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Abstract
It is well known that Space-Time Block Codes (STBCs)
obtained from Orthogonal Designs (ODs) are single-
symbol-decodable (SSD) and from Quasi-Orthogonal
Designs (QODs) are double-symbol decodable. How-
ever, there are SSD codes that are not obtainable from
ODs and DSD codes that are not obtainable from QODs.
In this paper a method of constructingg-symbol decod-
able (g-SD) STBCs using representations of Clifford al-
gebras are presented which when specialized tog = 1, 2
gives SSD and DSD codes respectively. For the number
of transmit antennas2a the rate (in complex symbols per
channel use) of theg-SD codes presented in this paper
is a+1−g

2a−g . The maximum rate of the DSD STBCs from
QODs reported in the literature isa2a−1 which is smaller
than the ratea−1

2a−2 of the DSD codes of this paper, for2a

transmit antennas. In particular, the reported DSD codes
for 8 and 16 transmit antennas offer rates 1 and 3/4 re-
spectively whereas the known STBCs from QODs offer
only 3/4 and 1/2 respectively. The construction of this
paper is applicable for any number of transmit antennas.

1. Introduction and Preliminaries

We consider a multiple antenna transmission system with
Nt number of transmit antennas andNr number of re-
ceive antennas. At each time slott, the complex sig-
nals,sti, i = 0, 1 · · · , Nt − 1 are transmitted from the
Nt transmit antennas simultaneously. Lethij = αije

jθij

denote the path gain from the transmit antennai to the
receive antennaj, wherej =

√
−1. Assuming that the

path gain are constant over a frame lengthNt (we con-
sider only square designs), the received signalytj at the
receive antennaj at timet is given by,

ytj =
∑Nt−1

i=0
stihij + ntj , (1)

for j = 0, · · · , Nr − 1, t = 0, · · · , Nt − 1, which in
matrix notation is,

Y = SH+N (2)

whereY ∈ C
Nt×Nr is the received signal matrix,S ∈

CNt×Nt is the transmission matrix(also referred as code-
word matrix),N ∈ CNt×Nr is the additive noise matrix

andH ∈ CNt×Nr is the channel matrix, whereC denotes
the complex field. The entries ofH are complex Gaus-
sian with zero mean and unit variance and the entries of
N are complex Gaussian with zero mean and varianceσ2.
Both are assumed to be temporally and spatially white.
We further assume that transmission power constraint is
given byE

[
tr{SSH}

]
= Nt

2.
An n × n linear dispersion STBC [1] withgK com-

plex variablesx1, x2, · · · , xgK , whereg andK are posi-
tive integers, can be written as

S =

K∑

i=1

Si (3)

where,

Si =

g∑

j=1

x(g(i−1)+j),IA(g(i−1)+j),I +

+ x(g(i−1)+j),QA(g(i−1)+j),Q (4)

andxl = xl,I + jxl,Q ∈ Al ⊂ C for 1 ≤ l ≤ gK
whereAl is the signal constellation from which the vari-
able xi takes values. The set ofgK number of com-
plex n × n matricesAj , 1 ≤ j ≤ gK are called
the weight matrices of the code and this set defines the
codeS. With |Ai| denoting the number of points in the
constellation, the rate of this code in bits per channel
use isR = 1

n

∑gK

i=1 log2 (|Ai|). Now assuming that per-
fect channel state information(CSI) is available at the re-
ceiver, the maximum likelihood (ML) decision rule min-
imizes the metric,

M(S) , min
S

tr((Y − SH)H(Y − SH)) = ‖ Y − SH ‖2.

(5)
It is clear that there are

∏gK

i=1 |Ai| different codewords
and, in general, the ML decoding requires

∏gK

i=1 |Ai|
computations, one for each codeword. But if the set of
weight matrices are chosen such that the decoding metric
(5) could be decomposed into,

