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The Sided and Symmetrized Bregman Centroids

Frank Nielsen, Member, |EEE, and Richard Nock, Nonmember, |EEE

Abstract—We generalize the notions of centroids (and barycen-
ters) to the broad class of information-theoretic distortion mea-
sures called Bregman divergences. Bregman divergences form
a rich and versatile family of distances that unifies quadratic
Euclidean distances with various well-known statistical entropic
measures. Since besides the squared Euclidean distance, Bregman
divergences are asymmetric, we consider the left-sided and right-
sided centroids and the symmetrized centroids as minimizers of
average Bregman distortions. We prove that all three centroids
are unique and give closed-form solutions for the sided centroids
that are generalized means. Furthermore, we design a provably
fast and efficient arbitrary close approximation algorithm for
the symmetrized centroid based on its exact geometric charac-
terization. The geometric approximation algorithm requires only
to walk on a geodesic linking the two left/right sided centroids.
We report on our implementation for computing entropic centers
of image histogram clusters and entropic centers of multivariate
normal distributions that are useful operations for processing
multimedia information and retrieval. These experiments illus-
trate that our generic methods compare favorably with former
limited ad-hoc methods.

Index Terms—Centroid, Kullback-Leibler divergence, Breg-
man divergence, Bregman power divergence, Burbea-Rao di-
vergence, Csiszar divergence, Legendre duality, Information
geometry.

I. INTRODUCTION AND MOTIVATIONS

Content-based multimedia retrieval applications with their
prominent image retrieval systems (CBIRs) are very popular
nowadays with the broad availability of massive digital mul-
timedia libraries. CBIR systems spurred an intensive line of
research for better ad-hoc feature extractions and effective yet
accurate geometric clustering techniques. In a typical CBIR
system [13], database images are processed offline during a
preprocessing step by various feature extractors computing
image characteristics such as color histograms or points of
interest. These features are aggregated into signature vectors,
say {p;}:, that represent handles to images. At query time,
whenever an on-line query image is given, the system first
computes its signature, and then search for the first, say h,
best matches in the signature space. This image retrieval task
requires to define an appropriate similarity (or dissimilarity)
measure between any pair (p;, p;) of signatures. Designing an
appropriate distance is tricky since the signature space is often
heterogeneous (ie., cartesian product of feature spaces com-
bining for examples various histograms with other geometric
features) and the usual Euclidean distance or L,-norms do not
always make sense. For example, it has been shown better to
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use the information-theoretic relative entropy, known as the

Kullback-Leibler divergence (or I-divergence for short), to

measure the oriented distance between image histograms [13].

The definition of the Kullback-Leibler divergence [14] for two

continuous probability densities! p(z) and ¢(z) is as follows:
p(x)

KL(p(x x:/mlo—d:v.
(p(2)lla(x)) mp( ) 2 4

The Kullback-Leibler divergence of statistical distributions

p(z) and g(z) is called the relative entropy since it is equal

to the cross-entropy of p(x) and ¢(z) minus the entropy

H(p(z)) = [, p(z)log ;5 da of p(a):

o))

KL(p(2)|lq(x)) = H* (p(2)[|q(x)) = H(p(x)) =0 (2)
with the cross-entropy:
H p@)la@) = [po)og——de @
. q(z)

The Kullback-Leibler divergence represents the average loss
(measured in bits if the logarithm’s basis is 2) of using another
code to encode a random variable X. The relative entropy
can also be interpreted as the information gain achieved
about X if p can be used instead of ¢ (see [14] for various
interpretations in information theory). For discrete random
variables, the statistical Kullback-Leibler divergence on two
real-valued d-dimensional probability vectors p and ¢ encoding
the histogram ditributions is defined [6] as:

L (3)
KL(p|lq) = ;p(” log %, 4
where p® and ¢(¥ denote the d coordinates of proba-
bility vectors p and ¢, respectively (with both p,q be-
longing to the d-dimensional probability simplex S; =
{(zW, .., 2@y | Y% 2, =1and Vi z; > 0}, an open con-
vex set). The || in the notation KL(p||q) emphasizes that the
distortion measure is not symmetric (ie., oriented distance),
since we have KL(pl||q) # KL(q||p).

Notations: Throughout the paper, let p;, x;,c;,... de-
note d-dimensional real-valued vectors of R?, and let
p§l),x.§1)7c§l)7...71 < i < d denote their coordinates. Sets
P,C;, ... are denoted using calligraphic letters.

Efficiency is yet another key issue of CBIR systems since we
do not want to compute the similarity measure (query,image)
for each image in the database. We rather want beforehand to

1A formal definition considers probability measures P and Q defined
on a measurable space (X,.A). These probability measures are assumed
dominated by a o-finite measure p with respective densities p = % and

q= %. The Kullback-Leibler divergence is then defined as KL(P||Q) =

] % _log(% %)du. See [6] a recent study on information and divergences
in statistics.
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cluster the signatures efficiently during the preprocessing stage
for fast retrieval of the best matches given query signature
points. A first seminal work by Lloyd in 1957 [15] proposed
the k-means iterative clustering algorithm for solving vector
quantization problems. Briefly, the k-means algorithm starts
by choosing & seeds? for cluster centers, associate to each
point its “closest” cluster “center,” update the various cluster
centers, and reiterate until either convergence is met or the
difference of the “loss function” between any two successive
iterations goes below a prescribed threshold. Lloyd chose to
minimize the squared Euclidean distance since the minimum
average intra-cluster distance yields centroids, the centers of
mass of the respective clusters. Lloyd [15] further proved that
the iterative k-means algorithm monotonically converges to a
local optima of the quadratic function loss (minimum variance
loss):

n

k
Yol —all®

i=1 p; €C;

®)

Cluster C;’s center ¢; is defined by the following minimiza-
tion problem

¢ = argmcin Z lle — p;ll?, (6)
p;€C;
def .
= arg mnin AVG2(Ci, 0), @)
1
= m Z Pj, )

p; €Ci

where |C;| denotes the cardinality of C;, and the ¢;’s and p;’s
are real-valued d-dimensional vectors. That is, the minimum
average squared distance of the cluster center to the cluster
points is reached uniquely by the centroid: The center of
mass of the cluster. Note that considering the Euclidean dis-
tance instead of the squared Euclidean distance yields another
remarkable center point of the cluster called the Fermat-
Weber point [18]. Although the Fermat-Weber point is also
provably unique, it does not have closed-form solutions. It is
thus interesting to ask oneself what other kinds of distances
in Eq. 7 (besides the squared distance) yield simple closed-
form solutions that are of interests for processing multimedia
information. Half a century later, Banerjee et al. [19] showed
in 2004 that the celebrated k-means algorithm extends to and
remarkably only works [20] for a broad family of distortion
measures called Bregman divergences [21], [22]. Let RT
denote the non-negative part of the real line: R* = [0, 4+00).
In this paper, we consider only Bregman divergences defined
on vector points p; € R in fixed dimension.®

Bregman divergences Dx form a family of distortion mea-
sures that are defined by a strictly convex and differentiable
generator function FF : X — RT on a convex domain

2Forgy’s initialization [16] consists merely in choosing at random the seeds
from the source vectors. Arthur and Vassilvitskii [17] proved that a better
careful initialization yields expected guarantees on the clustering.

3See the concluding remarks in Section VI for extensions of Bregman
divergences to matrices [23], [3], and recent functional extensions [24] of
Bregman divergences.

Hy

Fig. 1. Geometric interpretation of a univariate Bregman divergence.
Dp(.||g) is the vertical distance between the potential function plot F =
{(z, F(z)) | « € X} and the hyperplane H, tangent to F at (g, F'(q)).

domF = X C R? (with dim X = d) as

Dr(pllg) = F(p) — F(9)— <p—q,VF(q) >, (9)

where < -,- > denotes the inner product (also commonly
called the “dot” product):

d

<pq>=)Y pPq" =pTy, (10)
=1
and VF(q) denotes the gradient of F' at vector point ¢:
_|9F(g)  9OF(q)
VF(q) = [&c(l) v @ | (11)

See Figure 1 for a geometric interpretation of Bregman
divergences. Thus Bregman divergences define a parameter-
ized family of distortions measures D that unify the squared
Euclidean distance with the statistical Kullback-Leibler diver-
gence:

o Namely, the squared Euclidean distance is a Bregman
divergence in disguise obtained for the generator F'(x) =
>4 («(M)2 that represents the paraboloid potential
function (see Figure 1), or the quadratic loss on vector
points in the k-means algorithm.

o The Kullback-Leibler divergence is yet another Breg-
man divergence in disguise obtained for the generator
F(z) = 2% 2@ logz(® that represents the negative
Shannon entropy on probability vectors [14] (normalized
unit length vectors lying on the d-dimensional probability
simplex S%).

A Bregman divergence D is said separable [19], [25] if its

generator can be obtained coordinate-wise from a univariate
generator f as:

(12)

Table | reports the generators of common univariate Bregman
divergences (ie., divergences defined on scalars + € R —
d = 1). Multivariate separable Bregman divergences defined
on = € RY can be easily constructed piecewise from univariate
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Domain X || Function F' || Gradient Fd([“) = F'(z) | Inverse gradient (F(z))~?! || Divergence Dr(p||q)
R Squared function Squared loss

? 2z 3 (p—q)?
Ry,a € N || Norm-like Norm-like

1

a>1 z® az®~1 (£)e- T p® + (o — 1)g® — apg®~?!
RT Unnormalized Shannon entropy Kullback-Leibler divergence (I-divergence)

zlogx — x log exp(x) plogs —p+gq

Exponential Exponential loss
R exp T exp T log exp(p) — (p — ¢+ 1) exp(q)
RFx Burg entropy Itakura-Saito divergence

1 1

—logx - -2 %—logg—l

[0,1] Bit entropy Logistic loss
T exp 3 P 1—

mlogr-—l-(l—:v)log(l—x) log %= 1+’;§;z ploga—?-(.l—p)logtz

Dual bit entropy Dual logistic loss
R log(1 + exp ) rerps log 1 log 7022 — (P — 4) Treeny
[—1,1] Hellinger-like Hellinger-like

_ /1 — 2 T x 1-pg  _ 1—p2

v 12 N V1o Vi-p
TABLE |

COMMON UNIVARIATE BREGMAN DIVERGENCES D USED FOR CREATING SEPARABLE BREGMAN DIVERGENCES.

