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Abstract—We propose a new method for reconstruction of strong prior knowledge of signal sparsity allows for reaiivg
sparse signals with and without noisy perturbations, terme the  x usingm < N projections only. One of the outstanding
subspace pursuit algorithm. The algorithm has two importart  yagjts in CS theory is that the signalcan be reconstructed

characteristics: low computational complexity, comparatle to . o . - .
that of orthogonal matching pursuit techniques when applie  USINg optimization strategies aimed at finding the sparsest

to very sparse signals, and reconstruction accuracy of theasne ~Signal that matches with the: projections. In other words,
order as that of LP optimization methods. The presented anafsis the reconstruction problem can be cast adpgaminimization

shows that in the noiseless setting, the proposed algorithman  problem [2]. It can be shown that to reconstruckasparse
exactly reconstruct arbitrary sparse signals provided tha the signalx, I, minimization requires onlyn = 2K random pro-

sensing matrix satisfies the restricted isometry property \ith a . fi hen the si | and th ¢ e f
constant parameter. In the noisy setting and in the case that jections when the signal an € measurements are noee-ire

the signal is not exactly sparse, it can be shown that the mean Unfortunately, thel, optimization problem is NP-hard. This
squared error of the reconstruction is upper bounded by consant  issue has led to a large body of work in CS theory and practice

multiples of the measurement and signal perturbation energs.  centered around the design of measurement and reconstructi
Index Terms—Compressive sensing, orthogonal matching pur- algorithms with tractable reconstruction complexity.

suit, reconstruction algorithms, restricted isometry property, The work by Donoho and Candeés et. al. [L], [3]! [4]l [5]
sparse signal reconstruction. demonstrated that CS reconstruction is, indeed, a polyalomi
time problem — albeit under the constraint that more than
. INTRODUCTION 2K measurements are used. The key observation behind these

Compressive sensing (CS) is a sampling method Cbsé’wdings is that it is not necessary tq resqrtl(tooptimization
connected taransform codingwhich has been widely used! recoverx from the under-determined inverse problem; a
in modern communication systems involving large scale ddf/Ch easier; optimization, based on Linear Programming
samples. A transform code converts input signals, embeddbf) techniques, yields an equivalent solution, as longhas t
in a high dimensional space, into signals that lie in a spag@MPling matrix® satisfies the so calleestricted isometry
of significantly smaller dimensions. Examples of transfor@Perty (RIP) with a constant parameter. , o
coders include the well known wavelet transforms and the While LP techniques play an important role in designing
ubiquitous Fourier transform. cqmp_utauolnally trgctable CSs decoders_, their complexity i

Compressive sensing techniques perform transform cciiill highly impractical for many applications. In such eas
ing successfully whenever applied to so-called compréssiih® need for faster decoding algorithms - preferably opegat
and/ork -sparse signals, i.e., signals that can be represented'byinéar time - is of critical importance, even if one has
K < N significant coefficients over aN-dimensional basis. to increase 'Fhe number of_ measure_ments. Several classes of
Encoding of ak -sparse, discrete-time signalof dimension low-complexity reconstruction techniques were recently p

N is accomplished by computing a measurement vegiibiat forward as a_llter_natives to linear programming (LP) based
consists ofm < N linear projections of the vectat. This €cOVvery, which include group testing methods [6], and al-

can be compactly described via gorithms based on belief propagation [7].
Recently, a family of iterative greedy algorithms received
y = ®x. significant attention due to their low complexity and simple

Here, & represents am x N matrix, usually over the field geometric_interpretation. They in_clude the Orthogonald¥at

of real numbers. Within this framework, the projection kasind Pursuit (OMP), the Regularized OMP (ROMP) and the

is assumed to bimcoherentwith the basis in which the signal Stagewise OMP_ (StOMP) algorithms. The basic idea be_hmd

has a sparse representatibh [1]. these m_ethods is to .f|nd _the support of.the unknown signal
Although the reconstruction of the signale R from the sequentially. At each iteration of the algorithms, one wesal

possibly noisy random projections is an ill-posed problére, coordinates of .the vectox are selected for testing based
on the correlation values between the columnsdefand
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the correct support set are included in the estimated suppmandidate word is identified. SP employs a search strategy in
set. The computational complexity of OMP strategies depenahich a constant humbenpf vectors is expurgated from the
on the number of iterations needed for exact reconstructiarandidate list. This feature is mainly introduced for siitip¥
standard OMP always runs through iterations, and there- of analysis: one can easily extend the algorithm to include
fore its reconstruction complexity is roughty (KmN) (see adaptive expurgation strategies that do not necessardyatg
Section[1V-C for details). This complexity is significantlyon fixed-sized lists.

smaller than that of LP methods, especially when the signalln compressive sensing, the major challenge associatéd wit
sparsity levelK is small. However, the pursuit algorithms dosparse signal reconstruction is to identify in which sulsspa
not have provable reconstruction quality at the level of LBenerated by not more tha columns of the matrix®,
methods. For OMP techniques to operate successfully, dhe measured signay lies. Once the correct subspace is
requires that the correlation between all pairs of colummietermined, the non-zero signal coefficients are caladlbie

of ® is at mostl/2K [8], which by the Gershgorin Circle applying the pseudoinversion process. The defining charact
Theorem [[9] represents a more restrictive constraint thaf the SP algorithm is the method used for finding the

the RIP. The ROMP algorithmi_[10] can reconstruct &lF columns that span the correct subspace: SP tests subsets of
sparse signals provided that the RIP holds with paramet&r columns in a group, for the purpose of refining at each
dar < 0.06/+/log K, which strengthens the RIP requirementstage an initially chosen estimate for the subspace. More
for [,-linear programming by a factor aflog K. specifically, the algorithm maintains a list &f columns of®,

The main contribution of this paper is a new algorithnperforms a simple test in the spanned space, and then refines
termed thesubspace pursui(SP) algorithm. It has provablethe list. If y does not lie in the current estimate for the correct
reconstruction capability comparable to that of LP methodspanning space, one refines the estimate by retaining leeliab
and exhibits the low reconstruction complexity of matchingandidates, discarding the unreliable ones while addirg th
pursuit techniques for very sparse signals. The algoritam csame number of new candidates. The “reliability propersy” i
operate both in the noiseless and noisy regime, allowirgptured in terms of the order statistics of the inner présluc
for exact and approximate signal recovery, respectivaly. Fof the received signal with the columns ®f and the subspace
any sampling matrix® satisfying the RIP with a constantprojection coefficients.
parameter independent df, the SP algorithm can recover As a consequence, the main difference between ROMP and
arbitrary K-sparse signals exactly from its noiseless me#he SP reconstruction strategy is that the former algorithm
surements. When the measurements are inaccurate and/oigtreerates a list of candidates sequentially, without back-
signal is not exactly sparse, the reconstruction distori® tracing: it starts with an empty list, identifies one or sever
upper bounded by a constant multiple of the measuremeeliable candidates during each iteration, and adds them to
and/or signal perturbation energy. For very sparse sign#fie already existing list. Once a coordinate is deemed to be
with K < const- v/ N, which, for example, arise in certainreliable and is added to the list, it is not removed from it
communication scenarios, the computational complexithef until the algorithm terminates. This search strategy isrlgve
SP algorithm is upper bounded Wy (mNK), but can be restrictive, since candidates have to be selected wittersdr
further reduced taD (mN log K) when the nonzero entriescaution. In contrast, the SP algorithm incorporates a mpl
of the sparse signal decay slowly. method for re-evaluating the reliability of all candidatas