M(S) =

K∑

i=1

fi(x(i−1)g+1, x(i−1)g+2, · · · , x(i−1)g+g)

a sum of K positive terms, each involving exactly
g complex variables only, then the decoding requires
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∑K

i=1{
∏g

j=1 |Aj+(i−1)g |} computations and the code is
called ag-symbol decodable code(g-SD code). The
caseg = 1 corresponds to Single-Symbol Decodable
(SSD) codes that includes the well known codes from Or-
thogonal Designs (ODs) as a proper subclass, and have
been extensively studied [2]-[13], few most recent ones
being [12]-[13]. The codes corresponding tog = 2,
are calledDouble-Symbol-Decodable (DSD)codes. The
Quasi-Orthogonal Designs studied in [14]-[17] and [6]
are proper subclass of DSD codes. If the weight matrices
Aj , 1 ≤ j ≤ 2K of ag-SD code are all unitary then it is
said to be a Unitary Weight DSD (UW-g-SD) code. The
DSD codes of [14]-[17] are UW-DSD codes and that of
[6] is not. Throughout this paper, we consider only UW
codes.

The contributions of this paper are

• We obtain a set of sufficient conditions for a gen-
eral linear dispersion STBC to beg-SD in terms of
their weight matrices. Also, another set of suffi-
cient conditions for the code to beg-SD is given
which enables us to construct UW-g-SD codes
from representations of Clifford algebras.

• For the number of transmit antennas2a the max-
imum rate (in complex symbols per channel use)
of all the DSD codes reported in the literature
with unitary weight matrices is a

2a−1 . Whereas
we present UW-DSD codes with ratea−1

2a−2 for 2a

transmit antennas. In particular, our code for 8 and
16 transmit antennas offer rates 1 and 3/4 respec-
tively, whereas the known QODs offer only 3/4 and
1/2 respectively. The rate of ourg-SD codes is
a+1−g
2a−g .

2. Sufficient conditions for
Double-Symbol-Decodability

We begin with presenting a sufficient condition on the set
of weight matrices of the code to beg-SD.

Lemma 1 The linear dispersion STBC given by(3) is a
g-SD code if,

SH
l Sj + SH

j Sl = 0, ∀ 1 ≤ l 6= j ≤ K. (6)

Proof: We see from (3) that,

SHS =
( K∑

i=1

SH
i

)( K∑

i=1

Si

)
. (7)

If the conditions of (6) are satisfied, then it is easy to ver-
ify that,

SHS =

K∑

i=1

SH
i Si. (8)

Using (8) in (5) we get,

M(S) = Tr

h

K
X

i=1

(Y − SiH)H(Y − SiH)− (K − 1)YH
Y

i

=

K
X

i=1

Tr

h

(Y − SiH)H (Y − SiH)
i

+Mc (9)

whereMc = Tr
[
−(K − 1)YHY

]
. Note that in (9) the

Mc term is same for all the codewords in the code book.
Hence it is sufficient to minimize the first term only. But
the first term,

M̃ (S) =
K∑

i=1

Tr
[
(Y − SiH)H (Y − SiH)

]

is a sum ofK square terms, each involving onlyg com-
plex variables. Hence the problem of ML decoding re-
duces to the problem of minimizing,

Tr
[
(Y − SiH)

H
(Y − SiH

]
∀ 1 ≤ i ≤ K. (10)

Hence the code isg-SD if the conditions of (6) is satisfied.
This completes the proof.

Next we derive a condition on weight matrices of the
code so that (6) is satisfied. Towards this end, we denote,

βi =
{
Ag(i−1)+j,I , Ag(i−1)+j,Q

}g

j=1
, 1 ≤ i ≤ K.

(11)
A straight forward verification shows that

Lemma 2 Conditions of(6) is satisfied if the weight ma-
trices of the code(3) satisfy the following condition,

AHB+BHA = 0, ∀ A ∈ βi, B ∈ βj , for i 6= j. (12)

We first introduce the notion ofnormalizing a linear
STBCwhich not only simplifies the analysis of the codes
but also provides deep insight into various aspects of dif-
ferent classes of codes discussed in this paper. Towards
this end, let

SU =

gK∑

k=1

xk,IA
′

k,I + xk,QA
′

k,Q (13)

be a UW-g-SD code. We normalize the weight matrices
of the code as

AkI = A′H
1I A

′
kI

AkQ = A′H
1I A

′

kQ.
∀ 1 ≤ k ≤ gK (14)

to getthe normalized versionof (13) to be

SN =

gK∑

k=1

xk,IAk,I + xk,QAk,Q (15)

whereA1,I = In, then × n identity matrix. We call the
codeSN to be the normalized code ofSU .