Bregman divergences. The generalized quadratic distances®
lp—qll3 = (p—q)" Q(p — q) defined for a d x d positive def-
inite matrix @ are the only symmetric Bregman divergences®
obtained from the non-separable generator F(z) = 27 Qu,
see [25], [23].

Thus, in Barnerjee et al. [19], the original k-means al-
gorithm is extended into a meta-algorithm, called the Breg-
man k-means, that works for any given Bregman divergence.
Furthermore, Barnerjee et al. [20], [19] proved the property
that the mean is the minimizer of the expected Bregman
divergence. The fundamental underlying primitive for these
center-based clustering algorithms is to find the intrinsic best
single representative of a cluster with respect to a distance
function d(-,-). As mentioned above, the centroid of a point
set P = {p1,...,pn} (With P C X) is defined as the optimizer
of the minimum average distance:

o1
¢ = argmin Z d(p, p:)- (13)
For oriented distance functions such as aforementionned Breg-
man divergences that are not necessarily symmetric, we thus
need to distinguish sided and symmetrized centroids as fol-
lows:

1L

¢k = argmin - Dr(pil[c]), (14)
i=1
1L

T arngIéIQI(l;ZDF(HPi)a (15)
i=1

4The squared Mahalanobis distance is a generalized quadratic distance
obtained by choosing matrix @ as the inverse of the variance-covariance
matrix [25].

®Note that the quadratic form of distances [|p — q/|3, = (p — )" Q(p—q)
amounts to compute the squared Euclidean distance on transformed points
with the mapping x — Lx, where L is the triangular matrix of Cholesky
decomposition @ = LTL since |[p — q||3, = (p — a)"LTL(p — q) =
|ILp — Lq||>.

= g 130 2r@IE) ¢ D[R o
ceX n =1 2

The first right-type and left-type centroids c% and ¢ are
called sided centroids (with the superscript L standing for left,
and R for right), and the third type centroid ¢’ is called the
symmetrized Bregman centroid. Except for the class of gen-
eralized quadratic distances with generator Fg(z) = 27 Quz,
Sp(p;q) = 2elellodPridle) s not a Bregman divergence,
see [25] for a proof. Since the three centroids coincide
with the center of mass for symmetric Bregman divergences
(generalized quadratic distances), we consider in the remain-
der asymmetric Bregman divergences. For a given point set
P = {p1,...,pn}, we write for short the minimum averages

as:

AVGr(Pll) = 30 Dr(pile) an
i=1

AVGr(ClP) = =3 Dr(ellp), (18)
=1

AVGr(eP) = 3" Se(cipi) = AVGH(P; o), (19
=1

so that we get respectively the three kinds of centroids as:

cE = arg Hél/% AVGE(P|lc), (20)

' = arg mi)r(l AVGFr(c||P), (21)
ce

' = arg mi}(l AVGR(P;c). (22)
ce

We use the semi-colon “;” notation® in symmetrized di-
vergence Sr(c;p;) and average mean AVGr(P;c) to in-
dicate that it is symmetric: Sp(c;p;) Sr(pi;c) and

6We reserve the comma notation ”,” in divergences to stress out the metric
property.
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AVGr(P;c) = AVGr(c;P). The Jensen-Shannon diver-
gence [26], [27] (symmetrized Kullback-Leibler divergence
obtained for F(z) = Y.% , () log 2", the negative Shannon
entropy) and COSH centroids [28], [29] (symmetrized Itakura-
Saito divergence obtained for F(z) = — Y% logz(®, the
Burg entropy) are certainly the most famous symmetrized
Bregman centroids, widely used in image and sound pro-
cessing. These symmetrized centroids play a fundamental
role in information retrieval (IR) applications that require to
handle symmetric information-theoretic distances. Note that
Bregman divergences can also be assembled blockwise for
processing multimedia information and retrieval combining
both auditory and visual signals. Table Il presents a table
of common Bregman divergences (or symmetrized Bregman
divergences) in action for processing multimedia signals in
real-world applications. This table is by no means exhaustive.
We refer the reader to the first comprehensive “Dictionary of
distances” [9] (especially, chapter 21 dealing with “Image and
Audio Distances”) for further hints and explanations for which
divergence is useful for which applications.

A. Kullback-Leibler divergence of exponential families as
Bregman divergences

In statistics, exponential families [19], [25] represent a
large class of popular discrete and continuous distributions
with prominent members such as Bernoulli, multinomial, beta,
gamma, normal, Rayleigh, Laplacian, Poisson, Wishart, etc.
just to name a few. The probability mass/density functions of
exponential families are parametric distributions that can be
written using the following canonical decomposition:

p(2]0)= exp{(6,t(x)) — F(0) + C(x)}, (23)

where ¢(z) denotes the sufficient statistics and 6 represents the
natural parameters. Since log [, p(z|0)dz = log1 = 0, we
have F'(6) = log [ exp{(f,t(x)) + C(x)}dz. F is called the
log normalizer function and fully characterizes the exponential
family €. Term C(x) ensures density normalization.

It turns out that the Kullback-Leibler divergence of distribu-
tions p(z|6,) and p(z|6,) belonging to the same exponential
family £r is equivalent to the Bregman divergence D for the
log normalizer function on swapped natural parameters:

KL(p(x|0p)[p(]04)) = Dr(0416))

See [25] for a proof. Thus a left-sided/right-sided/symmetrized
Kullback-Leibler centroid on a set of distributions of the
same exponential family is a corresponding right-sided/left-
sided/symmetrized Bregman centroid on a set of vectors of
the natural space X.

(24)

B. Properties of sided/symmetrized centroids

In practice, once the proper Bregman divergence is cho-
sen, we still need to choose between the left-sided, right-
sided or symmetrized centroid. These centroids exhibit dif-
ferent characteristics that help choose the proper centroid for

the given application. Without loss of generality’, consider
the most prominent asymmetric Bregman divergence: The
Kullback-Leibler divergence. Furthermore, for illustrative pur-
poses, consider a set of n normal distributions {N7, ..., N, }.
Each normal distribution A; has probability density function
pi(x|pi,o?) (pdf. for short):

1 (z — u-))
2 T
i\T|Hiy Oy ) = ex —
pi(z|pi, o7) o p< 552
that can be modeled by a corresponding 2D point p;, =
(ui, ;%) of mean u; and variance o2 in parameter space

X =R x Rf. The Kullback-Leibler divergence between two
normals has the following closed-form solution®:

(25)

KL(p(|pp, 0p)lIp(w|piq, 07)) =

1 o2 — )2
1 210g2+_g+w_1 ,
2 Op o o

Observe that the closed-form formula is computed for 2D

points p; = (P = s, p{? = 02) in the parameter space X.
For identical normal variances of, = ag the Kullback-Leibler

divergence amounts to a weighted squared Euclidean distance.

Figure 2 displays an example of left/right sided and sym-
metrized centroids of normals for a set that consists of two
normals: N7 = N(—4,2%2 = 4) and Ny = N(5,0.82 = 0.64).
We observe the following properties:

o The Kullback-Leibler right-sided centroid is *“zero-
avoiding™ so that its corresponding density function tries
to cover the support of all input normals,

o The Kullback-Leibler left-sided centroid is *“zero-
forcing” so that it focuses on the highest mass mode
normal.

That zero-avoiding/zero-forcing terminology is related to
the description of Minka [11] (pages 3-4) that considered
Gaussian mixture simplification of a 2-component Gaussian
mixture to a single Gaussian component. The Kullback-
Leibler left-sided centroid prefers to better represent only
the highest-mode individual of the set while the right-sided
centroid prefers to stretch over all individuals. Following yet
another terminology of Winn and Bishop [30], we observe
when modeling the “mean” probability density function that
the Kullback-Leibler left-sided centroid exhibits an exclusive
behavior (ignore modes of the set to select the highest one)
while the Kullback-Leibler right-sided centroid displays an
inclusive property.

To get a mathematical flavor of these zero-forcing/zero-
avoiding behaviors, consider without loss of general-
ity the Kullback-Leibler divergence on finite discrete

Indeed, as shown earlier, Bregman divergences can be interpreted as equiv-
alent Kullback-Leibler divergences on corresponding parametric exponential
families in statistics by swapping the argument order [19], [25].

8The Kullback-Leibler divergence of normals is equivalent to a Bregman
divergence for a corresponding generator F' by swapping argument order. See
[19], [25].

9As explained by Banerjee et al. [19], [25], the Kullback-Leibler divergence
of distributions of the same exponential families is a Bregman divergence on
the natural parameters of these distributions obtained by swapping the order
of the arguments. Arbitrary probability measures can be approximated by
multinomial distributions that belong to the exponential family.
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Left-side Kullback-Leibler centroid
(zero-forcing)

Ny = (5,0.64)

Symmetrized centroid
Right-sided Kullback-Leibler centroid
zero-avoiding

N =N(-4,4)

Fig. 2. Visualizing the fundamental properties of the left-sided, the right-
sided and the symmetrized centroids (with N7 = N(—4,22 = 4) and N2 =
N(5,0.8%2 = 0.64)): The right-sided centroid (thin dashed red line) is zero-
avoiding and tries to cover the support of both normals. The left-sided centroid
(thick dashed blue line) is zero-forcing and focuses on the highest mode
(smallest variance). The symmetrized centroid (medium dashed green line)
exhibits a trade-off between these two zero-avoiding/zero-forcing properties.

set of distributions (ie., multinomial distributions with
d outcomes). The right-sided centroid is the minimizer
ck = arg,min< > " KL(p;|lc). That is, we seek for
the d-dimensional probability vector ¢ that minimizes

Ly yd ), P intuiti
mins >0, > 5 p; log oy Thus, intuitively whenever

p%) £ 0, the minimization process ought to choose ¢(9) % 0.
Otherwise, setting ¢¥) = 0 yields p; log% — oo (e,
the Kullback-Leibler divergence is unbounded). That is, the
right-sided Kullback-Leibler centroid (that is a left-sided
Bregman centroid) is zero-avoiding. Note that this minimiza-
tion is equivalent to maximizing the average cross-entropies
1y > p log e, and thus the right-sided Kullback-
Leibler centroid c is zero-avoiding for all pl(-j) # 0.
Similarly, the left-sided Kullback-Leibler centroid
cp = arg,min = > KL(c||p;) is obtained by minimizing
min 1 S0 S ¢ log ;Ej; . This minimization is zero-

forcing since whenever there exists a p§” = 0, the
minimization tasks chooses to set ¢/) = 0. That means
that the right-sided Bregman centroid (a left-sided Kullback-
Leibler divergence in disguise) is zero-forcing.

