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Abstract

Distributed Orthogonal Space-Time Block Codes (DOSTBCs) achieving full diversity order and single-symbol

ML decodability have been introduced recently by Yi and Kim for cooperative networks and an upperbound on the

maximal rate of such codes along with code constructions hasbeen presented. In this paper, we introduce a new class

of Distributed STBCs called Semi-orthogonal Precoded Distributed Single-Symbol Decodable STBCs (S-PDSSDC)

wherein, the source performs co-ordinate interleaving of information symbols appropriately before transmitting it to

all the relays. It is shown that DOSTBCs are a special case of S-PDSSDCs. A special class of S-PDSSDCs having

diagonal covariance matrix at the destination is studied and an upperbound on the maximal rate of such codes is

derived. The bounds obtained are approximately twice larger than that of the DOSTBCs. A systematic construction

of S-PDSSDCs is presented when the number of relaysK ≥ 4. The constructed codes are shown to achieve the

upperbound on the rate whenK is of the form 0 or 3 modulo 4. For the rest of the values ofK, the constructed

codes are shown to have rates higher than that of DOSTBCs. It is shown that S-PDSSDCs cannot be constructed

with any form of linear processing at the relays when the source doesn’t perform co-ordinate interleaving of the

information symbols. Simulation result shows that S-PDSSDCs have better probability of error performance than that

of DOSTBCs.

Index Terms

Cooperative diversity, single-symbol ML decoding, distributed space-time coding, precoding.

I. I NTRODUCTION AND PRELIMINARIES

Cooperative communication has been a promising means of achieving spatial diversity without the need of

multiple antennas at the individual nodes in a wireless network. The idea is based on the relay channel model,

where a set of distributed antennas belonging to multiple users in the network co-operate to encode the signal

transmitted from the source and forward it to the destination so that the required diversity order is achieved, [1]-[4].

Spatial diversity obtained from such a co-operation is referred to as co-operative diversity. In [5], the idea of space-

time coding devised for point to point co-located multiple antenna systems is applied for a wireless relay network

and is referred to as distributed space-time coding. The technique involves a two phase protocol where, in the first
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phase, the source broadcasts the information to the relays and in the second phase, the relays linearly process the

signals received from the source and forward them to the destination such that the signal at the destination appears

as a Space-Time Block Code (STBC).

Since the work of [1]-[5], lot of efforts have been made to generalise the various aspects of space-time coding

proposed for multiple antenna systems to the co-operative setup. One such important aspect is the design of low-

complexity Maximum Likelihood (ML) decodable DistributedSpace-Time Block Codes (DSTBCs) - in particular,

the design of Single-Symbol ML Decodable (SSD) DSTBCs. For abackground on SSD STBCs for MIMO systems,

we refer the reader to [6] - [12]. Through out the paper, we consider DSTBCs that are ML decodable. Two group

decodable DSTBCs were introduced in [13] through doubling construction using a commuting set of matrices

from field extensions. In [14], Orthogonal Designs (ODs) andQuasi-orthogonal Designs [9] originally proposed for

multiple antenna systems have been applied to the co-operative framework. Since the co-variance matrix of additive

noise at the destination is a function of (i) the realisationof the channels from the relays to the destination and

(ii) the relay matrices, complex orthogonal designs (except for 2 relays - Alamouti code) loose their SSD property

in the co-operative setup. In [15], DSTBCs based on co-ordinate interleaved orthogonal designs [11] have been

introduced which have reduced decoding complexity. In thisset-up, the source performs co-ordinate interleaving of

information symbols before transmitting to the relays. In [16], low decoding complexity DSTBCs were proposed

using Clifford-algebras, wherein the relay nodes are assumed to have the knowledge of the phase component of

the source-to-relay channels. A class of four-group decodable DSTBCs was also proposed in [17].

Recently, in [18], Distributed Orthogonal Space-Time Codes (DOSTBCs) achieving single-symbol decodability

have been introduced for co-operative networks. The authors considered a special class of DOSTBCs which make

the covariance matrix of the additive noise vector at the destination, a diagonal one and such a class of codes

was referred to as row monomial DOSTBCs. Upperbounds on the maximum symbol-rate (in complex symbols per

channel use in the second phase) of row monomial DOSTBCs havebeen derived and a systematic construction

of such codes has been proposed. The constructed codes were shown to meet the upperbound for even number of

relays. In [20], the same authors have derived an upperboundon the symbol-rate of DOSTBCs when the additive

noise at the destination is correlated and have shown that the improvement in the rate is not significant when

compared to the case when the noise at the destination is uncorrelated [18].

In [19] and [20], SSD DSTBCs have been studied when the relay nodes are assumed to know the corresponding

channel phase information. An upperbound on the symbol ratefor such a set up is shown to be12 which is

independent of the number of relays.

In [18], [19] and [20] the source node transmits the information symbols to all the relays with out any processing.

On the similar lines of [15] and using the framework proposedin [18], in this paper, we propose SSD DSTBCs aided

by linear precoding of the information vector at the source.In our set-up, we assume that the relay nodes do not

have the knowledge of the channel from the source to itself. In particular, it is shown that, co-ordinate interleaving of

information symbols at the source along with the appropriate choice of relay matrices, SSD DSTBCs with maximal

rates higher than that of DOSTBCs can be constructed. The contributions of this paper can be summarized as
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follows:

• A new class of DSTBCs called Precoded DSTBCs (PDSTBCs) (Definition 1) is introduced where the source

performs co-ordinate interleaving of information symbolsappropriately before transmitting it to all the relays.

Within this class, we identify codes that are SSD and refer tothem as Precoded Distributed Single Symbol

Decodable STBCs (PDSSDCs) (Definition 2). The well known DOSTBCs studied in [18] are shown to be a

special case of PDSSDCs.

• A set of necessary and sufficient conditions on the relay matrices for the existence of PDSSDCs is proved

(Theorem 1).

• Within the set of PDSSDCs, a class of Semi-orthogonal PDSSDCs (S-PDSSDC) (Definition 4) is defined. The

known DOSTBCs are shown to belong to the class of S-PDSSDCs. On the similar lines of [18], a special

class of S-PDSSDCs having a diagonal covariance matrix at the destination is studied and are referred to as

row monomial S-PDSSDCs. An upperbound on the maximal symbol-rate of row monomial S-PDSSDCs is

derived. It is shown that, the symbol rate of row monomial S-PDSSDC is upperbounded by2
l

and 2
l+1 , when

the number of relays,K is of the form2l and2l+1 respectively, wherel is any natural number. The bounds

obtained are approximately twice larger than that of DOSTBCs.

• A systematic construction of row-monomial S-PDSSDCs is presented whenK ≥ 4. Codes achieving the

upperbound on the symbol rate are constructed whenK is 0 or 3 modulo 4. For the rest of the values ofK,

the constructed S-PDSSDCs are shown to have rates higher than that of the DOSTBCs.

• Precoding of information symbols at the source has resultedin the construction of high rate S-PDSSDCs.

In this setup, the relays do not perform co-ordinate interleaving of the received symbols. It is shown that,

when the source transmits information symbols to all the relays with out any precoding, and if the relays

are allowed to perform linear processing of their received vector, S-PDSSDCs other than DOSTBCs cannot

be constructed thereby, necessitating the source to perform coordinate interleaving of information symbols in

order to construct high rate S-PDSSDCs.

