation scheme that achieves the
maximum in (16) is given as follows. For , , let

(17)

and let

(18)

If , let be the solution of the equation
, where we have used the notation

. Then, the optimal power allocation scheme in
(16) is given by

.
(19)

Consider next the basic rate allocation problem, which is stated
in Problem 3. The solution of the basic rate allocation problem
is the minimum average power required to satisfy a given basic
rate requirement. Note that the basic rate allocation problem is
stated for a specific channel state, and the basic rate requirement
is imposed on the instantaneous mutual information.

Problem 3: For fixed and , determine the
minimum average power

(20)

subject to the basic rate requirement .

Problem 3 does not necessarily have a solution for an arbi-
trary choice of and . This follows from the fact that for
the Poisson fading channel, the instantaneous mutual informa-
tion is a concave3 but not a monotonically increasing function
of the transmitter power (measured in terms of the duty cycle),
as opposed to the RF fading channel. See Fig. 2. For a fixed
channel fade , it can be shown that the maximum instan-
taneous mutual information is achieved with conditional duty
cycle4 , and is given by

(21)

Note that

since is nonnegative for and is
monotone decreasing for with and

(cf., e.g., [5, Fig. 2]). Therefore, is a monotonically
increasing function of .

By the concavity of mutual information, it follows that for
a basic rate , there are two real solutions of the
equation ; see Fig. 2. Let these two real solutions
be denoted by and , where

with equality if and only if .
We now consider a numerical example that illustrates typical

values of the various parameters defined above.

Example 1: Assume , and consider a fixed
fade level . In Fig. 2, the instantaneous mutual information

versus transmitter duty cycle is plotted for .

3The concavity of instantaneous mutual information can be seen from the fact
that � ���� � �� � ������ � � � �.

4This result can be readily inferred from [5, Th. 1]. In the notation of [5],
� ��� � � �	 with 	 � ��.
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Fig. 2. Plot of instantaneous mutual information versus transmitter duty cycle
for a given channel fade. In this example, we set � � ��, � � �, and � � �.
The maximum mutual information � ��� � 2.5056 nats/unit time is obtained
for the duty cycle � ��� � �����. The basic rate � � 0.461 nats/unit time is
satisfied for the duty cycles � ��� � � � ����� and � ��� � � � ��	�
.

The mutual information first increases with until it reaches the
maximum 2.5056 nats/unit time when

, and then decreases for higher values of . For a basic rate
0.461 nats/unit time, the two solutions of are

and , respectively.

We emphasize that Problem 3 may not necessarily have a so-
lution for any arbitrary choice of and . In fact,
for a fixed basic rate , the set

(22)

comprises channel fades for which the instantaneous mutual in-
formation will always remain below the basic rate, irrespective
of the choice of the duty cycle . The set is de-
fined as the outage floor set for the basic rate , and this set
constitutes of channel states for which Problem 3 is not solv-
able. This property of the Poisson fading channel is markedly
different from the RF fading channel, where a solution always
exists for the corresponding basic rate allocation problem [15].
Furthermore, by the monotonicity of , it follows that the
outage floor set is of the form where

is the smallest value of channel fade for
which the basic rate can be supported. For future reference,
define

(23)

as the probability of the outage floor set . It follows that
Problem 3 has a solution only if ,
and the solution, when it exists, is given by

(24)

where is the smallest real solution to .

Fig. 3. The probability of the outage floor set 	 �� � is plotted against the
basic rate requirement � for the lognormal fading channel in Example 2.

Example 2: In this example and all the subsequent examples
in this paper, we will consider a Poisson channel with lognormal
fading, i.e., , where we assume that

, such that the fade is normalized (i.e.,
). We also set . In Fig. 3, the probability of

the outage floor set is plotted versus the basic rate. In particular,
when the basic rate is 0.461 nats/unit time, the probability
of the outage floor set is . The minimum fade
level for which Problem 3 has a solution is .

