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Abstract

Distributed Orthogonal Space-Time Block Codes (DOSTBG)ieving full diversity order and single-symbol
ML decodability have been introduced recently by Yi and Kion €ooperative networks and an upperbound on the
maximal rate of such codes along with code constructiondbes presented. In this paper, we introduce a new class
of Distributed STBCs called Semi-orthogonal Precodedribisted Single-Symbol Decodable STBCs (S-PDSSDC)
wherein, the source performs co-ordinate interleavinghfidrmation symbols appropriately before transmittingoit t
all the relays. It is shown that DOSTBCs are a special casePDSSDCs. A special class of S-PDSSDCs having
diagonal covariance matrix at the destination is studiedl @m upperbound on the maximal rate of such codes is
derived. The bounds obtained are approximately twice tatgen that of the DOSTBCs. A systematic construction
of S-PDSSDCs is presented when the number of reldys 4. The constructed codes are shown to achieve the
upperbound on the rate whei is of the form 0 or 3 modulo 4. For the rest of the valuesiof the constructed
codes are shown to have rates higher than that of DOSTBCs.dhdwn that S-PDSSDCs cannot be constructed
with any form of linear processing at the relays when the @utoesn’'t perform co-ordinate interleaving of the
information symbols. Simulation result shows that S-PDESDave better probability of error performance than that
of DOSTBCs.

Index Terms

Cooperative diversity, single-symbol ML decoding, distied space-time coding, precoding.

|. INTRODUCTION AND PRELIMINARIES

Cooperative communication has been a promising means o&wnbi spatial diversity without the need of
multiple antennas at the individual nodes in a wireless akwThe idea is based on the relay channel model,
where a set of distributed antennas belonging to multipersugn the network co-operate to encode the signal
transmitted from the source and forward it to the destimasio that the required diversity order is achieved, [1]-[4].
Spatial diversity obtained from such a co-operation isirefitto as co-operative diversity. In [5], the idea of space-
time coding devised for point to point co-located multiplgemna systems is applied for a wireless relay network
and is referred to as distributed space-time coding. Thenigae involves a two phase protocol where, in the first
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phase, the source broadcasts the information to the retaysnathe second phase, the relays linearly process the
signals received from the source and forward them to therdé®tn such that the signal at the destination appears
as a Space-Time Block Code (STBC).

Since the work of [1]-[5], lot of efforts have been made to @etise the various aspects of space-time coding
proposed for multiple antenna systems to the co-operagittggs One such important aspect is the design of low-
complexity Maximum Likelihood (ML) decodable Distribute®pace-Time Block Codes (DSTBCs) - in particular,
the design of Single-Symbol ML Decodable (SSD) DSTBCs. Hoaekground on SSD STBCs for MIMO systems,
we refer the reader to [6] - [12]. Through out the paper, wesasr DSTBCs that are ML decodable. Two group
decodable DSTBCs were introduced in [13] through doublingstruction using a commuting set of matrices
from field extensions. In [14], Orthogonal Designs (ODs) &nhsi-orthogonal Designs [9] originally proposed for
multiple antenna systems have been applied to the co-dpefeimework. Since the co-variance matrix of additive
noise at the destination is a function of (i) the realisatidrthe channels from the relays to the destination and
(ii) the relay matrices, complex orthogonal designs (exéep2 relays - Alamouti code) loose their SSD property
in the co-operative setup. In [15], DSTBCs based on co-atdirinterleaved orthogonal designs [11] have been
introduced which have reduced decoding complexity. In $kisup, the source performs co-ordinate interleaving of
information symbols before transmitting to the relays. 18][ low decoding complexity DSTBCs were proposed
using Clifford-algebras, wherein the relay nodes are assuto have the knowledge of the phase component of
the source-to-relay channels. A class of four-group delsledBSTBCs was also proposed in [17].

Recently, in [18], Distributed Orthogonal Space-Time Co@OSTBCs) achieving single-symbol decodability
have been introduced for co-operative networks. The astbonsidered a special class of DOSTBCs which make
the covariance matrix of the additive noise vector at thetinlgison, a diagonal one and such a class of codes
was referred to as row monomial DOSTBCs. Upperbounds on #sémum symbol-rate (in complex symbols per
channel use in the second phase) of row monomial DOSTBCs lbeee derived and a systematic construction
of such codes has been proposed. The constructed codesheere © meet the upperbound for even number of
relays. In [20], the same authors have derived an upperbonrtie symbol-rate of DOSTBCs when the additive
noise at the destination is correlated and have shown tlaintiprovement in the rate is not significant when
compared to the case when the noise at the destination isretated [18].

In [19] and [20], SSD DSTBCs have been studied when the retales are assumed to know the corresponding
channel phase information. An upperbound on the symbol fatesuch a set up is shown to b? which is
independent of the number of relays.

In [18], [19] and [20] the source node transmits the inforigrasymbols to all the relays with out any processing.
On the similar lines of [15] and using the framework propoised 8], in this paper, we propose SSD DSTBCs aided
by linear precoding of the information vector at the soutoeour set-up, we assume that the relay nodes do not
have the knowledge of the channel from the source to itselbarticular, it is shown that, co-ordinate interleaving of
information symbols at the source along with the appropridice of relay matrices, SSD DSTBCs with maximal

rates higher than that of DOSTBCs can be constructed. Theilootions of this paper can be summarized as
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follows:

« A new class of DSTBCs called Precoded DSTBCs (PDSTBCs) (fhiefirfl)) is introduced where the source
performs co-ordinate interleaving of information symbajfspropriately before transmitting it to all the relays.
Within this class, we identify codes that are SSD and refethtan as Precoded Distributed Single Symbol
Decodable STBCs (PDSSDCs) (Definitioh 2). The well known D8Ss studied in [18] are shown to be a
special case of PDSSDCs.

o A set of necessary and sufficient conditions on the relay iogstrfor the existence of PDSSDCs is proved
(Theorenf1).

