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Abstract: In this paper we introduce a new class of codes for over-loaded synchronous 

wireless and optical CDMA systems which increases the number of users for fixed 

number of chips without introducing any errors. Equivalently, the chip rate can be 

reduced for a given number of users, which implies bandwidth reduction for downlink 

wireless systems. An upper bound for the maximum number of users for a given 

number of chips is derived. Also, lower and upper bounds for the sum channel 

capacity of a binary over-loaded CDMA are derived that can predict the existence of 

such over-loaded codes. We also propose a simplified maximum likelihood method 

for decoding these types of over-loaded codes. Although a high percentage of the 

over-loading factor3 degrades the system performance in noisy channels, simulation 

results show that this degradation is not significant. More importantly, for moderate 

values of ܧ ܰΤ  (in the range of -ͳͲ dB) or higher, the proposed codes perform 

much better than the binary Welch bound equality sequences.  

 

I. Introduction 

 

In a synchronous wireless4 CDMA system with no additive noise, we can obtain 

errorless transmission by using orthogonal codes (Hadamard codes); we assume the 

number of users is less than or equal to the spreading factor (under or fully-loaded 

cases). In the over-loaded case (when the number of users is more than the spreading 

factor), such orthogonal codes do not exist; the choice of random codes creates 

interference that, in general, cannot be removed completely and creates errors in the 

Multi-User Detection (MUD) receiver [1-3]. 
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Likewise, for under-loaded optical CDMA systems, Optical Orthogonal Codes (OOC) 

[4-5] can be used. Unlike the connotation of the name of OOC, the optical codes are 

not really orthogonal, but by interference cancellation, we can remove the interference 

completely. However, for the fully and over-loaded cases, OOC�s (with minimal 

cross-correlation value of ߣ ൌ ͳ) do not exist and similar to the wireless CDMA, the 

choice of random codes creates interference that, in general, cannot be removed 

completely. 

 

When the channel bandwidth is limited, the over-loaded CDMA may be needed. Most 

of the research in the over-loaded case is related to code design and Multi-Access 

Interference (MAI) cancellation to lower the probability of error. Examples of these 

types of research are pseudo random spreading (PN) [6-7], OCDMA/OCDMA (O/O) 

[8-9], Multiple-OCDMA (MO) [10], PN/OCDMA (PN/O) [11] signature sets, Serial 

and Parallel Interference Cancellation (SIC and PIC) [12-16]. The papers that discuss 

double orthogonal codes for increasing capacity [17-18] are actually non-binary 

complex codes (equivalent to ݉ phases for MC-OFDM) and are not really fair for 

comparison. 

 

The codes with minimum Total Squared Correlation (TSC)5 [20-22] maximize the 

channel capacity of a CDMA system when the input distribution is Gaussian [23]. But 

for binary input signals, the WBE codes do not necessarily maximize the channel 

capacity. Moreover, if the WBE codes are binary (BWBE), the optimality is no longer 

true. Another problem with WBE codes is that its ML implementation is impractical6. 

In our comparisons of our codes with WBE, we use iterative decoding methods with 

soft thresholding for WBE codes. For more details please refer to Section VI on 

simulation results. 

 

None of the signatures and decoding schemes that have been proposed in the literature 

(including the BWBE) guarantee errorless communication in an ideal (high Signal-to-

Noise Ratio (SNR) and without near-far effect) synchronous channel. In this paper, 

we plan to introduce Codes for Over-loaded Wireless (COW) and Codes for Over-
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loaded Optical (COO) CDMA systems [24] which guarantee errorless communication 

in an ideal channel and propose an MUD scheme for a special class of these codes 

that is Maximum Likelihood (ML). We will also compare these codes to BWBE and 

show that as the over-loading factor increases, the proposed COW/COO codes 

perform much better. As an example, for a signature length of Ͷ, we have discovered 

such codes with an over-loading factor of about ʹΨ that can be decoded practically 

in real time, which is also ML. However, we have proved the existence of codes with 

an over-loading factor of almost ͳͷΨ that need to be discovered. The complexity of 

the decoding depends on the number of chips and the over-loading factor; but for a 

COW/COO code of size ሺͶǡͳͲͶሻ, the ML implementation is as simple as ͺ look up 

tables of size ͵ʹ. The implications of these findings are tremendous; it implies that 

using this system, we can accommodate ͳͲͶ users for a spreading factor of Ͷ with 

low complexity ML decoding, which performs significantly better than BWBE in an 

AWGN channel (when ܧ ܰΤ  is greater than  dB). 

 

These codes are suitable for synchronous Code Division Multiplexing (CDM) in 

broadcasting, downlink wireless CDMA, and optical CDMA (assuming chip and 

frame synch). Alternatively, these codes can be used for the present downlink CDMA 

systems with much lower chip rate and hence significant bandwidth saving for the 

operating companies.  

 

Using Ͷ chips, we have also derived an upper bound where the over-loading factor 

cannot be more than�͵ʹͲΨ. By trying to find bounds on the channel capacity in the 

absence of additive noise, we can, surprisingly, predict the existence of such codes. 

 

Section II covers the necessary and sufficient conditions for errorless transmission in 

a noiseless over-loaded CDMA system along with methods for constructing large 

COW and COO codes with high percentage of over-loading factor. Two upper bounds 

for the number of users for a given signature length are presented in Section III. 

Channel Capacity evaluation for noiseless CDMA is discussed in Section IV. 

Methods for decoding are discussed in Section V. Simulation results and discussions 

are summarized in Section VI. Finally, conclusion and future work are covered in 

Section VII. 



II. Preliminaries-Channel Model 

 

A synchronous CDMA system in an AWGN channel is modeled as  

ܻ ൌ ܺۯ۱  ܰǡ 
where ۱ is a matrix with signature columns with elements ሼͳǡ െͳሽ or ሼͲǡ ͳሽ depending 

on the application, ۯ is a diagonal matrix with entries  equal to the user received 

amplitude, ܺ is a binary user column vector with entries ሼͳǡ െͳሽ or ሼͲǡ ͳሽ, ܰ is a 

white Gaussian noise with a covariance matrix of ߪଶ۷ (where ۷ is the identity matrix) 

and ܻ is the received vector. In case of perfect power control, we can assume that 

ۯ� ൌ ۷. Below we will discuss COW and COO codes. 

 

II.1 Codes for Over-loaded Wireless (COW) CDMA Systems 

 

For developing COW and COO codes (matrices), we first discuss an intuitive 

geometric interpretation and then develop the codes mathematically. At a given time 

the multi-user binary data can be represented by an ݊-dimensional vector; these 

vectors can be interpreted as the vertices of a hyper-cube. Each user data is multiplied 

by a signature of ݉ chips long and finally their summation is transmitted. Thus, the 

transmitted ݉-tuple vectors are the multiplication of an ݉ ൈ ݊ matrix (the columns 

are the signatures of different users) by the input ݊-dimensional vectors. Hence, the 

hyper-cube vertices are mapped onto points in an ݉-dimensional space (݉ ൏ ݊). As 

long as the points in the ݉-dimensional space are distinct, the mapping is one-to-one 

and therefore, we can uniquely decode each received ݉-tuple vector at the receiver; 

on the other hand, if these ݉-tuple vectors are not distinct, the mapping is not one-to-

one and the system is not invertible. Consequently, we look for codes that map the 

vertices of the ݊-dimensional hyper-cube to distinct points in the ݉-dimensional 

space. Most of the over-loaded codes discussed in the literature do not have this 

property and thus any MUD cannot be perfect. We coin the invertible codes, as 

mentioned in the introduction, as COW and COO codes for wireless and optical 

applications, respectively. We first develop systematic ways to generate COW codes 

and then extend it to COO codes. 