The symmetrized Kullback-Leibler centroid is defined as
the minimizer of the Jensen-Shannon divergence (which has
always finite value). That is, the symmetrized centroid mini-

mizes the total divergence to the average probability density

m(z) = P2ED) a5 follows:
1 1
¢ = argmin o KL(p(z)|lm(z)) + 5KL(g(z)lm(z)). (26)

Therefore the symmetrized centroid strikes a balance between
the two zero-forcing and zero-avoiding properties with respect
to the mean distribution.

C. Related work, contributions and paper organization

Prior work in the literature is sparse and disparate. We
summarize below main references that will be concisely revis-
ited in section 11l under our notational conventions. Ben-Tal
et al. [31] studied entropic means as the minimum average
optimization for various distortion measures such as the f-
divergences and Bregman divergences. Their study is limited
to the sided left-type (generalized means) centroids. Basseville
and Cardoso [32] compared in the 1-page paper the general-
ized/entropic mean values for two entropy-based classes of
divergences: f-divergences [33] and Jensen-Shannon diver-
gences [34]. The closest recent work to our study is Veldhuis’
approximation method [35] for computing the symmetrical
Kullback-Leibler centroid.

We summarize our contributions as follows:

« In section Ill, we show that the two sided Bregman
centroids ¢k and cf with respect to Bregman diver-
gence D are unique and easily obtained as generalized
means for the identity and VF functions, respectively.
We extend Sibson’ s notion of information radius [36]
for these sided centroids, and show that they are both
equal to the F-Jensen difference, a generalized Jensen-
Shannon divergence [37] also known as Burbea-Rao
divergences [38].

« Section IV proceeds by first showing how to reduce the
symmetrized min AVG g (c; P) optimization problem into
a simpler system that depends only on the two sided
centroids ck and cf'. We then geometrically characterize
exactly the symmetrized centroid as the intersection point
of the geodesic linking the sided centroids with a new
type of divergence bisector: the mixed-type bisector. This
yields a simple and efficient dichotomic search procedure
that provably converges fast to the exact symmetrized
Bregman centroid.

o The symmetrized Kullback-Leibler divergence (J-
divergence) and symmetrized Itakura-Saito divergence
(COSH distance) are often used in sound/image appli-
cations, where our fast geodesic dichotomic walk algo-
rithm converging to the unique symmetrized Bregman
centroid comes in handy over former complex adhoc
methods [27], [28], [26], [39], [40]. Section V considers
applications of the generic geodesic-walk algorithm to
two cases:

— The symmetrized Kullback-Leibler for probability
mass functions represented as d-dimensional points
lying in the (d — 1)-dimensional simplex S¢. These
discrete distributions are handled as multinomials of
the exponential families [25] with d — 1 degrees of
freedom. We instantiate the generic geodesic-walk
algorithm for that setting, show how it compares
favorably with the prior convex optimization work
of Veldhuis [35], [39], and validate formally experi-
mental remarks of Veldhuis.

— The symmetrized Kullback-Leibler of multivariate
normal distributions. We describe the geodesic-walk
for this particular mixed-type exponential family
of multivariate normals, and explain the Legendre
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Divergence name Formula

Generator F'(z) for Dp Examples of application domains

(squared) Mahalanobis M4 (p;q) = (p — )T A(p — q)

(gen. quadratic loss, A semi-positive definite matrix)

F(z) =27 Az
(operations research)

Facility locations

Kullback-Leibler KL(p|lg) = L, pC )log ”( ) H(z) =Y, 2" loga® Statistical analysis
(negative Shannon entropy)
Jensen-Shannon JS(p;q) = Z 1@ — ¢®) log (( ; symmetrized Kullback-Leibler  Image retrieval
. p(D B R
Itakura-Saito IS(p||q) = ( @~ log 2 ) B(z) = -, logz® Sound processing

(Burg entropy)

(i) (i)
COSH COSH(psq) = ©i, § (2 + 4y ) —d

symmetrized ltakura-Saito Sound retrieval

TABLE Il
BREGMAN OR SYMMETRIZED BREGMAN DIVERGENCES WITH CORRESPONDING CORE APPLICATION DOMAINS.

mixed-type vector/matrix dual convex conjugates
defining the corresponding Bregman divergences.
This yields a simple, fast and elegant geometric
method compared to the former overly complex
method of Myrvoll and Soong [27] that relies on
solving Riccati matrix equations.

But first, we start in Section Il by introducing the dually
flat space construction from an arbitrary convex function. This
section may be skimmed through at first reading since it is
devoting to define the sided Bregman centroids under the
framework of dually flat spaces of information geometry.

Il. GEOMETRY UNDERLYING BREGMAN DIVERGENCES:
DUALLY FLAT MANIFOLDS

We concisely review the construction of dually flat mani-
folds from convex functions. This construction lies at the very
heart of information geometry [41]. A full description of this
construction is presented in the comprehensive survey chapter
of Amari [10] (see also [42], [43]). Information geometry [41]
originally emerged from the studies of invariant properties of
a manifold of probability distributions D, say the manifold of
univariate normal distributions:

D = {p(z|p,0%) =
1 (x — p)?
TR R,o € RH).

Information geometry relies on differential geometry and in
particular on the sophisticated notion of affine connections'®
(pioneered by Cartan [44]) whose explanation is beyond the
scope of this paper [41]. We rather describe the three most
fundamental items of dually flat manifolds:

o The fundamental convex duality and the dual coordinate
systems arising from Legendre transformation, and

o The generalized Pythagorean relation, and

« The notion of Bregman projection.

These descriptions will enlighten geometrically the results of
the paper. The point is to show that Bregman divergences
form the canonical distances of dually flat manifolds arising
when studying family of probability distributions. Those flat

10Connections relate the vector tangent spaces for infinitesimal displace-
ments on the manifold. A riemannian connection (also called Levi-Civita con-
nection) is such that parallel transport gives an isometry between the tangent
planes. To contrast with, an affine connection uses an affine transformation.

geometries nicely generalize the familiar Euclidean geometry.
Furthermore, these flat geometries reveal a fundamental ge-
ometric duality that is hidden when dealing with the regular
Euclidean geometry.

A. Riemannian metric associated to a convex function

Consider a smooth real-valued convex! function F(6)
defined in an open set X of R?, where 6 denotes a fixed
coordinate system. The second derivatives of the function F
form its Hessian matrix V2F = (g,;) that is a positive definite
matrix*? depending on its position 6:

V2F(0) = (9i;(0)) = (8:0;F(6)) > 0 (27)
where 9; = 555 and 6 = (1), ...,6D). For two infinitesi-

mally nearby points § and 6 + dé, define the square of their
distance by

ds? =< df,df >=) _ g;;(0)
7
where < df, df > denote the inner product. A manifold with
such an infinitesimal distance is called a Riemannian manifold,
and matrix g = (g;;) is called the Riemannian metric. Observe
that ds? is obtained from the second-order term of the Taylor
expansion of F(6 + db):

+ZaF )do O Zg
(29)

A geodesic I'pg of manifold D is defined by the straight line
connecting two points P and @ (with respective coordinates
0p = 6(P) and 6 = 0(Q) in the #-coordinate system):

FPQ = {X()\),/\ S [0,1} ‘ GXO\) = (1 —/\)ap-t—)\o@} (30)

When F(6) = 137, 9 is the paraboloid function, we
have g;; = d;; the Krénecker symbol:
i=J

1,
5“_{ 0, i#j.

and the geometry is Euclrdean because of the implied squared
distance ds* = 3, d# ?.In order to retrieve the global

1Note that the notion of convexity requires a coordinate system.
12N matrix M is positive definite iff. for all = we have 2T Mz > 0. We
write M > 0 to denote the positive-definiteness of the matrix M.

Ao\, (28)

F(6+df) = 0)de e\,

(31)



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. X, XXX 2008

Fig. 3. Legendre transformation of a strictly convex function F: The z-
intercept (0, —F*(n)) of the tangent hyperplane Hy : 2 =< 1,0 > —F*(n)
of the potential function defines the value of the Legendre transform F* for
the dual coordinate n. Any hyperplane passing through another point of the
potential function and parallel to Hy necessarily intersects the z-axis above
—F*(n).

geometrical structure of the manifold, we need the geometry
to be independent of the choice of the coordinate system. The
following section reveals that the 6-coordinate system admits
a dual n-coordinate system.

B. Convex duality and dual coordinate systems from Legendre
transformation

Consider the gradient VF(H)défn defined by the following
partial derivatives:

There is a one-to-one correspondence [10] between 6 and
7 so that we can use n as another coordinate system. The
transformation mapping 6 to » (with 2 mutually reciprocal
to () is the Legendre transformation [41] defined for any
convex function F' as follows:

@W_ 9

7 (32)

F*(n) = max{< 0,n > —F(0)}. (33)
ocx

Figure 3 visually depicts the Legendre transformation. (The

drawing illustrates why the Legendre transformation is also

sometimes loosely called the “slope transformation.”)

Table 111 displays two examples of Legendre transformation.
(For the geometry of exponential families in statistics, the
primal #-coordinate system is called the natural coordinate sys-
tem and the dual n-coordinate system is called the expectation
or moment coordinate system.) The dual convex conjugates F
and F* are called potential functions (or contrast functions)
and satisfy the following fundamental equality:

F0)+ F*(n)— < 6,n>=0. (34)

The inverse transformation n — @ is given by the gradient of
F.

6 = VF*(n), (35)

with 6() = %F*(G). That is, 6 and 7 are coupled and form

a dual coordinate system of the geometry implied by a pair

of Legendre convex function (F, F*). The dual Riemannian
metric associated with F™* is
2

9ij = WF (), (36)
and we have the remarkable property that
(97) = (gij) ™" @37)

That is, Riemannian metric (g;;) is the inverse matrix of the
Riemannian metric (g;;). It follows from the construction that
these two metrics are geometrically the same [10], as we have
identical infinitesimal lengths:

Z 9i;d0deV) = Z gi}dn(i)dn(j)-

C. Bregman divergences from the dual coordinate systems

A distortion measure, called divergence, between two points
P and @ of the geometric manifold (either indexed by 6 or n
coordinate system) is defined as:

(38)

Dp(P||Q) = F(0p) + F*(ng)— <0p,ng >, (39)

with < 0p,ng >= 05ng = 3. 0y, We have D(P||Q) >
0. Changing the role of P and @, or 6 and 7, we get the dual
divergence:

Dp-(P||Q) = F*(np) + F(0g)— <np,0g >,  (40)

so that
Dr(P||Q) = Dp+(QI|P). (41)

When @ is close to P, we write Q = P + dP and get the
squared Riemannian distance as:

D(P||Q) = D(P||P + dP) (42)
= 3 E gijdG(Z)dH(J) =5 E :gijdn( )dn). (43)

In particular, this squared Riemmanian approximation means
that the canonical divergence does not satisfy’® the triangle
inequality. Next, we show that we get a remarkable general-
ization of Pythagoras’ theorem.