« Within the set of PDSSDCs, a class of Semi-orthogonal PDSS(3cPDSSDC) (Definition]4) is defined. The
known DOSTBCs are shown to belong to the class of S-PDSSD@sh® similar lines of [18], a special
class of S-PDSSDCs having a diagonal covariance matrixeatl#fstination is studied and are referred to as
row monomial S-PDSSDCs. An upperbound on the maximal sysdiel of row monomial S-PDSSDCs is
derived. It is shown that, the symbol rate of row monomial[3SBDC is upperbounded b§/and l% when
the number of relaysi is of the form2/ and2/ + 1 respectively, wheré is any natural number. The bounds
obtained are approximately twice larger than that of DOSIBC

o A systematic construction of row-monomial S-PDSSDCs iss@ned whenkX > 4. Codes achieving the
upperbound on the symbol rate are constructed whkieis 0 or 3 modulo 4. For the rest of the valuesiof
the constructed S-PDSSDCs are shown to have rates higheththaof the DOSTBCs.

« Precoding of information symbols at the source has restuitethe construction of high rate S-PDSSDCs.
In this setup, the relays do not perform co-ordinate intsileg of the received symbols. It is shown that,
when the source transmits information symbols to all thayelwith out any precoding, and if the relays
are allowed to perform linear processing of their receivedter, S-PDSSDCs other than DOSTBCs cannot
be constructed thereby, necessitating the source to peidoordinate interleaving of information symbols in

order to construct high rate S-PDSSDCs.

The remaining part of the paper is organized as follows: IctiBe[Il, along with the signal model, PDSTBCs are
introduced and a special class of it called PDSSDCs is defihesgit of necessary and sufficient conditions on the
relay matrices for the existence of PDSSDCs is also derive8ection1ll, S-PDSSDCs are defined and a special
class of it called row-monomial S-PDSSDCs are studied. Apetpound on the maximal rate of row-monomial
S-PDSSDCs is derived. In Sectibn] IV, construction of rowammial S-PDSSDCs is presented along with some
examples. In SectionlV, we show that the source has to neitggsarform precoding of information symbols in
order to construct high rate S-PDSSDCs. The problem of dagigwo-dimensional signal sets for the full diversity
of RS-PDSSDCs is discussed in Secfion VI along with some Isition results. Concluding remarks and possible

directions for further work constitute Sectibn VII.
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Notations: Through out the paper, boldface letters and capital boédfatters are used to represent vectors and
matrices respectively. For a complex matkxthe matrices<*, X7, X, |X|, ReX and ImX denote, respectively,
the conjugate, transpose, conjugate transpose, detertniaal part and imaginary part &f. The element in the!”
row and ther" column of the matrixX is denoted byX],, ,.,. The diagonal matrix diagX];.1, [X]2.2 - - - [X]r.r}
constructed from the diagonal elements df'a« 7' matrix X is denoted by digiX]. For complex matriceX and
Y, X® Y denotes the tensor product ¥fandY. The tensor product of the matrix with itself » times wherer
is any positive integer is represented X§ . TheT' x T identity matrix and thel’ x T' zero matrix respectively
denoted byl and0r. The magnitude of a complex numbeyis denoted byz| and E [z] is used to denote the
expectation of the random variabte A circularly symmetric complex Gaussian random vectorwith meanp
and covariance matrik is denoted by ~ CSCG (u,T'). The set of all integers, the real numbers and the complex
numbers are respectively, denoted ByR and C andj is used to represerf—1. The set of alll’ x T' complex

diagonal matrices is denoted B and a subset aP with strictly positive diagonal elements is denoted®y.

Il. PRECODED DISTRIBUTED SPACETIME CODING
A. Signal model

The wireless network considered as shown in Fiddre 1 censisf< + 2 nodes each having single antenna
which are placed randomly and independently according toesdistribution. There is one source node and one
destination node. All the othe¥ nodes are relays. We denote the channel from the source addek'" relay as
hi, and the channel from thi¢” relay to the destination node ggfor k = 1,2, --- , K. The following assumptions
are made in our model:

« All the nodes are subjected to half duplex constraint.

« Fading coefficientdy, g are i.i.dCSCG (0, 1) with coherence time interval of atleadt and7" respectively.

« All the nodes are synchronized at the symbol level.

« Relay nodes do not have the knowledge of fade coefficiepts

« Destination knows the fade coefficients, hy.

The source is equipped with & length complex vector from the codeboék= {s;, s, 3, --- , S} consisting
of information vectors; € C**¥ such thatt [slsﬂ =1foralll=1,---,L. The source is also equipped with a
pair of N x N matricesP andQ called precoding matrices. Every transmission from thea®to the destination
comprises of two phases. When the source needs to transniifa@mation vectors € S to the destination, it
generates a new vecteras,

=P +50Q (1)

such that¥ [§~SH} = 1 and broadcasts the vectoto all the K relays (but not to the destination). The received
vector at thek!” relay is given byr, = VP NhiS+ny, forall k=1,2,---, K wheren; ~ CSCG (0,1 ) is the
additive noise at thé&'" relay andP; is the total power used at the source node every channelmiskee Isecond

phase, all the relay nodes are scheduled to transniéngth vectors to the destination simultaneously. Eachyrel
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is equipped with a fixed pair aV x T' rectangular matrice8, B, and is allowed to linearly process the received

vector. Thek" relay is scheduled to transmit

BT
t :1/7 A Brt. 2
k (1 +P1)N {rk k +rk k} ( )

where P, is the total power used at each relay every channel use inetend phase. The vector received at the

destination is given by
K

y=> grtk+Ww 3)
h=1

wherew ~ CSCG (0,17) is the additive noise at the destination. Usihyy (2)[h 8%an be written as

P PT
— 2T gx 4
Y=\Vazprn®

where

e N = % [ZkK:I Jk {nkAk —+ nZBk}:| =+ w.
« The equivalent channg is given by[g; g2 - gx] € C1*XK.
« Every codewordX € CX*T s of the form,