 



Lemma 1 We denote the vertices ሼͳǡ െͳሽ of an ݊-dimensional hyper-cube with the 

set ठ. The necessary and sufficient condition for the multiplication of a COW matrix 

۱ with elements of ठ to be a one-to-one transformation is ����۱� ת ሼെͳǡͲǡͳሽ ൌ ሼͲሽ, 

where ����۱ is the null space of ۱. 

 

Proof: Let ܺ א ����۱� ת ሼെͳǡͲǡͳሽ. Then, ۱ሺʹܺሻ ൌ Ͳ and ʹܺ is a ሼെʹǡͲǡʹሽ-vector. 

Clearly, ʹܺ ൌ ܺଵ െ ܺଶ, where ܺଵ and ܺଶ are ሼͳǡ െͳሽ-vectors. This implies that 

۱ܺଵ ൌ ۱ܺଶ and thus ܺଵ ൌ ܺଶ. Hence, ܺ ൌ Ͳ and the proof is complete.     ז 

 

Corollary 1 If ۱ is a COW matrix, then 

a. A new COW matrix can be generated by multiplying each row or column of 

the matrix ۱ by െͳ. 

b. New COW matrices can be generated by permuting columns and rows of the 

matrix ۱. 

c. By adding an arbitrary row to ۱, we obtain another COW matrix. 

 

The proof is clear. 

 

From Corollary 1, we can assume that all entries of the first row and the first column 

of a COW matrix are ͳ. 

 

Theorem 1 Assume that ۱ is an ݉ ൈ ݊ COW matrix and ۾ is an invertible ݇ ൈ ݇ 

ሼͳǡ െͳሽ-matrix, then ۱۪۾ is a ݇݉ ൈ ݇݊ COW matrix, where ۪ denotes the 

Kronecker product. 

 

Proof: Clearly, ۱۪۾ is a ሼͳǡ െͳሽ-matrix. Assume that ܺ is a ሼെͳǡͲǡͳሽ-vector such 

that ሺ۱۪۾ሻܺ ൌ Ͳ. Then we have ሺି۾ଵ۪۷ሻሺ۱۪۾ሻܺ ൌ Ͳ and thus ሺ۷۪۱ሻܺ ൌ Ͳ. If 

ܺ ൌ ሾܺଵ ڮ ܺሿ, then we have ۱ ଵܺ ൌ ۱ܺଶ ൌ ڮ ൌ ۱ܺ ൌ Ͳ, where ܺ�s are 

݊ ൈ ͳ ሼെͳǡͲǡͳሽ-vectors. Thus, by Lemma 1 we have ܺଵ ൌ ܺଶ ൌ ڮ ൌ ܺ ൌ Ͳ. Hence, 

no non-zero ሼെͳǡͲǡͳሽ-vector is in the kernel of ۱۪۾. Thus, ۱۪۾ is a ݇݉ ൈ ݇݊ COW 

matrix.                     ∎ 

 



The existence of COW matrices with much higher percentage of the over-loading 

factors are given in the following theorem:  

 

Theorem 2 Assume ۱ is an ݉ ൈ ݊ COW matrix and ۶ଶ ൌ ቂͳ ͳ
ͳ െͳቃ. We can add 

ሺ݉ڿ െ ͳሻ ���ଷ   .columns to ۶ଶ۪۱ to obtain another COW matrix ۀʹ

 

For the proof, refer to Appendix C. 

 

Note 1 ݊Ȁ݉ ՜ λ as ݉ ՜ λ. 

This observation is a direct result of Theorem 2 since ݊Ȁ݉ is of order ܱሺ����݉ሻ. It 
implies that as the chip rate increases, the number of users grows much faster. 

 

Example 1 Applying Step 1 of the proof of Theorem 2 on a ʹ ൈ ʹ Hadamard matrix, 

we first get a Ͷ ൈ ͷ COW matrix (۱ସൈହ) as shown in Table 17 (the  sign represents ͳ 

and the െ sign represents െͳ). By one more repetition, we find an ͺ ൈ ͳ͵ COW 

matrix (۱଼ൈଵଷ) depicted in Table 2. According to Theorem 1, ۱଼ൈଵଷ leads to a 

Ͷ ൈ ͳͲͶ COW matrix by the Kronecker product ۶଼۪۱଼ൈଵଷ (where ۶଼ is an ͺ ൈ ͺ 

Hadamard matrix); this implies that we can have errorless decoding for ͳͲͶ users 

with only Ͷ chips; i.e., more than Ψʹ over-loading factor (we will introduce a 

suitable decoder for this code in Section VI). However, repetition of Theorem 2 for 

۱଼ൈଵଷ shows the existence of a Ͷ ൈ ͳͶ COW matrix which implies an over-loading 

factor of about Ψͳͷ. 

 

A fast algorithm for checking that a matrix is COW or not is given in Appendix B. 
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Table 1. An example of Ͷ ൈ ͷ COW matrix-۱ସൈହ. 





















































 

 

 

II.2. COO for Optical CDMA 

 

We would like to extend the results to optical CDMA, i.e., COO matrices.  

 

Theorem 3 If there is an ݉ ൈ ݊ COW matrix for the wireless CDMA, then there is an 

݉ ൈ ݊ COO matrix for the optical CDMA. 

 

Proof: Suppose ۱ is an ݉ ൈ ݊ COW matrix. By Corollary 1, we can assume that the 

entries of the first row of ۱ are all ͳ. Now, we would like to prove that ۲ ൌ ሺ۸  ۱ሻ ʹΤ  

is a COO matrix, where ۸ is the all ͳ matrix. It is clear that ۲ is a ሼͲǡͳሽ-matrix. 

Assume ܺ�ሼെͳǡͲǡͳሽ and ۲ܺ ൌ Ͳ. This yields that ሺ۸  ۱ሻܺ ൌ Ͳ and thus ۱ܺ ൌ
െ۸ܺ. Because the entries of the first row of ۱ are all ͳ, the first entry of ۱ܺ is equal to 

the first entry of ۸ܺ. The above argument shows that the first entry of ۸ܺ is Ͳ. Thus 

۸ܺ ൌ Ͳ. On the other hand ۱ܺ ൌ Ͳ implies that ܺ ൌ Ͳ, because ۱ is a COW matrix. 

This shows that ۲ is a COO matrix.              ∎ 

 

Corollary 2 Similar proof shows that, if we have a COO matrix which has a row with 

all ͳ�s, then we will obtain a COW matrix by substituting the zeros of the COO 

matrix with െͳ. 

 

Example 2 As a special case, by Example 1 and Theorem 3, we also have a Ͷ ൈ ͳͶ 

COO matrix. 

 

Table 2.  An example of ͺ ൈ ͳ͵ COW matrix-۱଼ൈଵଷ. 



The theorems for COO matrices are similar to the previous theorems related to COW 

matrices. In addition, there are a few extra algorithms for the construction of COO 

matrices as described below. 