D. Generalized Pythagoras’ theorem

Consider two curves 6(t) and ¢’'(t) parameterized by a
scalar t in the #-coordinate system, and assume w.l.0.g that
these curves intersect at ¢ = 0: 6(0) = 6’(0). Using the dual
coordinate system 7, we similarly have n(0) = »n’(0). The
tangent vector of a curve 6(t) is at ¢ is the vector:

Ao (doW@)  deM™(p)
dt e 777 dt
of derivatives with respect to ¢. The two curves are said to be

orthogonal at the intersection point when their inner product
vanishes:

(44)

do d¢’

a9 ag'"
S a

>= j———— = 0. 45
Zg” dt  dt (49)

BIndeed, notice that the squared Euclidean distance obtained from the
paraboloid function does not satisfy the triangle inequality.
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Logistic loss/binary relative entropy

l4+exp6 (9 _ 0;) exp 6’ exp 0

F(@) = lOg(l +exp 0) DF(QHQ,) = log 1+exp 6’ 1+exp 6’ VF(G) ~ T¥exp0 _ n
7 — 7
F*(n) =nlogn + (1 —n)log(1 —n) | Dp«(n'|ln) =n"log 7~ 4+ (1 — n) log 11,7,’7 VF*(n) =log {1 =0

Exponential loss/Unnormalized Shannon entropy

F(0) =expb

Dp(0]|0") = exp —exp0’ — (0 — 0") exp 6’

VF(0) =expf=n

F*(n) =nlogn—n

Dp«(n'|ln) =n'log T- +n—n'

VF*(n) =logn =146

TABLE Il
TWO EXAMPLES OF LEGENDRE TRANSFORMATIONSWITH THEIR ASSOCIATED DUAL PARAMETERIZATIONS.

Tor .
Dr(QIIR)

Q

Fig. 4. lllustrating the generalized Pythagorean theorem: For F};Q 1L Tgr,
we have D (P||R) = Dr(P||Q) + Dr(QI|R).

Using the two coordinate systems, this is equivalent to
(46)

Dually flat manifolds exhibit a generalized Pythagoras’
theorem:

Theorem 2.1 (Generalized Pythagoras’ theorem [41]):
When the dual geodesic I',, connecting P and @ is
orthogonal to the geodesic I'gr connecting Q and R (see
Figure 4), we have: Dr(P||R) = Dr(P||Q) + Dr(Q||R),
or dually Dg+(P||R) = Dp+(P||Q) + Dr+(Q||R).

Notice that when we consider the paraboloid convex func-
tion F(0) = >_,(61)?, the metric (g;;) = (g;;) is the identity
matrix and therefore the primal/dual geodesics coincide.

E. Dual convexity and sided Bregman projections

We say that a region R is convex (or 6-convex) when
the geodesic connecting any two points P,Q € R is fully
contained in R. That is,

VP.Qe X, Ae0,1], 1-Nbp+MgeR.  (47)

Similarly, region R is said dual convex (or n-convex) when
the dual geodesic connecting any two points P, @ € R is fully
contained in R:

VP,Q e X, A €(0,1], (1 —X)np+ Ang € R. (48)

Let Prt € R be the point that minimizes Dy (P||Q)
for Q € R, and P,* € R be the point that minimizes

’ l
Pr* = argmingr Dr(P|[Q

“
Pt = argminge Dp(Q||P)

Fig. 5. llustrating the sided Bregman projections P+ and Py, L of a point
P € X for a convex region R: The dual geodesic I'* connecting P to P+
and the geodesic I" connecting P to P are orthogonal to the boundary
IR.

Drp-(P||Q) = Dp(Q||P) for Q € R C X. P, is called the
Bregman projection’* and Pz the dual Bregman projection.

We have the following projection theorem [41], [10] illus-
trated in Figure 5:

Theorem 2.2 ([41], [10]): When R is convex, Pp~ is
unique and the dual geodesic I'* connecting P to Prt is
orthogonal to the boundary of R. Similarly, when R is dual
convex, P.» is unique and the geodesic I" connecting P to
P+ is orthogonal to the boundary of R.

F. Geometry of symmetrized Bregman divergences

As mentionned in the introduction, the symmetrized Breg-
man divergence Sr is typically not a Bregman divergence®®
because the convexity argument may fail as reported in [25].
Therefore the underlying geometry of symmetrized Bregman
divergence does not fit the dually flat manifolds presented
above. However, the symmetrized Bregman divergence can be
interpreted using the framework of Csiszar f-divergence [33]
(also called Ali-Silvey divergence [45]). In particular the
geometry implied by the symmetrized Kullback-Leibler diver-
gence is not flat anymore [46], [42]. We refer to the work of
\Vos [46] for explanations.

We now turn to the study of sided and symmetrized Breg-
man centroids. In the remainder, we consider computing either

14In information geometry [41], Pr~L is called the reverse I-projection
or the dual geodesic projection. Dually, Py~ is called the I-projection or
geodesic projection.

15Besides the class of symmetric quadratic distances that also bears the
name of Mahalanobis distances [25].
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in the 6 or n coordinate system. It shall be clear that all
following results may be dually interpreted using the coupled
dual coordinate system or the dual Legendre convex conjugate.

1.
A. Right-type centroid

THE SIDED BREGMAN CENTROID

We first prove that the right-type centroid cZ is independent
of the considered Bregman divergence Dp:

=i

is always the center of mass. Although this result is well-
known in disguise in information geometry [41], it was again
recently brought up to the attention of the machine learning
community by Banerjee et al. [19] who proved that Lloyd’s
iterative k-means “centroid” clustering algorithm [15] gener-
alizes to the class of Bregman divergences. We state the result
and give the proof for completeness and familizaring us with
notations.

Theorem 3.1: The right-type sided Bregman centroid c%, of
a set P of n points py, ...pn, defined as the minimizer for the
average right divergence cf, = argmin, >_; ; 2Dp(p;||c) =
arg min. AVGg(P||c), is unique, independent of the selected
divergence D, and coincides with the center of mass cg =
CR=D= %Z?:1 Di-

Proof: For a given point ¢, the right-type average diver-

gence is defined as

3|>—‘

(49)

Cg

n

Z% F(pillq)-

AVGE(Pllg) = (50)

Expanding the terms D (p;||q)’s using the definition of Breg-
man divergence, we get

n

Z F(q)—

=1

AVGR(Pllq) = —q,VF(q) >).

(51)
Subtracting and adding F'(p) to the right-hand side yields

<Dpi

i=1
(F(p)_F(q)_Z%<pz_QavF(Q) )7 (52)
i=1
- < LR - F<p>> '
<F(ﬁ) ~F@) - (3 i~ ) VF<q>>> 53)

<Zsz

Observe that since >, ~F(p;) — F(p) is independent
of ¢, minimizing AVGF(PHq) is equivalent to minimizing
Dr(pl|q). Using the fact that Bregman divergences D (p||q)

) + Dr(pllg). (54)

are non-negative, Dr(p||¢) > 0, and equal to zero if and only
if p = ¢, we conclude that

cE = argmin AVG(P||q) = (55)
q
namely the center of mass of the point set. ]
The minimization remainder, representing the “information
radius” (by generalizing the notion introduced by Sibson [36]
for the relative entropy), is for a point set P C X:

P={p1,....,pn} C R* — R* (56)

1 n
=—>Y F(p;))—F(p) >0, 57
JSF(P) nZ (pi) — F(p) 20 (57)
which bears the name of the F-Jensen difference'® [38]. For
F(z) = —H(z) = 3.%, 2 logz(® the negative Shannon
entropy, JSr is known as the Jensen-Shannon divergence [37]:

sz -1

i= 1

For a multinomial distribution with d outcomes, the Shan-
non entropy can also be interpreted as an index of diver-
sity [38] of the distribution. The Jensen difference JS(p;q) =
H(E) — w is therefore a difference of diversity:
Namely, the diversity of the mixed distribution % minus the
average diversity of the source distributions. Following Burbea
and Rao [38], the Jensen-Shannon divergence can naturally be
extended to a mixture of n distributions with a vector of a
priori weights w as follows:

=H wipi) Y wiH (py).
i=1 i=1

It follows from the concavity of Shannon entropy H that
JS(P,w) > 0. This generalized Jensen difference is the same
as the mutual information [38]. See also the related definition
of Jensen-Tsallis divergence [47] for nonextensive Tsallis
entropies. Thus the minimization score of the right-sided
Bregman centroid is the information radius of the population,
a measure of diversity.

The information retrieval criterion JS(P; Q) is continu-
ously connected with the classical statistical Bayesian criterion
e(P; Q) as shown by Liese and Vajda [6] using the notion
of Arimoto entropies, where e(P; ) denote the error of the
Bayesian identification of an object from the set of two objects
having distributions P and Q.

H (p;). (58)

(59)

B. Dual divergence and left-type centroid

Using the Legendre convex conjugation twice, we get the
following (dual) theorem for the left-sided Bregman centroid:
Theorem 3.2: The left-sided Bregman centroid cf’, defined
as the minimizer for the average left divergence cf =
arg min.c y AVGY (c||P), is the unique point ¢ € X such
that cf = (VF)"'(p)) = (VF)" (X1, VF(p;)), where

161n the paper [38], it is used for strictly concave function H(z) = —F(x)
on a weight distribution vector w: Jx(p1,...,pn) = H(O [ mipi) —
Yo miH(p;). Here, we consider uniform weighting distribution 7 = w
(with m; = %).
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p' = ck (PF') is the center of mass for the gradient point
set Pr’ = {p, =VF(pi) | pi € P}

Proof: Using the dual Bregman divergence D g~ induced
by the convex conjugate F'* of F', we observe that the left-type
centroid

cf =arg rrg)r(l AVGr(c||P) (60)
is obtained equivalently by minimizing the dual right-type
centroid problem on the gradient point set:

!/
arg 1;161/1’1( AVG g« (Pr'||), (61)
where we recall that »° = VF(p) and Py =

{VF(p1), ..., VF(p,)} denote the gradient point set. Thus the
left-type Bregman centroid ¢!’ is computed as the reciprocal
gradient of the center of mass of the gradient point set

n

ok (Pr) = S VF(p).