The remaining part of the paper is organized as follows: In Section II, along with the signal model, PDSTBCs are

introduced and a special class of it called PDSSDCs is defined. A set of necessary and sufficient conditions on the

relay matrices for the existence of PDSSDCs is also derived.In Section III, S-PDSSDCs are defined and a special

class of it called row-monomial S-PDSSDCs are studied. An upperbound on the maximal rate of row-monomial

S-PDSSDCs is derived. In Section IV, construction of row-monomial S-PDSSDCs is presented along with some

examples. In Section V, we show that the source has to necessarily perform precoding of information symbols in

order to construct high rate S-PDSSDCs. The problem of designing two-dimensional signal sets for the full diversity

of RS-PDSSDCs is discussed in Section VI along with some simulation results. Concluding remarks and possible

directions for further work constitute Section VII.
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Notations:Through out the paper, boldface letters and capital boldface letters are used to represent vectors and

matrices respectively. For a complex matrixX, the matricesX∗, XT , XH , |X|, ReX and ImX denote, respectively,

the conjugate, transpose, conjugate transpose, determinant, real part and imaginary part ofX. The element in therth1

row and therth2 column of the matrixX is denoted by[X]r1,r2 . The diagonal matrix diag{[X]1,1, [X]2,2 · · · [X]T,T }
constructed from the diagonal elements of aT × T matrix X is denoted by diag[X]. For complex matricesX and

Y, X ⊗ Y denotes the tensor product ofX andY. The tensor product of the matrixX with itself r times wherer

is any positive integer is represented byX⊗
r

. TheT × T identity matrix and theT × T zero matrix respectively

denoted byIT and0T . The magnitude of a complex numberx, is denoted by|x| andE [x] is used to denote the

expectation of the random variablex. A circularly symmetric complex Gaussian random vector,x with meanµ

and covariance matrixΓ is denoted byx ∼ CSCG (µ,Γ). The set of all integers, the real numbers and the complex

numbers are respectively, denoted byZ, R andC and j is used to represent
√
−1. The set of allT × T complex

diagonal matrices is denoted byDT and a subset ofDT with strictly positive diagonal elements is denoted byD+
T .

II. PRECODED DISTRIBUTED SPACE-TIME CODING

A. Signal model

The wireless network considered as shown in Figure 1 consists of K + 2 nodes each having single antenna

which are placed randomly and independently according to some distribution. There is one source node and one

destination node. All the otherK nodes are relays. We denote the channel from the source node to thekth relay as

hk and the channel from thekth relay to the destination node asgk for k = 1, 2, · · · ,K. The following assumptions

are made in our model:

• All the nodes are subjected to half duplex constraint.

• Fading coefficientshk, gk are i.i.dCSCG (0, 1) with coherence time interval of atleastN andT respectively.

• All the nodes are synchronized at the symbol level.

• Relay nodes do not have the knowledge of fade coefficientshk.

• Destination knows the fade coefficientsgk, hk.

The source is equipped with aN length complex vector from the codebookS = {s1, s2, s3, · · · , sL} consisting

of information vectorssl ∈ C1×N such thatE
[

slsHl
]

= 1 for all l = 1, · · · , L. The source is also equipped with a

pair of N ×N matricesP andQ called precoding matrices. Every transmission from the source to the destination

comprises of two phases. When the source needs to transmit aninformation vectors ∈ S to the destination, it

generates a new vectors̃ as,

s̃ = sP + s∗Q (1)

such thatE
[

s̃̃sH
]

= 1 and broadcasts the vectors̃ to all theK relays (but not to the destination). The received

vector at thekth relay is given byrk =
√
P1Nhk s̃ + nk, for all k = 1, 2, · · · ,K wherenk ∼ CSCG (0, IN ) is the

additive noise at thekth relay andP1 is the total power used at the source node every channel use. In the second

phase, all the relay nodes are scheduled to transmitT length vectors to the destination simultaneously. Each relay
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is equipped with a fixed pair ofN ×T rectangular matricesAk, Bk and is allowed to linearly process the received

vector. Thekth relay is scheduled to transmit

tk =

√

P2T

(1 + P1)N
{rkAk + r∗kBk} . (2)

whereP2 is the total power used at each relay every channel use in the second phase. The vector received at the

destination is given by

y =
K
∑

k=1

gktk + w (3)

wherew ∼ CSCG (0, IT ) is the additive noise at the destination. Using (2) in (3),y can be written as

y =

√

P1P2T

(1 + P1)N
gX + n

where

• n =
√

P2T
(1+P1)N

[

∑K
k=1 gk {nkAk + n∗

kBk}
]

+ w.

• The equivalent channelg is given by[g1 g2 · · · gK ] ∈ C1×K .

• Every codewordX ∈ CK×T is of the form,

X =
h

[h1 s̃A1 + h
∗
1 s̃∗B1]

T
[h2s̃A2 + h

∗
2 s̃∗B2]

T
· · · [hK s̃AK + h

∗
K s̃∗BK ]

T
iT

.

Definition 1: The collectionC of K × T codeword matrices shown below, wheres runs over a codebookS,

C =



h

[h1 s̃A1 + h
∗
1 s̃∗B1]

T
[h2 s̃A2 + h

∗
2 s̃∗B2]

T
· · · [hK s̃AK + h

∗
K s̃∗BK ]

T
iT
ff

(4)

is called the Precoded Distributed Space-Time Block code (PDSTBC) which is determined by the set{P,Q,Ak,Bk}.

Remark 1:From (4), every codeword of a PDSTBC includes random variableshk for all k = 1, 2, · · ·K. Even

though,hk can take any complex value, since the destination knows the channel set{h1, h2, · · ·hK} for every

codeword use, the cardinality ofC is equal to the cardinality ofS. The properties of the PDSTBC will depend

on the set{P,Q,Ak,Bk} alone but not on the realisation of the channelshk’s. In this paper, on the similar lines

of [18], we derive conditions on the set{P,Q,Ak,Bk} such that the PDSTBC in (4) is SSD for any values of

{h1, h2, · · ·hK}. In other words, the derived conditions are such that irrespective of the realisation ofhk’s, the

PDSTBC in (4) is SSD.

The covariance matrixR ∈ C
T×T of the noise vectorn is given by

R =
P2T

(1 + P1)N

"

K
X

k=1

|gk|
2
n

AH
k Ak + BH

k Bk

o

#

+ IT . (5)

The Maximum Likelihood (ML) decoder decodes to a vectorŝ where

ŝ = arg min
s∈S

"

y −

s

P1P2T

(1 + P1)N
gX

#

R−1

"

y −

s

P1P2T

(1 + P1)N
gX

#H
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= arg min
s∈S

"

−2Re

 
s

P1P2T

(1 + P1)N
gXR−1yH

!

+
P1P2T

(1 + P1)N
gXR−1XHgH

#

.

With the above decoding metric, we give a definition for a SSD distributed space-time block code which also

includes DOSTBCs studied in [18].