~ sk T ~ * ok T ~ * ok T r
X = [[hlsAl L RiEBYT [he8As + W38 BT - [hx8Ax + Wi Bx] ] .
Definition 1: The collectionC of K x T' codeword matrices shown below, whereuns over a codebook,
= * ok T = * <k T P * ok T T
c= { [[hlsAl T REB]T [ho8As + hIEB.]T - [hx®Ax + hEEBK] ] } 4)

is called the Precoded Distributed Space-Time Block co@S{BC) which is determined by the s&?, Q, Ay, By }.
Remark 1:From [3), every codeword of a PDSTBC includes random vagib), for all k = 1,2,--- K. Even
though, k), can take any complex value, since the destination knows llaarel set{hi, ho,---hi} for every
codeword use, the cardinality ¢f is equal to the cardinality of. The properties of the PDSTBC will depend
on the sef{P,Q, A, B} alone but not on the realisation of the chanrfels. In this paper, on the similar lines
of [18], we derive conditions on the séP,Q, A, By} such that the PDSTBC iri](4) is SSD for any values of
{h1,ha,---hk}. In other words, the derived conditions are such that ieespe of the realisation ok;’s, the

PDSTBC in [4) is SSD.
The covariance matriR € CT*7" of the noise vecton is given by

PT
(1+P1)N

K
_ 3 lgul? {AfAk+Bka} Tir. (5)
k=1

The Maximum Likelihood (ML) decoder decodes to a ve&avhere

N P P,T
R'|y—
[y (

§= i —_
arg min T PN

P PT
sES |:y N ( gx

1+ P)N
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P PT 1H P PT Iy H . H
—92R — = __gXR ———gXR™ X .
e< (1+P1)Ng y >+(1+P1)Ng g

=arg rsnelgl
With the above decoding metric, we give a definition for a SS&iridbuted space-time block code which also
includes DOSTBCs studied in [18].

Definition 2: APDSTBC,X in variablesry, 2, - - - 2y is called a Precoded Distributed Single-Symbol Decodable
STBC (PDSSDC), if it satisfies the following conditions,

« The entries of the:'" row of X are 0,+ hy#,, + hiZ or multiples of these by wherej = /-1 for any
complex variableh;,. The complex variables,, for 1 <n < N are the components of the transmitted vector
SwheresS=[%; Zo -+ Zn].

o The matrixX satisfies the equality
N

XRTIXT = S W with (Wil = el (v} fear + o 2l (6)
i=1

where eachW, is a K x K matrix with its non zero entries being functions of;, x;o and hy, for all
k=12 K andv}), v €R.

We study the properties of the relay matrideg, B, and the precoding matricésand Q such that the vectors
transmitted simultaneously from all the relays appear aB83DC at the destination. Certain properties of the relay
matrices have been studied in the context of DOSTBCs in [M8].recall some of the definitions and properties
used in [18] so as to study the properties of the relay mataéea PDSSDC. A matrix is said to be column (row)
monomial, if there is atmost one non-zero entry in every mwiyrow) of it.

Lemma 1:The relay matriced\;, andB; of a PDSSDC satisfy the following conditions,
o The entries ofA;, andBy, are 0,4+ 1,4+ j.
o Ay andBj cannot have non-zeros at the same position.

o Ai, Br andAy + B, are column monomial matrices.

Proof: The proof is on the similar lines of the proof for Lemnan [18]. [ |
Lemma 2:If A,C,D € CN*N ands = [x1, 22, -+ ,2n] € CP*V, with eachz; = x;; + jzig, then
N
As” 4+ sCs" + DS = > fi (wir, wiq) ©)

=1
wheref; (z;r, zig) is @ complex valued function of the variableg andx;q if and only if A, c+ct, p+D" e
Dn.

Proof: Refer to the proof of Lemma in [21]. |
Using the results of Lemnid 2, in the following Theorem, wevite a set of necessary and sufficient conditions
on the matrix sefP, Q, A, By} such that a PDSTBX with the above matrix set is a PDSSDC.

Theorem 1:A PDSTBCX is a PDSSDC if and only if the relay matric8s, B satisfy the following conditions,
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(YFor1<k#kK <K,

T1:T2:PandH1:H2:Q;
YT ARTALYY + AL RTAITIS € Dy for { TI, =Y, =PandIl; = Yo = Q; (8)
H1:T2:Pandﬂ2:T1:Q;

T1:T2:QandH1:H2:P;
YiB,R 'Bf Y] +II,Bj,R 'BJIIf € Dy for { T, =", =QandIl; = Y, =P; (9)
H1:T2:QandH2:T1:P.

(i) For1 <k, kK < K,

Y =PandII =Q;
I [BkR*1A5 +AZ/R’1BZ] Y € Dy,for { T =P andIl =P; (10)
T =QandIl = Q;

T =Q andII = P;
I [AkR*Eﬁ n BZ/R’lAﬂ YT € Dy,for { Y =P andII = P; (1)
T =QandII = Q.

(i) For 1 <k < K,
ART'AI + BiR™'BY = diag[Dix, Dok, -, Dyil - (12

whereD,, , e Rforalln=1,2,---N.
Proof: Refer to the proof of Lemma in [21]. ]

Theorem[L provides a set of necessary and sufficient conditim the relay matriced, B, and the pre-
coding matricesP and Q such that,X is a PDSSDC. The matrice& ;A R*AZYY + II:A;, RTIATTIT,
YiByR'By YT +II,B;, R 'Bj 1T, II* [BkR—lAﬁ +A;RIBT| ¥ andII (AR 'BY +B;,R'AT| YT
in the conditions of[(8) -[(11) need to be diagonal. This imglthat the above matrices can alsode The
DOSTBCs studied in [18] are a special class of PDSSDCs sheediay matrices of DOSTBQdemmal, [18))
satisfy the conditions of Theorel 1. In particular, the ssaey and sufficient conditions on the relay matrices of
DOSTBCs as shown in Lemmiaof [18 can be obtained from the necessary and sufficient conditbROSSDCs
by makingP = I 5y, Q = O andDy = Oy in (@) - (12).

A PDSSDC, X in variablesxy,xs,--- 2y can be written in the form of a linear dispersion code [22] as
X = Z;.V:l 2ir®ir + 2o Pig Where ®;;, @i € CKEXT are called the weight matrices f. Within the class
of PDSSDCs, we consider a special set of codes called UiRBX§SDCs defined as,

Definition 3: A PDSSDC, X is called a Unitary PDSSDC, if the weight matrices Xfsatisfies the following
conditions,®;; ®/7, PP/, € Dy foralli=1,2,---N.