Example 3: Consider the lognormal fading channel from Ex-
ample 2. It can readily be verified that for this channel

. For different values of (viz.,
and ), the ergodic capacity-achieving power allo-
cation is plotted in Fig. 4(a). The basic rate power allo-
cation corresponding to 0.461 nats/unit time is also plotted
for comparison. In Fig. 4(b), the instantaneous mutual informa-
tion corresponding to the ergodic capacity-achieving and basic
rate power allocations are plotted versus channel fade. Note that
the basic rate allocation is active for all fade levels

. From Fig. 4(a), we see that although the basic rate power
allocation is a monotonically decreasing function
of channel state [in the set ], the ergodic capacity power
allocation is not necessarily monotone with respect to
channel fade. In fact, is monotone increasing for small
values of and monotone decreasing for . For inter-
mediate values of , first increases and then decreases
with . This behavior of the ergodic capacity-achieving power
allocation scheme for the Poisson fading channel is markedly
different from the RF fading channel, where the ergodic ca-
pacity power allocation (popularly known as waterfilling [6])
is monotone increasing with respect to channel fade. However,
for a fixed channel fade , the instantaneous mutual in-
formation is a monotone function of power allocation
for (see Fig. 2), which leads to the following result.

Proposition 1: For any , we have

(25)
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Fig. 4. Power allocation and instantaneous mutual information versus channel fade corresponding to both ergodic capacity and basic rate power allocations for
the lognormal fading channel in Example 3. The basic rate is fixed at � � 0.461 nats/unit time. Ergodic capacity power allocations are shown for different values
of �. The basic rate power allocation is active for fades � � � �� � � ������.

Proof: From (19) and (24), it follows that
and , respectively. Furthermore, by defini-
tion, . Therefore, it suffices to prove that for
a fixed , is monotone increasing for .
From (3) and (14), it follows that

(26)

Clearly, for . This com-
pletes the proof.

The basic rate power allocation discussed above is
intimately connected to the outage capacity problem for Poisson
fading channel [4]. The outage capacity is the max-
imum basic rate achievable with a probability of outage con-
straint and the peak and average power constraints and ,
respectively. Mathematically

(27)

where the minimum probability of outage is the solution
to the capacity versus outage probability problem defined in
Problem 4. The outage capacity is achieved by the power alloca-
tion that has as the minimum outage probability subject to the
peak and average power constraints and , respectively. The
solution of Problem 4 requires, as a vital ingredient, the basic
rate power allocation scheme that solved Problem 3.

Problem 4: Given a basic rate , determine the min-
imum probability of outage

(28)

subject to the average power constraint .

The optimal power allocation scheme that achieves the min-
imum outage probability in (28) can be characterized in terms
of the basic rate power allocation (24) and the average power
constraint . This is a special case of [4, Th. 1], corresponding
to transmit aperture. For the sake of completeness, the
solution is discussed below. For , define the sets

(29)

(30)

and the boundary set of as

(31)

Furthermore, define

(32)

(33)

In order to state the optimal power allocation scheme for
Problem 4, we also define the duty cycle threshold and
weight , respectively, as

(34)

(35)

The optimal power allocation scheme that
solves Problem 4 is given as follows. If ,
then

if
if .

(36)
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Fig. 5. Outage probability and outage capacity versus average power constraint for the lognormal fading channel in Example 4. We set � � 0.461 nats/unit time
for the first plot, and � � ���� for the second. The outage probability decreases with increasing � until the probability of the outage floor (� �� � � ����) is
reached for � � ������. The outage capacity increases with increasing � until the maximum � ��� � 0.461 nats/unit time is reached for � � � ��� � ������.

On the other hand, if , then

if
if

(37)

and if , then with probability
and with probability . Note that for a

continuous fading distribution, and hence, for a continuous dis-
tribution of , the set has measure zero. Therefore, the
randomization with weight is not necessary for a continuous
fading distribution. Note also that the sets and co-
incide when .