=1

(62)
That is, we get
o = (VR VEG) = (FR) 0. 69

It follows that the left-type Bregman centroid is unique. N

Observe that the duality also proves that the information ra-
dius for the left-type centroid is the same F-Jensen difference
(Jensen-Shannon divergence for the convex entropic function
F).

Corollary 3.3: The information radius equality
AVGr(P|lck) = AVGr(cE||P) = JSp(P) =
LS F(p;)) — F(p) > 0 is the F-Jensen-Shannon

divergence for the uniform weight distribution.

C. Centers and barycenters as generalized means

We show that both sided centroids are generalized means
also called quasi-arithmetic or f-means. We first recall the ba-
sic definition of generalized means?’ that generalizes the usual
arithmetic and geometric means. For a strictly continuous and
monotonous function f, the generalized mean [48], [12], [8]
of a sequence V of n real positive numbers V- = {v1, ..., v, }
is defined as

Mp(v) = f~! (% 3 f(w)) . (64)
i=1

The generalized means include the Pythagoras’ arithmetic,
geometric, and harmonic means, obtained respectively for
functions f(z) = =, f(z) = logz and f(z) = 1 (see
Table 1V). Note that since f is injective, its reciprocal function
f~1 is properly defined. Further, since f is monotonous, it
is noticed that the generalized mean is necessarily bounded
between the extremal set elements min; v; and max; v;:

(65)

17Studied independently in 1930 by Kolmogorov and Nagumo, see [48]. A
more detailed account is given in [49], Chapter 3.

10

In fact, finding these minimum and maximum set elements can
be treated themselves as a special generalized power mean,
another generalized mean for f(z) = P in the limit case
p — Fo0.

Generalized means can be extended to weighted means
using an a priori normalized weight vector w (with Vi, w; > 0
and -1 w; = 1):

Mp(V;w) = f! (Z wif(”i)) :
i=1

By default, we consider the uniform distribution so that
w; = Vi € {1,...,n}. These means can also be naturally
extended to d-dimensional positive vectors P = {p1,...,pn}
(with Vi, p; € (Ry)9) following the Eq. 64. For example, the
arithmetic mean of a set of positive vector points 7 (obtained
with generator f(x) = Ix = x, where I is the d x d identity
matrix) is its center of mass:

(66)

d
My(P) =~ S pe (67)
=1
(In fact, choosing f(z) = Qx for any positive-definite matrix
Q yields the center of mass.) In the remainder, we consider
generalized means on vectors although these notions have been
interestingly extended to a broader setting like matrices. See
for example the axiomatic approach of Petz and Temesi [8]
that defines means'® on matrices using the framework of
operator means via operator monotone functions.
These generalized (vector) means highlight a bijection:
Bregman divergence Dp < V F-means.

The one-to-one mapping holds because Bregman generator
functions F are strictly convex and differentiable functions
chosen up to an affine term [25]. This affine invariant property
transposes to generalized means as an offset/scaling invariant
property:

M (P) = Mas+b(P),

for any invertible matrix A and vector b.

Although we have considered centroids for simplicity to
show the relationship between Bregman centroids and gener-
alized means (ie., uniform weight distribution on the input set
‘P), our approach generalizes straightforwardly to barycenters
defined as solutions of minimum average optimization prob-
lems for arbitrary unit weight vector w (Vi, w; > 0 with
[wl] = 1):

Theorem 3.4: Bregman divergences are in bijection with
generalized means. The right-sided barycenter %' (w) is in-
dependent of F' and computed as the weighted arithmetic
mean on the vector point set, a generalized mean for the
identity function: r¥(P;w) = r(P;w) = M.(P;w) with
Mi(Piw) = f~1>°", wif(v;)). The left-sided Bregman
barycenter L (w) is computed as a generalized mean on the
point set for the gradient function VF: LY (P) = My r(P;w).
The information radius of sided Bregman barycenters is
the Burbea-Rao diversity index of the mixture vectors:

BRr(P;w) = S0 wiF(p;) — F(X0, wipi).

18Followi?g [81], the gleor]netric mean of two positive matrices A and B is
found as A2(A2BA™2)2 A2.

(68)
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A (weighted) mean is said homogeneous if and only if we
have for any non-negative scalar factor A > 0:

M;(AP;w) = AM;(P; w). (69)

It is well-known [49], [12] that a generalized mean is
homogeneous (or linear scale free) if and only if the generator
function f belongs to the family {f,}, (for a € R) of
functions defined by:

_ e a#l,
falw) = { logx a=1 (70)
For « = 1, we get fi(z) = loga. This function is

modulo a constant the f-means related to the Kullback-Leibler
divergence, since we have:

(rlogx) =4uyp log . (71)

D. Dominance relationships of sided centroid coordinates

Table IV illustrates the bijection between Bregman diver-
gences and generalized f-means for the Pythagoras’ means
(ie., extend to separable Bregman divergences): .

We give a characterization of the coordinates cg“) of the
right-type average centroid (center of mass) with respect to
those of the left-type average centroid, the c¥ @ coordinates.

Corollary 3.5: Provided that VF is convex (e.g., Kullback-
Leibler divergence), we have cg“) > Y for all i e
{1,...,d}. Similarly, for concave gradient function (e.g., ex-
ponential loss), we have c£™ < ¢ forall i € {1, ..,d}.

Proof: Assume V F' is convex and apply Jensen’s inequal-
ity to % >, VF(p;). Consider for simplicity without loss of
generality 1D functions. We have

I I
EZVF(I%) < VF(E > pi). (72)
i=1 =1
Because (VF)~! is a monotonous function, we get
PR
cp = (VE) (=D VF(@p), (73)
i=1
1 n
< -1 t ;
< (VE) V(= ;pz», (74)
= Iy (75)
n i=1 ' .

Thus we conclude that c5® > ™ vi e {1,.. d} for
convex VF' (proof performed coordinatewise). For concave
VF functions (i.e., dual divergences of V F'-convex primal
divergences), we simply reverse the inequality (e.g., the expo-
nential loss dual of the Kullback-Leibler divergence). ]

Note that Bregman divergences D may neither have their

gradient V F' convex nor concave. The bit entropy
F(z) =zlogx + (1 — x)log(1l — ) (76)

yielding the logistic loss D is such an example. In that case,
we cannot a priori order the coordinates of cf; and cf.

11

1V. SYMMETRIZED BREGMAN CENTROID
A. Revisiting the optimization problem

For asymmetric Bregman divergences, the symmetrized
Bregman centroid is defined by the following optimization
problem

—~ Dr(cllp:) + Dr(pillc)

Ia .
= 77
c arg min 2 5 , (77)
= arg Hli)I{l AVG(P;c). (78)

ce

We simplify this optimization problem to another constant-
size system relying only the right-type and left-type sided
centroids, ¢k and cf, respectively. This will prove that the
symmetrized Bregman centroid is uniquely defined as the
zeroing argument of a sided centroid function by generalizing
the approach of Veldhuis [35] that studied the special case
of the symmetrized discrete Kullback-Leibler divergence, also
known as J-divergence.

Lemma 4.1: The symmetrized Bregman centroid ¢ is
unique and obtained by minimizing min,ex Dr(ckl|q) +
Dr(ql[cf): ¢ = argmingex Dr(chllg) + Dr(gllcf).

Proof: We have previously shown that the right-type
average divergence can be rewritten as

AVGp(Pllq) = <Z %F(m) - F(P)) + Dr(pllg)- (79)
=1

Using Legendre transformation, we have similarly

AVGr(q|P) = AVGp-(PF'|ld), (80)
— (S LPe) - F @) + Dr- Wl
- (81)

But

n

Dy (VF* o VF(q)|[VF* (Y VE(p:))),

=1

Dp-(Pylld) =
(82)
= Dr(qlleL), (83)

since F** = F, VF* = VF~! and VF* o VF(q) = ¢ from
Legendre duality. Combining these two sum averages, it comes
that minimizing

1
arg Icrél};‘ B (AVGF(PHQ) + AVGF(Q| |7))) (84)
boils down to minimizing
arggrg)r;DF(cﬁllq) + Dr(qller), (85)

after removing all terms independent of ¢. The solution is
unique since the optimization problem

arg min Dr(cgllq) + Dr(qller) (86)
can be itself rewritten as
argmin D (VE(@lIVF(ck)) + Dr(gller), (87)
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Bregman divergence D g F — f=F  fl=(FH"1 f-mean
(Generalized means)
Squared Euclidean distance %xQ — T T Arithmetic mean
(half squared loss) U L,
Kullback-Leibler divergence zlogx —x +«— log x exp x Geometric mean
(Ext. neg. Shannon entropy) (H;'L:1 "Ej)%
Itakura-Saito divergence —logx — —% —% Harmonic mean
(Burg entropy) T
i=13z;
TABLE IV

BIJECTION BETWEEN BREGMAN DIVERGENCESAND GENERALIZED f-MEANS EXPLICITED FOR THE PYTHAGORAS’ MEANS.

Cr

Fig. 7.

The symmetrized Bregman centroid necessarily lies on the geodesic
passing through the two sided centroids ¢ and cf'.

where VF(q) is monotonous and Dp(-||-) and Dp«(-||-) are
both convex in the first argument (but not necessarily in the
second). Therefore the optimization problem is convex and
admits a unique solution.

[ |

B. Geometric characterization

We now characterize the exact geometric location of the
symmetrized Bregman centroid by introducing a new type of
bisector'® called the mixed-type bisector:

Theorem 4.2: The symmetrized Bregman centroid cf is
uniquely defined as the minimizer of D (ck||q) + Dr(q||ck).
It is defined geometrically as ¢ = T'r(ck, )N Mp(ck, b)),
where Tp(ck,cf) = {(VF)"'Y((1 — NVF(ch) +
AVE(E)) | A € [0,1]} is the geodesic linking cf; to
cf,and Mp(ch, cf) is the mixed-type Bregman bisector:
Mp(ch.ck) = {x € X | Dp(chllx) = Dp(z||c)}.

