A Class of Errorless Codesfor Over-loaded Synchronous Wireless and Optical
CDMA Systems

P. Pad', F. Marvastit, K. Alishahi?, S. Akbari?

Abstract: In this paper we introduce a new class of codes for over-loaded synchronous
wireless and optical CDMA systems which increases the number of users for fixed
number of chips without introducing any errors. Equivalently, the chip rate can be
reduced for a given number of users, which implies bandwidth reduction for downlink
wireless systems. An upper bound for the maximum number of users for a given
number of chips is derived. Also, lower and upper bounds for the sum channel
capacity of a binary over-loaded CDMA are derived that can predict the existence of
such over-loaded codes. We aso propose a smplified maximum likelihood method
for decoding these types of over-loaded codes. Although a high percentage of the
over-loading factor® degrades the system performance in noisy channels, simulation
results show that this degradation is not significant. More importantly, for moderate
vaues of E, /N, (in the range of 6-10 dB) or higher, the proposed codes perform
much better than the binary Welch bound equality sequences.

|. Introduction

In a synchronous wireless' CDMA system with no additive noise, we can obtain
errorless transmission by using orthogonal codes (Hadamard codes); we assume the
number of users is less than or equal to the spreading factor (under or fully-loaded
cases). In the over-loaded case (when the number of users is more than the spreading
factor), such orthogonal codes do not exist; the choice of random codes creates
interference that, in general, cannot be removed completely and creates errors in the
Multi-User Detection (MUD) receiver [1-3].

1 Advanced Communications Research Institute (ACRI) and Department of Electrical Engineering, Sharif
University of Technology, Tehran, Iran.

2 Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran.

3 The percentage of the number of users divided by the number of chipsminus 1, i.e.,, (n/m — 1).

4 In general, by wireless CDMA, we mean the signature codes (matrix) and the input data are binary {1,—1};
while for optical CDMA systems, the binary elements are {0,1}.



Likewise, for under-loaded optical CDMA systems, Optical Orthogonal Codes (OOC)
[4-5] can be used. Unlike the connotation of the name of OOC, the optical codes are
not really orthogonal, but by interference cancellation, we can remove the interference
completely. However, for the fully and over-loaded cases, OOC’s (with minimal
cross-correlation value of A = 1) do not exist and similar to the wireless CDMA, the
choice of random codes creates interference that, in general, cannot be removed

completely.

When the channel bandwidth is limited, the over-loaded CDMA may be needed. Most
of the research in the over-loaded case is related to code design and Multi-Access
Interference (MAI) cancellation to lower the probability of error. Examples of these
types of research are pseudo random spreading (PN) [6-7], OCDMA/OCDMA (O/O)
[8-9], MultipleeOCDMA (MO) [10], PN/OCDMA (PN/O) [11] signature sets, Serial
and Parallel Interference Cancellation (SIC and PIC) [12-16]. The papers that discuss
double orthogonal codes for increasing capacity [17-18] are actually non-binary
complex codes (equivalent to m phases for MC-OFDM) and are not really fair for

comparison.

The codes with minimum Total Squared Correlation (TSC)® [20-22] maximize the
channel capacity of a CDMA system when the input distribution is Gaussian [23]. But
for binary input signals, the WBE codes do not necessarily maximize the channel
capacity. Moreover, if the WBE codes are binary (BWBE), the optimality is no longer
true. Another problem with WBE codes is that its ML implementation isimpractical®.
In our comparisons of our codes with WBE, we use iterative decoding methods with
soft thresholding for WBE codes. For more details please refer to Section VI on

simulation results.