The minimum outage probability is given by

Recall that the basic rate is not achievable for channel
fades in the outage floor set , regardless of the average
power constraint . In other words, irrespective of , we
must have , where is defined
in (23) as the probability of the outage floor set . This
implies that for a fixed outage probability , the outage ca-
pacity cannot exceed , irrespective of . Let

be the minimum average power
required to achieve the maximum outage capacity . It is
easy to see that for , .

Example 4: Consider again the lognormal channel from Ex-
ample 2. In Fig. 5(a), we plot the variation of the outage proba-
bility versus for a fixed basic rate 0.461 nats/
unit time. As expected, the outage probability decreases with
increasing until the probability of the outage floor

is reached for . In Fig. 5(b), we plot the outage
capacity versus for a fixed outage probability

. The outage capacity increases with increasing until the
maximum 0.461 nats/unit time is reached for

.

B. Feasibility Issues

Problem 1 may not be feasible for an arbitrary choice of the
parameters . First, in order to satisfy the outage proba-
bility constraint (11), the probability of the outage floor set must
not exceed , i.e.,

(38)

Moreover, even when (38) is satisfied, the feasibility of
Problem 1 is directly related to the outage capacity .
Clearly, for fixed , Problem 1 is feasible if and only if the
basic rate requirement does not exceed the outage capacity, i.e.,

. Equivalently, we must have

(39)

where denotes the minimum average power re-
quired in order to support the basic rate with an outage
probability . Furthermore, when , i.e.,

, the optimal power allocation scheme that
solves Problem 1 must also solve Problem 4.

Remark: It should be pointed out that
when , implying that

is the minimum power necessary to support the basic rate in
the entire outage floor complementary set .

Example 5: Recall again the lognormal channel in Example
2. For a basic rate 0.461 nats/unit time, we must have

to ensure feasibility. Additionally, with
, we need for Problem 1 to have a

feasible solution.
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C. Derivation of the Optimal Probabilistic
Power Allocation Scheme

In this section, we derive the optimal solution of Problem 1
when a solution exists. We separate two cases according to the
value of .

Case 1: , where is as defined in (18). In this
case, when (38) is satisfied, it is easy to see that the determin-
istic power allocation scheme , which yields the maximum
achievable rate , is the optimal solution of Problem
1. This can be proved by verifying that is a feasible power
allocation scheme. Note that

so that the average power constraint (10) is satisfied, and

by (38), so that the outage constraint (11) is also satisfied. In this
case, the service-outage-based achievable rate is given by

(40)

which is also the ergodic capacity when .

Case 2: . In this case, is not a feasible power
allocation scheme, since it does not satisfy the average power
constraint (10). The first step is to demonstrate that the optimal
power allocation scheme is a randomization between two de-
terministic schemes. By concavity of the mutual information

, we have the following result.

Proposition 2: Suppose , and let the feasibility condi-
tions (38) and (39) hold. Then, there exists an optimal solution
of Problem 1 of the form

w. p.
w. p.

(41)

where the timesharing factor for all , the
rate function for all ,

, and .
Proof: See Appendix I.

By Proposition 2, clearly the average power constraint (10)
is also satisfied. Furthermore, the conditions for
all , for all and

guarantee that the service outage constraint
(10) is satisfied [see (73) in Appendix I]. Thus, Problem 1 re-
duces to the following optimization problem when .

Problem 5: Determine the maximum expected rate

(42)

subject to the constraints

(43)

(44)

(45)

(46)

(47)

By the concavity of , it follows that the objective func-
tion in (42) is a concave functional of . The
constraints (43)–(47) specify a convex feasible set. Therefore,
Problem 5 is a convex functional optimization problem, and the
generalized Karush–Kuhn–Tucker (KKT) conditions (cf., e.g.,
[15, Sec. III] for a brief review or [13, Ch. 9] for a detailed ex-
position) are necessary and sufficient at optimality. In order to
characterize the optimal solution of Problem 5, define the La-
grangian

(48)

where , , and are the Lagrange multipliers
corresponding to constraints (43)–(45), respectively. Let ,

, and denote the optimal solution of (42), and , ,
and denote the optimal values of the respective Lagrange
multipliers. The necessary and sufficient KKT conditions5 are
given by

(49)

(50)

(51)

(52)

(53)

(54)

(55)

Condition (55) implies that for , no randomized
power allocation scheme is necessary, since with
probability 1. The deterministic power allocation scheme
plays a significant role only for fades . Evaluating
(49), (50), and (54), we arrive at the following result.