Remark 2:We caution the reader to note the difference between theitigfirfor a Unitary PDSSDC for
cooperative networks and the definition for a Unitary SSDecfodt MIMO systems [12]. For better clarity, we recall

the definition for a Unitary SSD code designed for MIMO sysie SSD STBCX in variablesty, zs, - - - 2y when
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written in the form of a linear dispersion code is givenXy= Z;VZI 21 ®ir + TigP®iq, Where®d;, &, € CKXT
are called the weight matrices ¥f The desigrX is said to be a unitary SSD ﬁiliﬁ =lgforalli=1,2,---N.
The difference between the two definitions can be observadeadefinition for a unitary SSD STBC is a special

case of the definition for a unitary PDSSDC.

It can be verified that DOSTBCs belong to the class of UnitddsBDCs. In the rest of the paper, we consider
only unitary PDSSDCs. However, it is to be noted that thescté#snon-unitary PDSSDCs is not empty. A class of
low decoding complexity DSTBCs called Precoded Coorditiaterleaved Orthogonal Design (PCIOD) has been
introduced in [15] wherein the authors have proposed a de3igc;op for a network with 4 relays which is
SSD (Example 1 of [15]). It can be observed that the proposel® X pc;0p given in [13) belongs to the class
of non-unitary PDSSDCs. Since we consider only unitary PDS§ through out the paper a PDSSDC is meant
unitary PDSSDC.

hiz1  hiZ2 0 0
—h3%5  h3xy 0 0
Xpcrop = ar . (13)
0 0 h3Zs hsZa
0 0 —hiF RLES

The precoding matrice® and Q required at the source to constrdCbcrop are

101 0 0 -1 0
110 1 0 1 1 0 1 0 -1

P= ; Q=5
211 0 1 0 -1 0 1 0
01 0 1 0 -1 0 1

Various class of single-symbol decodable STBCs for codjeraetworks are captured in Figuré 2 which is
first partitioned in to two sets depending on whether the sate unitary or non-unitary (Definitidd 3). The class
of PDSSDCs are shown to be a subset of the class of SSD codesdperative networks. The set of unitary
distributed SSD codes are shown to contain the DOSTBCs an&tRDSSDCs (Definition] 4). An example of a
code which belongs to the class of non-unitary Distribut&DSodes but not to the class of PDSSDCs is given

below,

Re(hlxl) +]|m(h11‘2) —Re(hll'g) +]|m(h1$1)
Xpsspc = . , : (14)
Re(hgxz) +]|m(h21‘1) Re(hgl'l) — jlm(hgxg)

111 1 1 1 -1 111 1 1| -1 1
AL =5 ; Bi=< i Ag == and By, = = )
211 -1 20 1 -1 211 41 2 11

From the above matrices, it can be verified thit,! is a scaled identity matrix. ThereforR X = R~I1XX !
andXX* is given by,

\ha|? 327 | (hiha — hh1) 307 |il?
(hshi — hihe) >0y |ol? |hal® Y2 Jail?

XXH =

August 10, 2018 DRAFT



IIl. SEMI-ORTHOGONALPDSSDC

From the definition of a PDSSDC (Definitidd 2)XR™'X*"],
and thek’™" row of a PDSSDCX, need not satisfy the equalithxR™" X"

for any k # k' can be non-zero. i.e, th"

= 0, but [XR™'X"] must

be a complex linear combination of several terms with eaci teeing a function of in-phase and quadrature
component of a single information variable. Through out pager, thek! and thek’*" row of a PDSSDC are

referred to asR-orthogonal if [ XR™"X*]
orthogonal if[XR™"X"]

. = 0. Similarly, thek™ and thek’*" row are referred to aR-non-

ko # 0. In this paper, we identify a special class of PDSSDCs wheeeyerow of X is
R-non-orthogonal to atmost one of its rows and we formallyraeft as,

Definition 4: A PDSSDC is said to be a Semi-orthogonal PDSSDC (S-PDSSD&)eify row of a PDSSDC is
R-non-orthogonal to atmost one of its rows.

From the above definition, it can be observed that DOSTBCs gm®per subclass of S-PDSSDCs since every row
of DOSTBC isR-orthogonal to every other row. The definition of a S-PDSSBlies that the set ok rows can
be partitioned in to atIeas{t%} groups such that every group has atmost two rows.

The co-variance matrixR in (B) is a function of (i) the realisation of the channelsnfrahe relays to the
destination and (ii) the relay matrice&y, Bx. In general R may not be diagonal in which case the construction
of S-PDSSDCs is not straight forward. On the similar lined1&], we consider a subset of S-PDSSDCs whose
covariance matrix is diagonal and refer to such a subsetvasmonomial S-PDSSDCs (RS-PDSSDCs). It can be
proved that the relay matrices of a RS-PDSSDC are row mordfréad only if the corresponding covariance

matrix is diagonal (refer to Theorem 1 of [18]). The row monalnproperty of the relay matrices implies that every

row of a RS-PDSSDC contains the variablesh,z,, and+ hjz; atmost once for alk such thatl <n < N.

A. upperbound on the symbol-rate of RS-PDSSDCs

In this subsection, we derive an upperbound on the rate oPBRSSDCs in symbols per channel use in the
second phase i.e an upperbound %n Towards that end, properties of the relay matriées Ay, By, and By
of RS-PDSSDC are studied when the rows corresponding tonitieesk and &’ are (i) R-orthogonal and (ii)
R-non-orthogonal. For the former case, the propertied gfA;/, B andBy. have been studied in [18]. K and
k' represent the indices of the rows of a RS-PDSSDC thaRapethogonal, then the corresponding relay matrices
Ak, Ar, B and By satisfies the following conditions (&, and Ay are column disjoint and (iiB;, andBy, are
column disjoint. (Lemma 3 of [18]) i.e., the matricés, and A, cannot contain non-zero entries on the same

columns simultaneously. The above result implies,
AAE =0y and B;BY =Oy. (15)
In order to address the latter case, consider the 2 matrix 2 as given below,

hpZ; hpdm,

hi, % i

[
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wherehy, hy, are complex random variables. The complex variablendz,, are the components of the transmitted
vector s (as in [1)) wheres = [#; Z --- Zy]. In particular, the complex variableg andz,,, are of the form,
T =+ z,n0+ jro and T, =+ z;0 £ jzr,0 Where

e v,A,d andpu are positive integers such that< v, A, §, ¢ < N and atmost any two of these integers can be

equal.

o The subscript] denotes either (in-phase component) @ (quadrature component) of a variable and

« ¢, & are indeterminate complex variables which can take valtgedorm+ z,, or + &} suchthat <n < N.
For example, ifN = 4, &; andZ,, can possibly bers; + jzso andzsr + jrao respectively.