None of the signatures and decoding schemes that have been proposed in the literature
(including the BWBE) guarantee errorless communication in an ideal (high Signal-to-
Noise Ratio (SNR) and without near-far effect) synchronous channel. In this paper,
we plan to introduce Codes for Over-loaded Wireless (COW) and Codes for Over-

® Or equivalently, the Welch Bound Equality (WBE) [19] codes.
® There are some exceptions that are discussed in [29].



loaded Optical (COO) CDMA systems [24] which guarantee errorless communication
in an ideal channel and propose an MUD scheme for a special class of these codes
that is Maximum Likelihood (ML). We will also compare these codes to BWBE and
show that as the over-loading factor increases, the proposed COW/COO codes
perform much better. As an example, for a signature length of 64, we have discovered
such codes with an over-loading factor of about 62% that can be decoded practically
in real time, which is aso ML. However, we have proved the existence of codes with
an over-loading factor of amost 156% that need to be discovered. The complexity of
the decoding depends on the number of chips and the over-loading factor; but for a
COWI/COO code of size (64,104), the ML implementation is as ssmple as 8 look up
tables of size 32. The implications of these findings are tremendous; it implies that
using this system, we can accommodate 104 users for a spreading factor of 64 with
low complexity ML decoding, which performs significantly better than BWBE in an
AWGN channel (when E, /N, is greater than 6 dB).

These codes are suitable for synchronous Code Division Multiplexing (CDM) in
broadcasting, downlink wireless CDMA, and optical CDMA (assuming chip and
frame synch). Alternatively, these codes can be used for the present downlink CDMA
systems with much lower chip rate and hence significant bandwidth saving for the

operating companies.

Using 64 chips, we have also derived an upper bound where the over-loading factor
cannot be more than 320%. By trying to find bounds on the channel capacity in the

absence of additive noise, we can, surprisingly, predict the existence of such codes.

Section |1 covers the necessary and sufficient conditions for errorless transmission in
a noiseless over-loaded CDMA system along with methods for constructing large
COW and COO codes with high percentage of over-loading factor. Two upper bounds
for the number of users for a given signature length are presented in Section IllI.
Channel Capacity evaluation for noiseless CDMA is discussed in Section V.
Methods for decoding are discussed in Section V. Simulation results and discussions
are summarized in Section VI. Finally, conclusion and future work are covered in
Section VII.



[l. Preliminaries-Channel M odel

A synchronous CDMA system in an AWGN channel is modeled as
Y =CAX +N,

where C is a matrix with signature columns with elements {1, —1} or {0, 1} depending
on the application, A is a diagonal matrix with entries equal to the user received
amplitude, X is a binary user column vector with entries {1,—1} or {0,1}, N isa
white Gaussian noise with a covariance matrix of oI (where I is the identity matrix)
and Y is the received vector. In case of perfect power control, we can assume that
A = 1. Below we will discuss COW and COO codes.

[1.1 Codesfor Over-loaded Wireless (COW) CDMA Systems

For developing COW and COO codes (matrices), we first discuss an intuitive
geometric interpretation and then develop the codes mathematically. At a given time
the multi-user binary data can be represented by an n-dimensional vector; these
vectors can be interpreted as the vertices of a hyper-cube. Each user datais multiplied
by a signature of m chips long and finally their summation is transmitted. Thus, the
transmitted m-tuple vectors are the multiplication of an m x n matrix (the columns
are the signatures of different users) by the input n-dimensional vectors. Hence, the
hyper-cube vertices are mapped onto points in an m-dimensional space (m < n). As
long as the points in the m-dimensional space are distinct, the mapping is one-to-one
and therefore, we can uniquely decode each received m-tuple vector at the receiver;
on the other hand, if these m-tuple vectors are not distinct, the mapping is not one-to-
one and the system is not invertible. Consequently, we look for codes that map the
vertices of the n-dimensional hyper-cube to distinct points in the m-dimensional
space. Most of the over-loaded codes discussed in the literature do not have this
property and thus any MUD cannot be perfect. We coin the invertible codes, as
mentioned in the introduction, as COW and COO codes for wireless and optical
applications, respectively. We first develop systematic ways to generate COW codes
and then extend it to COO codes.



Lemma 1 We denote the vertices {1, —1}" of an n-dimensional hyper-cube with the
set V. The necessary and sufficient condition for the multiplication of a COW matrix
C with elements of V to be a one-to-one transformation isKer C n {—1,0,1}" = {0}",

where Ker C is the null space of C.