Proposition 3: Suppose . For , the optimal
is of the form

if
otherwise

(56)

5For brevity, we use the notation ��� � �� � ���� � ���� � ����
� ���� � � � � � ����, and denote by ���� � ��	�� ��� the derivative of �
with respect to � ��� evaluated at ��� � ���� � ���� � ���� � � � � � ����,
and so on.

Authorized licensed use limited to: Maynooth University Library. Downloaded on April 27,2021 at 15:32:07 UTC from IEEE Xplore.  Restrictions apply. 



2312 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 5, MAY 2009

and for , the optimal is

(57)

Proof: See Appendix II.

Remark: Proposition 3 implies that the two deterministic
power allocation schemes that constitute the basis for the op-
timal randomized power allocation scheme are: a) the ergodic
power allocation with parameter [see (19)] and b) the
basic rate power allocation [see (24)]. In particular,

comprises the basic rate power allocation only when the
ergodic power allocation scheme cannot meet the basic rate
requirement, while is always the ergodic power allocation
scheme. The parameter and the timesharing factor are
chosen such that the average power constraint (52) is satisfied.

Define the supplemental power allocation

(58)

which can be interpreted as the additional power required for the
ergodic power allocation scheme to meet the basic rate require-
ment. Note that the supplemental power allocation is
defined only for fades . By Propositions 1 and 3, an
equivalent representation of is

(59)

The instantaneous rate achieved by can similarly be ex-
pressed as

(60)
where

(61)

is the additional rate allocation needed beyond the instantaneous
rate achieved by the ergodic power allocation scheme to meet
the basic rate requirement.

From Propositions 2 and 3 and the expression (59), we get
that the optimal power allocation is

w. p.
w. p.

where and are yet to be determined. Plugging (57),
(59), and (60) in (48), we get at optimality for

(62)

where we have defined the supplemental cost function

(63)

which provides a measure for the cost of allocating the supple-
mental power in order to meet the basic rate requirement. Some
desirable properties of the supplemental cost function are stated
below.

Proposition 4: The supplemental cost function
has the following properties.

1) If , then .
2) If , then . If

, then .

Proof: See Appendix III.

Remark: Proposition 4 shows that a higher cost is associated
with a poorer channel state. Intuitively, when the channel is in
a “bad” state, it is more expensive to support the basic rate re-
quirement; the associated cost of allocating the supplemental
power is quantified by the supplemental cost function.

We now obtain a characterization of the optimal timesharing
factor . From (62), we get

which, combined with (51), implies that for

if
if
if

(64)

where needs to be determined. Clearly, the sup-
plemental cost function determines the value of the op-
timal timesharing factor and indicates whether the supple-
mental power should be allocated. Note by condition (53) that
when , we must have . On the other
hand, if , we have from (64) that either
or . This implies that with proba-
bility 1, i.e., no supplemental power allocation is required. Con-
sequently, in this case, can be chosen to be any
function that meets the requirement . Without
loss of generality, we choose such that .

All the results discussed above can be succinctly combined
to arrive at the main result below.