The basic idea behind the SP algorithm is borrowed froeach iteration of the process.
coding theory, more precisely, thd* order-statistic algo- At the time of writing this manuscript, the authors became
rithm [11] for additive white Gaussian noise channels. laware of the related work by J. Tropp, D. Needell and R. Ver-
this decoding framework, one starts by selecting the set stiynin [12], describing a similar reconstruction algamthT he
K most reliable information symbols. This highest relidiili main difference between the SP algorithm and the CoSAMP
information set is subsequently hard-decision decoded, amlgorithm of [12] is in the manner in which new candidates are
the metric of the parity checks corresponding to the giveadded to the list. In each iteration, in the SP algorithmy dfil
information set is evaluated. Based on the value of thiew candidates are added, while the CoOSAMP algorithm adds
metric, some of the low-reliability symbols in the mostaglie 2K vectors. This makes the SP algorithm computationally
information set are changed in a sequential manner. Timore efficient, but the underlying analysis more complex. In
algorithm can therefore be seen as operating on an adaptivedidition, the restricted isometry constant for which the SP
modified coding tree. If the notion of “most reliable symbolalgorithm is guaranteed to converge is larger than the one
is replaced by “column of sensing matrix exhibiting highegiresented in_ [12]. Finally, this paper also contains anyeisl
correlation with the vectow”, the notion of “parity-check of the number of iterations needed for reconstruction of a
metric” by “residual metric”, then the above method can bsparse signal (see Theoréin 6 for details), for which there is
easily changed for use in CS reconstruction. Consequentlg, counterpart in the CoSAMP study.
one can perform CS reconstruction by selecting a seiof The remainder of the paper is organized as follows. Sec-
columns of the sensing matrix with highest correlation thaibn [ introduces relevant concepts and terminology for de
span a candidate subspace for the sensed vector. If thaabstascribing the proposed CS reconstruction technique. Sefiio
of the received vector to this space is deemed large, tbentains the algorithmic description of the SP algorithlong
algorithm incrementally removes and adds new basis vectorgh a simulation-based study of its performance when com-
according to their reliability values, until a sufficienttyose pared with OMP, ROMP, and LP methods. Secfioh IV contains



the main result of the paper pertaining to the noiselesmgett for K < m, 0 < ¢ < 1, if for all index setsI C {1,---, N}
a formal proof for the guaranteed reconstruction perforreansuch thatI| < K and for allq € RI’I, one has

and the reconstruction complexity of the SP algorithm. Sec- 9 9 9

tion [V] contains the main result of the paper pertaining to the (1= 9) llall; < [1®rally < (1+0) [lall>-

noisy setting. Concluding remarks are given in Secfioh VI, We defineédx, the RIP constant, as the infimum of all
while proofs of most of the theorems are presented in tiparameters$ for which the RIP holds, i.e.

Appendix of the paper. )
o i=inf {6 (1=6) al} < |®ral < (1+)|al,

Il. PRELIMINARIES V|I| < K, Vaq eR‘”}.

A. Compressive Sensing and the Restricted Isometry Pyopert

Let supgx) denote the set of indices of the non-zero Remark 1 (RIP and eigenvaluedf: a sampling matrix
coordinates of an arbitrary vectar = (z1,...,zn), and let & € R™*¥ satisfies the RIP with paramete(&’, x ), then
|supix)| = |- ||o denote the support size &f or equivalently, for all 7 C {1,---, N} such that{I| < K, it holds that
its o normfl. Assume next that € RY is an unknown signal . .
with |supgx)| < K, and lety € R™ be an observation of 1= 0K < Amin (R7®1) < Amax (2781) < 1+ e,
via M linear measurements, i.e., where Apin (25®7) and Apax (3®;) denote the minimal

y = ®x and maximal eigenvalues @7 ®;, respectively.
- )

Remark 2 (Matrices satisfying the RIPMost known fam-
ilies of matrices satisfying the RIP property with optimal o
}r)ear—optimal performance guarantees are random. Examples
nclude:

where® ¢ R™*¥ s henceforth referred to as tlsampling
matrix.

We are concerned with the problem of low-complexit
recovery of the unknown signal from the measurement. ) o ) )
A natural formulation of the recovery problem is within &n 1) Random matrices with i.i.d. entries that follow either

norm minimization framework, which seeks a solution to the the Gaussian distri_bution, Bernoulli distrit_)uti_on _With
problem zero mean and variance/n, or any other distribution

that satisfies certain tail decay laws. It was shown in

min ||x||, subject to y = ®x. :
[13] that the RIP for a randomly chosen matrix from

Unfortunately, the abovg minimization problem is NP-hard, such ensembles holds with overwhelming probability
and hence cannot be used for practical applicatiohs([3], [4] whenever

One way to avoid using this computationally intractable for K< L,
mulation is to consider & -regularized optimization problem, ~ log(N/m)

whereC is a function of the RIP constant.

min x|}, subject toy = ®x, 2) Random matrices from the Fourier ensemble. Here,

where one selectsn rows from the N x N discrete Fourier

ol transform matrix uniformly at random. Upon selection,
Il = Z i the columns of the matrix are scaled to unit norm. The

=l resulting matrix satisfies the RIP with overwhelming

denotes thé; norm of the vectox. probability, provided that

The main advantage of the minimization approach is that m

it is a convex optimization problem that can be solved effi- K<C—-—>,

ciently by linear programming (LP) techniques. This method (log )

is therefore frequently referred to &sLP reconstruction ]3], whereC' depends only on the RIP constant.

[13], and its reconstruction complexity equals(m?N?3/?)  There exists an intimate connection between the LP recon-
when interior point methods are employed|[14]. Seé [15]],[16struction accuracy and the RIP property, first described by
[17] for other methods to further reduce the complexity,ef Candés and Tao in][3]. If the sampling matidx satisfies the
LP. RIP with constant$y, d2x, anddsx, such that

The reconstruction accuracy of thig-LP method is de-

scribed in terms of thaestricted isometry propertyfRIP), Ok + 021 + 03 < 1, @

formally defined below. then thel;-LP algorithm will reconstruct allK -sparse signals
Definition 1 (Truncation):Let ® € R™*Y, x € RN and exactly. This sufficient conditioi{1) can be improved to

I c{1,---,N}. The matrix®; consists of the columns of

® with indicesi € I, andx; is composed of the entries a&f doxc < V21, @

indexed byi € I. The space spanned by the columnsdgf a5 demonstrated if [18].

is denoted byspan (®;). For subsequent derivations, we need two results summarized

Definition 2 (RIP): A matrix ® € R™*Y s said to satisfy in the lemmas below. The first part of the claim, as well as a

the Restricted Isometry Property (RIP) with parametéfss) related modification of the s_econd claim also appearedlin [1_3]
[10]. For completeness, we include the proof of the lemma in

1We interchangeably use both notations in the paper. Appendix[E.



Lemma 1 (Consequences of the RIP): [1l. THE SP ALGORITHM
1) (Monotonicity oféx) For any two integers’ < K, The main steps of the SP algorithm are summarized H&low.

O < k.

Algorithm 1 Subspace Pursuit Algorithm
2) (Near-orthogonality of columnd)et7,J C {1,--- ,N} Input. K, @, y
be two disjoint sets] [ J = ¢. Suppose thaf|; 4, < Initialization:

1. For arbitrary vectora € R’ andb € RIVI, 1) T° = {K indices corresponding to the largest magni-
tude entries in the vecto®*y}.
|(®ra, ®;b)| < 61141 lall, [[blly 2) y? =resid (y, ®;0).
and Iteration: At the/*" iteration, go through the following steps
« 1) T¢ = T J{K indices corresponding to the largest
I187sbll; < 011411 1Bl - magnitude gn{tries in the vecta*y’~'}.
S ) 2) Setx, = <I>T~£y.
The lemma implies thaix < dxx < dsx, which conse- ) T ={K ianices corresponding to the largest elements
quently simplifies[(ll) td;x < 1/3. Both (1) and[(P) represent of x,}
sufficient conditions for exact reconstruction. e 0

X ) ) 4) yi =resid (y, @) .
In order to describe the main steps of the SP algorithm, Wegy |f HyeH N Hye_lH let 7° = 7! and quit the
7112 r 2! -

introduce next the notion of the projection of a vector aisd it
residue.

Definition 3 (Projection and Residue)et y € R™ and
®; c R™*Il, Suppose thab;®; is invertible. The projection A :
of y ontospan (®;) is defined as andxre = @7,y

iteration.
Output:
1) The estimated signat, satisfyingx; .. yy—7¢ = 0

¥p = proj (y, @) := &, ®ly,
g ! A schematic diagram of the SP algorithm is depicted in

where Fig. [d(b). For comparison, a diagram of OMP-type methods
@} — (q)?@]yl i3 is provided in Fig.[JL(a). The suptle,_but important, differ-
ence between the two schemes lies in the approach used to
denotes the pseudo-inverse of the matbix, and* stands for generateT*, the estimate of the correct support <&t In

matrix transposition. OMP strategies, during each iteration the algorithm select
Theresidue vectoof the projection equals one or several indices that represent good partial support
set estimates and then adds themT7ta Once an index is
yr =resid (y, ®1) ==y — y- included inT", it remains in this set throughout the remainder

of the reconstruction process. As a result, strict inchusio

We find the fo”owing properties of projections and residuéyles are needed to ensure that a Significant fraction of the

of vectors useful for our subsequent derivations. newly added indices belongs to the correct supgartOn
Lemma 2 (Projection and Residue): the other hand, in the SP algorithm, an estim&teof size

K is maintained and refined during each iteration. An index,
which is considered reliable in some iteration but showneo b
wrong at a later iteration, can be added to or removed from the
estimated support set at any stage of the recovery prockss. T
expectation is that the recursive refinements of the estiofat
the support set will lead to subspaces with strictly deéneas
2) (Approximation of the projection residuejonsider a distance from the measurement vegyor
matrix & € R™N Let I,J c {1,---N} be two We performed extensive computer simulations in order to
disjoint sets,/ (].J = ¢, and suppose thak; , ; < 1. compare the accuracy of different reconstruction algorith
Furthermore, ley € span (®;), y, = proj (y, ®,) and empirically. In the compressive sensing framework, allrspa

1) (Orthogonality of the residuefror an arbitrary vector
y € R™, and a sampling matrixp; € R™*X of full
column rank, lety, = resid (y, ®;). Then

;yr =0.

yr =resid (y, ® ;). Then signals are expected to be exactly reconstructed as lortgas t
level of the sparsity is below a certain threshold. However,
Iyl < Or1+1| ¥l (3) the computational complexity to test this uniform reconstr
27 1 = max(11, 7)) tion ability is O (N*), which grows exponentially withs.