 

Theorem 4 If ۲ is an ݉ ൈ ݊ COO matrix, then ۲۪۾ is also a ݇݉ ൈ ݇݊ COO matrix, 

where ۾ is an invertible ݇ ൈ ݇ ሼͲǡͳሽ-matrix. 

 

The proof is similar to the proof of Theorem 1. 

 

Corollary 3 If we set ۾ ൌ ۷ in the above theorem, then the generated COO matrices 

are sparse and have low weights that are suitable for optical transmission due to low 

power [4]. 

 

Theorem 5 Suppose ۯ ൌ ۸� ۷ is an ݉ ൈ݉ matrix, and ܸ ൌ
ቂͳ ڮ ͳᇩᇭᇭᇪᇭᇭᇫ

ଶ
Ͳ ڮ Ͳᇩᇭᇭᇪᇭᇭᇫ

ିଶ ቃ

, for ݅ ൌ Ͳǡڮ ǡ ݀, where ݀ ൌ ۂ���ଶ݉ہ െ ʹ. If ۰ ൌ

ሾ ܸ ଵܸ ڮ ௗܸሿ, then ۱ ൌ ሾۯȁ۰�ሿ is an ݉ ൈ ሺ݉  ݀  ͳሻ COO matrix. 

 

Proof: Suppose ۱ܼ ൌ Ͳ, where ܼ is a ሼെͳǡͲǡͳሽ-vector. Call the first ݉ entries of ܼ by 

ܺ and the other ݀  ͳ entries by ܻ. Hence, we have ܺۯ  ۰ܻ ൌ Ͳ and this implies 

that ܺ ൌ െିۯଵ۰ܻ ൌ െቀ ۸
ିଵ െ ۷ቁ۰ܻ ൌ െ ۸

ିଵ۰ܻ  ۰ܻ. Obviously, ۰ܻ is an integer 

vector, thus it is sufficient to prove that 
۸

ିଵ۰ܻ cannot be a non-zero integer vector. 

To show this we write 
۸

ିଵ۰ܻ ൌ
ଵ

ିଵ 
ͳ
ڭ
ͳ

ʹ
ڭ
ʹ

Ͷ
ڭ
Ͷ

ڮ
ڰ
ڮ

ʹௗ
ڭ
ʹௗ
൩. Since ܻ is a ሼെͳǡͲǡͳሽ-

vector then each entry of the vector ۸۰ܻ does not exceed ͳ  ʹ ڮ ʹௗ ൏ ݉ െ ͳ, 

thus 
۸

ିଵ۰ܻ cannot be a non-zero integer vector. Now, suppose that ۸۰ܻ ൌ Ͳ. If 

ܻ ൌ Ͳ, then ܺۯ ൌ Ͳ. Since ۯ is an invertible matrix, we conclude that ܼ ൌ Ͳ. Thus, 

assume that ܻ ് Ͳ. There exists an index ݅ such that ܽʹ  ܽାଵʹାଵ ڮ ܽௗʹௗ ൌ
Ͳ, ܽ א ሼെͳǡͲǡͳሽ for every ݆ and ܽ ് Ͳ. This implies that ܽ  is divisible by ʹ, a 

contradiction.             ∎ 

 



Example 3 Using Theorem 5, we get a Ͷ ൈ ͻ COO matrix with the structure 

discussed in the theorem. 

 

In the next section we will try to find bounds on the number of users for a given 

spreading factor. 

 

Note 2 According to Lemma 1 if a matrix is COW, then any subset of its columns is 

also COW. This statement implies that if some of the users go inactive (we can 

assume that they are sending Ͳ instead of േͳ), at the decoder we only need to know 

the active users (it is a common assumption in MUD [1-3]). Typically, in practical 

networks if a user becomes inactive, there are users in the queue that will grab the 

code. However, if we need a class of errorless codes that can detect inactive users for 

decoding, we must find the ሼͳǡ െͳሽ-matrices that operate injectively on ሼെͳǡͲǡͳሽ-
vectors. This is a topic we have covered in [27]. For COO matrices we do not have 

such problems since bit Ͳ is part of the transmitted data. 

 

III. Upper Bounds for the Percentage of Over-loading Factor 

 

Theorem 6 provides an upper-bound for the over-loading factor for a COW matrix. 

 

Theorem 6 If ۱ ൌ ൣܿ൧ is a COW matrix with ݊ columns (users) and ݉ rows (chips), 

then 

݊  െ݉൭൫ ൯
ʹ ���ଶ

൫ ൯
ʹ



ୀ
൱ 

where ൫ ൯ ൌ Ǩ
ǨሺିሻǨ ȉ 

 

Proof: Let the input multiuser data be defined by the random vector  ܺ ൌ
ሾݔଵǡ ǥ ǡ  �s are identically independent distribution random variablesݔ ሿ, whereݔ

taking െͳ, ͳ with probability ͳ ʹΤ . Since ݔ�s are independent, �ሺܺሻ ൌ ݊, where 

�ሺܺሻ is the entropy of ܺ. Now, let the transmitted CDMA random vector be defined 

by ܻ ൌ ۱ܺ ൌ ሾݕଵǡڮ ǡ ሿ. For a given ݆, ͳݕ  ݆  ݉, the ݊ terms ܿݔ, ݇ ൌ ͳǡڮ ǡ ݊ 

are independent random variables taking values െͳ, ͳ with probability ͳ ʹΤ . Hence 



ݕ ൌ σ ܿݔୀଵ  is a binomial random variable with 

have �ሺܻሻ  σ �൫ݕ൯ ൌୀଵ

matrix, then ܺ is also a function of 

the proof.     

 

Note 3 In Appendix A, we e

better upper bound. Fig. 1 shows this upper bound for the number of users versus the 

number of chips (spreading factor). 

cannot have a CDMA system with more than 

Ultimately, when the joint probabilities of all the 

maximum number of users with errorless transmission will be obtained.

above arguments, we can obtain similar upper bounds for COO codes.

Fig. 1. The upper bounds for the number of users 

factor). The dotted line is the bound from Theorem 6 while the solid line is the tighter bound 

 

IV. Channel Capacity for Noiseless

 

In this section, we shall develop lower and upper bounds for the sum channel capacity 

[25] of a binary over-loaded 

The only interference is the 

is a binomial random variable with �൫ݕ൯ ൌ െσ ൫ ൯
ଶ ���ୀ

൯ ൌ ݉ ቀെσ ൫ ൯
ଶ ���ଶ

൫ ൯
ଶ

ୀ ቁ. Now, because ۱ is a COW 

is also a function of ܻ and thus �ሺܺሻ ൌ �ሺܻሻ ൌ �݊, which completes 

            

In Appendix A, we estimate the entropy of ܻ in another manner and derive a 

better upper bound. Fig. 1 shows this upper bound for the number of users versus the 

number of chips (spreading factor). This upper bound implies that with Ͷ 

a CDMA system with more than ʹͺ users with errorless transmis

Ultimately, when the joint probabilities of all the ݉ elements of ܻ are taken

maximum number of users with errorless transmission will be obtained. Using the 

above arguments, we can obtain similar upper bounds for COO codes. 