Definition 2: A PDSTBC,X in variablesx1, x2, · · ·xN is called a Precoded Distributed Single-Symbol Decodable

STBC (PDSSDC), if it satisfies the following conditions,

• The entries of thekth row of X are 0,± hkx̃n, ± h∗
kx̃

∗
n or multiples of these byj wherej =

√
−1 for any

complex variablehk. The complex variables̃xn for 1 ≤ n ≤ N are the components of the transmitted vector

s̃ wheres̃ = [x̃1 x̃2 · · · x̃N ].

• The matrixX satisfies the equality

XR−1XH =

N
∑

i=1

Wi with [Wi]k,k = |hk|2
(

υ
(1)
i,k |xiI |2 + υ

(2)
i,k |xiQ|2

)

(6)

where eachWi is a K × K matrix with its non zero entries being functions ofxiI , xiQ and hk for all

k = 1, 2, · · · ,K andυ(1)
i,k , υ

(2)
i,k ∈ R.

We study the properties of the relay matricesAk,Bk and the precoding matricesP andQ such that the vectors

transmitted simultaneously from all the relays appear as a PDSSDC at the destination. Certain properties of the relay

matrices have been studied in the context of DOSTBCs in [18].We recall some of the definitions and properties

used in [18] so as to study the properties of the relay matrices of a PDSSDC. A matrix is said to be column (row)

monomial, if there is atmost one non-zero entry in every column (row) of it.

Lemma 1:The relay matricesAk andBk of a PDSSDC satisfy the following conditions,

• The entries ofAk andBk are 0,± 1,± j.

• Ak andBk cannot have non-zeros at the same position.

• Ak, Bk andAk + Bk are column monomial matrices.

Proof: The proof is on the similar lines of the proof for Lemma1 in [18].

Lemma 2: If A,C,D ∈ CN×N and s = [x1, x2, · · · , xN ] ∈ C1×N , with eachxi = xiI + jxiQ, then

sAsH + sCsT + s∗DsH =
N
∑

i=1

fi (xiI , xiQ) (7)

wherefi (xiI , xiQ) is a complex valued function of the variablesxiI andxiQ if and only if A, C+CT , D+DT ∈
DN .

Proof: Refer to the proof of Lemma2 in [21].

Using the results of Lemma 2, in the following Theorem, we provide a set of necessary and sufficient conditions

on the matrix set{P,Q,Ak,Bk} such that a PDSTBCX with the above matrix set is a PDSSDC.

Theorem 1:A PDSTBCX is a PDSSDC if and only if the relay matricesAk, Bk satisfy the following conditions,

August 10, 2018 DRAFT
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(i) For 1 ≤ k 6= k′ ≤ K,

Υ1AkR−1AH
k′Υ

H
2 +Π

∗
1A∗

k′R−1AT
kΠ

T
2 ∈ DN for

8

>

>

<

>

>

:

Υ1 = Υ2 = P andΠ1 = Π2 = Q;

Π2 = Υ1 = P andΠ1 = Υ2 = Q;

Π1 = Υ2 = P andΠ2 = Υ1 = Q;

(8)

Υ
∗
1BkR−1BH

k′Υ
T
2 +Π1B∗

k′R−1BT
k Π

H
2 ∈ DN for

8

>

>

<

>

>

:

Υ1 = Υ2 = Q andΠ1 = Π2 = P;

Π2 = Υ1 = Q andΠ1 = Υ2 = P;

Π1 = Υ2 = Q andΠ2 = Υ1 = P.

(9)

(ii) For 1 ≤ k, k′ ≤ K,

Π
∗
h

BkR−1AH
k′ + A∗

k′R−1BT
k

i

Υ
H ∈ DN , for

8

>

>

<

>

>

:

Υ = P andΠ = Q;

Υ = P andΠ = P;

Υ = Q andΠ = Q;

(10)

Π

h

AkR−1BH
k′ + B∗

k′R−1AT
k

i

Υ
T ∈ DN , for

8

>

>

<

>

>

:

Υ = Q andΠ = P;

Υ = P andΠ = P;

Υ = Q andΠ = Q.

(11)

(iii) For 1 ≤ k ≤ K,

AkR−1AH
k + B∗

kR−1BT
k = diag[D1,k, D2,k, · · · , DN,k] . (12)

whereDn,k ∈ R for all n = 1, 2, · · ·N .

Proof: Refer to the proof of Lemma3 in [21].

Theorem 1 provides a set of necessary and sufficient conditions on the relay matricesAk,Bk and the pre-

coding matricesP and Q such that,X is a PDSSDC. The matrices,Υ1AkR−1AH
k′Υ

H
2 + Π

∗
1A∗

k′R−1AT
kΠ

T
2 ,

Υ
∗
1BkR−1BH

k′Υ
T
2 +Π1B∗

k′R−1BT
kΠ

H
2 , Π

∗

[

BkR−1AH
k′ + A∗

k′R−1BT
k

]

Υ
H andΠ

[

AkR−1BH
k′ + B∗

k′R−1AT
k

]

Υ
T

in the conditions of (8) - (11) need to be diagonal. This implies that the above matrices can also be0N . The

DOSTBCs studied in [18] are a special class of PDSSDCs since the relay matrices of DOSTBCs(Lemma1, [18])

satisfy the conditions of Theorem 1. In particular, the necessary and sufficient conditions on the relay matrices of

DOSTBCs as shown in Lemma1 of [18] can be obtained from the necessary and sufficient conditionsof PDSSDCs

by makingP = IN , Q = 0N andDN = 0N in (8) - (11).

A PDSSDC, X in variablesx1, x2, · · ·xN can be written in the form of a linear dispersion code [22] as

X =
∑N

j=1 xiIΦiI + xiQΦiQ whereΦiI ,ΦiQ ∈ CK×T are called the weight matrices ofX. Within the class

of PDSSDCs, we consider a special set of codes called UnitaryPDSSDCs defined as,

Definition 3: A PDSSDC,X is called a Unitary PDSSDC, if the weight matrices ofX satisfies the following

conditions,ΦiIΦ
H
iI , ΦiQΦ

H
iQ ∈ D+

K for all i = 1, 2, · · ·N.

Remark 2:We caution the reader to note the difference between the definition for a Unitary PDSSDC for

cooperative networks and the definition for a Unitary SSD code for MIMO systems [12]. For better clarity, we recall

the definition for a Unitary SSD code designed for MIMO systems. A SSD STBC,̃X in variablesx1, x2, · · ·xN when

August 10, 2018 DRAFT
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written in the form of a linear dispersion code is given byX̃ =
∑N

j=1 xiI Φ̃iI + xiQΦ̃iQ, whereΦ̃iI , Φ̃iQ ∈ CK×T

are called the weight matrices ofX̃. The desigñX is said to be a unitary SSD if̃ΦiIΦ̃
H
iI = IK for all i = 1, 2, · · ·N .

The difference between the two definitions can be observed asthe definition for a unitary SSD STBC is a special

case of the definition for a unitary PDSSDC.

It can be verified that DOSTBCs belong to the class of Unitary PDSSDCs. In the rest of the paper, we consider

only unitary PDSSDCs. However, it is to be noted that the class of non-unitary PDSSDCs is not empty. A class of

low decoding complexity DSTBCs called Precoded CoordinateInterleaved Orthogonal Design (PCIOD) has been

introduced in [15] wherein the authors have proposed a design, XPCIOD for a network with 4 relays which is

SSD (Example 1 of [15]). It can be observed that the proposed codeXPCIOD given in (13) belongs to the class

of non-unitary PDSSDCs. Since we consider only unitary PDSSDCs, through out the paper a PDSSDC is meant

unitary PDSSDC.