Proof: Let X € Ker C N {—1,0,1}". Then, C(2X) = 0 and 2X is a {—2,0,2}-vector.
Clearly, 2X = X, — X,, where X; and X, are {1, —1}-vectors. This implies that
CX; = CX, and thus X; = X,. Hence, X = 0 and the proof is complete. ]

Corollary 1 If CisaCOW matrix, then
a A new COW matrix can be generated by multiplying each row or column of
the matrix C by —1.
b. New COW matrices can be generated by permuting columns and rows of the
matrix C.

c. By adding an arbitrary row to C, we obtain another COW matrix.

The proof is clear.

From Corollary 1, we can assume that all entries of the first row and the first column
of aCOW matrix are 1.

Theorem 1 Assume that C is an m x n COW matrix and P is an invertible k x k
{1, —1}-matrix, then P®C is a km x kn COW matrix, where ® denotes the

Kronecker product.

Proof: Clearly, P®C is a {1, —1}-matrix. Assume that X is a {—1,0,1}-vector such
that (P®C)X = 0. Then we have (P~'®I,,)(P®C)X = 0 and thus (I,®C)X = 0. If
XT=[x,7 - x,T]7, then we have CX; = CX, = --- = CX, = 0, where X;’s are
n X 1 {—1,0,1}-vectors. Thus, by Lemma 1 we have X; = X, = - = X, = 0. Hence,
no non-zero {—1,0,1}-vector isin the kernel of P@C. Thus, PQC isakm x kn COW

matrix. ]



The existence of COW matrices with much higher percentage of the over-loading

factors are given in the following theorem:

+1 +1
+1 -1

[(m — 1) log; 2] columns to H,®C to obtain another COW matrix.

Theorem 2 Assume C is an m x n COW matrix and H, = [ ] We can add

For the proof, refer to Appendix C.

Noteln/m — oo asm — oo.
This observation is a direct result of Theorem 2 since n/m is of order O(logm). It

implies that as the chip rate increases, the number of users grows much faster.

Example 1 Applying Step 1 of the proof of Theorem 2 on a2 x 2 Hadamard matrix,
wefirst get a4 x 5 COW matrix (C,«s) as shown in Table 17 (the + sign represents 1
and the — sign represents —1). By one more repetition, we find an 8 x 13 COW
matrix (Cgx13) depicted in Table 2. According to Theorem 1, Cgy;3 leads to a
64 x 104 COW matrix by the Kronecker product Hg®Cg,,3 (Where Hg isan 8 X 8
Hadamard matrix); this implies that we can have errorless decoding for 104 users
with only 64 chips; i.e.,, more than %62 over-loading factor (we will introduce a
suitable decoder for this code in Section V1). However, repetition of Theorem 2 for
Csx13 Shows the existence of a 64 x 164 COW matrix which implies an over-loading
factor of about %156.

A fast algorithm for checking that a matrix is COW or not is given in Appendix B.

+ o+ + o+
|
+
|

+ 4+ o+

Table 1. An example of 4 x 5 COW matrix-C,ys.

7 Exhaustive search has shown that there are no 4 x 6 COW matrices.



[ L M + 4 4]
+ - + - 4|+ - + - + + - +
+ o+ - - 4|+ + - - + -+ -
+ - - + -+ - - + - + +
+ + + + +|- - - - - + - +
+ -+ - +|- + - + - - - -
+ + - - +|- - + - - - +
+ - - + -1- + - 4+ + - -

Table2. Anexample of 8 x 13 COW matrix-Cgyq3.

[1.2. COO for Optical CDMA

We would like to extend the results to optical CDMA, i.e., COO matrices.

Theorem 3 If thereisan m x n COW matrix for the wireless CDMA, then thereis an
m X n COO matrix for the optical CDMA.