Theorem 1: Under the feasibility conditions (38) and (39),
an optimal probabilistic power allocation for Problem 1 is as
follows. If , then

w. p. (65)

If , then
w. p.
w. p. (66)

where for , , and for

if
if
if

(67)

where , , and are solutions of

Remarks: i) The optimal power allocation scheme can be
viewed as a two-layer allocation: the first layer is the (ergodic)
capacity-achieving power allocation, and the second layer is the
supplemental power allocation. The second layer provides the
additional power required for the ergodic power allocation to
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Fig. 6. Different types of optimal power and rate allocation schemes for the lognormal fading channel. The four cases correspond to different choices of �. In
Case 1, we set � � � �� � �� � ������. In Case 2, we choose � � ������. In Case 3, we choose � � ��	

. In Case 4, we choose � � � � ��
�.

meet the basic rate requirement. When the second layer is re-
quired, the proportion of time this supplemental power is allo-
cated is determined by the constraints on average power [c.f.,
(10)] and outage probability [c.f., (11)].

ii) The supplemental cost function partitions the
channel state space into three disjoint sets: a) a service set, which
is characterized by the condition , when the
basic rate requirement is always met; b) a boundary set, charac-
terized by , when a randomization between
the two layers of power allocation is necessary; and c) an outage
set, characterized by , when the supported
rates are always below the basic rate requirement, resulting in
service outage. The service set can further be partitioned into
a basic rate set, when the supported rate is exactly equal to ,
and an enhanced rate set, when the supported rate strictly ex-
ceeds .

IV. PROPERTIES OF THE OPTIMAL POWER

ALLOCATION SCHEME

In this section, we discuss several properties of the optimal
rate and power allocation scheme. From Theorem 1, it follows
that the optimal solution is a combination of the ergodic ca-
pacity-achieving power allocation and the supplemental (basic
rate) power allocation in the service set, and is randomized be-
tween these two deterministic power allocations in the boundary
set. The optimal solution can be classified into four cases, de-
pending on the values of . Note that in all of these
cases, the feasibility of Problem 1 is assumed, i.e., (38) and (39)
are satisfied. In Fig. 6, the optimal power allocation schemes and
corresponding rate allocations are shown for each of these four
cases.

Case 1: When , i.e., the basic rate power al-
location is just enough to meet the outage requirement, the op-
timal solution is the same as the power allocation that achieves

outage capacity. In this case, , where is the
outage capacity-achieving power allocation scheme described
in (36) and (37).

Case 2: When and in the
outage set, the outage set is the same as that for the outage ca-
pacity calculation. In this case, the optimal solution includes no
transmission in the outage set, a probabilistic power allocation
in the boundary, a basic rate allocation in the basic rate set, and
ergodic capacity allocation with rates larger than in the en-
hanced rate set.

Case 3: When but in
the outage set, rates lower than basic rate can be supported in the
outage set. This case includes ergodic capacity power allocation
with rates smaller than in the outage set, basic rate allocation
in the basic rate set, and ergodic capacity power allocation with
rates larger than in the enhanced rate set. Randomization be-
tween the basic rate allocation and ergodic capacity power allo-
cation is done only in the boundary points.

Case 4: When , then the ergodic
capacity power allocation satisfies the outage requirement. In
this case, the optimal power allocation comprises only the er-
godic capacity power allocation. A further special case is when

, i.e., the average power constraint is inactive. In this
case, the ergodic capacity power allocation is optimal, and no
randomization is necessary. The outage set in this case is the
outage floor set.

As increases from to , the optimal power al-
location gradually changes from Case 1 to Case 4. The service-
outage-based achievable rate gradually changes from
to the ergodic capacity. Case 1 solution is the outage capacity
power allocation, when the available power
is just enough to satisfy the service outage constraint. As more
power is available beyond , this additional power can
be allocated in a more efficient manner to achieve higher av-
erage rates, while simultaneously satisfying the service outage

Authorized licensed use limited to: Maynooth University Library. Downloaded on April 27,2021 at 15:32:07 UTC from IEEE Xplore.  Restrictions apply. 