XPCIOD =

2

6

6

6

6

6

4

h1x̃1 h1x̃2 0 0

−h∗
2x̃

∗
2 h∗

2 x̃
∗
1 0 0

0 0 h3x̃3 h3x̃4

0 0 −h∗
4x̃

∗
4 h∗

4x̃
∗
3

3

7

7

7

7

7

5

. (13)

The precoding matrices,P andQ required at the source to constructXPCIOD are

P =
1

2

2

6

6

6

6

6

4

1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

3

7

7

7

7

7

5

; Q =
1

2

2

6

6

6

6

6

4

1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1

3

7

7

7

7

7

5

.

Various class of single-symbol decodable STBCs for cooperative networks are captured in Figure 2 which is

first partitioned in to two sets depending on whether the codes are unitary or non-unitary (Definition 3). The class

of PDSSDCs are shown to be a subset of the class of SSD codes forcooperative networks. The set of unitary

distributed SSD codes are shown to contain the DOSTBCs and the S-PDSSDCs (Definition 4). An example of a

code which belongs to the class of non-unitary Distributed SSD codes but not to the class of PDSSDCs is given

below,

XDSSDC =





Re(h1x1) + jIm(h1x2) −Re(h1x2) + jIm(h1x1)

Re(h2x2) + jIm(h2x1) Re(h2x1)− jIm(h2x2)



 . (14)

A1 =
1

2

2

4

1 1

1 −1

3

5 ; B1 =
1

2

2

4

1 −1

−1 −1

3

5 ; A2 =
1

2

2

4

1 1

1 −1

3

5 and B2 =
1

2

2

4

−1 1

1 1

3

5 .

From the above matrices, it can be verified that,R−1 is a scaled identity matrix. Therefore,XR−1XH = R−1XXH

andXXH is given by,

XXH =





|h1|2
∑2

i=1 |xi|2 (h∗
1h2 − h∗

2h1)
∑2

i=1 |xi|2

(h∗
2h1 − h∗

1h2)
∑2

i=1 |xi|2 |h2|2
∑2

i=1 |xi|2



 .
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III. SEMI-ORTHOGONAL PDSSDC

From the definition of a PDSSDC (Definition 2),
[

XR−1XH
]

k,k′
for any k 6= k′ can be non-zero. i.e, thekth

and thek′th row of a PDSSDCX, need not satisfy the equality
[

XR−1XH
]

k,k′
= 0, but

[

XR−1XH
]

k,k′
must

be a complex linear combination of several terms with each term being a function of in-phase and quadrature

component of a single information variable. Through out thepaper, thekth and thek′th row of a PDSSDC are

referred to asR-orthogonal if
[

XR−1XH
]

k,k′
= 0. Similarly, thekth and thek′th row are referred to asR-non-

orthogonal if
[

XR−1XH
]

k,k′
6= 0. In this paper, we identify a special class of PDSSDCs where every row of X is

R-non-orthogonal to atmost one of its rows and we formally define it as,

Definition 4: A PDSSDC is said to be a Semi-orthogonal PDSSDC (S-PDSSDC) ifevery row of a PDSSDC is

R-non-orthogonal to atmost one of its rows.

From the above definition, it can be observed that DOSTBCs area proper subclass of S-PDSSDCs since every row

of DOSTBC isR-orthogonal to every other row. The definition of a S-PDSSDC implies that the set ofK rows can

be partitioned in to atleast⌈K
2 ⌉ groups such that every group has atmost two rows.

The co-variance matrix,R in (5) is a function of (i) the realisation of the channels from the relays to the

destination and (ii) the relay matrices,Ak,Bk. In general,R may not be diagonal in which case the construction

of S-PDSSDCs is not straight forward. On the similar lines of[18], we consider a subset of S-PDSSDCs whose

covariance matrix is diagonal and refer to such a subset as row monomial S-PDSSDCs (RS-PDSSDCs). It can be

proved that the relay matrices of a RS-PDSSDC are row monomial if and only if the corresponding covariance

matrix is diagonal (refer to Theorem 1 of [18]). The row monomial property of the relay matrices implies that every

row of a RS-PDSSDC contains the variables± hkx̃n and± h∗
kx̃

∗
n atmost once for alln such that1 ≤ n ≤ N .

A. upperbound on the symbol-rate of RS-PDSSDCs

In this subsection, we derive an upperbound on the rate of RS-PDSSDCs in symbols per channel use in the

second phase i.e an upperbound onN
T

. Towards that end, properties of the relay matricesAk, Ak′ , Bk and Bk′

of RS-PDSSDC are studied when the rows corresponding to the indicesk and k′ are (i) R-orthogonal and (ii)

R-non-orthogonal. For the former case, the properties ofAk, Ak′ , Bk andBk′ have been studied in [18]. Ifk and

k′ represent the indices of the rows of a RS-PDSSDC that areR-orthogonal, then the corresponding relay matrices

Ak,Ak′ ,Bk andBk′ satisfies the following conditions (i)Ak andAk′ are column disjoint and (ii)Bk andBk′ are

column disjoint. (Lemma 3 of [18]) i.e., the matricesAk and Ak′ cannot contain non-zero entries on the same

columns simultaneously. The above result implies,

AkAH
k′ = 0N and B∗

kBT
k′ = 0N . (15)

In order to address the latter case, consider the 2× 2 matrixΞ as given below,

Ξ =





hkx̃i hk′ x̃m

hk� hk′♣





August 10, 2018 DRAFT
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wherehk, hk′ are complex random variables. The complex variablesx̃i andx̃m are the components of the transmitted

vector s̃ (as in (1)) wherẽs = [x̃1 x̃2 · · · x̃N ] . In particular, the complex variables̃xi and x̃m are of the form,

x̃i = ± xγ� ± jxλ� and x̃m = ± xδ� ± jxµ� where

• γ, λ, δ andµ are positive integers such that1 ≤ γ, λ, δ, µ ≤ N and atmost any two of these integers can be

equal.

• The subscript� denotes eitherI (in-phase component) orQ (quadrature component) of a variable and

• �, ♣ are indeterminate complex variables which can take values of the form± x̃n or± x̃∗
n such that1 ≤ n ≤ N .

For example, ifN = 4, x̃i and x̃m can possibly bex2I + jx3Q andx3I + jx4Q respectively.

In Lemma 3, we investigate various choices on the indeterminate variables� and♣ such that
[

Ξ
H
Ξ
]

1,2
is a

complex linear combination of several terms with each term being a function of in-phase and quadrature components

of a single information variable. In general, the real variablesxγ�, xλ�, xδ� andxµ� can appear iñxi and x̃m

with arbitrary signs. With out loss of generality, we assumethat x̃i and x̃m are given by

x̃i = xγ� + jxλ� and x̃m = xδ� + jxµ�. (16)

However, the results of Lemma 3 will continue to hold even if the variablesxγ�, xλ�, xδ� andxµ� appear inx̃i

andx̃m with any arbitrary signs. Since a RS-PDSSDC takes variablesonly of the form± hkx̃n, ± h∗
kx̃

∗
n and every

row of a RS-PDSSDC contains the variables± hkx̃n and± h∗

kx̃
∗
n atmost once, we have the following restrictions

on the choice of the indeterminate variables� and♣ that (i) the indeterminate� cannot take the variablẽxi and

variables of the formx̃∗
n for all n = 1, 2, · · ·N and (ii) the indeterminate♣ cannot take the variablẽxm and

variables of the form̃x∗
n for all n = 1, 2, · · ·N .