Proof: Suppose C isan m x n COW matrix. By Corollary 1, we can assume that the
entries of the first row of C areall 1. Now, we would like to provethat D = (J + C)/2
is a COO matrix, where J is the all 1 matrix. It is clear that D is a {0,1}-matrix.
Assume Xe{-1,0,1}* and DX = 0. This yields that (J + C)X = 0 and thus CX =
—JX. Because the entries of thefirst row of C are all 1, thefirst entry of CX isequal to
the first entry of JX. The above argument shows that the first entry of JX is 0. Thus
JX = 0. On the other hand CX = 0 implies that X = 0, because C is a COW matrix.
This shows that D is a COO matrix. [ ]

Corollary 2 Similar proof shows that, if we have a COO matrix which has a row with
al 1’s, then we will obtain a COW matrix by substituting the zeros of the COO

matrix with —1.

Example 2 As a special case, by Example 1 and Theorem 3, we also have a 64 x 164
COO matrix.



The theorems for COO matrices are similar to the previous theorems related to COW
matrices. In addition, there are a few extra algorithms for the construction of COO

matrices as described below.

Theorem 4 If D isan m X n COO matrix, then P®D isalso a km X kn COO matrix,

where P isan invertible k x k {0,1}-matrix.
The proof is similar to the proof of Theorem 1.

Corollary 3 If we set P =1 in the above theorem, then the generated COO matrices
are sparse and have low weights that are suitable for optical transmission due to low

power [4].

Theorem 5 Suppose A=]J-1 is an mxm matrix, and V,=

T
O]’ for i=0,---,d, where d=|log,m|—2. If B=

Vo Vi - V4],thenC = [A|B]isanm X (m + d + 1) COO matrix.

Proof: Suppose CZ = 0, where Z isa{—1,0,1}-vector. Call the first m entries of Z by
X and the other d + 1 entries by Y. Hence, we have AX + BY = 0 and this implies

that X = —A"1BY = — (L - l) BY = ——L_BY + BY. Obviously, BY isan integer
m—1 m—1

vector, thus it is sufficient to prove that ﬁ BY cannot be a non-zero integer vector.

. 1 2 4_ Zd
To show this we write J gy=1 it ¢+ ™ :].SnceY isa{-1,01}-
m—1 m—1
1 2 4 - 2d
vector then each entry of the vector JBY does not exceed 1 +2 + -+ 2% <m —1,

thus ﬁBY cannot be a non-zero integer vector. Now, suppose that JBY = 0. If
Y =0, then AX = 0. Since A is an invertible matrix, we conclude that Z = 0. Thus,
assume that Y # 0. There exists an index i such that a; 2 + a; ;2 + -+ q42¢ =
0, a; € {—1,0,1} for every j and a; # 0. This implies that a; is divisible by 2, a

contradiction. u



Example 3 Using Theorem 5, we get a 64 x 69 COO matrix with the structure

discussed in the theorem.

In the next section we will try to find bounds on the number of users for a given

spreading factor.

Note 2 According to Lemma 1 if a matrix is COW, then any subset of its columnsis
aso COW. This statement implies that if some of the users go inactive (we can
assume that they are sending 0 instead of +1), at the decoder we only need to know
the active users (it is a common assumption in MUD [1-3]). Typically, in practical
networks if a user becomes inactive, there are users in the queue that will grab the
code. However, if we need a class of errorless codes that can detect inactive users for
decoding, we must find the {1, —1}-matrices that operate injectively on {—1,0,1}-
vectors. This is a topic we have covered in [27]. For COO matrices we do not have

such problems since bit 0 is part of the transmitted data.
[11. Upper Boundsfor the Percentage of Over-loading Factor
Theorem 6 provides an upper-bound for the over-loading factor for a COW matrix.