Instead, for empirical testing, we adopt the simulatioateqyy

and described in[[b] which calculates thmmpirical frequencyof

51 J
<1_%>Hy”2g|yr|2s|yu- (@)

§max(m_"(”) 2In Step 3) of the SP algorithmi indices with the largest correlation

magnitudes are used to forfif. In CoSaMP[[12]2K such indices are used.
) This small difference results in different proofs assadatvith Step 3) and
The proof of Lemma&l2 can be found in Appendik B. different RIP constants that guarantee successful siguahstruction.



Correlation Cal.
Bryl-1
r

Quit lterations

T¢ =T~ J{Several indices with

the largest corr. magnitudes}

(a) Iterations in OMP, Stagewise OMP, and Regularized OMPeach

iteration, one decides on a reliable set of candidate isdicebe added
into the listT¢~!; once a candidate is added, it remains in the list until the

algorithm terminates.

Correlation Cal. T = T¢-1 J{K indices with

Qtyﬁ—l

the largest corr. magnitudes}

l

Quit Iterations

proj (v, ®ze)

T* = {K indices with

the largest proj. coefficients} | Proj. coefficients xp

(b) lterations in the proposed Subspace Pursuit Algoritartist of K can-
didates, which is allowed to be updated during the iteratig maintained.

Figure 1: Description of reconstruction algorithms féf-
sparse signals: though both approaches look similar, thie ba

ideas behind them are quite different.

exact reconstruction for the Gaussian random matrix enlgemb

The steps of the testing strategy are listed below.

1) For given values of the parametersand N, choose a

signal sparsity leveK such thatK < m/2;

2) Randomly generate m x N sampling matrix® from

the standard i.i.d. Gaussian ensemble;

3) Select a support sét of size |T| = K uniformly at
random, and generate the sparse signal vechyr either

one of the following two methods:

a) Draw the elements of the vectarrestricted toT’
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(a) Simulations for Gaussian sparse signals: OMP and RO&tPtetfail when
K > 19 and whenK > 22 respectively,f1-LP begins to fail whenk > 35,
and the SP algorithm fails only wheli > 45.
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(b) Simulations for zero-one sparse signals: both OMP an#IRGtarts to
fail when K > 10, ¢1-LP begins to fail whenk > 35, and the SP algorithm
fails when K > 29.

Figure 2: Simulations of the exact recovery rate: compared

from the standard Gaussian distribution; we refgfi, omps, the SP algorithm has significantly larger critica

to this type of signal as &aussiansignal. Or,

b) set all entries ofx supported onl’ to ones; we

refer to this type of signal as zero-onesignal.

sparsity.

Note that zero-one sparse signals are of special intergsthnique is plotted as well.

for the comparative study, since they represent a partic-rigyre2 depicts the empirical frequency of exact recomstru
ularly challenging case for OMP-type of reconstructiofon, The numerical values on theaxis denote the sparsity

strategies.

level K, while the numerical values on thgaxis represent

4) Compute the measuremept = ®x, apply a recon- the fraction of exactly recovered test signals. Of particul

struction algorithm to obtaik, the estimate ok, and

comparex to x;

interest is the sparsity level at which the recovery ratgsdro
below 100% - i.e. theritical sparsity- which, when exceeded,

5) Repeat the process00 times for eachK, and then |eads to errors in the reconstruction algorithm appliecoine
simulate the same algorithm for different valuesrof ¢ ihe signals from the given class.

and V.

The simulation results reveal that the critical sparsity of

The improved reconstruction capability of the SP methothe SP algorithm by far exceeds that of the OMP and ROMP
compared with that of the OMP and ROMP algorithms, igechniques, for both Gaussian and zero-one inputs. The re-
illustrated by two examples shown in Fig. 2. Here, the signatonstruction capability of the SP algorithm is comparable t
are drawn both according to the Gaussian and zero-one modieht of the LP based approach: the SP algorithm has a slightly
and the benchmark performance of the LP reconstructibigher critical sparsity for Gaussian signals, but alsaghsly



lower critical sparsity for zero-one signals. However, i

algorithms significantly outperforms the LP method when

it comes to reconstruction complexity. As we analytically
demonstrate in the exposition to follow, the reconstructio

complexity of the SP algorithm for both Gaussian and zere-on

sparse signals i® (mN log K'), wheneverK < O \/N)

while the complexity of LP algorithms based on interior goin

methods isO (m”N?/?) [14] in the same asymptotic regime. /pan (&)

IV. RECOVERY OFSPARSESIGNALS

For simplicity, we start by analyzing the reconstructioFigure 3: After each iteration, & -dimensional hyper-plane
performance of SP algorithms applied to sparse signals didser toy is obtained.
the noiseless setting. The techniques used in this coraesdt,
the insights obtained are also applicable to the analysis of
SP reconstruction schemes with signal or/and measuremeqt
perturbations. Note that throughout the remainder of thepa
we use the notatiosi: (S € {D, L}, i € Z") stacked over
an inequality sign to indicate that the inequality followerh
Definition(D) or Lemma () ¢ in the paper.

A sufficient condition for exact reconstruction of arbitrar
sparse signals is stated in the following theorem.

Theorem 1:Let x € RY be a K-sparse signal, and let

ch implies that at each iteration, the SP algorithm idfest
a K-dimensional space that reduces the reconstruction error
of the vectorx. See Fig[ B for an illustration. This observation
is formally stated as follows.

Theorem 2:Assume that the conditions of TheorEin 1 hold.
For each iteration of the SP algorithm, one has

. . < _
its corresponding measurement ge= ®x € R™. If the ler—elly < exc lxr—ge-illy ()
sampling matrix® satisfies the RIP with constant and
S3r < 0.165, 5 CK _ _
G © Ivel, € =2 ety < v s @)
then the SP algorithm is guaranteed to exactly recavieom 3K
y via a finite number of iterations. where
Remark 3: The requirement on RIP constant can be relaxed cx = 203k (1 4 53K). 8)
to (1 — (53}{)3
d3r < 0.205,

if we replace the stopping criteriod’(nyQ < Hyfﬁ—1HQ To prove Theorerhl2, we need to take a closer look at the

with HnyQ = 0. This claim is supported by Substitutingope_rations executgd during eac_h iteration of the SP glgnrit
dsx < 0.205 into Equation [[(B). However, for simplicity of During one iteration, two basic sets of computations and

analysis, we adopfy’||, < [|y%~!||, for the iteration stopping comparisons are performed: first, givéi~!, K additional
criterion. candidate indices for inclusion into the estimate of thepsup

o ) ) . set are identified; and second, givEh K reliable indices out

Remark 4:In the original version of this manuscript, Weof the total2k indices are selected to forft. In Subsections
proved the weaker resulx < 0.06. At the time of revision [vZA]and [V-B] we provide the intuition for choosing the se-
of the paper, we were given access to the manuscript [19] fa¢tion rules. Now, lek,._. be the residue signal coefficient

Needel and Tropp. Using some of the proof techniques in thgjt ;. corresponding to the support set estinfteWe have
work, we managed to improve the results in Theofém 3 a following two theorems.

therefore the RIP constant of the original submission. The i )

terested reader is referred to http://arxiv.org/abs/0BRBLv2 Theorem 3:1t holds that

for the first version of the theorem. This paper contains only 203K

the proof of the stronger result. [per el < (1= d3x)? 17— el -

This sufficient condition is proved by applying Theordms 2
and[6. The computational complexity is relatediie number  The proof of the theorem is postponed to Apperidix D.
of iterationsrequired for exact reconstruction, and is discussed Theorem 4:The following inequality is valid
at the end of Sectidn TVAC. Before providing a detailed asialy
of the results, let us sketch the main ideas behind the proof.

We denote byx;r_r¢.1 and xp_r¢ the residual signals
based upon the estimates of s(pp before and after the
¢th iteration of the SP algorithm. Provided that the sampling
matrix ® satisfies the RIP with constanl (5), it holds that

1+ 03K
llxr—relly < 1

2 gl

The proof of the result is deferred to Appendik E.