2314 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 5, MAY 2009

Fig. 7. Comparison of (a) the service-outage-based achievable rate with ergodic and outage capacity; and (b) the outage probability for the service-outage-based
power allocation with the ergodic capacity power allocation for a SISO Poisson fading channel with lognormal fading.

constraint. The additional power first allows an enhanced rate set
(Case 2), and for higher values of , nonzero rates are supported
in the outage set in addition to the enhanced rate set (Case 3).
Finally, when is large enough for the ergodic capacity power
allocation to satisfy the service outage constraint, the ergodic al-
location is optimal (Case 4). Thus, for fixed , the optimal
power allocation scheme gradually changes from the outage ca-
pacity power allocation to the ergodic capacity power allocation
as increases. For Cases 1–3, the outage probability is exactly
equal to , while for Case 4, the outage probability is less than
. The optimal solution is probabilistic at the boundary set only

when , i.e., for Cases 1–3. The boundary set has a proba-
bility measure for continuous fade distributions. In particular,
the optimal power allocation is deterministic when the channel
fade distribution is lognormal, as considered in the following
example.

V. NUMERICAL EXAMPLE

Consider the SISO Poisson channel with lognormal fading
from Example 2. Recall that , with

, and . The basic rate is
fixed at 0.461 nats/unit time, and the outage probability
is fixed at . We have seen in Example 5 that for this
choice of , Problem 1 has a solution provided that

. In Fig. 6, we demonstrate the different cases for
optimal power and rate allocation with the service-outage-based
approach. The four cases correspond to different choices for .
In Case 1, we set , whence the op-
timal power allocation is the same as outage optimal power al-
location. In Case 2, we choose . No rate is supported
in the outage set (which is the same as in Case 1), but the ad-
ditional power allows an enhanced rate set where rates higher
than can be supported. In Case 3, we choose . The
additional power not only allows an enhanced rate set as in Case
2, but also allows rates lower than in the outage set with er-
godic capacity power allocation. The basic rate power allocation
is supported in an intermediate subset of channel states, sand-
wiched between the outage set and enhanced rate set. Finally,

in Case 4, we choose . In this case, the ergodic
capacity power allocation is optimal.

In Fig. 7(a), the service-outage-based achievable rates corre-
sponding to a basic rate of 0.461 nats/unit time are com-
pared against ergodic and outage capacities for different values
of . The service-outage-based power allocation scheme is fea-
sible for . Starting from , the
service-outage-based rate allocation approaches the ergodic ca-
pacity as increases. On the other hand, the outage capacity
reaches the maximum 0.461 nats/unit time for

, which is significantly lower than the max-
imum ergodic capacity, 2.588 nats/unit time.
In Fig. 7(b), the outage probability corresponding to the er-
godic capacity power allocation is compared with the service-
outage-based power allocation scheme for different values of .
There is a significant improvement in the outage performance
for the service-outage-based power allocation scheme compared
to the ergodic capacity. This example demonstrates that the ser-
vice-outage-based approach has helped achieve higher expected
rates while maintaining lower outage probabilities and thus ef-
fectively resolved these two conflicting objectives.

VI. CONCLUSION

A service-outage-based probabilistic rate and power alloca-
tion problem for the SISO Poisson fading channel with perfect
CSI at the transmitter and the receiver is considered. The objec-
tive of the allocation problem is to maximize the expected infor-
mation transmission rate under an outage probability constraint
in addition to the customary peak and average transmitter power
constraints. Whenever the problem has a feasible solution, the
optimal power allocation is shown to be a combination of the
ergodic capacity power allocation and the basic rate power allo-
cation with a randomization between the two deterministic al-
locations at the boundary points. The randomization is not nec-
essary for the class of continuous fading distributions, e.g., log-
normal fade. The service-outage-based approach judiciously re-
solves the conflicting objectives of high expected transmission
rate and low outage probability.
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There are several interesting open problems, e.g., character-
ization of the service-outage-based rate and power allocation
for 1) the MIMO Poisson fading channel; 2) the SISO Poisson
fading channel with partial CSI at the transmitter; and 3) the
Poisson fading channel with bandwidth constraints at the trans-
mitter and the receiver. These topics are currently under inves-
tigation.