Proof: First, let us prove by contradiction that ¢ nec-
essarily belongs to the geodesic T'(ck,ct). Assume ¢ does
not belong to that geodesic and consider the point ¢, that is
the Bregman perpendicular projection of ¢ onto the (convex)
geodesic [25]:

min
tel(ck el

qL = arg Dr(t|lq) (88)

195ee [25] for the affine/curved and symmetrized bisectors studied in the
context of Bregman Voronoi diagrams.

as depicted in Figure 7. Using Bregman Pythagoras’ theorem?°
twice (see [25]), we have:

Dr(cglla) = Dr(crllgr) + DrlqL|lq) (89)
and
Dr(qllef) = Dr(qllqr) + Dr(qL|ICT). (90)
Thus, we get
Dr(cgllg) + Dr(qller) > Dr(cgllqy) +
Dr(quller) + (Dr(qvllg) + Dr(qllgL))- (91)
But since
Dp(qullg) + Dr(qllgr) >0, (92)

we reach the contradiction since

Dr(cgllgr)+Dr(gillcf) < Dp(ckllg)+Dr(qllef). (93)

Therefore ¢ necessarily belongs to the geodesic I'(ck, c).
Second, let us show that ¢ necessarily belongs to the mixed-
type bisector. Assume it is not the case. Then Dr(ckl||q) #
Dr(qllcf) and suppose without loss of generality that
Dr(chllq) > Dr(ql|ck). Let A = Dp(chllg)~Dr(qljck) >
0 and lo = Dp(q||cF) so that

Dr(cglla) + Dr(aller) = 2l + A. (94)
Now move ¢ on the geodesic towards c£ by an amount such
that Dr(q[cf) < 1o+ 1 A. Clearly, Dr(ckl||q) < lo and

1
Dr(chllg) + De(allef) <2lo+ 55 (95)

contradicting the fact that ¢ was not on the mixed-type
bisector. [ |

The equation of the mixed-type bisector Mr(p, q) is neither
linear in  nor in 2’ = VF(z) (nor in Z = (x, ")) because of
the term F'(z), and can thus only be manipulated implicitly
in the remainder: Mr(p,q) = {z € X | F(p) — F(q) —
2F(z)— < p,a’ >+ <z, 2 >+ <a,¢d > - <q,¢ >=
0}. The mixed-type bisector is not necessarily connected (eg.,
extended Kullback-Leibler divergence), and yields the full
space X for symmetric Bregman divergences (ie., generalized
quadratic distances).

2Bregman Pythagoras’ theorem is also called the generalized Pythago-
ras’ theorem, and is stated as follows: Dr(p|lg) > D(p||Pa(q)) +
Dr(Pa(q)|lg) where Pq(q) = argming,ecq Dr(w||g) is the Bregman
projection of ¢ onto a convex set €2, see [19].
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Dr(03]10;) = F(0;) — F(0;)— < 0; — 0;,VF(6;) > Dp-(njllni) = F*(n;) — F*(n:)— < n; —ni, VF* (1) >
Computational methods
Fig. 6. Interpretation of the sided Bregman centroids on the dually flat manifold.
Using the fact that the symmetrized Bregman centroid e Geodesic  walk. Compute interval  midpoint
necessarily lies on the geodesic linking the two sided centroids An = M—QW and corresponding geodesic point

ck and ¢f’, we get the following corollary:

Corollary 4.3: The symmetrized Bregman divergence mini-
mization problem is both lower and upper bounded as follows:
JSp(P) < AVGr(P;cl’) < Dp(ckleh).

Figure 8 displays the mixed-type bisector, and sided and
symmetrized Bregman centroids for the extended?® Kullback-
Leibler (eKL) and Itakura-Saito (IS) divergences.

C. A simple geodesic-walk dichotomic approximation algo-
rithm

The exact geometric characterization of the symmetrized
Bregman centroid provides us a simple method to approxi-
mately converge to ¢/": Namely, we perform a dichotomic walk
(bisection search) on the geodesic linking the sided centroids
ck and ¢f’. This dichotomic search yields a novel efficient
algorithm that enables us to solve for arbitrary symmetrized
Bregman centroids, beyond the former Kullback-Leibler case?
of Veldhuis [35]: We initially consider A € [\,, =0, \yy = 1]
and repeat the following steps until A\py — A\, <€, fore >0
a prescribed precision threshold:

21\We relax the probability distributions to belong to the positive orthant
Ri (ie., unnormalized probability mass function) instead of the open simplex
Sd

2\feldhuis’ method [35] is based on the general purpose Lagrangian
multiplier method with a normalization step. It requires to set up one threshold
for the outer loop and two prescribed thresholds for the inner loops. For
example, Aradilla et al. [39] set the number of steps of the outer loop and
inner loops to ten and five iterations each, respectively. Appendix A provides
a synopsis of Veldhuis’ method.

gn = (VF) (1 = M) VF(ck) + M VF(c)), (96)
o Mixed-type bisector side. Evaluate the sign of

Dr(cgllan) — Drlanller), (97)

« Dichotomy. Branch on [Ag, Ay] if the sign is negative,
or on [\, Ap] otherwise.

Note that any point on the geodesic (including the midpoint
q%) or on the mixed-type bisector provides an upperbound
AVG r(P; gp,) on the minimization task. Although it was noted
experimentally by Veldhuis [35] for the Kullback-Leibler di-
vergence that this midpoint provides “experimentally” a good
approximation, let us emphasize that is not true in general, as
depicted in Figure 8(b) for the Itakura-Saito divergence.

Theorem 4.4: The symmetrized Bregman centroid can be
approximated within a prescribed precision by a simple di-
chotomic walk on the geodesic I'(ck;, ¢I") helped by the mixed-
type bisector Mp(ck,cl’). In general, symmetrized Bregman
centroids do not admit closed-form solutions.

In practice, we can control the stopping criterion e by taking
the difference

Wr(q) = Dr(cgllg) — Dr(qllef) (98)

between two successive iterations since it monotonically de-
creases. The number of iterations can also be theoretically
upper-bounded as a function of ¢ using the maximum value
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Divergence\Kullback-Leibler

(a)
ef =(0.47,0.78), cf = (0.25,0.76), AVGF(P\\ch) =4.29

' = (0.35,0.77), , AVG p (P; ) = 3.96

ivergence [takura-Saito

ef = (0.43,0.11), ¢ = (0.13,0.07), AVGF(PHCQL) = 22.70

= (0.24,0.09), AVG (P; T = 16.91

Divergence Logistic Loss .

(c)
ef =(0.62,0.59), cf = (0.70,0.63), AVGp (P||ck ;) = 14.71

F = (0.66,0.61), AVG (P; ') = 14.63

ce Exponential loss

ef = (0.50,0.52), cf = (0.57,0.57), AVGF(PHCQL) = 3.49

' = (0.54,0.55), AVG p (P; cI") = 3.47

Fig. 8.

Bregman centroids for (a) the extended Kullback-Leibler, (b) Itakura-Saito, (c) Logistic , and (d) exponential losses (divergences) on the open

square X =]0, 1[2. Right- and left-sided, and symmetrized centroids are displayed respectively as thick red, blue and purple points. The geodesic linking the
right-type centroid to the left-type one is shown in grey, and the mixed-type bisector is displayed in purple.

of the Hessian

hrp =

max
zel(ch,ch)

| Hp ()] (99)
along the geodesic I'(ck,cF) by mimicking the analysis
in [50] (See Lemma 3 of [50]).

V. APPLICATIONS OF THE DICHOTOMIC GEODESIC-WALK
ALGORITHM

A. Bregman power symmetrized divergences

In sound processing, the Itakura-Saito divergence is often
used as the de facto distortion measure for comparing two
spectra envelopes [29]. That is, a set of discrete all-pole model
coefficients are first extracted so that the distance between any
two sound spectra is later measured at the harmonic peaks z(*,

for i € {1,...,d} — see [29]. It turns out that the Itakura-
Saito divergence is another separable Bregman divergence in
disguise obtained for the generator function

d
=— Z log z¥,
i=1

the Burg entropy on d-dimensional real-valued probability
vectors x:

(100)

d

>

i=1

: P
IS(plla) = ( +log 2~ e 1>—Dp(p||q)- (101)

Wei and Gibson [29] showed that the least-mean square on
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COSH distance:

IS(pllq) +1S(qllp)

2 )
the symmetrized Itakura-Saito divergence, yields better?® and
smoother discrete all-pole spectral modeling results than by
using the Itakura-Saito divergence. Moreover, in some appli-
cations such as in concatenative speech synthesis, the COSH
distance is considered for minimizing artifacts in speech di-
phone synthesis. However, one may also consider alternatively
the symmetrized Kullback-Leibler distance for the same task
by choosing different feature extractors [26].

Interestingly, both the Itakura-Saito and the Kullback-
Leibler divergences can be encapsulated into a common
parameterized family of distortions measures BC,, called
Bregman-Csiszar divergences [34], [51] generated by the fol-
lowing set of strictly convex and differentiable generators:

COSH(p; q) =

(102)
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BC.(pllg) + BCal(qllp)

SBCa(p;q) = 5 ; (108)
SBCa(p;q) =
L @) _ @)y 4 060 _ @)
D@ 00 =)+ p0" (¢ = p)),
1=1
(109)
(110)

for 0 < a < 1. Since our generic symmetrized Bregman
centroid procedure allows to compute the centroid for any
Bregman divergence, we can also obviously apply it for this
important parameterized family. This is all the more important
for distance learning algorithms [53] that seek for the best
distance representative (ie., the best o value) to perform? a
given task.

F,: X c (RH)?—R" (103) Note that except for the class of generalized quadratic
distance with generators F (z) = 27 Qu for a positive definite
matrix @ > 0, the symmetrized Bregman divergences are not

Zle 2@ —logz® — 1 a =0 of Bregman type [25], [31].
Fo(z) = Z;_i:l a(llfa) (_(x(i))a +a® ot 1) ae(0,1) We now con_sider paramete_r!c family Qf distribu.ti.ons whi_ch
&) low 200 @ 41 B admit a canonical decomposition of their probability density
2=y 2 logz® — 29 4 O‘(1_04) functions. We start from the non-parametric probability mass

This yields the following family of Bregman divergences
for real-valued d-dimensional probability vectors p and g:

p(®

functions that are in fact parametric multinomials in disguise.

B. Revisiting the centroid of symmetrized Kullback-Leibler
divergence

Consider a random variable @ on d events Q =
{04, ...,Q4}, called the sample space. Its associated discrete
distribution ¢ (with Pr(Q = ;) = ¢@) belongs to the
topologically open (d— 1)-dimensional probability simplex S¢
of RL: ¢ ¢ = 1and Vi € {1,...,d} ¢; > 0. Distributions

- q(i)))q arise often in practice from image intensity histograms?.