The upper bounds for the number of users ݊ versus ݉ the number of chips (spreading 

factor). The dotted line is the bound from Theorem 6 while the solid line is the tighter bound 

derived from Appendix A. 

for Noiseless CDMA Systems 

In this section, we shall develop lower and upper bounds for the sum channel capacity 

 CDMA with MUD when there is no additive noise

The only interference is the over-loaded users. In this case, the channel is 

൯ ���ଶ ൫

 ൯
ଶ Ǥ We 

is a COW 

, which completes 

 ז    

and derive a 

better upper bound. Fig. 1 shows this upper bound for the number of users versus the 

 chips, we 

rs with errorless transmission. 

are taken the 

Using the 

 

the number of chips (spreading 

factor). The dotted line is the bound from Theorem 6 while the solid line is the tighter bound 

In this section, we shall develop lower and upper bounds for the sum channel capacity 

CDMA with MUD when there is no additive noise [26]. 

the channel is 



deterministic but not lossless. The interesting result is that the lower bound estimates 

a region for the number of users ݊ for a given chip rate ݉ such that COW or COO 

matrices exist. To develop the lower bound, we start by the following assumptions for 

the wireless case but results are also valid for the optical CDMA: 

  

For a given ݉ and ݊, let छ ൌ ሼͳǡെͳሽ and ऐǡ be the set of functions ݂  छ ՜
Ժ defined by ݂ሺܺሻ ൌ ݉ is an ۻ where ,ܺۻ ൈ ݊ matrix with entries ͳ and െͳ and ܺ 

is the input multiuser vector as defined before with entries ͳ and -ͳ. 

 

Definition: The sum channel capacity function � is defined as 

�ሺ݉ǡ ݊ሻ ൌ ���אऐǡ
���ଶȁ݂ሺछሻȁ 

where ȁ��ȁ denotes the number of elements of the set. The above definition is 

equivalent to maximizing the mutual information �ሺܺǡ ܻሻ which is equal to the output 

entropy (deterministic channel) over all the input probabilities and over all ݉ ൈ  ܯ ݊

matrices (ܺ  and ܻ  are binary ݊ ൈ ͳ and non-binary ݉ ൈ ͳ vectors, respectively). 

 

Lemma 2 

(i) �ሺ݉ǡ ݊ሻ � �݊ 
(ii) �ሺ݉ǡ ݊ሻ � �݉� ���ଶሺ݊  ͳሻ 

 

Proof: (i) is trivial since ȁ݂ሺछሻȁ  ȁछȁ ൌ ʹ. For (ii) note that if ܺ�छ and 

ܻ ൌ ሾݕଵ ڮ ሿݕ ൌ ݂ሺܺሻ ൌ ݕ then ܺۻ ൌ σ ݉ݔୀଵ  is the sum of  െͳ�s and ͳ�s 

and can take ݊  ͳ values. Hence, there are at most ሺ݊  ͳሻ possible vectors for ܻ. 

 ז

 

Lemma 3 If ݊ is divisible by ݉, then �ሺ݉ǡ ݊ሻ � �݉� ���ଶሺ݊ ݉ሻ �݉� ���ଶ݉. 

 

For the proof, refer to Appendix D. 

 

To get tighter bounds than the ones given in Lemmas 2 and 3, we need the following 

theorems: 

 

 



Theorem 7 (Channel Capacity Lower Bound) 

�ሺ݉ǡ ݊ሻ � �݊Ȃ ���ଶ �ሺ݉ǡ ݊ሻ� 
where 

�ሺ݉ǡ ݊ሻ ൌ൬݊ʹ݆൰ 
ቀଶ ቁ
ʹଶ 

ቔଶቕ

ୀ
Ǥ 

 

For the proof, refer to Appendix E. 

 

Theorem 8 (Channel Capacity Upper Bound) 

�ሺ݉ǡ ݊ሻ  ݉ ൬ͳʹ ���ଶ ݊  ���ଶ ൰ߣ  ͳ 

where ߣ is the unique positive solution of the equation  

൫ߣξ݊൯ ൌ ݉݁ିఒ
మ

ଶ ʹାଵǤ 
 

For the proof, refer to Appendix F. 

 

The plots of the channel capacity upper and lower bounds with respect to ݊ for a 

typical value of ݉ ൌ Ͷ is given in Fig. 2(a). Fig. 2(b) is a dual plot with respect to ݉ 

for a fixed value of ݊ ൌ ʹʹͲ. Plots of the channel capacity lower bounds with respect 

to ݉ and ݊ are given in Fig. 3. The plot of the lower bound from Lemma 3 is not 

shown since the bound is lower than the one from Theorem 7 (see Fig. 2(a)) for 

݊ ൏ ͳͲͲͲ, however, for large ݊ ( ͶͲͲͲ), it is a better lower bound. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
(a) (b) 

Fig. 2. Lower and upper bounds for the sum channel capacity with respect to: (a) the number 
of users ݊ for ݉ ൌ Ͷ, (b) the chip rate ݉ for ݊ ൌ ʹʹͲ. 
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Interpretation: The lower bounds show interesting and surprising results. The lower 

bounds essentially show two modes of behavior. In the first mode, the lower bounds 

for the sum channel capacity (Fig. 2(a) and Fig. 3(a)) are almost linear with respect to 

݊ for a given ݉, which implies the existence of codes that are almost lossless. Since 

we know that there exist COW (COO) codes that can achieve the sum channel 

capacity (number of users is equal to the sum channel capacity) without any error, the 

lower bound is very tight in this region. For small values of ݉ such as Ͷ, we know 

that the maximum value of ݊୫ୟ୶ such that a COW matrix exists is ͷ. The sum 

channel capacity lower bound for ݉ ൌ Ͷ is ͶǤʹͳ bits, which is within a fraction of 

integer from ͷ. Also, for ͺ ൈ ͳ͵ COW matrix, the lower bound is ͳʹǤͳͶ bits, which 

is again within a fraction of an integer from ͳ͵. We thus conjecture that the maximum 

number of users for a COW/COO matrix for ݉ ൌ Ͷ is around ʹ͵ͻ from Fig. 2(a); 

right now our estimate from the simulations and upper bounds is an integer between 

164 and 268.  

 

After ݊ increases beyond a threshold value ݊୲୦ (Fig. 2(a)), the channel becomes 

suddenly lossy and enters the second mode of behavior. This loss is due to the fact 

that ʹ input points that are mapped to a subset of ሺ݊  ͳሻ points cannot find any 

empty space and a fraction of them get overlapped (no longer COW or COO 

condition).  

 

Figs. 2(b) and 3(b) show another interesting behavior. Initially, the bound increases 

almost linearly with ݉ for a given ݊. This region is related to the case where  the chip 

  
(a)         (b) 

Fig. 3. Plots of channel capacity lower bounds for various ݊ and ݉: (a) lower bounds vs. 
number of users ݊ for a given chip rate ݉, (b) lower bounds vs. ݉ for a given ݊. 



rate ݉ is much less than the number of users ݊. In our case, ݊ behaves like an 

amplitude or power, while ݉ behaves like frequency. As ݉ increases beyond a 

threshold (݉୲୦ in Fig. 2(b)), the sum channel capacity remains almost constant since 

the capacity cannot be greater than ݊ (Lemma 2). In fact, ݊ is the supremum of the 

lower bound in this mode. This mode is the lossless case that predicts the existence of 

COW/COO codes. 

 

The next section covers a practical ML algorithm for decoding a class of COW codes. 

 

V. Maximum Likelihood (ML) Decoding for a Class of COW/COO codes 

 

The direct ML decoding of COW codes is computationally very expensive for 

moderate values of ݉ and ݊. In this section, we prove two lemmas for decreasing the 

computational complexity of the ML decoders for a subclass of COW codes. 