Theorem 6 If C = [¢;;] isa COW matrix with n columns (users) and m rows (chips),

e m<z(") 22’?3)

then

L'(n i0)! )

where (7) =

Proof: Let the input multiuser data be defined by the random vector X =
[x1, ..., x,]T, Where x;’s are identically independent distribution random variables
taking —1, 1 with probability 1/2. Since x;’s are independent, H(X) = n, where
H(X) is the entropy of X. Now, let the transmitted CDMA random vector be defined
by Y = CX = [y, -, ym]". Foragivenj, 1 <j <m,thenterms ¢y xy, k = 1,--,n
are independent random variables taking values —1, 1 with probability 1/2. Hence



yj = Yp—y1 CjxXx IS @ binomial random variable with H(y;) = — i=o%1082 (2#2 We

have H(Y) < X%, H(y;) =m(— ?:o%)logz(j?)- Now, because C is a COW

matrix, then X is also a function of Y and thus H(X) = H(Y) = n, which completes

the proof. [ ]

Note 3 In Appendix A, we estimate the entropy of Y in another manner and derive a
better upper bound. Fig. 1 shows this upper bound for the number of users versus the
number of chips (spreading factor). This upper bound implies that with 64 chips, we
cannot have a CDMA system with more than 268 users with errorless transmission.
Ultimately, when the joint probabilities of all the m elements of Y are taken the
maximum number of users with errorless transmission will be obtained. Using the

above arguments, we can obtain similar upper bounds for COO codes.
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Fig. 1. The upper bounds for the number of users n versus m the number of chips (spreading
factor). The dotted line is the bound from Theorem 6 while the solid line is the tighter bound

derived from Appendix A.

V. Channel Capacity for Noiseless CDMA Systems

In this section, we shall develop lower and upper bounds for the sum channel capacity
[25] of abinary over-loaded CDMA with MUD when there is no additive noise [26].

The only interference is the over-loaded users. In this case, the channel is



deterministic but not lossless. The interesting result is that the lower bound estimates
aregion for the number of users n for a given chip rate m such that COW or COO
matrices exist. To develop the lower bound, we start by the following assumptions for
the wireless case but results are also valid for the optical CDMA:

For a given m and n, let @, = {1, —-1}" and F,,, be the set of functions f : Q,, —
Z., defined by f(X) = MX, where M isan m X n matrix with entries 1 and —1 and X

is the input multiuser vector as defined before with entries 1 and -1.

Definition: The sum channel capacity function C is defined as

Clm,m) = max log,|f ()
where | | denotes the number of elements of the set. The above definition is
equivalent to maximizing the mutual information I(X, Y) which is equal to the output

entropy (deterministic channel) over all the input probabilities and over al m xn M

matrices (X andY arebinary n X 1 and non-binary m x 1 vectors, respectively).

Lemma 2
(i) Clm,n) < n
(i) Cm,n) < mlog,(n+1)

Proof: (i) is trivial since |f(Q,)| < 19,| = 2™. For (ii) note that if XeQ, and
Y=[1 - ¥a]" =fX) =MX theny; = ¥, mjx, isthesumof —1’sand 1’s

and can take n + 1 values. Hence, there are at most (n + 1)™ possible vectorsfor Y.

|
Lemma 3 If n isdivisible by m, then C(m,n) = m log,(n + m) -m log, m.
For the proof, refer to Appendix D.

To get tighter bounds than the ones given in Lemmas 2 and 3, we need the following
theorems:



Theorem 7 (Channel Capacity L ower Bound)
C(m,n) = n-log, A(m,n)
where
3] () m
— n J
A = () 57

j=0
For the proof, refer to Appendix E.

Theorem 8 (Channel Capacity Upper Bound)
1
Cim,n) <m (Elog2 n + log, /1) +1
where A is the unique positive solution of the equation

m __/12
(AWn) " =me2z 21,
For the proof, refer to Appendix F.