Lemma 3 The codeSU is g-SD iffSN is g-SD. In other
words normalization does not affect the DSD property.

Proof: For1 ≤ i1 6= i2 ≤ K, the equation of Lemma 2 is
satisfied by the weight matrices ofSU iff they are satisfied
by the weight matrices ofSN which is easily verified.

The following theorem identifies a set of sufficient
conditions for a UW code to be UW-g-SD.

Theorem 1 A n× n UW code described by (13) and its
normalized version given by (15) are UW-g-SD codes if
the weight matrices of the normalized code satisfy the fol-
lowing conditions:

AH
g(i−1)+1,I = −Ag(i−1)+1,I , 2 ≤ i ≤ K (16)

Ag(i−1)+1,I andAg(j−1)+1,I anticommute

∀ 2 ≤ i 6= j ≤ K (17)

A1,Q, A2,I , A2,Q, · · · , Ag,I , Ag,Q are

Hermitian, commute among themselves and

with all the matricesAg(i−1)+1,I , 1 ≤ i ≤ K. (18)

For all 1 ≤ i ≤ K, and2 ≤ j ≤ g;

Ag(i−1)+1,Q = ±A1,QAg(i−1)+1,I , (19)

Ag(i−1)+1,I = ±Aj,IAg(i−1)+1,I , (20)

Ag(i−1)+1,Q = ±Aj,QAg(i−1)+1,I , (21)

Proof: Using the conditions (19), (20) and (21) of the
theorem the sets (11) for1 ≤ i1 6= i2 ≤ K are

βi1 =
{
±Aj,IAg(i1)+1,I ,±Aj,QAg(i1)+1,Q

}g

j=1
, (22)

βi2 =
{
± Aj,IAg(i2)+1,I ,±Aj,QAg(i2)+1,Q

}g

j=1
. (23)

Let xAg(i1)+1,I ∈ βi1 , yAg(i2)+1 ∈ βi2 wherex, y ∈
{I,±A1Q,±A2I ,±A2Q, · · · ± A(g−1),I ,±A(g−1),Q}.
Then

xAg(i1)+1,I
HyAgi2+1,I + yAg(i2)+1,I

HxAg(i1)+1,I

= Agi1+1,I
HxHyAgi2+1,I +Agi2+1,I

HyHxAgi1+1,I

= Agi1+1,I
HxyAgi2+1,I +Agi2+1,I

HyxAgi1+1,I

= Agi1+1,I
HxyAgi2+1,I +Agi2+1,I

HxyAgi1+1,I

= xAgi1+1,I
HAgi2+1,Iy + xAgi2+1,I

HAgi1+1,Iy

= x
[
Agi1+1,I

HAgi2+1,I +Agi2+1,I
HAgi1+1,I

]
y

= x
[
0
]
y = 0.

This completes the proof.
The requirements of Theorem 1 for UW-gSD can be

easily stated using the Table 2 shown at the top of the next
page as follows:

• The matrices of the first row should form a
Hurwitz-Radon family of matrices

• The matrices of the first column should be

– Hermitian

– mutually commuting and

– commute with all the matrices of the first row

Definition 1 A UW-DSD code satisfying the conditions
of (16) is defined to be a Clifford Unitary Weight DSD
(CUW-DSD) codes.

The name in the above definition is due to the fact that
such codes are constructable using matrix representations
of real Clifford algebras as shown in the following sec-
tion.

3. Construction of CUW-g-SD codes

In this section we present the construction of a new class
of 2a × 2a g-SD codes, the Clifford UW-g-SD (CUW-g-
SD) codes, for2a transmit antennas, from unitary matrix
representations of real Clifford algebras. For an excellent
introduction to and basic properties of these representa-
tions see [4].

Definition 2 The Clifford algebra, denoted byCAL, is
the algebra over the real fieldR generated byL ob-
jectsγk, k = 1, 2, · · · , L which are anti-commuting,
(γkγj = −γjγk, ∀k 6= j,) and squaring to−1, (γ2

k =
−1 ∀k = 1, 2, · · · , L).