 

Suppose ۲ is a COW/COO matrix and ܻ ൌ ۲ܺ  ܰ is the received vector in a noisy 

channel. We wish to find a vector ܺ ሼͳǡ െͳሽ for wireless systems (ሼͲǡͳሽ for optical 

systems8) which is the best estimate of ܺ at the receiver. From now on we prove the 

lemmas for COW matrices but based on footnote7 , we can extend it to COO matrices. 

 

Lemma 4 Suppose ۲ൈ ൌ ൈ۾ ٔ۱ൈ where ۾ is an invertible ሼͳǡ െͳሽ-matrix 

and ۱ is a COW matrix. The decoding problem of a system with code matrix ۲ can be 

reduced to ݇ decoding problems of a system with the code matrix ۱. 

 

Proof: Suppose ܻ ൌ ۲ܺ ܰ ൌ ሺٔ۾ ۱ሻܺ  ܰǡ where ܰ is the Gaussian noise vector 

with zero mean and auto-covariance matrix ߪଶ۷ (۷ is the ݇݉ ൈ ݇݉ identity 

matrix). Multiplying both sides by ξ݇ሺି۾ଵٔ ۷ሻ, we have ܻᇱ ൌ ξ݇ሺି۾ଵٔ ۷ሻܻ ൌ
ξ݇ሺ۷ ٔ۱ሻܺ  ܰԢ where ܰᇱ ൌ ξ݇ሺି۾ଵٔ ۷ሻܰ. This expression suggests that the 

first ݉ entries of ܻᇱ depend on the first ݊ entries of ܺ and the first ݉ entries of ܰԢ; the 

second ݉ entries of ܻᇱ depend on the second ݊ entries of ܺ and the second ݉ entries 

                                                
8�For a ሼͲǡͳሽ-vector, we have ʹܻ െܹ ൌ ۲ሺʹܺ െ ሾͳ ڮ ͳሿሻ  ʹܰ where ܹ ൌ ۲ ȉ ሾͳ ڮ ͳሿ. Since 

ʹܺ െ ሾͳ ڮ ͳሿ is a ሼͳǡ െͳሽ-vector, ML decoding of ʹܻ െܹ is equivalent to ML decoding of ܻ. 

 



of the noise vector ܰԢ, and so on. Thus, retrieving the ሺ݅ െ ͳሻ݊  ͳǡǥ ǡ ݅ ȉ ݊ entries of 

ܺ needs only the knowledge of the ሺ݅ െ ͳሻ݉  ͳǡǥ ǡ ݅ ȉ ݉ entries of ܻǯ, for ݅ ൌ
ͳǡǥ ǡ ݇. Therefore, the decoding problem for ܻ is decoupled to ݇ smaller decoding 

problems.                 ז 

 

In general, the ML decoding of the ܻԢ in Lemma 4 results in a sub-optimum decoder 

for ܻ. But if we suppose that the matrix ۾ is a Hadamard one, since the matrix 

ξ݇ሺି۾ଵٔ ۷ሻ is a unitary matrix, the vector ܰԢ is a Gaussian random vector with 

properties identical to ܰ. Therefore, the ML decoding of ܻԢ is equivalent to ML 

decoding of ܻ. Since the ML decoding of ܻԢ is equivalent to the ML decoding of ݇ 

݉ ൈ ͳ vectors, this implies a dramatic decrease in the computational complexity of 

the decoder in the over-loaded systems.  

 

The following lemma introduces another method to significantly reduce the 

computational complexity of the decoder in over-loaded systems. 

 

Lemma 5 If a COW matrix ۱ൈ is full rank, then the decoding problem for a system 

with code matrix ۱ can be done through ʹି Euclidean distance measurements.  

 

Proof: From part (b) of Corollary 1, we can always decompose the COW matrix 

۱ ൌ ሾۯ�ȁ۰ሿ such that ۯ is an ݉ ൈ݉ invertible square matrix. Assume ܻ ൌ ۱ܺ ൌ
ଵܺۯ  ۰ܺଶ where ܺଵ and ܺଶ are ݉ ൈ ͳ and ሺ݊ െ ݉ሻ ൈ ͳ vectors, respectively. Thus, 

ܺଵ ൌ ଵܻିۯ െ  ଵ۰ܺଶ. Hence, we can search among ʹି possibilities of ܺଶ to findିۯ

the vector ܺଵ that belongs to ሼͳǡ െͳሽ. In a noisy channel, we look for the specific ܺଶ 

that minimizes ԡሺିۯଵܻ െ ଵ۰ܺଶሻିۯ െ ����ሺିۯଵܻ െ  ଵ۰ܺଶሻԡ, where ԡ�ԡ representsିۯ

the Euclidean norm. The corresponding ଵܺ vector can be obtained by ܺଵ ൌ
����ሺିۯଵܻ െ  ଵ۰ܺଶሻ, where ����ሺܼሻ is obtained by substituting the positive entriesିۯ

of ܼ by ͳ and the negatives by െͳ.           ז 

 

Similar to Lemma 4, Lemma 5 leads to significant decrease of the decoding 

complexity, but is not always optimum. Also, since the ���� function maps a vector to 

the nearest ሼͳǡ െͳሽ-vector, it is not hard to show that if ۯ is a Hadamard matrix, then 

the proposed method in Lemma 5 is an ML decoder. 



 

Now, suppose that ۱ൈ ൌ ሾۯ�ൈȁ۰ሿ and ۲ ൌ  are ۾ and ۯ ൈ۪۱, where۾

invertible matrices and ۱ is a COW matrix. Combining Lemmas 4 and 5, we 

introduce a decoding scheme that has very low computational complexity, which is 

sub-optimum, in general. But if ۯ and ۾ are Hadamard matrices, the overall decoder 

is ML. 

 

Tensor Decoding Algorithm: Suppose the received vector at the decoder is ܻ ൌ
۲ܺ  ܰ, where ܰ is the noise vector in an AWGN channel. The decoding algorithm 

is given below: 

 Step 1 Multiply both sides by ି۾ଵٔ ۷ . We get ܻᇱ ൌ ൣܻԢଵ ڮ ܻԢ൧ ൌ
ሺି۾ଵٔ ۷ሻܻ ൌ ሺ۷ٔ۱ሻܺ ܰᇱ ൌ ሺ۷ ٔ۱ሻሾܺଵ ڮ ܺሿ ܰᇱǡ where ܻԢ 
is the ሺ݅ െ ͳሻ݉  ͳǡǥ ǡ ݅ ȉ ݉  entries of ܻԢ and ܺ is the ሺ݅ െ ͳሻ݊  ͳǡǥ ǡ ݅ ȉ ݊  

entries of ܺ for ݅ ൌ ͳǡ ǥ ǡ ݇. 

 

 Step 2 For each ݅ א ሼͳǡ ǥ ǡ ݇ሽ,  according to Lemma 5, multiply ܻԢ by ିۯଵ and 

find the vector ܺଶ by minimizing ฮ൫ିۯଵܻԢ െ ଵ۰ିۯ ܺଶ൯ െ ����ሺିۯଵܻԢ െ
ଵ۰ିۯ ܺଶሻฮ and set the vector ܺଵ to be equal to ����ሺିۯଵܻԢ െ ଵ۰ିۯ ܺଶሻ. 