Based on Theorems$ 3 4, one arrives at the result claimed
xp—7elly < lIxp—pe-1lly, in Equation [(6).
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Furthermore, according to Lemmias 1 4id 2, one has to analytically justify due to the following fact. Althougih
is clear that for all indiceg ¢ T', the values of (v;,y)| are

[y7]], = lIresid (v, @)l upper bounded byix ;1 ||x||, it may also happen that for all

= |[resid (®r_rexy e, Pre) i € T, the values of (v;,y)| are small as well. Dealing with
+resid (®pexpe, Bpe) |, maximum correlations in this scenario cannot be immedjatel

3 . proved to be a good reconstruction strategy. The following
= ||resid (®r_qexp_7e, ) 4+ 0|, example illustrates this point.
@) Example 1:Without loss of generality, let
< || ®r_pexgp_ge]| T ={1,---,K}. Let the vectorsv; (i € T) be orthonormal,
©) and let the remaining columns;, j ¢ T', of ® be constructed
< V140K - ek ||Xp_qe-1]ly, (9) randomly, using i.i.d. Gaussian samples. Consider the

i L following normalized zero-one sparse signal
where the second equality holds by the definition of the

residue, while (4) and (6) refer to the labels of the inedigeli y = L Z v;.
used in the bounds. In addition, VK =
Hyﬁ—IHQ = [|resid (y, ®7¢-1)|, Then, for K sufficiently large,
= ||resid (@T,Te—le,Te—l,@Tl—l)”Q |<Vz7y>| _ L < 17 for all 1 S i S K.
@, _ O — 0ok VK
z T 1—6x [ Pr_ge—rxp_pe—ill, It is straightforward to envision the existence of an ingex
1 — 269x T, such that )

> /1- -
> G V= 0k lixg ozl (5 ¥) B > =
> 120k [xp—pe-1l, - (10) The latter inequality is critical, because achieving veryat
BT 2 :

values for the RIP constant is a challenging task.
Upon combining[(R) and (10), one obtains the following upper _ . _ )
bound This example represents a particularly challenging case fo

\/W the OMP algorithm. Therefore, one of the major constraints
YK

||Ysz < T - Hyf%Hz imposed on the OMP algorithm is the requirement that
1
Igj - ;(5 cx Hyfile' I?eaTX|<Vi7Y>| = \/—? > I}?%KVLYH R OR41-
- 3K

To meet this requiremendx; has to be less tham/\/f,
which decays fast ak” increases.
CK <1 In contrast, the SP algorithm allows for the existence of
1 =203 some indexj ¢ T with
which completes the proof of Theordmh 2.

Finally, elementary calculations show that whig < 0.165,

IPG%E(KVZ?YH < |<Vjay>| .

A. Why Does Correlation Maximization Work for the SPS long as the RIP constambs is upper bounded by the
Algorithm? constantgiven in [B), the indices in the correct support of

x, that account for the most significant part of the energy

Ut the signal, are captured by the CM procedure. Detailed

descriptions of how this can be achieved are provided in the
foofs of the previously stated Theorefds 3 Ahd 5.

Both in the initialization step and during each iteratio
of the SP algorithm, we seleck” indices that maximize
the correlations between the column vectors and the rdsid
mea.su.rement. Hencefor'Fh, this s.tep is referred woaglation Let us first focus on the initialization step. By the definitio
maximizationCM). ConS|d.erthe |dgal case \_/vhere all cplgmngf the setT? in the initialization stage of the algorithm, the
of ® are or_thogonEl In this scenario, the signal cqefﬁuentsset of the K selected columns ensures that
can be easily recovered by calculating the correlationsy) 1
- i.e., all indices with non-zero magnitude are in the cdrre(_: 1®5oyll, > @5y, = (1— k) ], (11)
support of the sensed vector. Now assume that the sampling
matrix ® satisfies the RIP. Recall that the RIP (see Lemnidow, if we assume that the estimaf@’ is disjoint from
[) implies that the columns are locally near-orthogonah-Cothe correct support, i.e., thdt® T = ¢, then by the near
sequently, for any not in the correct support, the magnitud@rthogonality property of Lemmia 1, one has
of the correlation(v;, y) is expected to be small, and more
precisely, upper bounded by 1 ; ||x||,. This seems to provide
a very simple intuition why correlation maximization allew The last inequality clearly contradicts {11) whenedgr <
for exact reconstruction. However, this intuition is nosga d2x < 1/2. Consequently, ibox < 1/2, then

@70y Iy = |B70 Prxrly < G2k [[X][5 -

. I . 0
30f course, in this case no compression is possible. T ﬂ T # ¢,



and at least one correct element of the suppost f in T°. TNt vV ¥V v
This phenomenon is quantitatively described in Thedrém 5.
Theorem 5:After the initialization step, one has

ers e, = T2 | o
N7l = 140k 2 +
and
lcr_oll, < Y502 — 8%k SRR I
X7T_ — ||X .
=102 = 1+ 0ok 2
] TN AT
The proof of the theorem is postponed to Apperidix C. I .. Y
To study the effect of correlation maximization during each ; -
iteration, one has to observe that correlation calculatiare Xp H Vo |—| n
. 1 |
performed with respect to the vector A A A A o
r ! bt
| AT

yit = resid (y, ®1e-1)

. ) ) Figure 4: The projection coefficient vectad, is a smeared
instead of being performed with respect to the veqor o .qion of the vectoky (7.

As a consequence, to show that the CM process captures a
significant part of residual signal energy requires an aisly
including a number of technical details. These can be fou

Eﬂan es in their magnitudes. Fortunately, the energy of thi
in the Proof of Theorerl]3. 9 g y 9y

smear, i.e. | €||,, is proportional to the norm of the residual
signalx,_.., which can be proved to be small according to
B. Identifying Indices Outside of the Correct Support Set the analysis accompanying Theorem 3. As long as the smear

Note that there arek indices in the sef”’, among which IS not severex, ~ xj., one should be able to obtain a
at leastK’ of them do not belong to the correct support et 900d estimate of’ ()7 via the largest projection coefficients.
In order to expurgate those indices fraff, or equivalently, This intuitive explanation is formalized in the previoushated
in order to find aK-dimensional subspace of the spacéheoreni#.
span(®;,) closest tay, we need to estimate theseincorrect
indices. C. Convergence of the SP Algorithm

i — Tt 01 i i indi
Define AT := 1" — T°~". This set contains th& indices In this subsection, we upper bound the number of iterations

which are deemed incorrect. 87T = ¢, our estimate of \aoqeq to reconstruct an arbitraksesparse signal using the
incorrect indices is perfect. However, sometindeE (T # ¢. SP algorithm

This means that among the estimated incorrect indicese therGiVen an arbitraryk -sparse signak, we first arrange its

are some indices that actually belong to the correct SUBM gjoments in decreasing order of magnitude. Without loss of
T. The question of interest is how often these correct indicﬁ@nerality assume that

are erroneously removed from the support estimate, and how
quickly the algorithm manages to restore them back. |z1] > |@2| > - > |zK| >0,
We claim that the reduction in thg||, norm introduced by

such erroneous expurgation is small. The intuitive exglana and thatz; =0, ¥;j > K. Define

for this claim is as follows. Let us assume that all the k] 1£ni<nK |z
indices in the support of have been successfully captured, or Prmin = Kl _ 1= (12)
equivalently, thaf” ¢ T*. When we projecy onto the space Il Zfil x?

span (®7.), it can be shown that its corresponding projection

coefficient vectorx, satisfies Let ny; denote the number of iterations of the SP algorithm

needed for exact reconstruction af Then the following
Xp = X, theorem upper bounds; in terms ofcx and pmin. It can be

_ . viewed as a bound on the complexity/performance trade-off
and that it contains at least’ zeros. Consequently, th& for the SP algorithm.

indices with smallest magnitude - equal to zero - are cIearIy.I.heOrem 6:The number of iterations of the SP algorithm

not in the correct support set. :
o - . is upper bounded b
However, the situation changes wh&n¢ T*, or equiva- bp y

lently, whenT — T + ¢. After the projection, one has

—1 min 1.5- K
nit§m1n< o8P +1 >

—logck " —logck

Xp = Xfje + €
for some nonzere € RI7°l. View the projection coefficient  This result is a combination of Theoreri$ 7 aidl @2),
vector x, as a smeared version ofz (see Fig.[% for described below.

illustration): the Coe.ffiCient_S indexed by¢ T" may begome 4The upper bound in Theore 7 is also obtained id [12] whiledhe in
non-zero; the coefficients indexed bye T may experience TheoreniB is not.