The plots of the channel capacity upper and lower bounds with respect to n for a
typical value of m = 64 isgivenin Fig. 2(a). Fig. 2(b) isadual plot with respect tom
for afixed value of n = 220. Plots of the channel capacity lower bounds with respect
to m and n are given in Fig. 3. The plot of the lower bound from Lemma 3 is not
shown since the bound is lower than the one from Theorem 7 (see Fig. 2(a)) for

n < 1000, however, for largen (> 4000), it is a better lower bound.
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Interpretation: The lower bounds show interesting and surprising results. The lower
bounds essentially show two modes of behavior. In the first mode, the lower bounds
for the sum channel capacity (Fig. 2(a) and Fig. 3(a)) are ailmost linear with respect to
n for a given m, which implies the existence of codes that are almost lossless. Since
we know that there exiss COW (COO) codes that can achieve the sum channel
capacity (number of usersis equal to the sum channel capacity) without any error, the
lower bound is very tight in this region. For small values of m such as 4, we know
that the maximum value of n,,x such that a COW matrix exists is 5. The sum
channel capacity lower bound for m = 4 is 4.21 bits, which is within a fraction of
integer from 5. Also, for 8 x 13 COW matrix, the lower bound is 12.164 bits, which
is again within afraction of an integer from 13. We thus conjecture that the maximum
number of users for a COW/COO matrix for m = 64 is around 239 from Fig. 2(a);
right now our estimate from the simulations and upper bounds is an integer between
164 and 268.

After n increases beyond a threshold value ny, (Fig. 2(a)), the channel becomes
suddenly lossy and enters the second mode of behavior. This loss is due to the fact
that 2™ input points that are mapped to a subset of (n + 1)™ points cannot find any
empty space and a fraction of them get overlapped (no longer COW or COO

condition).

Figs. 2(b) and 3(b) show another interesting behavior. Initialy, the bound increases

almost linearly with m for a given n. Thisregion is related to the case where the chip



rate m is much less than the number of users n. In our case, n behaves like an
amplitude or power, while m behaves like frequency. As m increases beyond a
threshold (my, in Fig. 2(b)), the sum channel capacity remains almost constant since
the capacity cannot be greater than n (Lemma 2). In fact, n is the supremum of the
lower bound in this mode. This mode is the lossless case that predicts the existence of
COW/COOQ codes.

The next section covers a practical ML algorithm for decoding a class of COW codes.
V. Maximum Likelihood (ML) Decoding for a Class of COW/COOQO codes

The direct ML decoding of COW codes is computationally very expensive for
moderate values of m and n. In this section, we prove two lemmas for decreasing the

computational complexity of the ML decoders for a subclass of COW codes.

Suppose D isa COW/COO matrix and Y = DX + N isthe received vector in a noisy
channel. We wish to find a vector X {1,—1} for wireless systems ({0,1} for optical
systemsg) which is the best estimate of X at the receiver. From now on we prove the

lemmas for COW matrices but based on footnote’ , we can extend it to COO matrices.

Lemma 4 Suppose Dypmxin = Prxk @ Crxn Where P is an invertible {1, —1}-matrix
and C isa COW matrix. The decoding problem of a system with code matrix D can be
reduced to k decoding problems of a system with the code matrix C.

Proof: SupposeY = DX + N = (P ® C)X + N, where N is the Gaussian noise vector
with zero mean and auto-covariance matrix oIy, (Ii, is the km x km identity
matrix). Multiplying both sidesby Vk(P~* ® I,,,), wehave Y’ = Vk(P~' ® I,,)Y =
Vk(I, ® C)X + N’ where N' = Vk(P~' ® I,,)N. This expression suggests that the
first m entries of Y’ depend on thefirst n entries of X and the first m entries of N'; the

second m entries of Y’ depend on the second n entries of X and the second m entries

8For a {0,1}-vector, we have 2Y —-W =D@2X —[1 - 1]T)+2N where W=D-[1 - 1]T. Since
2X—[1 - 1]Tisa{1, —1}-vector, ML decoding of 2Y — W is equivalent to ML decoding of Y.