 

ܺ ൌ ൣ ܺଵଵ ܺଶଵ ǥ ܺଵ ܺଶ൧

 is the output of the decoder. 

 

To see the power of this algorithm, let us take a CDMA system of size (64, 104) with 

the code matrix ۲ ൌ ۶଼ٔ۱଼ൈଵଷ, where ۶଼ denotes an ͺ ൈ ͺ Hadamard matrix and 

۱଼ൈଵଷ is the matrix shown in Table 2. Since ۱଼ൈଵଷ has an ͺ ൈ ͺ Hadamard sub-

matrix, the decoding of all the ͳͲͶ users have a complexity of  about ͺ ൈ ͵ʹ ൌ ʹ଼ 

Euclidean distance calculation of ͺ-dimensional vectors. The decoder is also ML. 

This implies a drastic saving compared to the direct implementation of the ML 

decoder, which needs ʹଵସ Euclidean distance calculation of Ͷ dimensional vectors. 

 

In the next section, the COW codes with the proposed decoding method is simulated 

and compared to binary WBE and random codes.  

 



VI. Simulation Results 

 

For studying the behavior of COW codes in the presence of noise, we consider three 

different CDMA systems in an AWGN channel. The first one is a system with the 

chip rate of ݉ ൌ Ͷ and ݊ ൌ ʹ ሺͶǡʹሻ users and the second one is of dimension 

ሺͶǡͻሻ and the last one is ሺͶǡͳͲͶሻ. For each system, we compare three classes of 

codes: random, BWBE, and COW sequences. We use an iterative decoder with soft 

limiting9 in the case of random and BWBE codes, which performs better than Parallel 

Interference Cancellation (PIC) with hard limiters [28]. For decoding COW codes, we 

apply the Tensor Decoding Algorithm (which is ML) discussed in the previous 

section. Note that we cannot use ML decoder for the BWBE10 and random codes 

since their implementations are impractical. These decoding methods with the three 

different over-loading factors are compared with the orthogonal CDMA (Hadamard 

code of size ሺͶ ൈ Ͷሻ), which performs the same as a synchronous binary PSK 

system- Figs. 4-6. 

 

As seen in Fig. 4, for an over-loaded CDMA of size ሺͶǡʹሻ for ܧȀ ܰ values less 

than ͳͲ dB, the BWBE codes perform slightly better. But when ܧȀ ܰ increases 

beyond ͳͲ dB, the Bit-Error-Rate (BER) of this system saturates. This phenomenon is 

due to the fact that the mapping of the BWBE code is not invertible. Thus when we 

use BWBE codes, we cannot decrease the BER lower than a threshold value even by 

increasing ܧȀ ܰ to infinity (or using any scheme of decoding). Since the mappings 

of COW codes are one-to-one and the proposed decoder is ML, the BER tends to zero 

as ܧȀ ܰ increases.  

 

The simulation results of Fig. 4 are repeated in Figs. 5 and 6 for the other over-loaded 

COW codes ሺͶǡͻሻ and  ሺͶǡͳͲͶሻ, respectively. These figures highlight the fact that 

for higher over-loading factors, the COW codes with their simple ML decoding 

outperform other codes with iterative decoding.  BWBE codes perform better than 

random codes due to its minimum TSC property, but the problem with such codes is 

that the interference cannot be cancelled totally and we cannot design optimum ML 

                                                
9 F Marvasti, M Ferdowsizadeh, and P Pad , �Iterative synchronous and Asynchronous Multi-User 
Detection with Optimum Soft limiter� US Patent application number 12/122668 filed on �5/17/2008. 
10�There are some exceptions that are discussed in [29]. 



decoders due to their complexity. It is worth mentioning that in Fig. 6, although the 

system is about Ψʹ over-loaded, the performance of COW codes is to within ͵ dB 

of the orthogonal Hadamard fully-loaded CDMA, while the BWBE code has the same 

performance as the COW code for ܧȀ ܰ less  dB. But at higher ܧȀ ܰ values, the 

COW codes clearly outperform the BWBE Codes. 

 

Fig. 4. Bit-error-rate versus ܧȀ ܰ for ͵ classes of codes for a system with Ͷ chips and ʹ 
users (for comparison, Hadamard codes of size ሺͶ ൈ Ͷሻ is also simulated). 

 

Fig. 5. Bit-error-rate versus ܧȀ ܰ for ͵ classes of codes for a system with Ͷ chips and ͻ 
users (for comparison, Hadamard codes of size ሺͶ ൈ Ͷሻ is also simulated). 



 
 
Fig. 6. Bit-error-rate versus ܧȀ ܰ for ͵ classes of codes for a system with Ͷ chips and ͳͲͶ 

users (for comparison, Hadamard codes of size ሺͶ ൈ Ͷሻ is also simulated). 
 

VII. Conclusion 

 

In this paper, we have shown that there exists a large class of ሺ݉ ൈ ݊ሻ codes (݉ ൏ ݊) 

that are suitable for over-loaded synchronous CDMA both for wireless and optical 

systems. For a given spreading factor ݉, an upper bound for the number of users ݊ 

has been found. For example for ݉ ൌ Ͷ, the upper bound predicts a maximum of 

݊ ൌ ʹͺ. A tight lower bound and an upper bound for the channel capacity of a 

noiseless binary channel matrix have been derived. The lower bound suggests the 

existence of COW/COO codes that can reach the capacity without any errors.  

Mathematically, we have proved the existence of codes of size ሺͶǡͳͶሻ. However, 

since the decoding of such over-loaded codes are not practical, we have developed 

codes of size ሺͶǡͳͲͶሻ that are generated by Kronecker product of a Hadamard 

matrix by a small matrix of size ሺͺǡͳ͵ሻ. The decoding can be done by a look-up table 

of size ͵ʹ rows. These types of COW codes outperform BWBE codes and other 

random codes at high over-loaded factors and probability of errors of approximately 

less than ͳͲିଷ. 

 

We suggest for future work to get better upper bounds for the over-loaded CDMA 

systems, more practical codes at higher over-loading factors, and better decoding 



algorithms. Extensions to non-binary over-loaded CDMA, asynchronous CDMA, and 

channel capacity evaluations under fading and multipath environments are other 

issues that need further research. Also, to include fairness among users, we need to 

investigate the minimum distance of each COW/COO codes and its random 

allocation. 
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Appendix A 

 

According to Theorem 3, if we find an upper bound for the number of users ݊ for a 

given number of chips ݉ for the COO codes, then this upper bound is also valid for 

COW codes. Suppose ۱ is a COO matrix, using part c of Corollary 1, we can add an 

all  row as the 0th row to ۱. If ܺ and ܻ are two vectors in the proof of Theorem 6, 

then we have 

�ሺܻሻ ൌ �ሺݕǡ ଵǡݕ ଶሻݕ  �ሺݕ�ଷǡ ǡݕସȁݕ ଵǡݕ ଶሻݕ  ڮ �ሺݕ�ିଵǡ ǡݕȁݕ ଵǡݕ ǥ ǡ ିଶሻݕ
 �ሺݕǡ ଵǡݕ ଶሻݕ  �ሺݕ�ଷǡ ሻݕସȁݕ  ڮ �ሺݕ�ିଵǡ ሻݕȁݕ
ൌ �ሺݕǡ ଵǡݕ ଶሻݕ  �ሺݕǡ ଷǡݕ ସሻݕ െ �ሺݕሻ  ڮ �ሺݕǡ ିଵǡݕ ሻݕ
െ �ሺݕሻǤ 

 If we denote the maximum value of �ሺݕǡ ଵǡݕ  ଶሻ over all possible configurations ofݕ

the first and the second rows of ۱ by ܪ͵ and set ܪͳ ൌ �ሺݕሻ, then we have �ሺܻሻ 

ଶ ሺܪ͵ െ ͳሻܪ  ሺܻሻ� ͳ. Since ۱ is a COO matrix,ܪ ൌ ݊. Consequently, ݊ 

ଶ ሺܪ͵ െ ͳሻܪ   ͳ is the entropy of a binomial r.v. and is depicted in the proofܪ .ͳܪ

of Theorem 6.  