Theorem 7:0ne has the idea behind this example, another upper boundprs

— log pmin described in Theorein 8 and proved in Apperidix F.
niy < m L. It is clear that the number of iterations required for exaet r
construction depends on the values of the entries of thesspar
Theorem 8:1t can be shown that signal. We therefore focus our attention on the followingéh
15 K particular classes of sparse signals.
nit < Tlogen 1) Zero-one sparse signalé\s explained before, zero-one

signals represent the most challenging reconstruction
category for OMP algorithms. However, this class of
signals has the best upper bound on the convergence
rate of the SP algorithm. Elementary calculations reveal
that pmin = 1/VK and that

The proof of Theoreml7 is intuitively clear and presented
below, while the proof of Theorefa 8 is more technical and
postponed to AppendixI F.

Proof of Theoreni]7: The theorem is proved by contra-

diction. ConsiderT, the estimate of", with < log K
Nt s —0———— -
1= - logpmin +1 ! 210g(1/CK)
| —logek ' 2) Sparse signals with power-law decaying entries (also

. known as compressible sparse signaBignals in this
¢ _ e
Suppose thal” ¢ T*, or equivalentlyT’ — T # ¢. Then category are defined via the following constraint

%7l = Z x? lzi] < cp-iP,
i€T—T*

for some constants, > 0 andp > 1. Compressible

sparse signals have been widely considered in the CS

literature, since most practical and naturally occurring

However, according to Theorem 2, signals belong to this class [13]. It follows from Theo-
rem[7 that in this case

2?@%}@4 = pmin”XHz-

¢
[xr—7elly < (ex)” [Ix]]; plog K

; it < T 1),
< Pmin HX”Qv it = log(1/ck) (1+0(1))
where thge last inequz_sllity follows from our choic_e bfsucgh whereo (1) — 0 when K — oo.
that (cx)” < pmin. This contradicts the assumptian ¢ T 3) Sparse signals with exponentially decaying entrigig-
and therefore proves Theorém 7. [ | nals in this class satisfy
A drawback of Theoref 7 is that it sometimes overestimates |2i| < cp - €77, (13)
the number of iterations, especially when,;, < 1. The o
example to follow illustrates this point. for some constants, > 0 andp > 0. Theoren b implies
Example 2:Let K = 2, 2y =210, 25 =1, 23 = --- = that
zy = 0. Suppose_that the sampling matg@xsatisfies t.he RIP - '(Ijlf/{c ;(1+0(1) #0<p<15
with cx = 1. Noting thatpnin < 271°, Theoren{® implies nig < 4§ OUES £ 15 )
that Tog(1/cx) e
nig < 11. where agair (1) — 0 as K — oo.
Indeed, if we take a close look at the steps of the SP algorithrimulation results, shown in Figl 5, indicate that the above
we can verify that analysis gives the right order of growth in complexity with
ni < 1. respect to the parametét. To generate the plots of Fig.

B, we setm = 128, N = 256, and run simulations for
After the initialization step, by Theorefd 5, it can be showdifferent classes of sparse signals. For each type of sparse

that signal, we selected different values for the paraméteiand
for each K, we selected200 different randomly generated
m Gaussian sampling matricds and as many different support
|xr_1o|ly < L1 our 2K %]l < 0.95 ]|, setsT. The plots depict the average number of iterations

versus the signal sparsity lev&l, and they clearly show that
As a result, the estimaté® must contain the index one andn;; = O (log (K)) for zero-one signals and sparse signals
|lxr_1o|, < 1. After the first iteration, since with coefficients decaying according to a power law, while
ni = O (K) for sparse signals with exponentially decaying
coefficients.

With the bound on the number of iterations required for
exact reconstruction at hand, the computational complefit

This example suggests that the upper boddd (7) can the SP algorithm can be easily estimated: it equals the com-
tightened when the signal components decay fast. Based pbexity of one iteration multiplied by the number of itexais.

|xr_71ly < ek [[xp_po| < 0.95 < min |z;],
€T

we haveT c T
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m=128, N=256, # of realizations=200 The case that requires special attention during analysis
——+— Zero-one sparse signal is K2 > O(N). Again, if compressible sparse signals are

—— Power law decaying sparse signal: p=2 H . . . . .
& Exponentially decaying sparse signal: p=log(2)/2 considered, the complexity of projections can be signitigan

reduced if one reuses the results from previous iteratibtiea
current iteration. If exponentially decaying sparse sigraae
considered, one may want to only recover the energetically
most significant part of the signal and treat the residual of
the signal as noise — reduce the effective signal sparsity
to K’ <« K. In both cases, the complexity depends on the
specific implementation of the CM and projection operations
and is beyond the scope of analysis of this paper.

One advantage of the SP algorithm is that the number of
iterations required for recovery is significantly smallean
that of the standard OMP algorithm for compressible sparse

0 5 10 15 0 % % signals. To the best of the authors’ knowledge, there are no

known results on the number of iterations of the ROMP and

Figure 5: Convergence of the subspace pursuit algorithm f8tOMP algorithms needed for recovery of compressible spars
different signals. signals.

n
i

o
T

Average Number of Iterations :

V. RECOVERY OFAPPROXIMATELY SPARSESIGNALS
In each iteration, CM requires: N computations in general. FROM INACCURATE MEASUREMENTS
For some measurer_nent matrices with _speC|aI structuresxfor We first consider a sampling scenario in which the signal
ample, sparse matrices, the computational cost can beedduc

ianificantly. Th ¢ of tina th acti s o th™ is K-sparse, but the measurement vegtois subjected to
sighiticantly. The cost of computing the projections 1 an additive noise component, The following theorem gives

5 X o i .
order of O (K m)' if one uses the Modified Gram SChm'dasufﬁcient condition for convergence of the SP algorithm in

th(;’]S) baI%]orlth.m [fr? Pg. 61t]'t.Th'S| cosltt cafn betatr.educe rms of the RIP constaidtx, as well as an upper bounds on
urther by ‘reusing” the computational resuls of pastdiems -y, . recovery distortion that depends on the enetgyndrm)
within future iterations. This is possible because mostiial of the error vectoe

sparse signals are compressible, and the signal support SeIlheorem 9 (Stability under measurement perturbations):
estimates in different iterations usually intersect in egda Let x € RN be such thatjsupgx)| < K, and let its
number of indices. Though there are many ways to reduggrresponding measurement pe- ‘I)er; wh’eree denotes

trt]e compIex:tyfof both me CM tand pI’OIjF]:'CtIOI’I cor;p?tt?]tlogp noise vector. Suppose that the sampling matrix satisfies
steps, we only focus on the most general framework of the {&L o 5"\ parameter

algorithm, and assume that the complexity of each iteration
equalsO (mN + mK?). As a result, the total complexity dsx < 0.083. (14)
of the SP algorithm is given by (m (N + K?) log K) for
compressible sparse signals, and it is upper bounded
O (m (N + K?) K) for arbitrary sparse signals. When the Ix — ||, < ¢k llell .
signal is very sparse, in particular, whén?* < O (N), the

total complexity of SP reconstruction is upper bounded pyhere 14 Gan + 62
O (mNK) for arbitrary sparse signals and BY(mN log K) e = — 3K T 3K
for compressible sparse signals (we once again point otit tha O3xc (1 = d3xc)

most practical sparse signals belong to this signal cagegor The proof of the theorem is given in Section V-A.

[13D). We also stud igra [

. . _ y the case where the sigras only approxi-

The complexity of the SP algorithm is comparable to OMPrhaterK—sparse and the measuremgnis contaminated by
type algorithms for very sparse signals whété < O (V). '

. . a noise vectoe. To simplify the notation, we henceforth use
For t.he stgndar_d OoMmP algorlyhm, .exact reconstructm_)n adwaxK to denote the vector obtained fromby maintaining the
requiresK iterations. In each iteration, the CM operation cos

R entries with largest magnitude and setting all other esitrie

.O (mN). computations a_nd the complexity of the prc_)jectioi the vector to zero. In this setting, a signalis said to be
is marginal compared with the CM. The corresponding totgl proximatelyk -sparse ifx — xx # 0. Based on Theorem

complexity is therefore alway® (mNK). For the ROMP bound th distortion in t fth
and StOMP algorithms, the challenging signals in terms f e can Upper bound the recovery distortion In terms of the

" 150 th ianals with i andly norms ofx — xx ande, respectively, as follows.
gonve_rgenc? ra e\?vrﬁ as;o Ne sparse sflfgr!a StIWII exp_ztarhyen : Corollary 1: (Stability under signal and measurement per-
becag/mg et?] ”telj th ;thlfn %Eét'gi/lup'c'len yégrge, 'It can turbations)Let x € RY be approximatelyk -sparse, and let

€ shown that both I~ an also ne (K) er- y = ®x + e. Suppose that the sampling matrix satisfies the
ations for reconstruction. Note that CM operation is reegir :
) ) . S RIP with parameter
in both algorithms. The total computational complexitytisr
O (mNK). e < 0.083.

men the reconstruction distortion of the SP algorithns§iats



Then

I — Iy < copc (IIelz +

The proof of this corollary is given in Sectidn_M-B. As
opposed to the standard case where the input sparsity IEve
the SP algorithm equals the signal sparsity leéielone needs
to set the input sparsity level of the SP algorithm2t&' in
order to obtain the claim stated in the above corollary.