In Lemmal3, we investigate various choices on the indeteatainariables$ and & such that[EHE]L2 is a
complex linear combination of several terms with each teendpa function of in-phase and quadrature components
of a single information variable. In general, the real Vialea =, r o, vso andz,o can appear inz; andz,,

with arbitrary signs. With out loss of generality, we assuima z; and z,,, are given by
Ty =z,0+jryg and T, = x50 + jz,.0. (16)

However, the results of Lemnia 3 will continue to hold everhé variablest.,, )0, ;0 andz,o appear inz;
andz,, with any arbitrary signs. Since a RS-PDSSDC takes variaigsof the form=+ h;z,,, + hjz} and every
row of a RS-PDSSDC contains the variablesy,z,, and+ hj;z; atmost once, we have the following restrictions
on the choice of the indeterminate variab#esand & that (i) the indeterminat® cannot take the variable; and
variables of the formz; for all n = 1,2,--- N and (ii) the indeterminaté cannot take the variabl&,, and

variables of the fornz}, forall n=1,2,--- N.
Lemma 3:If there exists a solution on the choice ¢fandé& such that

[EHE]l , fi (s, 25Q, e, hier) + f2 (@41, T4 e, )

+ f3 (‘T>\I7‘T>\Q7hk7 hk') + f4 (xﬂfvx#Q7 hkvhk/) 7é 0, (17)

then only one of the following is true,
() 6 =~yandu =\
(i) 6 =Xxandpu = .
where f; (zgr, 25, hi, hiy) is @ complex valued function of the variables;;, zsq, hi, hi foralli =1,2,---4
andg = pu, A, 7, 9.
Proof: Refer to the proof of Lemma in [21]. |

Similarly, it can be shown that, the results of Lempha 3 hotds even if the matri>E is of the form,
hiz; hi 2y,
h;® hi
We use the results of Lemnha 3 to study the properties of ttasy melatrices of a RS-PDSSDC.
Lemma 4:Let A, and Ay be the relay matrices of a RS-PDSSDX, If [AkAﬂ ~is a non zero entry for

,m
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i # m, then the precoding matrices at the sourcandQ are such that
Tir, TiQ, Tm1 ANAZpmq € {Tn1, TnQ, Tn'1, Tnrq) With (18)
ji]a le S {xnl:’a In’[’} and jm[a imQ S {an xn/D}

for somen # n’ wherel < n,n’ < N and the subscridi] represents eithef or Q).
Proof: Refer to the proof of Lemma in [21]. [ |
Lemma 5:Let B, and By be the relay matrices of a RS-PDSSDX, If [BZBf,L.m is a non zero entry for

i # m, precoding matrices at the sourPeandQ are such that
Tir, :f?iQ, Zm1 and me S {In], TnQ,Tn'I, :Z?n/Q} with (19)
Ti1, Zi@ € {Tn0, Two} aANA Tpur, Tm@ € {Tno, Two}

for somen # n’ wherel < n,n’ < N and the subscridil represents eithef or Q).
Proof: The result can be proved on the similar lines of the proof femimal4. ]
Corollary 1: For a RS-PDSSDC, i{AkA,ﬂ ~is non-zero, then so i%AkA,g] _
Proof: Follows from the proof for Lemn;S and Lemih 4. mJ [ |
From the definition of a PDSSDC (Definitidd 2), non-zero estrof thek'” row contains variables of the form

+ hpy,, £ hjz;, or multiples of these by. Therefore,
[XXHLC p = |hg|? {éAkAkHéH + é*BkBkHéT} + hihg {SAkBkHéT}
N
+ hphj [é*BkAkH?] = Z |h;€|2 (w§71k)|xu|2 + w533|$i@|2)
i=1

Wherewa,g,wg?,j € Rt forall k=1,2,---, K. From the results of Lemmain [10], we have

7‘)

AvAY + BBl = diag[E1 i, Fa g, En il (20)

where E,, j, are strictly positive real numbers.

Lemma 6:Let & andk’ represent the indices of the rows of a RS-PDSSDC, thaRanen-orthogonal, then the
corresponding relay matrices;, By, Ay and By satisfy the following conditions,

. [AkAgf,]“_ = [B;B]],, =O0foralli=1,2-N.

« ALA andB;BY, are both column and row monomial matrices.

« ALAL +B;B], is column and row monomial matrix.

« The number of non-zero entries Ay Af + B;BL is even.

B} ~ ~ T By
« The matricesA;, ,» and By, given by Ay, = [A}f Aﬂ and By, = [B] Bf,}T satisfy the following
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inequality :

~ ~H % =T 2m if N =2m and
Rank Ak,k’Ak_k’ + Bk,k/Bk.k'j| Z (21)
' ' 2m+2 if N=2m+1

wherem is a positive integer.

Proof: Refer to the proof of Lemmd in [21]. ]
Using the properties of relay matricés,, Ay, B andBy of a RS-PDSSDC corresponding to two different rows
that are (i)R-orthogonal and (ii)R-non-orthogonal, an upperbound on the maximum r#iels derived in the

following theorem.
Theorem 2:The symbol-rate of a RS-PDSSDC satisfies the inequality :

N =2m,K =2l

=~
==

= if N=2mK=2+1
Rate = % < 22111 _ " * (22)
wherel andm are positive integers.
Proof: Refer to the proof of Theorem 1 in [21]. [ |

IV. CONSTRUCTION OFRS-PDSSDG

In this section, we construct RS-PDSSDCs when the numbeglajs K > 4. The construction provides codes
achieving the upperbound if(22) when (i) and K are multiples of 4 and (ii)V is a multiple of 4 andK is
3 modulo 4. For the rest of the values &f and K, codes meeting the upperbound are not known. In particular,
for values of N < 4 and any K, the authors are not aware of RS-PDSSDCs with rates higlzer that of
row monomial DOSTBCs. The following construction provideS-PDSSDCs with rates higher than that of row
monomial DOSTBCs whedv > 4 and K > 4. We first provide the construction of the precoding matrieesnd
Q and then present the construction of RS-PDSSDCs.