A matrix representation of an algebra is completely spec-
ified by a representation of its generators. For a Clifford
algebra, we are thus interested in unitary matrix represen-
tation of the generatorsγk’s. Let

σ1 =

[
0 1

−1 0

]
, σ2 =

[
0 j

j 0

]
andσ3 =

[
1 0
0 −1

]

(24)
and A⊗

m

= A⊗A⊗A · · · ⊗A︸ ︷︷ ︸
m times

.

From [4] we know that the representation of the genera-
tors ofCA2a+1 is given by

R(γ1) = ±jσ⊗
a

3

R(γ2) = I⊗
a−1

2

⊗
σ1

R(γ3) = I⊗
a−1

2

⊗
σ2

. .

. .

. .

R(γ2k) = I⊗
a−k

2

⊗
σ1

⊗
σ⊗

k−1

3

R(γ2k+1) = I⊗
a−k

2

⊗
σ2

⊗
σ⊗

k−1

3

. .

. .

. .

R(γ2a) = σ1

⊗
σ⊗

a−1

3

R(γ2a+1) = σ2

⊗
σ⊗

a−1

3 .

(25)

We add to this list the2a×2a identity matrix, denoted by
I2a , and designate it asR(γ0) = I2a .



I = A1I Ag+1,I A2g+1,I . . . Aig+1,I . . . A(K−1)g+1,I

A1Q A1QAg+1,I A1QA2g+1,I . . . A1QAig+1,I . . . A1QA(K−1)g+1,I

A2I A2IAg+1,I A2IA2g+1,I . . . A2IAig+1,I . . . A2IA(K−1)g+1,I

A2Q A2QAg+1,I A2QA2g+1,I . . . A2QAig+1,I . . . A2QA(K−1)g+1,I

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .
AgI AgIAg+1,I AgIA2g+1,I . . . AgIAig+1,I . . . AgIA(K−1)g+1,I

AgQ AgQAg+1,I AgQA2g+1,I . . . AgQAig+1,I . . . AgQA(K−1)g+1,I

3.1. Construction of CUW-g-SD codes

To construct CUW-g-SD codes from the last2g matrices
{R(γ2(a+1−g)), R(γ2(a+1−g)+1), · · · , R(γ2a), R(γ2a+1)}
we construct the following2g − 1 new matrices,

α1 = ±jR(γ2a−2)R(γ2a−1)
α2 = ±jR(γ2a)R(γ2a+1)

...
...

αg = ±jR(γ0)R(γ1)
αg+1 = ±α1α2

αg+2 = ±α3α4

...
...

αg+ g
2

= ±αg−1αg

αg+ g
2+1 = ±αg+1αg+2

αg+ g
2+2 = ±αg+3αg+4

...
...

αg+ g
2+

g
4

= ±αg+ g
2−1αg+ g

2

...
...

α2g−1 = Πg
i=1αg.

(26)

Note that the set of matrices{αi}2g−1
i=1 have the fol-

lowing properties: (i) They are mutually commut-
ing, (ii) Hermitian and (iii) each commutes with
R(γ1), R(γ2), · · · , R(γ2a−2g+1). In the above construc-
tion ofαis there is nothing special about the last2g matri-
ces. Any2g from the set{R(γ1), R(γ2), · · · , R(γ2a+1)}
could have been selected. Next, for1 ≤ i ≤ 2a− 2g+2,
we construct the weight matrices of the code combining
the matrices defined above in the following way,

Ag(i−1)+1,I = R(γi−1)
Ag(i−1)+2,I = ±α1R(γi−1)

...
...

Ag(i−1)+g,I = ±αg−1R(γi−1)
Ag(i−1)+1,Q = ±αgR(γi−1)
Ag(i−1)+2,Q = ±αg+1R(γi−1)

...
...

Ag(i−1)+g,Q = ±α2g−1R(γi−1)





(27)

Theorem 2 The2a × 2a code with the weight matrices
given by(27) is a CUW-g-SD code.

Proof It is easily checked that the weight matrices satisfy
the conditions of Theorem 1 and hence the code is CUW-
g-SD.

Corollary 1 The rate of the2a× 2a CUW-g-SD codes of
Theorem 2 isa+1−g

2a−g complex symbols per channel use.