Theoreni® and Corollafyl 1 provide analytical upper bount
on the reconstruction distortion of the noisy version of th
SP algorithm. In addition to these theoretical bounds, v
performed numerical simulations to empirically estimate t
reconstruction distortion. In the simulations, we firsestlthe
dimensionN of the signalx, and the number of measurement
m. We then choose a sparsity levEl such thatk' < m/2.
Once the parameters are chosennax N sampling matrix
with standard i.i.d. Gaussian entries is generated. Fovengi
K, the support sef’ of size |T'| = K is selected uniformly
at random. A zero-one sparse signal is constructed as

Recovery Distortion

Recovery Distortion (500 Realizations): m=128, N=256
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Figure 6: Reconstruction distortion under signal or measur
ment perturbations: both perturbation level and reconsbn
distortion are described via tHe norm.

in

the previous section. Finally, either signal or a measurgme The proof of the lemma is given in Appendi¥ G.

_ ) ] o Next, we need to upper bound the nofi®y_-||, in the
1) Signal perturbationsthe signal entries ifi” are kept un- st jieration of the SP algorithm. To achieve this task, we

changed but the signal entries outsidg/tére perturbed gescribe in the theorem to follow hojw,_ 7 ||, depends on
the RIP constant and the noise enejigy/,.

) ; M , Theorem 10:1t holds that
generated using a Gaussian distribution with zero mean

perturbations are added as follows:

by i.i.d. GaussianV (0,0%) samples.
2) Measurement perturbati@nthe perturbation vecter is

and covariance matrix>I,,, wherel,,, denotes then x
m identity matrix.
We ran the SP reconstruction process yan500 times for
eachK, o2 and 2. The reconstruction distortiofix — x|,
is obtained via averaging over all these instances, and

results are plotted in Fig.] 6. Consistent with the findings o
Theoreni® and Corollaify 1, we observe that the recovery digs .

tortion increases linearly with thg-norm of the measurement

Jxrrl, < -

xp_7ell, <

error. Even more encouraging is the fact that the empirical
reconstruction distortion is typically much smaller tharet Furthermore, suppose that

corresponding upper bounds. This is likely due to the faat, th
in order to simplify the expressions involved, many contgtan
and parameters used in the proof were upper bounded.

—T@”Q <

A. Recovery Distortion under Measurement Perturbations \whenever
The first step towards proving Theoréin 9 is to upper bound

the reconstruction error for a given estimated support/set
as succinctly described in the lemma to follow.

Lemma 3:Let x € RV be aK-sparse vectorx||, < K,
and lety = ®x + e be a measurement for whigh ¢ R™*V
satisfies the RIP with rarameté;(. For an arbitraryf C

{1,---,N} such that‘T < K, definex as

o HT
X = @TY7
and
X(1, N7 = 0.
Then
N 1 1 +53K
[x — %[, < T oun llxr_7l, + T llell -

d therefore,
2035 (1 + 83K)

Then one has

263K 2 1+63K

7 ey + 28D ey,
_63K) 3K (15)
14 93k 2
1— 03k HXT—TEHQ + 1— 3k ”eHQ , (16)

4 (1 + 53[{)

llxp_pe—1lly+ llell, -

(1—d3)> TR )
(17)

llell, < dsx l|Xp—pe-1]l,- (18)

lyelly < flye =1l

03k < 0.083.

Proof: The upper bounds in Inequalitids {15) ahdl(16) are
proved in AppendiXdH and I, respectively. The inequality)(17
is obtained by substituting (IL5) intb (|16) as shown below:

[xp_rell, <

2ot L0 oy e
=Tt 1lg

(1- 53K)3
2(14 03x)° +2(1 — d3x)

+ 5 lell,

(1—65x)
203k (1 + d3K)
< Zem vy e et

(1—531()3 HXT T HQ
4(1+6
A+ Gar) oy,
(1—655)
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To complete the proof, we make use of Lemhla 2 stated inTo prove the corollary, consider the measurement vector
SectionJ). According to this lemma, we have
y=®x+e

HyﬁHz = [[resid (y, @1l = ®xox + P (x —x2x) t+ €.

< |resid (g _gexp_ge, e, + |[resid (e, D1e) |,

By Theoreni®, one has
< [ @rogexp ey, + el )
< mHXT—T'ZHQ+ llell, , (19) 1% = x2x[ly < Cor ([[® (x — x2K) [, + [lell2)

and invoking Lemmal4 shows that

and
|yr ], = llresid (y, ®pe-1)]|, @ (x — x2x)
2 ||I‘esid (@T_Te—le_Te—l,@Tl—l)”Q S m <||X—X2K|2—|— |X_X2K||1> .
— ||resid (e, ®pe-1) ]|, V6K
021 — 265, Furthermore, Lemm@l 5 implies that
> T ar @7 _qe-1Xp_pe-1ly — [lef];
1— 283k [x = %2k [l = [[(x = xK) = (x = XK ) g [l
e 1 =03k [|xp_re-1lly — llell, 1
3K < —=x—xkl; -
L 2orc I~ llel (20) 2V
ey —————— XT_T[*I 2 - 2 .
1 =03 Therefore,
Apply the inequalities[(17) and_(1L8) t¢ (19) arld](20). Nu-
merical analysis shows that as long &gc < 0.085, the @ (x — xa2x) |,

right hand side of[{(19) is less than that bfl(20) and therefore Ix —xxll;  |Ix—=x2kl;
|vEll, < [lyit]|,- This completes the proof of the theorem. WK ik
u X = x|
Based on Theoreri 110, we conclude that when the SP < 1+56K71a
algorithm terminates, the inequality {18) is violated and w
must have and

el > dsx lpr—rict . _—
5=l < e (Hell + VI a2 2L,

< 1+56K<

Under this assumption, it follows from Lemrpa 3 that

1 1 1+ 635 which completes the proof.
% < =
=51, < (=5 e+ g ) el
. 1+ 631 + 5§K

03k (1 — d3K) _ . .
) We introduced a new algorithm, termed subspace pursuit,
which completes the proof of Theordrh 9. for low-complexity recovery of sparse signals sampled by ma
trices satisfying the RIP with a constant paramétgr. Also
pdyresented were simulation results demonstrating thatehe r
covery performance of the algorithm matches, and sometimes
even exceeds, that of the LP programming technique; and,
The proof of Corollaryl1l is based on the following twosimulations showing that the number of iterations executed
lemmas, which are proved in [21] and [22], respectively. py the algorithm for zero-one sparse signals and compiessib
Lemma 4:Suppose that the sampling matdx ¢ R™*~ signals is of the orde®(log K).
satisfies the RIP with paramet&. Then, for every € RY,
one has

le]l VI. CONCLUSION
29

B. Recovery Distortion under Signal and Measurement
turbations
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APPENDIX
Then
%1l ) We provide next detailed proofs for the lemmas and theo-

[x —xKlly <
2= 9VK rems stated in the paper.



A. Proof of Lemma&]l
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B. Proof of Lemma&l2

1) The first part of the lemma follows directly from the 1) The first claim is proved by observing that

2)

definition of § . Every vectorq € RX can be extended
to a vectorq’ € RX’ by attachingk’ — K zeros to it.

From the fact that for all/ ¢ {1,---, N} such that
|J] < K’, and allq’ € RX", one has

2 2 2
(1=0r) 1]l < 1@sd'[l3 < 1+ k) lld'|l3
it follows that
2 2 2
(1 =0k llally < |®rdall; < (1 + k) [lall;

for all |[I| < K andq € R¥. Sincedy is defined as
the infimum of all parameteré§ that satisfy the above
inequalities,0x < 0.

The inequality

|(®ra, @ b)| < 67410 llally b,

obviously holds if either one of the normjg||, and
IIb||, is zero. Assume therefore that neither one of them
is zero, and define

a’ =a/|all,, b’ =b/|[bl|,,
x = <I>1a, y/ = ‘I’]b

Note that the RIP implies that

2
2(1=6y74101) < ¥ +¥'ll5
2

e[

and similarly,

<2(1+040), (21)

2
2(1=687410) < Ix =¥l
2

[ 5],

We thus have

<2(1+1410) -

2
_ X+ =Yl

iy, = @ (v — @1 (@121) ' ®jy)
= @)y — @7y =0.