of the noise vector N', and so on. Thus, retrieving the (i — 1)n + 1, ..., i - n entries of
X needs only the knowledge of the (i —1)m +1,...,i - m entries of Y’, for i =
1, ..., k. Therefore, the decoding problem for Y is decoupled to k smaller decoding

problems. [

In general, the ML decoding of the Y’ in Lemma 4 results in a sub-optimum decoder

for Y. But if we suppose that the matrix P is a Hadamard one, since the matrix

VE(P~1 ®1,,,) is a unitary matrix, the vector N’ is a Gaussian random vector with
properties identical to N. Therefore, the ML decoding of Y’ is equivaent to ML
decoding of Y. Since the ML decoding of Y’ is equivalent to the ML decoding of k
m X 1 vectors, this implies a dramatic decrease in the computational complexity of

the decoder in the over-loaded systems.

The following lemma introduces another method to significantly reduce the

computational complexity of the decoder in over-loaded systems.

Lemma 5 If a COW matrix C,,«, isfull rank, then the decoding problem for a system

with code matrix C can be done through 2™ Euclidean distance measurements.

Proof: From part (b) of Corollary 1, we can aways decompose the COW matrix
C =[A|B] such that A is an m X m invertible square matrix. Assume Y = CX =
AX; + BX, where X; and X, arem x 1 and (n — m) X 1 vectors, respectively. Thus,
X, = A"'Y — A"1BX,. Hence, we can search among 2™~™ possihilities of X, to find
the vector X; that belongsto {1, —1}™. In anoisy channel, we look for the specific X,
that minimizes ||(A"1Y — A"1BX,) — sign(A~'Y — A"1BX,)||, where || || represents
the Euclidean norm. The corresponding X; vector can be obtained by X; =
sign(A~'Y — A"1BX,), where sign(Z) is obtained by substituting the positive entries
of Z by 1 and the negatives by —1. ]

Similar to Lemma 4, Lemma 5 leads to significant decrease of the decoding
complexity, but is not always optimum. Also, since the sign function maps a vector to
the nearest {1, —1}-vector, it is not hard to show that if A isa Hadamard matrix, then
the proposed method in Lemma5 is an ML decoder.



Now, suppose that C,,x, = [Amxm|B] and D = P, ,®C, where A and P are
invertible matrices and C is a COW matrix. Combining Lemmas 4 and 5, we
introduce a decoding scheme that has very low computational complexity, which is
sub-optimum, in general. But if A and P are Hadamard matrices, the overall decoder
isML.

Tensor Decoding Algorithm: Suppose the received vector at the decoder is Y =

DX + N, where N is the noise vector in an AWGN channel. The decoding algorithm

is given below:
e Sep 1 Multiply both sides by P ® I,,. We get Y’ = [y’,T - Y’kT]T =
PIRL)Y=LROX+N =1, ®0[Xx,T - X,TIT+N’, where Y’

isthe i —1)m+1,..,i-m entriesof Y and X; isthe ( —Dn+1,..,i-n

entriesof X fori =1, ..., k.

e Sep?2Foreachi€{1,..,k}, according to Lemma 5, multiply Y’; by A~ and
find the vector X,; by minimizing |[(A~'Y’; — A"*BX,;) — sign(A~'Y’; —
A™'BX,,)|| and set the vector X;; to be equal to sign(A~'Y’; — A"*BXy,)).

~ ~ N . ~ T .
X=[%," %, -~ X R, | istheoutput of the decoder.

To see the power of this algorithm, let us take a CDMA system of size (64, 104) with
the code matrix D = Hg ® Cgy13, Where Hg denotes an 8 x 8 Hadamard matrix and
Csx13 IS the matrix shown in Table 2. Since Cgy;3 has an 8 x 8 Hadamard sub-
matrix, the decoding of all the 104 users have a complexity of about 8 x 32 = 28
Euclidean distance calculation of 8-dimensional vectors. The decoder is also ML.
This implies a drastic saving compared to the direct implementation of the ML

decoder, which needs 21%* Euclidean distance calculation of 64 dimensional vectors.

In the next section, the COW codes with the proposed decoding method is simulated

and compared to binary WBE and random codes.