 

For calculating ܪ͵, let ൦
ͳ��� ڮ ڮ ���ͳ
ͳ��� ڮ ڮ ���ͳ
ͳڮͳᇣᇤᇥ


ͲڮͲᇣᇤᇥ


�
ͳڮ��� ڮ ���ͳ
Ͳڮ��� ڮ ���Ͳ
ͳڮͳᇣᇤᇥ


ͲڮͲᇣᇤᇥ

ିିି
�൪ be 0th, 1st and 2nd rows of 

۱. Thus, we have �ሺݕǡ ଵǡݕ ଶሻݕ ൌ െσ �ሺݕǡ ଵǡݕ ଶሻݕ ���ଶ �ሺݕǡ ଵǡݕ ଶሻ௬బǡ௬భǡ௬మݕ , where 

�ሺݕǡ ଵǡݕ ଶሻݕ ൌ σ ቀషೌష್ష ቁቀ 
బషభషቁቀ

್
బషమషቁቀ

ೌ
మషబశభశቁ

ଶ . 

 

Appendix B 

 

For testing a matrix to be a COW matrix, according to Lemma 1, the crudest 

algorithm is to check ͵� ͳ vectors for the zero-vector. Now we introduce a better 

method to decrease this number down to ሺ͵ି െ ͳሻȀʹ. Assume that the matrix 

۱ൈ is full rank (this is not a very restricting condition). Then there are ݉ columns 

of ۱ that form an invertible ݉ ൈ݉ matrix. Suppose these columns are the first ݉ 

columns of ۱ and coin the consructed invertible matrix by ۯ and the other columns by 

۰. Thus, ۱ ൌ ሾۯ�ȁ۰ሿ. Using Lemma 1, we know that if ۱ is not a COW matrix, then 



there exists a ሼെͳǡͲǡͳሽ-vector ܺ such that ۱ܺ ൌ ͲǤ Suppose ܺ ൌ ሾܺଵ ܺଶሿ such 

that ۱ܺ ൌ ଵܺۯ  ۰ܺଶ ൌ Ͳ. Thus ܺଵ ൌ െିۯଵ۰ܺଶ. Hence to check that ۱ is a COW 

matrix, we should search through different possibilities for ܺଶ, i.e., ሼെͳǡͲǡͳሽି 

(except ሼͲሽି) to see whether െିۯଵ۰ܺଶ belongs to ሼെͳǡͲǡͳሽ or not. This needs 

͵ି െ ͳ searches, but one half of these vectors are the negatives of the other half, 

thus we need only ሺ͵ି െ ͳሻȀʹ searches. 

 

Appendix C 

 

We prove this theorem in 3 steps. Define ۲ ൌ ۶ଶ۪۱ and झ ൌ ሼ�۲ܺȁܺ א ሼെͳǡͲǡͳሽଶሽ. 
 

Step 1 

An interesting observation is that if ܼ א ሼͳǡ െͳሽଶ and ܼ ב झ, then the matrix 

augmentation ሾ�۲ȁܼሿ is a COW matrix. The proof of this step is trivial. 

 

Step 2 

We would like to prove that if च ൌ ܳ  ሼͳǡെͳሽଶ, where ܳ is an arbitrary ʹ݉ ൈ ͳ 

integer vector, then ȁझ ת चȁ  ʹାଵ. To show this, suppose that ܻ א झ ת च. Then 

there exists a ሼെͳǡͲǡͳሽ-vector ܺଶൈଵ ൌ ሾܺଵ ܺଶሿ, where ܺଵǡ ܺଶ א ሼെͳǡͲǡͳሽ and 

ܻ ൌ ۲ܺ. 

ܻ ൌ ۲ܺ ൌ ቂ۱ ۱
۱ െ۱ቃ 

ܺଵܺଶ൨ ൌ ۱ܺଵ  ۱ܺଶ۱ܺଵ െ ۱ܺଶ൨ and ܻ ൌ ۱ܺ thus ܻ ൌ  ଵܻ  ଶܻ
ଵܻ െ ଶܻ

൨. 
Since there is a one-to-one correspondence between the set of vectors 

ሾሺ ଵܻ  ଶܻሻ ሺ ଵܻ െ ଶܻሻሿ and the set of vectors ሾ ଵܻ ଶܻሿ, the cardinality of the 

two sets are equal. Denote the ݅th entry of ଵܻ by ሺ ଵܻሻ, thus we have ሺ ଵܻሻ ൌ
σ ܿሺܺଵሻୀଵ ൌ ሺ���������������������������������ܺଵሻ�ሺ����ʹሻ. Hence the entries 

of ଵܻ are either all odd or all even.  Also this holds for ଶܻ. Since ܻ א च, then for every 

݅, ͳ  ݅  ݉, we have ൜ ሺ ଵܻሻ  ሺ ଶܻሻ ൌ ܳ േ ͳሺ ଵܻሻ െ ሺ ଶܻሻ ൌ ܳା േ ͳ
�.  

 

By an easy calculation the solutions of the above equations are 

ቐሺ ଵܻሻ ൌ ொାொశ
ଶ േ ͳǡ ሺ ଶܻሻ ൌ ொିொశ

ଶ �
ሺ ଵܻሻ ൌ ொାொశ

ଶ ǡ ሺ ଶܻሻ ൌ ொିொశ
ଶ േ ͳ

�.
  



The above solutions are in two categories. Category 1 consists of the solutions which 

have ʹ choices for ሺ ଵܻሻ and only one choice for ሺ ଶܻሻ, while category 2 consists of 

solutions with a single choice for ሺ ଵܻሻ and ʹ choices for ሺ ଶܻሻ. 
 

Now, for the determination of ȁझ ת चȁ, first assume that all entries of ଵܻ are even and 

݈ entries of ଵܻ have two choices. Hence, the number of ሾ ଵܻ ଶܻሿ vectors are 

ʹʹି ൌ ʹ, because the ݈ corresponding elements in ଶܻ have only one choice and 

the other ݉െ ݈ elements in ଶܻ have ʹ choices. 

 

The same assertion holds when all entries of ଵܻ are odd. Thus, ȁझ ת चȁ has at most 

ʹ  ʹ ൌ ʹାଵ elements. 