To measure the distance between two discrete distributions p

(10&hd ¢, we use the Kullback-Leibler divergence also known as

BCo(pllg) = Zl %8 (Z -1, (109
Ca(pllg) =
(z @ (z (1) ya—17,.()
1_a;(q ) +alg)*Hp
for o € (0,1).
BCi (pllg) = Zp @ 4 4. (107)

The Itakura-Saito (BCy) and extended® Kullback-Leibler
(BC,) divergences represent the two extremities of the generic
family that is axiomatically justificated as the notion of pro-
jection in least-mean square problems [34]. This parametric
family of Bregman divergences BC, = Dp, are the sym-
metrized Bregman-Csiszar power divergence is defined

23Refer to Fig. 2 and Fig. 3 of [29]. It is said that “...the COSH distance
measure is the best criterion measure...” (dixit)

2ADefined over the positive orthant of unnormalized probability density
functions. Considering the extended Kullback-Leibler measure makes a huge
difference from the practical point of view since the left-type centroid Cf
always falls inside the domain. This is not anymore true if we consider the
probability (d — 1)-dimensional probability simplex S¢ where the left-type
centroid C'f" falls outside S¢, and need to the projected back onto S¢ using
a Kullback-Leibler (Bregman) projection. See Pelletier [52] for details. We
show how to bypass this problem in the next section by considering discrete
distribution as multinomials with d — 1 degrees of freedom.

relative entropy or discrimination information:

>

Note that this information measure is unbounded whenever
there exists ¢q(*) = 0 for a non-zero ¢(¥ > 0. But since we
assumed that both p and ¢ belongs to the open probability
simplex S?, this case does not occur in our setting:

L(pllq) = (112)

0 < KL(pllg) < o0 (112)
with left-hand side equality if and only if p = ¢. The
symmetrized KL divergence

1
5 (KL(pll9) +KL(dl[p)) (113)

is also called J-divergence or SKL divergence, for short.

2Being more efficient while keeping accuracy is a key issue of search
engines as mentioned in the introduction.

2To ensure to all bins of the histograms are non-void, we add a small
quantity e to each bin, and normalize to unit. This is the same as considering
the random variable Q + €U where U is a unit random variable.
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The random variable @ can also be interpreted as a regular
exponential family member [25] in statistics of order d — 1,
generalizing the Bernoulli random variable. Namely, @ is a
multinomial random variable indexed by a (d—1)-dimensional
parameter vector 6,. These multinomial distributions belong
to the broad class of exponential families [25] in statistics for
which have the important property that

KL(p(0p)g(04)) = Dr(64][6p), (114)

see [25]. That is, this property allows us to bypass the fas-
tidious integral computations of Kullback-Leibler divergences
and replace it by a simple gradient derivatives for probability
distributions belonging to the same exponential families. From
the canonical decomposition

exp(< 0,H(x) > —F(0) + C(x)) (115)

of exponential families [25], it comes out that the natural
parameters associated with the sufficient statistics ¢(x) are

0 = (116)

(117)

since ¢4 =1 — Zj;ll ¢\9). The natural parameter space is
the topologically open R?~1. The log normalizer is
d—1
=log(1+ > expf?),
=1
called the multivariate logistic entropy. It follows that the
gradient is

F(0) (118)

VE@®) =n=n"); (119)
with o)
n® = — 2 (120)
1+ Z 1 exp O

and vyields the dual parameterization of the expectation
parameters:
n = VoF(0). (121)

The expectation parameters play an important role in practice
for infering the distributions from identically and indepen-
dently distributed observations z1, ..., z,. Indeed, the maxi-
mum likelihood estimator of exponential families is simply
given by the center of mass of the sufficient statistics computed
on the observations:
SN
1=1

see [54]. Observe in this case that the log normalizer function
is not separable:

(122)

3

d—1

z) # Y fi(z? (123)
i=1

The function F' and F* are dual convex conjugates obtained

by the Legendre transformation that maps both domains and

functions:

(124)
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It follows by construction from the Legendre transformation
that the gradients of these F' and F* functions are reciprocal
to each other:
VF*=VF !,
VF=VFs .

(125)
(126)
This yields one method to deduce the convex conjugate F'*

from the gradient VF' as the integral primitive of the inverse
of the gradient of F:

F* = / (VF)™! (127)
We get the inverse (VF)~! of the gradient VF as
(VF)™ () <1 " ) (128)
n = O ——ad=—1 .~ )
1— ijll 77(]) ;
= 0. (129)

Thus it comes that the Legendre convex conjugate is
d—1 . .
= (s ) 1 T o -3,
=1

=1
(130)
the d-ary entropy. Observe that for d = 2, this yields the usual
bit entropy?’ function

F*(n) = nlogn + (1 —n)log(l —n).

Further, reinterpreting F'* as the log normalizer of an ex-
ponential family distribution, we get the Dirichlet distribution,
which is precisely the conjugate prior [55] of multinomial dis-
tributions used in prior-posterior Bayesian updating estimation
procedures. We summarize the chain of duality as follows:

KL(p"||¢") = Dr(04]16,) =
D+ (nplIng) = KL(¢" |[p™),

where p! indicate that the density function pf" follows the
distribution of the exponential family £ with log normalizer
F.

To convert back from the multinomial (d — 1)-order natural
parameters 6 to discrete d-bin normalized probability mass
functions (eg., histograms) A € S? we use the following

mapping:

(131)

(132)

@ = d 11

(exp 9(7)) (133)

and .
exp ()

Y11+ exp)

forall i € {1,...,d — 1}. This gives a valid (ie., normalized)
distribution ¢ € S¢ for any § € R?!. Note that the
coefficients in & may be either positive or negative depending
on the ratio of the probability of the ith event with the last
one, ¢(4).

¢ = (134)

2This generalizes the 1D case of Kullback-Leibler’s Bernoulli divergence:

F(z) = log( + expz) is the logistic entropy, F'(z) = li’gigz and
F'~! =log £, and F*(z) = zlogz + (1 — x) log(1 — ), is the dual
bit entropy.
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As mentioned above, it turns out that the Kullback-Leibler
measure can be computed from the Bregman divergence
associated to the multinomial by swapping arguments:

KL(p|lq) = DF(eq”ep)a

where the Bregman divergence

(135)

Drp(04110,) = F(04) — F(0p)— < 04— 0,, VF(0,) > (136)

is defined for the strictly convex (V2F > 0) and diffentiable
log normalizer

d—1

F(6) =log(1 + Z exp ).
i=1

(137)

The algorithm is summarized in Figure 9. We implemented
the geodesic-walk approximation algorithm for that context,
and observed in practice that the SKL centroid deviates much
(20% or more in information radius) from the “middle” point
of the geodesic (A = %), thus reflecting the asymmetry of
the underlying space. Further, note that our geodesic-walk
algorithm proves the empirical remark of \eldhuis [35] that “...
the assumption that the SKL centroid is a linear combination
of the arithmetic and normalized geometric mean must be
rejected.” Appendix A displays side by side Veldhuis’ and the
geodesic-walk methods for reference.

Computing the centroid of a set of image histograms, a cen-
ter robust to outliers, allows one to design novel applications
in information retrieval and image processing. For example,
we can perform simultaneous contrast image enhancement by
first computing the histogram centroid of a group of pictures,
and then performing histogram normalization to that same
reference histogram.

The plots of Figure 10 show the Kullback-Leibler sided
and symmetrized centroids on two distributions taken as the
intensity histograms of the appl e images shown below.
Observe that the symmetrized centroid distribution may be
above both source distributions, but this is never the case in
the natural parameter domain since the two sided centroids are
generalized means, and that the symmetrized centroid belongs
to the geodesic linking these two centroids (ie., a barycenter
mean of the two sided centroids).

C. Entropic means of multivariate normal distributions

The probability density function of an arbitary d-variate
normal N (p, ¥) with mean 4 and variance-covariance matrix
Y is given by
Pr(X =z) = p(z;p,X),

1

(138)
(z—p)"'S Nz —p)

= ——— X —
(27)2 V/dets p( 2

(139

It is certainly the engineer’s favorite family of distributions
that nevertheless becomes intricate to use as dimension goes
beyond 3D. The density function can be rewritten into the
canonical decomposition to yield an exponential family of
order D = @ (the mean vector and the positive definite
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INPUT:
n discrete distributions qi, ..., ¢, of S with

vie {1,n} g = (g, al”)
CONVERSION:
Probability mass function — multinomial

S g _ ;"
Vi Vk 0, = log “iiﬁ
F(0) =log(1+ 3771 exp6?)

VE(0) = (

exp o)

TN —~d—1
L) 50, oo ) i€{1,...,d—1}

.....

VE) 1) — <log—'#>
(VE) =3 ) i€{l,...,d—1}

yeuey

INITTALIZATION:
Arithmetic mean: 65 = L 3°7" 6,
VF-mean: §f = VF~ (1Y VF(4;))

Am =0,Ap =1

GEODESIC DICHOTOMIC WALK:
While Ay; — Ay, > precision do
A= >\m;>\M
0= (VF)"L((1 = A)VF(cE) + AVF(ch))
if Dp(ck||0) > Dr(0]|cE) then
Av = A
else

Am = A

CONVERSION:
Multinomial — Probability mass function

;(d) 1
Vi q(( =
i d—1 [€)
1+ E i1 (14exp 0, )

Vi vk ¢ =

exp Gik)
a—1
1+ E i—1 (14-exp 91(‘}))

Fig. 9. Synopsis of our symmetrized Kullback-Leibler centroid for discrete
distributions. The algorithm first converts the probability mass functions into
multinomials of the exponential families, and then perform a dichotomic walk
on the geodesic linking the sided Kullback-Leibler centroids.

matrix £~! accounting respectively for d and @ param-

eters). The sufficient statistics is stacked onto a two-part D-
dimensional vector

z = (x, —%x:cT) (140)
associated with the natural parameter
© = (0,9),

P S
= (Z 1#352 1)'

(141)
(142)

Accordingly, the source parameter are denoted by A = (p, X2).
The log normalizer specifying the exponential family is

1 1 d
F(©) = ZTf(efleeT) — 5 logdet® + Slogm  (143)

isee [42], [41]). To compute the Kullback-Leibler divergence
f two normal distributions N, = N(up,%,) and N, =
N (g, Xq), We use the Bregman divergence as follows:

KL(NpHNq) = DF(éqHép)v (144)
F éq) - F(ép)_ < (éq - ép)aVF(ép) >
(145)
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Fig. 10. Centroids of image histograms with respect to the relative entropy.
The symmetrized centroid distribution is above both source distributions for
intensity range [100 — 145], but this is never the case in the natural parameter
space.