A. Construction of precoding matricésand Q
Let T, Q € C*** be given by

10 —j 0 1 0 j O
0 1 —j 0 0 j

le 7 anda = = J
2101 0 g4 0 -1 0 j
10 4 0 -1 0 j O

Let N = 4y + a, wherea can take values of, 1,2 and3 andy is any positive integer. For a given value of
andy, the precoding matriceB andQ at the source are constructed as,

P— F®|y O4y><a : Q:
Oa><4y Oa

Oa><4y |a

Q@'y O4y><a ]
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Example 1:For N = 6, we havey = 1 anda = 2. Following the above construction method, precoding roai
P andQ are given by,

10 —j 0 0 0 1 0 45 00 0
01 0 —j 00 1 0 5 00
P:1010j00;Q21 -1 0 45 00
2110 4 000 -1 j 0 0 0
00 0 0 20 0 0000
00 0 0 0 2| i 00 0 0]

B. Construction of RS-PDSSDCs

Through out this subsection, we denote a RS-PDSSDUfoelays with NV variables asX (N, K). Construction
of RS-PDSSDCs is divided in to three cases depending on thesaf N and K.
Case 1: N = 4y and K = 4z : In this case, we construct RS-PDSSDCs in the following #sste

Step (i) : LetU,, ., be a2 x 2 Alamouti design in complex variables;, z2 as given below,

1 X2
Usy, 20 = . (23)
—x; x]
Using the design in{23), constructdax 4 design,f2,,, in 4 complex variableS 4,1, Tami2, Tamrs anNd Zamia
as shown below for alin =0,1,---y — 1.

Tam+1  Tami2 Tam+3 Tamta

Q, — Uz imits Fames  Ydamis, Famaa _ ~Thmt2  Thmi1 —Timia  Timis
Uz imas, Famea  Yogmat, amao Tam+3  Tam+t4 Tam+1  Tam+2

_j2m+4 j2m+3 _iZ77L+2 jZ7rL+1

where

Tam+1 = TUm1)I T JT(4m4+4)Q; Tam+2 = Tam+2)T T JT(4m13)Q;
Tam+3 = TUum+1)Q T JT(am+a) 15 Tam+a = Tam+2)Q + I (4m43)1-

Step (i) : LetH, A and® € CX*X given byH = diag{hi, hs,--- ,hx}, A = diag{1,0,1,0,---0} and® =
diag{0,1,0,1,---1} wherehy, ho, - - - hxc are complex variables am\, ® are such thah +® = | . UsingH, A
and ©, construct a diagonal matrix; asG = HA + H*®.

Step (iii) : Using(2,,,, construct adx x 4z matrix X,,, given byQ,, ® |;‘?<H> for eachm =0,1,---y — 1.

Step (iv) : A RS-PDSSDCX (N, K) is constructed using,, andG asX (N, K) = G [Xo X1 --- X,_1] where

the matrix[Xo X2 --- X,_1] is obtained by juxtaposing the matrick¥g, Xi,- -, X,_1.
Example 2:For N = 4 andK = 4, we haver = y = 1. Following Step (i) to Step (iv) in the above construction,
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we haveG = diag{hi, h}, hs, h}} and Xy = Q. HenceX (4, 4) is given by,

X (4,4) =

h11
RS
h3Ts3

—hid]

h1T2
h3Za

hizs

h1Z3
—h3%;
hsZ1

—hia;

h1j4
h* ~k

223 (24)
h3Z2

hizi

wherez; = zi7 + JT4Q; To = T2y + JT3Q; T3 = T1Q + JT4s and 7, = ToQ + JjT3r. The variablesty, Zo, - - - T4
are obtained using the precoding matri€andQ as given in[(ll). The precoding matricesandQ are constructed
as in Subsection IV-A. The relay specific matrideg, B, for the RS-PDSSDC i (24) are as given below,

0

—1
; Ba =

o = O O
= O O O

0
1
0
0

o O O =

1
0
0
0

B, =A, =B; = A, = 0,.

o = O O

; Az =

o = O O
= o o O

0 0

—1
and By =

o o o
o o — o©
o — o o
o o o =

Example 3:For N = 4 andK = 8, we havey = 1 andz = 2. Following the construction procedure in Case 1,
Xo =Ry ® 12 andX (4,8) = GX,. Therefore X (4, 8) is given by.

h1Z1
—h323
h3Ts
—h3%;

0

0
0
0

h1Z2
h521
h3Z4
hiz}

0

o O O

h1Z3
—h3%;
h3Z1
nis

0

o O O

o O O O

hs1
~hizs
h7Z3

~hi;

0 0 0

0 0 0

0 0 0

0 0 0
hsZ2 hsTs  hsa
i —hIEL  hIE
h7Z4 h7Z1  hr7Z2
hiE  —hsEs  hsE

Case 2: N =4y and K = 4x 4+ a for a = 1,2 and3 : In this case, a RS-PDSSDC is constructed in two steps

as given below.

Step(i) : Construct a RS-PDSSDC for paramet®rs- 4y and K = 4(z + 1) as given in Casgl1.

Step(ii) : Drop the lastt — a rows of the RS-PDSSDC constructed in Step (i).