2) To prove the second part of the lemma, let

Yp =®sx,, andy = &;x.
By Lemmal[l, we have
(Yo, ¥)| = (@, @1X)|

< 0111411 1%l (11,

lypll lyll
< 0114141 = 2
V=0 V1=
01114171
< lyplly Iyl -
L= dmax(rilapy 0

On the other hand, the left hand side of the above
inequality reads as

(Y0 ¥) = Yo Yo +¥0) = [¥l5-
Thus, we have
Iyl < — DLy
L= max(|11.]71)
By the triangular inequality,
lyrlle =1y = ¥olly = I¥lle = lyplly

and therefore,

O111+1]
1yl > <1 - —) ¥l
? 1 — Gmax(|1],].7)) 2

Finally, observing that

2 2 2
[y+ll3 + [lypllz = Iyl

and |y, |5 > 0, we show that

01114171
(1 — 15— llylly < llyell, < llyll,-
— Omax(|1],]J|)

C. Proof of Theorerhl5

A R T 112
X =yl = ¥ +¥ll5 _

/ /
_ = )
x',y") 4 = 01|+ J)

and therefore

|<‘I>[3,‘I>Jb>| VA
————= = [(x", ¥ < 01141/
Jal, b1, e
Now,
127 2sbll, = max_ |q" (272sb)|
q: [lall,=1
< max 5m+|J| lall bl

a: [lall,=
O11+17 IBl5 5

which completes the proof.

The first step consists in proving Inequalify 11), which
reads as

[@70ylly > (1= dx) x5 -

By assumption|T’| < K, so that

* * dz
17y l, = [[@7Prx[y = (1—6dk) [,

According to the definition of®,

[@70yll; = max /ZI vi,y

> [|@7ylly > (1= dx) [l -

The second step is to partition the estimate of the support
setTY into two subsets: the s&t° (" T', containing the indices



in the correct support set, arid — T, the set of incorrectly
selected indices. Then

|@7031ly < | @502y, + ®50_2¥ ],
< | @y, + o Ixle, @2

where the last inequality follows from the near-orthogdwgal
property of Lemmall.
Furthermore,

|®50n2¥]|, <||@70nr®ronrxrons],

—|— H@;-‘o DT¢T_T0XT_TO 9
< (1+6K)||XT0ﬂT||2+52KHXH2- (23)

Combining the two inequalitie§ (22) and {23), one can show
that

@70y lly < (1+0K) [[xz0 q 7|, + 202k [l -
By invoking Inequality [11) it follows that

(1= 6x) [Ixll, < (1+0x) |xro 7|, + 2025 1% -

Hence,
1— 5]( — 252[{
||XT0ﬂT||2 = 1+ 0k HXsz
which can be further relaxed to
i1 — 302K

HXTOmTH2 > (B3[P

14+ 6ok
To complete the proof, we observe that

2 2
[x7—Tolly = \/HXHQ = [lxzon 2l

< \/(1 =+ 62[{)2 — (1 — 352}{)2
- 1+ 02k

_ /B =85

- 1+ dox

1l
(x| -

D. Proof of Theorem]3

In this section we show that the CM process allows for
capturing a significant part of the residual signal poweat th
is,

||XT—:FZ||2 < |[xp_pel,

for some constant;. Note that in each iteration, the CM
operation is performed on the vectgf~!. The proof heavily
relies on the inherent structure gf~!. Specifically, in the
following two-step roadmap of the proof, we first show how
the measurement residyé—! is related to the signal residue
xr_7e-1, and then employ this relationship to find the “energy
captured” by the CM process.

1) One can writey’~! as
yo = ®rypeaxi!t
- [@T_Tl—l@'fl—l] |: XT7T£71

XpyTl—l (24)

|

2)

14

£—1 £—1
for somext~! € RITUT ' andx, o1 € RIT,
Furthermore,

dox
1— 02k

HXZLTZ—IH2 S HXT,TZ—1H2 . (25)

2) It holds that

26
[ = ( LS

1-— 53}{)

Proof: The claims can be established as below.
1) Itis clear that

yot = resid (y, ®7e-1)
(é) resid (@T,Tl—l Xp_e—1, @Tl—l)
+ resid (@TﬂTe—le mTl—l N @Tl—l)
®)

= resid (@T,Te—l Xp_pe—1, (I>T271) + O

= @T,Tl—le,Te—l

— proj (®r_qpe-1Xp_qe-1, re-1)
(ZC) @T,Tl—le,Te—l + @TZ—1XP7T2—1
= [¢T—T€717¢T£’1] |: :| )

where (a) holds becausey = P _pe1xXp_pe—1 +
¢TﬂT£*1XTﬂTZ*1 and resid (~,‘I>Tef1) is a
linear function, (b) follows from the fact that
@1 Xpre-1 € span (Pqe-1), and(c) holds by
defining

Xp_e—1
Xp_’Te—l

XpyTl—l = — (@;371 @TZ—l)_l ;371 (@T,Te—le,Te—l) .

As a consequence of the RIP,

HXp,T“l Hz
(@;471@"1"[—1)71
1
1—-6g
dox
“ ok

This proves the stated claim.
For notational convenience, we first define

re-1 (Pr_qpe-1Xp_qe-1)

‘ 2

IN

[®7e—1 (Pr_pe—1Xp 1),
02K

1—daxc

X p_pe-1]ly < |xp_pe-1]|y-

1

Ta:=T" -1,

which is the set of indices “captured” by the CM
process. By the definition dfa, we have

127, y: 7" ], 2 27y, |, 2 @7 resys ™l -

Removing the common columns betwedn,, and
®,_-1 and noting thatTa 7! ¢, we arrive
at

(L2 NS =g [ S AR

*

- H‘I)T*T[yf_l Hz ' 27)
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An upper bound on the left hand side 6f27) is given 2) Let AT :=T* — T*. One has

b
y - - HXTmAT||2 < 2lelly -
[EENEE ||2 - H(I)TA*T(I)TUT“XT Hz This result implies that the energy concentrated in the
@5 -1 erroneously removed signal components is small.
= ATyTrt-tUTal er ||2 3) Finally,
< Gax x5, - (28)
<l Prrelly < T2 gl .
A lower bound on the right hand side df {27) can be B . *r—1ly-
derived as Proof: The proofs can be summarlzed as follows.
H@* vl 1H 1) To prove the first claim, note that
_ & v—Hl
— X —@~y—‘1>~ q)TXT
H(I)T 7o ®r_e (x; 1)T—T’f 9 ! TT[ T i
=@, Prn e Xpnge + Pp Por_ Xy
H(PT TECP(TUT[*l)—(T—TZ*l) x -,
:@t |:@ ‘[@‘[ j| TﬂT
.(Xe D) ) ‘ Te | FTOTEFTe-T 0
T (TUT@—]),(T,TZ—l) 5 :
il , , + @, Py Xp_ e
—1 —1
> (1-6K) H (Xr )T_fe y 03K er ||2 (29) _ ‘I> B X + ‘I> ‘I)T—T’ZXT—TE
Substitute[(20) and (28) int&_(R7). We get = X7 + ‘I)rfz‘I)T—T’-’xT—T“ (33)
H(Xﬁ_l) < 263K || 1) < 2031 [x¢~1||,.  where the last equality follows from the definition of
T-Tls = 1— 27 1- 03k (30) 2 @%e. Recall the definition o, based on which we have
Note the explicit form ofx’~! in @24). One has llelly = l1%p — Xl
/—1 _ l—1 — -
e i (R T -
and s
-1 S 3K H Xp_gel] - (34)
el < el + [lxp e _
@5 2) Consider an arb|trary index s& c T* of cardinality
dar DI
< [1+ - [ —e-1]l, K that is disjoint fromT,
2K
@ | | @) '\ T = ¢. (35)
< — Xp_1e—1 9" ~
! _53_K Such a sefl” exists becaus#ﬂ - T‘ > K. Since
From [31) and[(32), it is clear that
il € 2 ey S e =
el = (1—03k)° Tt we have ”( | el
which completes the proof. Xp)rellg = l€ll2 -
] On the other hand, by Step 4) of the subspace algorithm,
AT is chosen to contain thdd smallest projection
E. Proof of Theorerfi]4 coefficients (in magnitude). It therefore holds that
As outlined in Sectiof 1V-B, let |l &xp)arlly < N1xp)7 (36)
Xp = ‘I)foy Next, we decompose the vect(:utp)AT into a signal
o o part and a smear part. Then
be the projection coefficient vector, and let
1G<p) arlly, = Ilxar + earll,
€ =Xp — X
2 |xarlly = llearll,
be the smear vector. We shall show that the smear mag- hich i valent t
nitude |/e||, is small, and then from this fact deduce that which 1s equivalent to
|x7_7elly < ¢|[xp_ze|| for some positive constant We Ixarlly < ||(xp) arll, + llearlls
roceed with establishing the validity of the following ¢ler
Claims. ’ g . < Joarlly + el @)

Combining [36) and [(37) and noting thatanr =

1) It can be shown that ) !
xrnar (x is supported oY, i.e., xr. = 0), we have

ell, < 1 HXT TfH HxTﬂAT||2 <2|ell,- (38)



This completes the proof of the claimed result.