APPENDIX I
PROOF OF PROPOSITION 2

We closely follow the proof of [15, Lemma 1]. We demon-
strate that for an arbitrary feasible probabilistic power allocation
scheme with a conditional pdf , it is possible to con-
struct another feasible scheme , which is randomized
between two deterministic schemes and with

and a timesharing factor satisfying
. Furthermore, the average rate achieved by

is at least as much as the rate achieved by , which
implies that the optimal rate allocation is of the form (41).

Since is feasible, and
must hold. The deterministic power allocation schemes

and and the timesharing factor are defined as
follows:

(68)

In other words, is the conditional average of all the
schemes in with rate at least , is the conditional
average of all the schemes with rate less than , and is
the timesharing factor that specifies the proportion of time the
rate is greater than or equal to the basic rate for a given
fade. By definition [see (22)], for any , we must
have . Furthermore, since meets the outage
constraint (11), it follows that . Note that
(38) is necessary to ensure that the outage constraint (11) is
satisfied. Next, note that

(69)

(70)

where (69) and (70) follow by the application of Jensen’s in-
equality to the concave function . From (69), we also get

for any .
Consider now a probabilistic scheme such that

w. p.
w. p. .

(71)

The average power for is

(72)

where (72) follows by (68). Since for any ,
, and , we have

Thus, the outage probability of satisfies

(73)

By (72) and (73), it follows that is also a feasible power
allocation scheme for Problem 1. Furthermore, the average rate
achieved by is

(74)

where (74) follows by (69) and (70).
Thus, from any arbitrary feasible power allocation , it is

possible to construct another feasible power allocation scheme
, which is randomized between two deterministic power al-

locations, in the process achieving a higher average rate. There-
fore, the optimal power allocation scheme must be of the form
(41).

Finally, when , at optimality must
hold; otherwise, a higher average rate can be achieved by in-
creasing the power.

APPENDIX II
PROOF OF PROPOSITION 3

We establish (57) first, followed by the proof of (56).
From (48) and (26), it follows that

whence (50) implies that at optimality

(75)

by (17), which establishes (57).
From (48) and (26), we get

whence by (49), for any , we get

(76)

When , then from (54), we have
, and from (76), we have . Therefore, in
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this case, we must have . On the other
hand, when , from (54), we have ,
i.e., , while from (76), we have

, which, by Proposition 1, implies that in this case
. Summarizing these observations, we

have for

if
otherwise

(77)

which establishes (56).

APPENDIX III
PROOF OF PROPOSITION 4

First Part: The proof of the first part entails the estab-
lishment of the nonincreasing property of . For any

, when , we have
, so that by Proposition 1, , and

hence, . Therefore, when
.

On the other hand, for any , when ,
we have

so that

(78)

with

(79)

To establish the nonincreasing property of , by (78),
we need to show that

(80)

when .
From (17), it can be verified by simple algebra that

(81)

whence it follows that

(82)

From (3) and (81), it follows that

(83)

whence by (79) and (83), it follows that

(84)

Since , it follows from (84) that . Differ-
entiating both sides of the equation with respect
to , from (3) and (14), we get after some rearrangement

(85)

which is nonpositive since
for any . From (84) and (85), it follows that when

, , and in this case, is
nonincreasing. When , we have by (84) and (85)

(86)

with both the terms on the right-hand side above being non-
negative. When , i.e., when

, the second term on the right-hand
side above is unbounded, while the first term is bounded, so that

. Finally, using the identity [which follows
from (81)]

(87)

we can simplify the term
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(88)

whence by (80), (86), and (88), we get

(89)

and observe that the right-hand side of (89) is negative when
. This completes the proof

of the first part of Proposition 4.

Second Part: We have already established that
when . It remains

to show that when ,
i.e., when . In this case, noting that

, from (63), we get

(90)

(91)

where (90) follows by (15) and (91) follows by (87).
We denote the right-hand side of (91) as

, which is equal to zero
when . It remains to show that

when . This
can be easily accomplished by showing that

which is clearly positive when . Hence,
is an increasing function for implying

when . This
concludes the proof.
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