Example 4:When N = 4 andK = 6, the parameters,  andy are 2, 1 and 1 respectively. As given in Case
2, a RS-PDSSDC folV = 4 andK = 8 is constructed and the last 2 rows of the design are dropiiesl code
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X(4,6) is as given below.

hiZ1  hiia  hids  hida 0 0 0 0
—h3iy  h3ET —hiEL  hids 0 0 0 0
X (4.6) = hs#s hsis  hsii  hsa 0 0 0 0
—hiE; hGES —hiES  hiE 0 0 0 0
0 0 0 0  hs#1 hsia  hsis  hsia
I 0 0 0 0 —hgis hsit —he®;  hi®s |

Case 3:N =4y +band K = 4z + a whereb = 1,2,3 anda = 0,1,2,3 : In this case, RS-PDSSDCs are
constructed in the following 3 steps.
Step (i) : Construct a RS-PDSSDK,(4y, 4z + a) for parametersV = 4y and K = 4z + a as in Cas€]2 using the
first 4y variables.
Step (i) : Construct a DOSTBCX' (b, 4z + a) with parametersV = b and K = 4z + a using the lasb variables
as in [18].
Step (iii) : The RS-PDSSDCX (N, K) is given by juxtaposin (4y, 4x + a) andX’ (b, 4x + a) as shown below,

X(N,K) = [X(4y,4z + a) X' (b,4z + a)].

Example 5:When N = 6 and K = 8, the parameters, o,z andy are respectively given by 2, 0, 2 and 1.
As in Step (i), construcX (4, 8) as explained in Cadd 1 which is given below,

hiz1  hiZ2 hiTs hiZa 0 0 0 0

—h3F RET  —RIEL RIS 0 0 0 0

hs®s  hsa haZ1  hsio 0 0 0 0

X (4,8) —hiZy  hixsy —hiTs hiT} 0 0 0 0 . (25)

0 0 0 0 hsT1 hsZa hsTs hsTa

0 0 0 0 —RiE, RLE —hiF  hiE

0 0 0 0 h7Ts hr7Za h7Z1  hrZs

i 0 0 0 0 —hiF hiE5 —hiEs hiE |

According to Step (ii), construct a DOSTBC [18]/ (2, 8) as shown below,

[ higs  hade 0 0 0 0 0 0]
_hsEr hiE o 0 0 0 0 0
0 0 hs#s hsie O 0 0o 0

X (2.8) - 0 0 —hiE hid 0o o0 0o 0 26

0o 0 0 0 hs#s hsFe 00
0o 0 0 0 hiEE hii: 00
0o 0 0 0 0 0 heds hide
I 0o 0 O 0 0 0 —hiF hiE
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A RS-PDSSDCX (6, 8) is constructed by juxtaposing the designs[inl (25) (2683hasvn below,

X (6,8) = [X(4,8) X'(2,8)].

C. Comparison of the Symbol-rates of RS-PDSSDCs and roveimiahDOSTBCs

For a given value ofV, K such thatNV > 4 and K > 4, we proposed a method of constructing a RS-PDSSDC,
X (N, K) with a minimum value of7". The minimum values of" provided in our construction is listed below
against the corresponding valuesMfand K. Against every value of’ for RS-PDSSDCs, the corresponding value
of T' for row monomial DOSTBC is provided with in the braces.

(i) N even,K even:

dzy (8zy) if N =4y, K = 4.
s dxy + 4z (8zy + 4x) if N =4y + 2, K = 4x.
N day + 4y (8zy + 4y) if N =4y, K = 4z + 2.
doy+ 4y +4z+2 Bey+4y+4e+2) if N=4y+2, K =4z +2.
(i) N even,K odd :
doy + 4y (8zy + 4y) if N =4y, K =4z + 1.
T doy+4y+4x+2 Bry+4e+4y+2) if N=4y+2, K =4x+ 1.
B dxy + 4y (8zy + 8y) if N =4y, K = 4z + 3.
doy+ 4y +4z+4 Bey+8y+4x+4) if N=4y+2, K =4z + 3.
(i) N odd, K even :
dxy + 4z (8zy + 4x) if N=4y+1,K = 4x.
s doy+ 4y +4z+2 Bey+4x +4y+2) if N=4y+1, K =4z +2.
N dxy + 8x (8xy + 8x) if N =4y + 3, K = 4x.
doy+4y+8x+4 Bry+4y+8x+4) if N=4y+3,K =4x+ 2.

(iv) N odd, K odd :

4oy + 4y +4x + 1

(max(8zy +4x +2y+ 1, 8zy+4y+2x+1)) if N=4y+1, K =4z +1.
4oy + 4y +4x + 3

(max(8zy + 6y +4x + 3, 8zy+ 8y +2x+2)) if N=4y+1, K =4z + 3.
4oy + 8x + 4y + 3

(max(8zy + 6z + 4y + 3, 8xy+8x+2y+2)) if N=4y+3, K=4z+ 1.
4oy + 4y + 8x + 8

(max(8zy + 8x + 6y + 6, 8zy + 8y + 6z +6)) if N =4y+3, K =4z + 3.

From the above comparison, it can be observed that, for axgigkie of N and K, a RS-PDSSDCX(N, K)
is constructed with a smaller value 6fcompared to that of a row monomial DOSTBC, there by providiigher
values of the symbol- rateé—\f. In particular, whenN is a multiple of 4 andK is of the form 0 or 3 modulo
4, row monomial DOSTBCs need double the number of channed irs¢he second phase compared to that of

RS-PDSSDCs. It can also be observed that improvement inghesy of 7' for a RS-PDSSDC is not significant
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when K and N are both odd.

V. ON THE CONSTRUCTION OFS-PDSSDG WITH OUT PRECODING AT THE SOURCE

The existence of high rate S-PDSSDCs has been shown in tlceding sections, when the source performs
co-ordinate interleaving of information symbols beforedmtcasting it to all the relays. In this setup, the relays do
not perform coordinate interleaving of their received sgisbOne obvious question that needs to be answered is,
whether linear processing of the received symbols at tlaysedlone is sufficient to construct S-PDSSDCs when the
source doesn’t perform coordinate interleaving of infotiorasymbols. In other words, is coordinate interleaving
of the information symbols at the source necessary to asctsBDSSDCS. The answer is, yes.