The inner product < (:)p, (:)q > is a composite inner product
obtained as the sum of inner products of vectors and matrices:

<0,,0,>=<0,,0,>+<0,,0,>. (146)

For matrices, the inner product < ©,,©, > is defined by the
trace of the matrix product ©,07:

< 0,,0, >=Tr(0,0]). (147)

In this setting, however, computing the gradient, inverse gra-
dient and finding the Legendre convex conjugates are quite
involved operations. Yoshizawa and Tanabe [42] investigated
in a unifying framework the differential geometries of the
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families of probability distributions of arbitrary multivariate
normals from both the viewpoint of Riemannian geometry
relying on the corresponding Fisher information metric, and
from the viewpoint of Kullback-Leibler information, yielding
the classic torsion-free flat shape geometry with dual affine
connections [41]. Yoshizawa and Tanabe [42] carried out
computations that yield the dual natural/expectation coordinate
systems arising from the canonical decompotion of the density
function p(z; u, X):

] _ n=4g
o= (H——(E+WT)>’ (148)
— A= A:;), (149)

_ oyl
= o= (5704 (150

The strictly convex and differentiable dual Bregman genera-
tor functions (ie., potential functions in information geometry)
are

1 1 d
F(©) = ZTr(@—leeT) — 5 logdet® + S log, (152)

and

1 1 d
F*(H) = —=log(14+nT H *n)— = log det(— H)— = log(2e)

2 2

(152)

defined respectively both on the topologically open space R¢ x
Cone, . Note that removing constant terms does not change the
Bregman divergences. The H < © coordinate transformations
obtained from the Legendre transformation (with (VF)~1 =
V F*) are given by

H = VgF(©), (153)
Ve F(0)
- <V~F(@) ) (154)
19-1p
= (1o - Ho- ey ) 0
I
- ( —(Z+pup") > (156)
and
© = ViF*(H), (157)
_ VgE*(n)
_ —H+m")
a < —L(H +mT)7! > (159)
-1
= ( ngf ) (160)

These formula simplifies significantly when we restrict our-
selves to diagonal-only variance-covariance matrices X;,
spherical normals 32; = o;1, or univariate normals A (p;, o).

Computing the symmetrized Kullback-Leibler centroid of a
set of normals (Gaussians) is an essential operation for clus-
tering sets of multivariate normal distributions using center-
based k-means algorithm [56], [57]. Nock et al. [58] proposed
the framework of mixed Bregman divergences to manipulate
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implicitly and efficiently symmetrized Bregman centroids by
pairs of left/right sided centroids. Myrvoll and Soong [27] de-
scribed the use of multivariate normal clustering in automatic
speech recognition. They derived a numerical local algorithm
for computing the multivariate normal centroid by solving
iteratively Riccati matrix equations, initializing the solution
to the so-called “expectation centroid” [40]. Their method is a
complex and costly since it also involves solving for eigensys-
tems. In comparison, our geometric geodesic dichotomic walk
procedure for computing the entropic centroid, a Bregman
symmetrized centroid, yields an extremely fast and simple
algorithm with guaranteed performance.

We report on our implementation for bivariate normal
distributions®® (see Figure 11). Observe that the right-type
Kullback-Leibler centroid is a left-type Bregman centroid for
the log normalizer of the exponential family. Our method
allowed us to verify that the simple generalized V F-mean
formula

L(P) = (V) (Y LVFG)) (e
i=1

coincides with that of the paper [56]. Furthermore, we would

like to stress out that our method extends to arbitrary entropic

centroids of members of the same exponential family.

The Figure 11 plots the entropic right- and left-sided and the
symmetrized centroids in red, blue and green respectively for
a set that consists of two bivariate normals (D = @ =5).
The geodesic midpoint interpolant (obtained for A = %) is very
close to the symmetrized centroid, and shown in magenta.

VI. CONCLUDING REMARKS AND DISCUSSION

In this paper, we have considered and shown that the two
sided and the symmetrized Bregman centroids are unique. The
right-type centroid is independent of the considered divergence
and always coincide with the center of mass of the point set.
The left-type centroid is a generalized mean which admits
the same Jensen-Shannon information radius as the right-type
centroid. The symmetrized Bregman centroid is geometrically
characterized as the unique intersection point of the geodesic
linking the sided centroids with the mixed-type bisector, and
can be approximated efficiently by a simple dichotomic walk.
The symmetrized centroid can thus also be interpreted as
a generalized mean on the two sided centroids. This work
extends straightforwardly to barycenters [52] as well by con-
sidering a normalized weight distribution w with ||w|| = 1.
For example, the left-type sided barycenter for weight w is
defined as

F . _ 1 S
bi (P;w) = arg min — ; w; Dp(c||pi), (162)
is a V F-mean for weight vector w, and has information radius
JSF(P;w). Choosing the most appropriate distortion measure
to define a “center” and minimize nearest neighbor queries

28Random multivariate distributions are computed as follows: The mean
coordinates . has independent uniform random distribution in [0, 1], and the
variance-covariance matrix X is obtained from a Wishart distribution obtained
as ¥ = AAT where A is a triangular matrix with entries sampled from a
standard normal distribution.
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Fig. 11 Entropic sided and symmetrized centroids of
bivariate normal distributions. The two input bivariate normals
are  mgo = (0.34029138065736869, 0.26130947813348798),
s . 0.43668091668767117  —0.42663095837289156
0 - —0.42663095837289161  0.63899446830332574) |’
and  mq = (0.95591075380718404, 0.6544489172032838),
g . 0.79712692342719804 —0.033060250957646142
L= —0.033060250957646142 0.14609813043797121
The right, Tleft and symmetrized centroids are respectively givén
as mpg = (0.29050997932657774, 0.53527112890397821),
g . { 0.33728018979019664  —0.13844874409795613
R - —0.13844874409795613 0.2321103610207193
mi = (0.64810106723227623, 0.45787919766838603),
gF _ { 0.71165072320677747  —0.16933954090511438 }
L - —0.16933954090511441  0.43118595400867693 |’
and m?” = (0.42475123207621085, 0.5062178606510539),
QF 0.50780328118070528  —0.15653432651371618 T
—0.15653432651371618  0.30824860232457035 |
The geodesic’ half-length  bound is found as m1 =
(0.46930552327942698, 0.49657516328618234)  with S; =

0.55643330303588234  —0.16081280872294987 The information
—0.1608128087229499  0.33314553526979185  |°
radii are 0.83419372149741644 (for the left/right), 0.64099815325721565
(symmetrized) and 0.6525069280087431 (geodesic point with A\ = %).

Fig. 12. Entropic right- and left-sided and the symmetrized centroids in red,
blue and green respectively for sets of ten input bivariate normals.
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is an important issue of contents-based multimedia retrieval
systems. Spellman et al. [59] carried out preliminary experi-
ments to emphasize on the fact that the MINMAX KL center
is computationally more efficient than the centroid for nearest
neighbor queries. The Bregman-Csiszar one-parameter family
of a-divergences may further provide a flexible framework for
tuning individually the “appropriate” distance function in each
cluster. Note that since the mixture of exponential families
is not an exponential family (eg., the family of Gaussian
mixtures is not an exponential family), our method does not
allow to compute the centroid of Gaussian mixtures [60].
However, since the product of exponential families is an
exponential family, we can compute the entropic centroids of
theses product distributions.

Finally, although Bregman divergences are an important
family of information-theoretic distance measures, there are
by no means covering the full spectrum of distances. Csiszar
f-divergences [33] which includes the Bhattacharyya distance
is also another major family of parametrized distances that
intersects with the family of Bregman divergences only for
the Kullback-Leibler representative. It would be interested to
study the properties of f-divergence centroids and barycenters.
Amari [12] fully characterized the centroids with respect to
a-divergences, a 1-parameter family of Csiszar divergences
parametrized by generators f,. Namely, Amari proved [12]
that the a-means which are the generalized means for the
corresponding f,, generator minimize the average sum with re-
spect to the a-divergence. Rigazio et al. [61] presented another
work in that direction by approximating the Bhattacharyya
centroid of multivariate normals with diagonal covariance ma-
trices using an iterative converging algorithm. The Kullback-
Leibler divergence is the only common divergence member of
Bregman and Csiszar families. Johnson and Sinanovic [62]
presented a symmetric resistor-average distance that does
not belong to the family of f-divergences by averaging
two Kullback-Leibler distance using an harmonic mean for
which it would be interesting to compute the centroid too.
Teboulle [57] generalized this Bregman k-means algorithm
in 2007 by considering both hard and soft center-based
clustering algorithms designed for both Bregman [21] and
Csiszar f-divergences [45], [33].

Although we have considered in this paper Bregman diver-
gences defined on a space X C R?, Bregman divergences can
also be extended to handle other elements such as Hermitian
matrices [3]. See also the work on functional Bregman di-
vergences [24] that extends vector Bregman divergences to
measure spaces using Fréchet derivatives. Finally, observe
that for any given Bregman divergence D (p||q) used on a
finite vector set P, it is always possible to “metrize” this
distortion measure, by first symmetrizing it as Sg(p;q) =
w, and then finding the largest exponent o > 0
such that the triangle inequality on triplets of vectors p;, p; and
pi of P is satisfied:
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Veldhuis’ algorithm
INPUT:

n discrete distributions ¢, ..., g, of S¢ with
Vie{l,..,n} q= (q£1>7 .~~>qz(d>)-

INITIALIZATION

Arithmetic mean: W
_(k) _ 1 n k
V]f q( ) =n Z q;

1=1 14
Geometric normalized mean:

1
o (k) . ~(k n D\
vk ) = Zq" — with vk ¢ = (Hizl q,“))
i=1 7"
a=-1
MAIN LOOP:
For 1 to 10 .
N
Vk y® = FQprs
vk 2 =1

INNER LOOP 1:
For 1 to 5

2 (k) (k) (k)
(k) (k) _ «Ploga ™ —y ™
vk x — T log z(F)+1

INNER LOOP 2:

For 1 to 5

(Zd x(k)(}(k)exprz)—l
i=1

a— o — =
D i e P expa

CENTROID:
Vk o®) = 20§k exp o

Fig. 13. Veldhuis’ approximation algorithm for the .J-divergence.
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Additional materials including C++ source codes, videos
and Java™ applets available at:
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APPENDIX

Synopsis of Veldhuis’ and the generic geodesic-walk meth-
ods

Figure 13 summarizes the Veldhuis’ J-divergence centroid
convex programming method [35].
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