 

Step 3 

Now, suppose that we add ݇ columns to ۲, ݇ ൏ ሺ݉ڿ െ ͳሻ ���ଷ  and the resultant ,ۀʹ

matrix, ۳, is a COW matrix. We wish to prove one can add another column to ۳ to 

obtain a COW matrix with ʹ݊  ݇  ͳ columns. Assume that ۳ ൌ ሾ�۲ȁ۴ሿ, where 

۴ ൌ ሾ� ଵܹȁڮ� ȁ ܹሿ, and ܹ is a ʹ݉ ൈ ͳ vector, for ݅ ൌ ͳǡ ǥ ǡ ݇. Let ܺ א ൛�ͳǡͲǡͳൟଶା, 

ܺ ൌ ሾܺଵ ܺଶሿ, where ܺଵ is a ʹ݊ ൈ ͳ vector and ܺଶ is a ݇ ൈ ͳ vector. Hence, 

۲ܺଵ ൌ ۳ܺ െ ۴ܺଶ. By Step 2 and the fact that ܺଶ has ͵ different possibilities, we 

have ȁठ ת ሼͳǡ െͳሽଶȁ ൌ σ ȁሼ۲ ȉ ሼെͳǡͲǡͳሽଶሽ ת ሼെ۴ܺଶ  ሼͳǡെͳሽଶሽȁ  ͵ʹାଵమ  

where ठ ൌ ሼ�۳ܺȁܺ א ሼͳǡ െͳሽଶାሽ.  
 

Now, if ͵ʹାଵ ൏ ȁሼͳǡെͳሽଶȁ ൌ ʹଶ , then we can add another column to matrix D 

by applying Step 1. Thus, we can add at least ڿሺ݉ െ ͳሻ ���ଷ  vectors to ۲ and ۀʹ

obtain a bigger COW matrix.           ז 

 

Appendix D 

 

Assume ۶ ൌ ሾܪ�ଵȁڮ� ȁܪሿ is an ݉ ൈ݉ Hadamard matrix. Let 

۱ ൌ ൦ܪ��ଵȁڮ� ȁܪଵᇩᇭᇭᇪᇭᇭᇫ



ተڮ ተܪ�ȁڮ� ȁܪᇩᇭᇭᇪᇭᇭᇫ



�൪ be an ݉ ൈ ݊ code matrix. If ܺ is a data vector, then 



۱ܺ ൌ ܽଵܪଵ ڮ ܽܪ , where for every ݅, ͳ  ݅  ݉, ܽ can take 

  ͳ different 

values. Thus, ۱ܺ can have ቀ  ͳቁ


 different values and thus its logarithm is a lower 

bound for the sum channel capacity.              ז 

 

Appendix E 

 

Pick ݂ א ऐǡ randomly by choosing entries of the defining matrix of ݂ 

independently and uniformly from ሼͳǡ െͳሽ. For any vertex ܺ of the ݊-dimensional 

hyper-cube छ, one has 

�൫ห݂ିଵ൫݂ሺܺሻ൯ห൯ ൌ �ቌ  ͳሺሻୀ൫ᇲ൯
ᇲאछ

ቍ ൌ  �ቀͳሺሻୀ൫ᇲ൯ቁ
ᇲאछ

ൌ  �൫݂ሺܺሻ ൌ ݂ሺܺᇱሻ൯
ᇲאछ

 

where ݂ିଵ, ͳሺሻୀ൫ᇲ൯, and � are the pre-image set, conditional if statement, and the 

probability function, respectively, and � is expectation over ݂. 

If ܺ and ܺᇱ differ in ݇ places, then 

�൫݂ሺܺሻ ൌ ݂ሺܺᇱሻ൯ ൌ
ەۖ
۔
ۓۖ Ͳ ���݇ ൌ ʹ݆  ͳ

ቌቀ
ଶ
 ቁ
ʹଶ ቍ



���݇ ൌ ʹ݆ � 

 

(Note that for ݂ሺܺሻ and ݂ሺܺᇱሻ to be equal, all of their ݉ entries should be equal 

which are independent equiprobable events.) Combining the above equations, we get 

�൫ห݂ିଵ൫݂ሺܺሻ൯ห൯ ൌ σ ቀ ଶቁ
ቔమቕ
ୀ ቆቀ

మೕ
ೕ ቁ
ଶమೕቇ


ൌ �ሺ݉ǡ ݊ሻ and hence �൫σ ห݂ିଵ൫݂ሺܺሻ൯หאछ ൯ ൌ

ʹ�ሺ݉ǡ ݊ሻ. Thus, there exists an ݂ א ऐǡ such that σ ห݂ିଵ൫݂ሺܺሻ൯หאछ 
ʹ�ሺ݉ǡ ݊ሻ. But if ȁ݂ሺछሻȁ ൌ ݇

 
and the pre-images of the ݇ values of ݂ሺछሻ have 

cardinalities ݊ଵǡ ǥ ǡ ݊ , then σ ห݂ିଵ൫݂ሺܺሻ൯หאछ ൌ σ ݊ଶୀଵ . 

 

By Cauchy-Schwartz inequality: ʹ ൌ σ ݊  ൫σ ݊ଶୀଵ ൯Φ൫σ ͳୀଵ ൯Φୀଵ 
൫ʹ�ሺ݉ǡ ݊ሻ൯Φ݇Φ. 



Thus, ݇  ʹȀ�ሺ݉ǡ ݊ሻ and �ሺ݉ǡ ݊ሻ  ���ଶ ݇  ݊� ���ଶ �ሺ݉ǡ ݊ሻ.      ז 

 

Appendix F 

 

To prove the theorem, we need a classical inequality about large deviations of simple 

random walk: 

Let ܵ ൌ ଵߜ  ଶߜ ڮ  ଵ�s are independent and equal to െͳ, ͳ withߜ , whereߜ

probability ͳȀʹ. For any O�  �Ͳ, from [30] we have �൫ȁܵȁ  ξ݊൯ߣ  ʹ݁షഊ
మ

మ . Let 

݂ሺܺሻ ൌ be the mapping with the maximum image size, i.e., ȁ݂ሺछሻȁ ܺۻ ൌ ʹେሺǡሻ. 
Pick ܺ א छ randomly with uniform distribution and let ܻ ൌ ܺۻ ൌ ሾݕଵ ڮ  ሿݕ

for ݆, ͳ  ݆  ݕ ,݉ ൌ σ ݉ݔୀଵ  is a summation of ݊ independent random െͳ, ͳ�s 

(because of the randomness of ݔ�s) and so according to the random walk property, 

�൫หݕห  ξ݊൯ߣ  ʹ݁షഊ
మ

మ . This implies that if ज ൌ ൣെߣξ݊ǡ ξ݊൧, then �ሺܻߣ ב जሻ ൌ
�൫݆�ͳ  ݆  ݉�หݕห  ξ݊൯ߣ  ʹ݉݁షഊ

మ
మ , which means that there are at most 

ʹାଵ݉݁షഊ
మ

మ  points of ݂ሺछሻ outside ज. 

 

Now, notice that ȁ݂ሺछሻ  जȁ is at most equal to the number of integer points in जת

with all coordinates having the same odd or even parity as ݊ which is less than 

൫ߣξ݊൯. Combining these two facts, we get ʹେሺǡሻ ൌ ȁ݂ሺछሻȁ ൌ ȁ݂ሺछሻ जȁת 
ȁ݂ሺछሻ जȁת  ൫ߣξ݊൯  ʹାଵ݉݁షഊ

మ
మ ൌ ʹ൫ߣξ݊൯. 

 

The last equality comes from definition of ߣ given in Theorem 8, which implies that 

�ሺ݉ǡ ݊ሻ  ݉ ቀଵଶ ���ଶ ݊  ���ଶ ቁߣ  ͳ.            ז
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