Lemma 3: If there exists a solution on the choice of� and♣ such that

h

Ξ
H
Ξ

i

1,2
= f1 (xδI , xδQ, hk, hk′) + f2 (xγI , xγQ, hk, hk′)

+ f3 (xλI , xλQ, hk, hk′) + f4 (xµI , xµQ, hk, hk′) 6= 0, (17)

then only one of the following is true,

(i) δ = γ andµ = λ.

(ii) δ = λ andµ = γ.

wherefi (xβI , xβQ, hk, hk′) is a complex valued function of the variables,xβI , xβQ, hk, hk′ for all i = 1, 2, · · ·4
andβ = µ, λ, γ, δ.

Proof: Refer to the proof of Lemma4 in [21].

Similarly, it can be shown that, the results of Lemma 3 holds true even if the matrixΞ is of the form,




h∗

kx̃
∗
i h∗

k′ x̃∗
m

h∗
k� h∗

k′♣



 .

We use the results of Lemma 3 to study the properties of the relay matrices of a RS-PDSSDC.

Lemma 4:Let Ak and Ak′ be the relay matrices of a RS-PDSSDC,X. If
[

AkAH
k′

]

i,m
is a non zero entry for
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i 6= m, then the precoding matrices at the sourceP andQ are such that

x̃iI , x̃iQ, x̃mI and x̃mQ ∈ {xnI , xnQ, xn′I , xn′Q} with (18)

x̃iI , x̃iQ ∈ {xn�, xn′�} and x̃mI , x̃mQ ∈ {xn�, xn′�}

for somen 6= n′ where1 ≤ n, n′ ≤ N and the subscript� represents eitherI or Q.

Proof: Refer to the proof of Lemma5 in [21].

Lemma 5:Let Bk and Bk′ be the relay matrices of a RS-PDSSDC,X. If
[

B∗

kBT
k′

]

i,m
is a non zero entry for

i 6= m, precoding matrices at the sourceP andQ are such that

x̃iI , x̃iQ, x̃mI and x̃mQ ∈ {xnI , xnQ, xn′I , xn′Q} with (19)

x̃iI , x̃iQ ∈ {xn�, xn′�} and x̃mI , x̃mQ ∈ {xn�, xn′�}

for somen 6= n′ where1 ≤ n, n′ ≤ N and the subscript� represents eitherI or Q.

Proof: The result can be proved on the similar lines of the proof for Lemma 4.

Corollary 1: For a RS-PDSSDC, if
[

AkAH
k′

]

i,m
is non-zero, then so is

[

AkAH
k′

]

m,i
.

Proof: Follows from the proof for Lemma 3 and Lemma 4.

From the definition of a PDSSDC (Definition 2), non-zero entries of thekth row contains variables of the form

± hkx̃n, ± h∗
kx̃

∗
n or multiples of these byj. Therefore,

[

XXH
]

k,k
= |hk|2

[

s̃AkAH
k s̃H + s̃∗BkBH

k s̃T
]

+ hkhk

[

s̃AkBH
k s̃T

]

+ h∗

kh
∗

k

[

s̃∗BkAH
k s̃H

]

=

N
∑

i=1

|hk|2
(

ω
(1)
i,k |xiI |2 + ω

(2)
i,k |xiQ|2

)

whereω(1)
i,k , ω

(2)
i,k ∈ R

+ for all k = 1, 2, · · · ,K. From the results of Lemma1 in [10], we have

AkAH
k + B∗

kBT
k = diag[E1,k, E2,k, · · ·En,k] (20)

whereEn,k are strictly positive real numbers.

Lemma 6:Let k andk′ represent the indices of the rows of a RS-PDSSDC, that areR-non-orthogonal, then the

corresponding relay matricesAk,Bk,Ak′ andBk′ satisfy the following conditions,

•

[

AkAH
k′

]

i,i
=

[

B∗

kBT
k′

]

i,i
= 0 for all i = 1, 2 · · ·N.

• AkAH
k′ andB∗

kBT
k′ are both column and row monomial matrices.

• AkAH
k′ + B∗

kBT
k′ is column and row monomial matrix.

• The number of non-zero entries inAkAH
k′ + B∗

kBT
k′ is even.

• The matricesÃk,k′ and B̃k,k′ given by Ãk,k′ =
[

AT
k AT

k′

]T

and B̃k,k′ =
[

BT
k BT

k′

]T
satisfy the following
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inequality :

Rank
[

Ãk,k′Ã
H

k,k′ + B̃
∗

k,k′ B̃
T

k,k′

]

≥







2m if N = 2m and

2m+ 2 if N = 2m+ 1
(21)

wherem is a positive integer.

Proof: Refer to the proof of Lemma7 in [21].

Using the properties of relay matricesAk, Ak′ , Bk andBk′ of a RS-PDSSDC corresponding to two different rows

that are (i)R-orthogonal and (ii)R-non-orthogonal, an upperbound on the maximum rate,N
T

is derived in the

following theorem.

Theorem 2:The symbol-rate of a RS-PDSSDC satisfies the inequality :

Rate =
N

T
≤

8

>

>

>

>

>

<

>

>

>

>

>

:

2
l

if N = 2m,K = 2l

2
l+1

if N = 2m,K = 2l + 1

2m+1
(m+1)l

if N = 2m+ 1, K = 2l

4m+2
(2m+2)l+2m+1

if N = 2m+ 1,K = 2l + 1.

(22)

wherel andm are positive integers.

Proof: Refer to the proof of Theorem 1 in [21].

IV. CONSTRUCTION OFRS-PDSSDCS

In this section, we construct RS-PDSSDCs when the number of relaysK ≥ 4. The construction provides codes

achieving the upperbound in (22) when (i)N andK are multiples of 4 and (ii)N is a multiple of 4 andK is

3 modulo 4. For the rest of the values ofN andK, codes meeting the upperbound are not known. In particular,

for values ofN < 4 and anyK, the authors are not aware of RS-PDSSDCs with rates higher than that of

row monomial DOSTBCs. The following construction providesRS-PDSSDCs with rates higher than that of row

monomial DOSTBCs whenN ≥ 4 andK ≥ 4. We first provide the construction of the precoding matricesP and

Q and then present the construction of RS-PDSSDCs.

A. Construction of precoding matricesP and Q

Let Γ,Ω ∈ C4×4 be given by

Γ =
1

2

2

6

6

6

6

6

4

1 0 −j 0

0 1 0 −j

0 1 0 j

1 0 j 0

3

7

7

7

7

7

5

andΩ =
1

2

2

6

6

6

6

6

4

1 0 j 0

0 1 0 j

0 −1 0 j

−1 0 j 0

3

7

7

7

7

7

5

.