Example 1 Let the representation matrices of the
CA2a+1, wherea = 3 be,

R(γ0) = I2 ⊗ I2 × I2, R(γ1) = I2 ⊗ I2 × σ1,

R(γ2) = I2 ⊗ I2 × σ2, R(γ3) = I2 ⊗ σ1 × σ3,

R(γ4) = I2 ⊗ σ2 × σ3, R(γ5) = σ1 ⊗ σ3 × σ3

R(γ6) = σ2 ⊗ σ3 × σ3, R(γ7) = jσ3 ⊗ σ3 × σ3

Now according to the prescription of the construction
procedure,

α1 = jR(γ4)R(γ5) = σ1 ⊗ σ1 × I2

α2 = jR(γ6)R(γ7) = jσ1 ⊗ I2 × I2

α3 = R(γ4)R(γ5)R(γ6)R(γ7) = jI2 ⊗ σ1 × I2

and the weight matrices given by(28) at the top of the
next page. Now if we construct the code, we get the code
given by(29) at the top of the next page.

Note that for 8 transmit antennas our CUW-DSD code
achieves rate 1 whereas all known QODs with unitary
weight matrices for 8 transmit antennas achieve rate only
3
4 . However, the 8 transmit antenna DSD code with non-
unitary weight matrices of [6] achieve rate 1, but has
larger Peak-to-Average Power Ratio due to the presence
of zero entries in the code, compared to our CUW-DSD
codes.
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A1I = R(γ0) = I2 ⊗ I2 × I2 A3I = R(γ1) = I2 ⊗ I2 × σ1 A5I = R(γ2) = I2 ⊗ I2 × σ2 A7I = R(γ3) = I2 ⊗ σ1 × σ3
A1Q = α1A1I = σ1 ⊗ σ1 × I2 A3Q = α1A3I = σ1 ⊗ σ1 × σ1 A5Q = α1A5I = σ1 ⊗ σ1 × σ2 A7Q = α1A7I = −σ1 ⊗ I2 × σ3
A2I = α2R(γ0) = jσ1 ⊗ I2 × I2 A4I = α2R(γ1) = jσ1 ⊗ I2 × σ1 A6I = α2R(γ2) = jσ1 ⊗ I2 × σ2 A8I = α2R(γ3) = jσ1 ⊗ σ1 × σ3
A2Q = α3R(γ0) = jI2 ⊗ σ1 × I2 A4Q = α3R(γ1) = jI2 ⊗ σ1 × σ1 A6Q = α3R(γ2) = jI2 ⊗ σ1 × σ2 A8Q = α3R(γ3) = −jI2 ⊗ I2 × σ3

(28)
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6

6

6

6

6

6

6

6

6

4

x1I − jx8Q x3I + jx5I x7I + jx2Q −x6Q + jx4Q −x7Q + jx2I −x6I + jx4I x1Q + jx8I x3Q + jx5Q

−x3I + jx5I x1I + jx8Q −x6Q − jx4Q −x7I + jx2Q −x6I − jx4I x7Q + jx2I −x3Q + jx5Q x1Q − jx8I

−x7I − jx2Q x6Q − jx4Q x1I − jx8Q x3I + jx5I −x1Q − jx8I −x3Q − jx5Q −x7Q + jx2I −x6I + jx4I

x6Q + jx4Q x7I − jx2Q −x3I + jx5I x1I + jx8Q x3Q − jx5Q −x1Q + jx8I −x6I − jx4I x7Q + jx2I

x7Q − jx2I x6I − jx4I −x1Q − jx8I −x3Q − jx5Q x1I − jx8Q x3I + jx5I x7I + jx2Q −x6Q + jx4Q

x6I + jx4I −x7Q − jx2I x3Q − jx5Q −x1Q + jx8I −x3I + jx5I x1I + jx8Q −x6Q − jx4Q −x7I + jx2Q

x1Q + jx8I x3Q + jx5Q x7Q − jx2I x6I − jx4I −x7I − jx2Q x6Q − jx4Q x1I − jx8Q x3I + jx5I

−x3Q + jx5Q x1Q − jx8I x6I + jx4I −x7Q − jx2I x6Q + jx4Q −x7I − jx2Q −x3I + jx5I x1IQ + jx8Q

3

7

7

7

7

7

7

7

7

7

5

(29)
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