In the rest of this section, we show that PDSSDCs cannot bstrearted by linear processing of the received
symbols at the relays when the source transmits the infeamalymbols to all the relays with out precoding.
Towards that end, let the*" relay be equipped with a pair of matrices, andBx € CV*T which perform linear
processing on the received vector. Excluding the additiiesencomponent, the received vector at i relay is
hisS = [hgx1, hiaa, - - hpxy] wherex;’s are information symbols antl, is any complex number. The matrices

Ay, Bx € CV*T act on the vectoh,s to generate a vector of the form,
hiSAL + hZS*Bk (27)

From [27), the non zero entries bfsA; + h}s*B;, contains complex variables of the form,z, + 2* or multiples
of these byj wherej = /-1 and

Re(z), Im(z) € {Re(hrzy),Im (hyzy,) | 1 <n < N}. (28)

To be precise, Réu,x,,) and Im(hyx,,) are given byhyrz,; — hrgrng andhgrz,g + hrgrnr respectively. The
above vector can also contain linear combination of the ifpdcabove complex variables.

From Definition[2, non-zero entries of thé" row of a PDSSDCs are of the forea hyZ,, + hyx;, wherez,
andz,o can be in-phase and quadrature components of two diffarartmation variables. Sindey, is any complex
variable, from[(2B), linear processing of the received syimlat the relays alone cannot contribute variables of the
form = h,z,, £ h;2}. Therefore, S-PDSSDCs cannot be constructed by lineaepsowy of the received symbols
at the relays alone when the source transmits the informatianbols to all the relays with out precoding.

Remark 3:If hy's are real variables, then R, Im(x) € {hyRe(x,,), helm (z,) | 1 <n < N} in which case,
the non-zero entries of thieg" row can be of the formt hy2,, + h,3 wherez, andz,q can be in-phase and
guadrature components of two different information vaaalfor any real variablé,. This aspect has been well
studied in [15], [19] and [20] where the relays are assumelatee the knowledge of phase component of their
corresponding channels thereby making a real variable. Hence, with the knowledge of partial CShatrelays,
high rate distributed SSD codes can be constructed by |lpremessing at the relays alone. i.e, with the knowledge
of partial CSI at the relays, the source need not performgaliag of information symbols before transmitting to

the all the relays in the first phase.
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VI. ON THE FULL DIVERSITY OF RS-PDSSDG

In this section, we consider the problem of designing a timeethsional signal sety such that a RS-PDSSDC with
variablesry, x9, - - - xy taking values from\ is fully diverse. Since every codeword of a RS-PDSSDC (Dedin2)
contains complex variablgs,’s, Pairwise error probability (PEP) analysis of RS-PDSSDX<not straightforward.
The authors do not have conditions on the choice of a comjigmakset such that a RS-PDSSDC is fully diverse.
However, we make the following conjecture.

Conjecture: A RS-PDSSDC in variables,, -, - - - x v is fully diverse if the variables takes values from a complex

signal set say\ such that the difference signal s&tA given by
AN={a—b|a,be A}

does not have any point on the lines that are5 degrees in the complex plane apart from the origin.

In the rest of this section, we provide simulation resultstiba performance comparison of a RS-PDSSDC,
X (4,4) (given in [23)) and a row-monomial DOSTB®, (4,4) (given in [29)) in terms of Symbol Error Rate
(SER) (SER corresponds to errors in decoding a single comydeable). The SER comparison is provided in
Figure[3. Since the design in_{24) has double the symbole@igared to the design ih_(29), for a fair comparison,
16 QAM and a 4 point rotated QPSK are used as signal set&’for, 4) andX (4, 4) respectively to maintain the

rate of 1 bits per second per Hertz. The average SNR per chaseeor X’ (4,4) and X (4,4) respectively are

p13-p11-€;p2 and - ipfﬁpz. In order to maintain the same Signal to Noise ratio (SNR)tlie designX’ (4,4), every
relay (other than the source) uses twice the power as théltiéodesignX (4, 4). The class of DOSTBCs are shown
to be fully diverse in [18]. From Figurel 3, it is observed tbxat4,4) provides full diversity, since the SER curve
moves parallel to that oK’ (4,4). It can be noticed from Figurg 3 that the desi§ri4,4) performs better than

X' (4,4) by close to 2-3 db.

hlxl hl.%'g h1$3 h1$4 0 0 0 0
—hsxs  hixi —h3x) hixj 0 0 0 0
X/ (4’ 4) _ 242 241 244 23 ) (29)
0 0 0 0 thl thQ hgd?g h3I4
0 0 0 0 —hjzs hijxy —hix; hjx}

VII. CONCLUSION AND DISCUSSION

We considered the problem of designing high rate, singilek®} decodable DSTBCs when the source is allowed
to perform co-ordinate interleaving of information symbdlefore transmitting it to all the relays. We introduced
PDSSDCs (Definitio]2) and showed that, DOSTBCs are a speat@ of PDSSDCs.

A special class of PDSSDCs having semi-orthogonal propeetg defined (Definitiohl4). A subset of S-PDSSDCs
called RS-PDSSDCs is studied and an upperbound on the miargite@f such codes is derived. The bounds obtained
for RS-PDSSDC are shown to be approximately twice largen that of DOSTBCs. A systematic construction
of RS-PDSSDCs are presented for the case when the numbelag$,r& > 4. Codes achieving the bound are
found whenkK is of the form 0 or 3 modulo 4. For the rest of the choicegsgf S-PDSSDCs meeting the above
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bound on the rate are not known. The constructed codes avndioohave rate higher than that of row monomial
DOSTBCs.

Some of the possible directions for future work are as fadlow

(1]

(2]

(3]

(4]

5]

(6]

[7]

(8]
9]

« In this paper, we studied a special class of PDSSDCs calléthtyriPDSSDCs (See Definitidd 3). The design
of high rate Non-Unitary PDSSDCs is an interesting direcfior future work.

o The authors are not aware of RS-PDSSDCs achieving the boantHeomaximum rate other than the case
when K is 0 or 3 modulo 4. The upperbounds on the maximum rate forafetfte values ofi’ possibly can

be tightened.
o A class of S-PDSSDCs was defined, by making every row of theSPlISR-non-orthogonal to atmost one of
its rows. It will be interesting whether the bounds on the imet rate of PDSSDCs can be increased further

by making a rowR-non-orthogonal to more than one of its rows.
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Fig. 3. Performance comparison of S-PDSSDC and DOSTBC forNand K = 4 with 1 bps/Hz
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