Let N = 4y + a, wherea can take values of0, 1, 2 and3 and y is any positive integer. For a given value ofa

andy, the precoding matricesP andQ at the source are constructed as,

P =

2

4

Γ⊗ Iy 04y×a

0a×4y Ia

3

5 ; Q =

2

4

Ω⊗ Iy 04y×a

0a×4y 0a

3

5 .
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Example 1:ForN = 6, we havey = 1 anda = 2. Following the above construction method, precoding matrices

P andQ are given by,

P =
1

2

2

6

6

6

6

6

6

6

6

6

6

4

1 0 −j 0 0 0

0 1 0 −j 0 0

0 1 0 j 0 0

1 0 j 0 0 0

0 0 0 0 2 0

0 0 0 0 0 2

3

7

7

7

7

7

7

7

7

7

7

5

; Q =
1

2

2

6

6

6

6

6

6

6

6

6

6

4

1 0 j 0 0 0

0 1 0 j 0 0

0 −1 0 j 0 0

−1 0 j 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

7

5

.

B. Construction of RS-PDSSDCs

Through out this subsection, we denote a RS-PDSSDC forK relays withN variables asX (N,K). Construction

of RS-PDSSDCs is divided in to three cases depending on the values ofN andK.

Case 1:N = 4y andK = 4x : In this case, we construct RS-PDSSDCs in the following 4 steps.

Step (i) : LetUx1, x2
be a2× 2 Alamouti design in complex variablesx1, x2 as given below,

Ux1, x2
=





x1 x2

−x∗
2 x∗

1



 . (23)

Using the design in (23), construct a4× 4 design,Ωm in 4 complex variables̃x4m+1, x̃4m+2, x̃4m+3 and x̃4m+4

as shown below for allm = 0, 1, · · · y − 1.

Ωm =

2

4

Ux̃4m+1, x̃4m+2
Ux̃4m+3, x̃4m+4

Ux̃4m+3, x̃4m+4
Ux̃4m+1, x̃4m+2

3

5 =

2

6

6

6

6

6

4

x̃4m+1 x̃4m+2 x̃4m+3 x̃4m+4

−x̃∗
4m+2 x̃∗

4m+1 −x̃∗
4m+4 x̃∗

4m+3

x̃4m+3 x̃4m+4 x̃4m+1 x̃4m+2

−x̃∗
4m+4 x̃∗

4m+3 −x̃∗
4m+2 x̃∗

4m+1

3

7

7

7

7

7

5

where

x̃4m+1 = x(4m+1)I + jx(4m+4)Q; x̃4m+2 = x(4m+2)I + jx(4m+3)Q;

x̃4m+3 = x(4m+1)Q + jx(4m+4)I ; x̃4m+4 = x(4m+2)Q + jx(4m+3)I .

Step (ii) : Let H,∆ andΘ ∈ CK×K given by H = diag{h1, h2, · · · , hK}, ∆ = diag{1, 0, 1, 0, · · ·0} andΘ =

diag{0, 1, 0, 1, · · ·1} whereh1, h2, · · ·hK are complex variables and∆,Θ are such that∆+Θ = IK . UsingH,∆

andΘ, construct a diagonal matrix,G asG = H∆+ H∗
Θ.

Step (iii) : UsingΩm, construct a4x× 4x matrix Xm given byΩm ⊗ I⊗(x−1)
2 for eachm = 0, 1, · · ·y − 1.

Step (iv) : A RS-PDSSDC,X (N,K) is constructed usingXm andG as X (N,K) = G [X0 X1 · · · Xy−1] where

the matrix[X0 X2 · · · Xy−1] is obtained by juxtaposing the matricesX0,X1, · · · ,Xy−1.

Example 2:ForN = 4 andK = 4, we havex = y = 1. Following Step (i) to Step (iv) in the above construction,
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we haveG = diag{h1, h
∗
2, h3, h

∗
4} andX0 = Ω0. HenceX (4, 4) is given by,

X (4, 4) =

2

6

6

6

6

6

4

h1x̃1 h1x̃2 h1x̃3 h1x̃4

−h∗
2x̃

∗
2 h∗

2x̃
∗
1 −h∗

2x̃
∗
4 h∗

2x̃
∗
3

h3x̃3 h3x̃4 h3x̃1 h3x̃2

−h∗
4x̃

∗
4 h∗

4x̃
∗
3 −h∗

4x̃
∗
2 h∗

4x̃
∗
1

3

7

7

7

7

7

5

. (24)

wherex̃1 = x1I + jx4Q; x̃2 = x2I + jx3Q; x̃3 = x1Q + jx4I and x̃4 = x2Q + jx3I . The variables̃x1, x̃2, · · · x̃4

are obtained using the precoding matricesP andQ as given in (1). The precoding matricesP andQ are constructed

as in Subsection IV-A. The relay specific matricesAk,Bk for the RS-PDSSDC in (24) are as given below,

A1 =

2

6

6

6

6

6

4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3

7

7

7

7

7

5

; B2 =

2

6

6

6

6

6

4

0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

3

7

7

7

7

7

5

; A3 =

2

6

6

6

6

6

4

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

3

7

7

7

7

7

5

and B4 =

2

6

6

6

6

6

4

0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0

3

7

7

7

7

7

5

.

B1 = A2 = B3 = A4 = 04.

Example 3:For N = 4 andK = 8, we havey = 1 andx = 2. Following the construction procedure in Case 1,

X0 = Ω0 ⊗ I2 andX (4, 8) = GX0. Therefore,X (4, 8) is given by.

X (4, 8) =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

h1x̃1 h1x̃2 h1x̃3 h1x̃4 0 0 0 0

−h∗
2x̃

∗
2 h∗

2 x̃
∗
1 −h∗

2x̃
∗
4 h∗

2x̃
∗
3 0 0 0 0

h3x̃3 h3x̃4 h3x̃1 h3x̃2 0 0 0 0

−h∗
4x̃

∗
4 h∗

4 x̃
∗
3 −h∗

4x̃
∗
2 h∗

4x̃
∗
1 0 0 0 0

0 0 0 0 h5x̃1 h5x̃2 h5x̃3 h5x̃4

0 0 0 0 −h∗
6x̃

∗
2 h∗

6x̃
∗
1 −h∗

6x̃
∗
4 h∗

6x̃
∗
3

0 0 0 0 h7x̃3 h7x̃4 h7x̃1 h7x̃2

0 0 0 0 −h∗
8x̃

∗
4 h∗

8x̃
∗
3 −h∗

8x̃
∗
2 h∗

8x̃
∗
1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

.

Case 2:N = 4y andK = 4x+ a for a = 1, 2 and3 : In this case, a RS-PDSSDC is constructed in two steps

as given below.

Step(i) : Construct a RS-PDSSDC for parametersN = 4y andK = 4(x+ 1) as given in Case 1.

Step(ii) : Drop the last4− a rows of the RS-PDSSDC constructed in Step (i).

Example 4:WhenN = 4 andK = 6, the parametersa, x andy are 2, 1 and 1 respectively. As given in Case

2, a RS-PDSSDC forN = 4 andK = 8 is constructed and the last 2 rows of the design are dropped. The code
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X(4, 6) is as given below.