3) This claim is proved by corpbininﬂl%) arld38). Since

Xr_7t = |XpAar: Xp_ge| » ONE has
[xp_7ell, < ||XTr‘|AT||2 + HXT_feHQ

< 2|elly + fxp—gell,
B , o5
< <1_:”£K+1) [per e

= 7O .
— 03K

This proves Theoreif 4.

F. Proof of Theorer]8
Without loss of generality, assume that

|$1| > |$2| > > |$CK| > 0.

The following iterative algorithm is employed to create a

partition of the support séft that will establish the correctness
of the claimed result.

Algorithm 2 Partitioning of the support sét
Initialization:

16

and therefore

2
|Tiys—1| > 3 ||X{i,---7K}||2' (42)

2) Let

(43)

sjlog3 —log2 +1
n,; =
J —logcyk ’

where|-| denotes the floor function. Then, for amy<
jo < J, after
Jo
! = Z TLj
j=1

iterations, the SP algorithm has the property that

Jo
Umcr. (44)

j=1

More specifically, after

J
1.5- K

= A 45
" ;nﬂ_—loch (45)

iterations, the SP algorithm guarantees that 7.

Proof: Both parts of this lemma are proved by mathemat-

ical induction as follows.

e LetTh ={1},i=1andj = 1.
Iteration Steps:

o If i = K, quit the iterations; otherwise, continue.
o If

1
3 23| < |[xgirr iy ]ly (39)
setT; = T; U {i + 1}; otherwise, it must hold that

1
5 |(Ez| > HX{iJrl.,---,K}’ 9 (40)

and we therefore sgt=j + 1 andT; = {i + 1}.
« Increment the index, 1 = i + 1. Continue with a new
iteration.

Suppose that after the iterative partition, we have

r=n{Jn{J--UTn

whereJ < K is the number of the subsets in the partition.

Lets; =|T;|, 7 =1,---,J. Itis clear that

J
ZSJ‘ =K.
j=1

Then Theoreml8 is proved by invoking the following lemma.

Lemma 6:
1) For a given indexj, let |T;| = s, and let
T, ={i,i+1,---,i+s—1}.
Then,

|$i+5,1,k| < 3k |ZCZ‘+S,1| y for all 0 < k <s-— 1,
(41)

1) By the construction of},

1
§|£Ci+s—1| > [ Xgigs, i3] - (46)

On the other hand,

1
5 |Ii+572| S ||X{i+s—1,"'7K}||2

< HX{H-S,"' 7K}H2 + |517i+571

49
<

3
) |£Cz'+s—1| .
It follows that
|Tits—2] < 3|Tigs—1],

or equivalently, the desired inequalify {41) holds fo&
1. To use mathematical inductiosupposethat for an
index1 <k <s-—1,

|Zigs—1-e] < 3" [@igso| foralll <<k —1. (47)
Then,

1
B [Tigs—1-k| < < Hx{iJrsfk.,---,K}H

<NTigs—k] + -+ [Tigs—1]

+ ||X{i+3a"' 7K}||2

1
< (3’“‘1 NEN 5) |Zits1

k
< > |igs—1]-



2)
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This proves Equatio_(41) of the lemma. Inequalityl (425. Proof of Lemmal3

then follows from the observation that The claim in the lemma is established through the following

Hx{i,~-~,K}H2 <wg| 4 -+ |Tigs_1] + HX{HS_’_”K}HQ chain of inequalities:
o O L bl < s = #h ] + el
35 = HXT — @; (@TXT + e H + HXT—THQ
< Py |xz+s 1| 2
< e~ #p @rxn)|, + |@he, + lxrsll
< s~ @) (2raaxrns),

f
+ H‘I’ P —TXT—TH

From [43), it is clear that fot < j < J,
2
I < 307

According to Theorerh]2, afte; iterations, 2

2 vV 1 + 6K
Iper oy < 5o Il T gy el ezl
On the other hand, for any< T, it follows from the (Z) 0+ 02K 1) |lxp_p|| + T— 1+ 6K el
; . = 1-5 T—T 2
first part of this lemma that K
< =5 Il + e el
|$z| > |$51| = 351 H ” —1— 9k T-Tll2 1—-90g 2’
Therefore, where(a) is a consequence of the fact that
T CcT™. ;
. p = (@ ) =o0.
Now, 1supposethat for a givenj, < J, after{; = = Fp \Frar¥raT
;0 | nj iterations, we have By relaxing the upper bound in terms of replacifigc by
Jo—1 03K, We obtain
U TjCTll. 1 1+ 635
~ -l < — .
7j=1 ||X X||2 - 1— H Xp_ TH + 53K He”Q
1
Let Tp = UJD Tj. Then This completes the proof of the lemma.

%r—rer ||y < X3 [l -

Denote the smallest coordinate i, by i, and the H. Proof of Inequality[(1b)

largest coordinate i, by k. Then The proof is similar to the proof given in Append® D. We
) start with observing that
|g| > ?,S—Jo ||X{i,---,K}||2 350 llxz—, |5 -

o y, = resid (y, ®re1)
After n;, more iterations, i.e., after a total number of _ 3 + resid (e, Bypr1) (48)
iterations equal td = ¢; + n;,, we obtain = Pryre-1Xe T IE81 (e, ®pe1),
2 2 and
Ixzzelly < 555 [xr—re [l < 555 Ixr-mlly <l vesid (e, ®re1)]l; < lell,. 49
» =T 2 2
As a result, we conclude that . =0 r—1 .
Again, letTa = T° — T*~*. Then by the definition of ',
Tj, C T*

122y, ], = |25y,

is valid after¢ = Z” . n; iterations, which proves H‘I) & x{-1
= TEFTYT 18y

inequality (44). Now Iet the subspace algorithm run for HZ
n = Y7_, n; iterations. ThenT C T™. Finally, note — || @7 resid (e, ®pe-1 )|,
that

@7 @y,

s;log3 —log2+1 -
n —an < Z — VTt dg |ell,. (50)

—logck
K10g3 +J (1 —log2) The left hand side of (80) is upper bounded by
- —logck 1 1
_ K(log3+1—log2) _ K-15 122,327, < [[@%, @ry e,
- —logck ~ —logcyk + H‘I’TArebld (e, ®re-1) Hz
This completes the proof of the last claifn}(45). < || @5, @y x|, + VI + Ok e, -

m (51)



Combine [5D) and(31). Then

@7, @ryre— x|, +2v1 + 6k |le]l,
> [ @7y,

[1]
(52)

Comparing the above inequalify {52) with its analogue far th
noiseless casd, (26), one can see that the only differerbe is 31
2y/1+ 0k ||e||, term on the left hand side df (52). Following [4]
the same steps as used in the derivations leading (26) to
(29), one can show that [5]

20s1c |37l + 2V 1+ Oxc llelly 2 (1= ) -

Applying (32), we get

(6]

(7]

203K 21+ 0k
HXTff”fHQ < 7(1 oo ) lxp—pe-1l, + T ok lell,, (8]

(9]

which proves the inequality_(15). (0]

[11]
I. Proof of Inequality [(IB)

This proof is similar to that of Theorefd 4. When there aré?
measurement perturbations, one has
[13]
Xp = <I>;~,£y = <I>JfT~,Z (Prxr +e).
[14]

Then the smear energy is upper bounded by
[15]

lell, < || @f, ®rxr - xz. |+ |@Le]

2 [16]

< H@;eq)TXT — Xie

1
, T Toor llell .

where the last inequality holds because the largest eigienva
of <I>;£ satisfies [18]

Amax (@jﬂ) — M ( (®2,®7) " ‘1’1}@)

[19]
< L
S VTt [20]

Invoking the same technique as used for deriving (34), W&
have

[22]
lell, < 22—

o (53)

1
HXT—T@HQ + m He||2

It is straightforward to verify thaf{(38) still holds, whiatow
reads as

[xrarl, < 2el,- (54)

Combining [58) and{34), one has
Wei

Ixz—relly < |lxrnarlly + [zl
14+ 631 ) 2
< 1— g HfoTng + Ny llell, ,
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