X (4, 6) =

2

6

6

6

6

6

6

6

6

6

6

4

h1x̃1 h1x̃2 h1x̃3 h1x̃4 0 0 0 0

−h∗
2x̃

∗
2 h∗

2 x̃
∗
1 −h∗

2x̃
∗
4 h∗

2x̃
∗
3 0 0 0 0

h3x̃3 h3x̃4 h3x̃1 h3x̃2 0 0 0 0

−h∗
4x̃

∗
4 h∗

4 x̃
∗
3 −h∗

4x̃
∗
2 h∗

4x̃
∗
1 0 0 0 0

0 0 0 0 h5x̃1 h5x̃2 h5x̃3 h5x̃4

0 0 0 0 −h∗
6x̃

∗
2 h∗

6x̃
∗
1 −h∗

6x̃
∗
4 h∗

6x̃
∗
3

3

7

7

7

7

7

7

7

7

7

7

5

.

Case 3:N = 4y + b andK = 4x + a where b = 1, 2, 3 and a = 0, 1, 2, 3 : In this case, RS-PDSSDCs are

constructed in the following 3 steps.

Step (i) : Construct a RS-PDSSDC,X (4y, 4x+ a) for parametersN = 4y andK = 4x+ a as in Case 2 using the

first 4y variables.

Step (ii) : Construct a DOSTBC,X′ (b, 4x+ a) with parametersN = b andK = 4x+ a using the lastb variables

as in [18].

Step (iii) : The RS-PDSSDC,X (N,K) is given by juxtaposingX (4y, 4x+ a) andX′ (b, 4x+ a) as shown below,

X (N,K) =
[

X (4y, 4x+ a) X′ (b, 4x+ a)
]

.

Example 5:WhenN = 6 andK = 8, the parametersb, a, x andy are respectively given by 2, 0, 2 and 1.

As in Step (i), constructX (4, 8) as explained in Case 1 which is given below,

X (4, 8) =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

h1x̃1 h1x̃2 h1x̃3 h1x̃4 0 0 0 0

−h∗
2x̃

∗
2 h∗

2 x̃
∗
1 −h∗

2x̃
∗
4 h∗

2x̃
∗
3 0 0 0 0

h3x̃3 h3x̃4 h3x̃1 h3x̃2 0 0 0 0

−h∗
4x̃

∗
4 h∗

4 x̃
∗
3 −h∗

4x̃
∗
2 h∗

4x̃
∗
1 0 0 0 0

0 0 0 0 h5x̃1 h5x̃2 h5x̃3 h5x̃4

0 0 0 0 −h∗
6x̃

∗
2 h∗

6x̃
∗
1 −h∗

6x̃
∗
4 h∗

6x̃
∗
3

0 0 0 0 h7x̃3 h7x̃4 h7x̃1 h7x̃2

0 0 0 0 −h∗
8x̃

∗
4 h∗

8x̃
∗
3 −h∗

8x̃
∗
2 h∗

8x̃
∗
1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

. (25)

According to Step (ii), construct a DOSTBC [18],X′ (2, 8) as shown below,

X′ (2, 8) =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

h1x̃5 h1x̃6 0 0 0 0 0 0

−h∗
2x̃

∗
6 h∗

2 x̃
∗
5 0 0 0 0 0 0

0 0 h3x̃5 h3x̃6 0 0 0 0

0 0 −h∗
4x̃

∗
6 h∗

4x̃
∗
5 0 0 0 0

0 0 0 0 h5x̃5 h5x̃6 0 0

0 0 0 0 h∗
6 x̃

∗
6 h∗

6x̃
∗
5 0 0

0 0 0 0 0 0 h7x̃5 h7x̃6

0 0 0 0 0 0 −h∗
8x̃

∗
6 h∗

8 x̃
∗
5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

. (26)
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A RS-PDSSDCX (6, 8) is constructed by juxtaposing the designs in (25) and (26) asshown below,

X (6, 8) =
[

X (4, 8) X′ (2, 8)
]

.

C. Comparison of the Symbol-rates of RS-PDSSDCs and row-monomial DOSTBCs

For a given value ofN,K such thatN ≥ 4 andK ≥ 4, we proposed a method of constructing a RS-PDSSDC,

X (N,K) with a minimum value ofT . The minimum values ofT provided in our construction is listed below

against the corresponding values ofN andK. Against every value ofT for RS-PDSSDCs, the corresponding value

of T for row monomial DOSTBC is provided with in the braces.

(i) N even,K even :

T ≥

8

>

>

>

>

>

<

>

>

>

>

>

:

4xy (8xy) if N = 4y,K = 4x.

4xy + 4x (8xy + 4x) if N = 4y + 2, K = 4x.

4xy + 4y (8xy + 4y) if N = 4y,K = 4x+ 2.

4xy + 4y + 4x+ 2 (8xy + 4y + 4x+ 2) if N = 4y + 2,K = 4x+ 2.

(ii) N even,K odd :

T ≥

8

>

>

>

>

>

<

>

>

>

>

>

:

4xy + 4y (8xy + 4y) if N = 4y,K = 4x+ 1.

4xy + 4y + 4x+ 2 (8xy + 4x+ 4y + 2) if N = 4y + 2,K = 4x+ 1.

4xy + 4y (8xy + 8y) if N = 4y,K = 4x+ 3.

4xy + 4y + 4x+ 4 (8xy + 8y + 4x+ 4) if N = 4y + 2,K = 4x+ 3.

(iii) N odd,K even :

T ≥

8

>

>

>

>

>

<

>

>

>

>

>

:

4xy + 4x (8xy + 4x) if N = 4y + 1, K = 4x.

4xy + 4y + 4x+ 2 (8xy + 4x+ 4y + 2) if N = 4y + 1,K = 4x+ 2.

4xy + 8x (8xy + 8x) if N = 4y + 3, K = 4x.

4xy + 4y + 8x+ 4 (8xy + 4y + 8x+ 4) if N = 4y + 3,K = 4x+ 2.

(iv) N odd,K odd :

T ≥

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

4xy + 4y + 4x+ 1

(max(8xy + 4x+ 2y + 1, 8xy + 4y + 2x+ 1)) if N = 4y + 1, K = 4x+ 1.

4xy + 4y + 4x+ 3

(max(8xy + 6y + 4x+ 3, 8xy + 8y + 2x+ 2)) if N = 4y + 1, K = 4x+ 3.

4xy + 8x+ 4y + 3

(max(8xy + 6x+ 4y + 3, 8xy + 8x+ 2y + 2)) if N = 4y + 3, K = 4x+ 1.

4xy + 4y + 8x+ 8

(max(8xy + 8x+ 6y + 6, 8xy + 8y + 6x+ 6)) if N = 4y + 3, K = 4x+ 3.

From the above comparison, it can be observed that, for a given value ofN andK, a RS-PDSSDC,X(N,K)

is constructed with a smaller value ofT compared to that of a row monomial DOSTBC, there by providinghigher

values of the symbol- rate,N
T

. In particular, whenN is a multiple of 4 andK is of the form 0 or 3 modulo

4, row monomial DOSTBCs need double the number of channel uses in the second phase compared to that of

RS-PDSSDCs. It can also be observed that improvement in the values ofT for a RS-PDSSDC is not significant
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whenK andN are both odd.

V. ON THE CONSTRUCTION OFS-PDSSDCS WITH OUT PRECODING AT THE SOURCE

The existence of high rate S-PDSSDCs has been shown in the preceding sections, when the source performs

co-ordinate interleaving of information symbols before broadcasting it to all the relays. In this setup, the relays do

not perform coordinate interleaving of their received symbols. One obvious question that needs to be answered is,

whether linear processing of the received symbols at the relays alone is sufficient to construct S-PDSSDCs when the

source doesn’t perform coordinate interleaving of information symbols. In other words, is coordinate interleaving

of the information symbols at the source necessary to construct PDSSDCs?. The answer is, yes.

In the rest of this section, we show that PDSSDCs cannot be constructed by linear processing of the received

symbols at the relays when the source transmits the information symbols to all the relays with out precoding.

Towards that end, let thekth relay be equipped with a pair of matrices,Ak andBK ∈ CN×T which perform linear

processing on the received vector. Excluding the additive noise component, the received vector at thekth relay is

hks = [hkx1, hkx2, · · ·hkxN ] wherexi’s are information symbols andhk is any complex number. The matrices

Ak, BK ∈ CN×T act on the vectorhks to generate a vector of the form,

hksAk + h∗

ks∗Bk (27)

From (27), the non zero entries ofhksAk+h∗
ks∗Bk contains complex variables of the form,± x,± x∗ or multiples

of these byj wherej =
√
−1 and

Re(x), Im(x) ∈ {Re(hkxn) , Im (hkxn) | 1 ≤ n ≤ N} . (28)

To be precise, Re(hkxn) and Im(hkxn) are given byhkIxnI − hkQxnQ andhkIxnQ + hkQxnI respectively. The

above vector can also contain linear combination of the specified above complex variables.

From Definition 2, non-zero entries of thekth row of a PDSSDCs are of the form± hkx̃n, ± h∗

kx̃
∗
n wherex̃nI

andx̃nQ can be in-phase and quadrature components of two different information variables. Sincehk is any complex

variable, from (28), linear processing of the received symbols at the relays alone cannot contribute variables of the

form ± hkx̃n, ± h∗

kx̃
∗
n. Therefore, S-PDSSDCs cannot be constructed by linear processing of the received symbols

at the relays alone when the source transmits the information symbols to all the relays with out precoding.

Remark 3: If hk ’s are real variables, then Re(x), Im(x) ∈ {hkRe(xn) , hkIm (xn) | 1 ≤ n ≤ N} in which case,

the non-zero entries of thekth row can be of the form± hkx̃n, ± hkx̃
∗
n wherex̃nI and x̃nQ can be in-phase and

quadrature components of two different information variables for any real variablehk. This aspect has been well

studied in [15], [19] and [20] where the relays are assumed tohave the knowledge of phase component of their

corresponding channels thereby makinghk, a real variable. Hence, with the knowledge of partial CSI atthe relays,

high rate distributed SSD codes can be constructed by linearprocessing at the relays alone. i.e, with the knowledge

of partial CSI at the relays, the source need not perform precoding of information symbols before transmitting to

the all the relays in the first phase.
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VI. ON THE FULL DIVERSITY OF RS-PDSSDCS

In this section, we consider the problem of designing a two-dimensional signal set,Λ such that a RS-PDSSDC with

variablesx1, x2, · · ·xN taking values fromΛ is fully diverse. Since every codeword of a RS-PDSSDC (Definition 2)

contains complex variableshk’s, Pairwise error probability (PEP) analysis of RS-PDSSDCs is not straightforward.

The authors do not have conditions on the choice of a complex signal set such that a RS-PDSSDC is fully diverse.

However, we make the following conjecture.

Conjecture : A RS-PDSSDC in variablesx1, x2, · · ·xN is fully diverse if the variables takes values from a complex

signal set say,Λ such that the difference signal set∆Λ given by

∆Λ = {a− b | a, b ∈ Λ}

does not have any point on the lines that are± 45 degrees in the complex plane apart from the origin.

In the rest of this section, we provide simulation results onthe performance comparison of a RS-PDSSDC,

X (4, 4) (given in (24)) and a row-monomial DOSTBC,X′ (4, 4) (given in (29)) in terms of Symbol Error Rate

(SER) (SER corresponds to errors in decoding a single complex variable). The SER comparison is provided in

Figure 3. Since the design in (24) has double the symbol-ratecompared to the design in (29), for a fair comparison,

16 QAM and a 4 point rotated QPSK are used as signal sets forX′ (4, 4) andX (4, 4) respectively to maintain the

rate of 1 bits per second per Hertz. The average SNR per channel use for X′ (4, 4) and X (4, 4) respectively are
2p1p2

p1+1+2p2
and 4p1p2

p1+1+4p2
. In order to maintain the same Signal to Noise ratio (SNR), for the designX′ (4, 4), every

relay (other than the source) uses twice the power as that forthe designX (4, 4). The class of DOSTBCs are shown

to be fully diverse in [18]. From Figure 3, it is observed thatX (4, 4) provides full diversity, since the SER curve

moves parallel to that ofX′ (4, 4). It can be noticed from Figure 3 that the designX (4, 4) performs better than

X′ (4, 4) by close to 2-3 db.

X′ (4, 4) =

















h1x1 h1x2 h1x3 h1x4 0 0 0 0

−h∗
2x

∗
2 h∗

2x
∗
1 −h∗

2x
∗
4 h∗

2x
∗
3 0 0 0 0

0 0 0 0 h3x1 h3x2 h3x3 h3x4

0 0 0 0 −h∗
4x

∗
2 h∗

4x
∗
1 −h∗

4x
∗
4 h∗

4x
∗
3

















. (29)

VII. C ONCLUSION AND DISCUSSION

We considered the problem of designing high rate, single-symbol decodable DSTBCs when the source is allowed

to perform co-ordinate interleaving of information symbols before transmitting it to all the relays. We introduced

PDSSDCs (Definition 2) and showed that, DOSTBCs are a specialcase of PDSSDCs.

A special class of PDSSDCs having semi-orthogonal propertywere defined (Definition 4). A subset of S-PDSSDCs

called RS-PDSSDCs is studied and an upperbound on the maximal rate of such codes is derived. The bounds obtained

for RS-PDSSDC are shown to be approximately twice larger than that of DOSTBCs. A systematic construction

of RS-PDSSDCs are presented for the case when the number of relays, K ≥ 4. Codes achieving the bound are

found whenK is of the form 0 or 3 modulo 4. For the rest of the choices ofK, S-PDSSDCs meeting the above
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bound on the rate are not known. The constructed codes are shown to have rate higher than that of row monomial

DOSTBCs.

Some of the possible directions for future work are as follows:

• In this paper, we studied a special class of PDSSDCs called Unitary PDSSDCs (See Definition 3). The design

of high rate Non-Unitary PDSSDCs is an interesting direction for future work.

• The authors are not aware of RS-PDSSDCs achieving the bound on the maximum rate other than the case

whenK is 0 or 3 modulo 4. The upperbounds on the maximum rate for restof the values ofK possibly can

be tightened.

• A class of S-PDSSDCs was defined, by making every row of the PDSSDC R-non-orthogonal to atmost one of

its rows. It will be interesting whether the bounds on the maximal rate of PDSSDCs can be increased further

by making a rowR-non-orthogonal to more than one of its rows.
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