V1. Simulation Results

For studying the behavior of COW codes in the presence of noise, we consider three
different CDMA systems in an AWGN channel. The first one is a system with the
chip rate of m = 64 and n = 72 (64,72) users and the second one is of dimension
(64,96) and the last one is (64,104). For each system, we compare three classes of
codes: random, BWBE, and COW sequences. We use an iterative decoder with soft
limiting® in the case of random and BWBE codes, which performs better than Parallel
Interference Cancellation (PIC) with hard limiters [28]. For decoding COW codes, we
apply the Tensor Decoding Algorithm (which is ML) discussed in the previous
section. Note that we cannot use ML decoder for the BWBE and random codes
since their implementations are impractical. These decoding methods with the three
different over-loading factors are compared with the orthogonal CDMA (Hadamard
code of size (64 x 64)), which performs the same as a synchronous binary PSK

system- Figs. 4-6.

As seen in Fig. 4, for an over-loaded CDMA of size (64,72) for E, /N, values less
than 10 dB, the BWBE codes perform dlightly better. But when E, /N, increases
beyond 10 dB, the Bit-Error-Rate (BER) of this system saturates. This phenomenon is
due to the fact that the mapping of the BWBE code is not invertible. Thus when we
use BWBE codes, we cannot decrease the BER lower than a threshold value even by
increasing E}, /N, to infinity (or using any scheme of decoding). Since the mappings
of COW codes are one-to-one and the proposed decoder is ML, the BER tends to zero

asE, /N, increases.

The simulation results of Fig. 4 are repeated in Figs. 5 and 6 for the other over-loaded
COW codes (64,96) and (64,104), respectively. These figures highlight the fact that
for higher over-loading factors, the COW codes with their simple ML decoding
outperform other codes with iterative decoding. BWBE codes perform better than
random codes due to its minimum TSC property, but the problem with such codes is

that the interference cannot be cancelled totally and we cannot design optimum ML

® FE Marvasti, M Ferdowsizadeh, and P Pad , “Iterative synchronous and Asynchronous Multi-User
Detection with Optimum Soft limiter” US Patent application number 12/122668 filed on 5/17/2008.
1% There are some exceptions that are discussed in [29].



decoders due to their complexity. It is worth mentioning that in Fig. 6, although the
system is about %62 over-loaded, the performance of COW codes is to within 3 dB
of the orthogonal Hadamard fully-loaded CDMA, while the BWBE code has the same
performance as the COW code for E;, /N, less 6 dB. But at higher E,, /N, values, the
COW codes clearly outperform the BWBE Codes.

10 T T T T T T ! I
: : : : : ¢ | —— Random/lterative
—&— BWEBE/terative
—s— COWYMWIL
—H&— Hadamard/ML

BER

: : : .
2 1 5 8 10 12 14 16 18 20
E, /Ny (48)

Fig. 4. Bit-error-rate versus E}, /N, for 3 classes of codes for a system with 64 chips and 72
users (for comparison, Hadamard codes of size (64 x 64) isaso simulated).

EER

—F— Random/lterative
o | —=— BWEE/lterative
D] e COWMIL

;| —8— Hadamard/ML

: : : :
2 4 B 8 10 12 14 16 18 20
E, /N, (dB)

Fig. 5. Bit-error-rate versus E;, /N, for 3 classes of codes for a system with 64 chipsand 96
users (for comparison, Hadamard codes of size (64 x 64) isaso simulated).



—— Randorn/lterative
|| —=— BWEE/lterative
—s— COWIML

2 4 B 8 10 12 14 16 18 20
E, /M (dB)

Fig. 6. Bit-error-rate versus E;, /N, for 3 classes of codesfor a system with 64 chipsand 104
users (for comparison, Hadamard codes of size (64 x 64) isaso simulated).

VI1l. Conclusion

In this paper, we have shown that there exists alarge class of (m x n) codes (m < n)
that are suitable for over-loaded synchronous CDMA both for wireless and optical
systems. For a given spreading factor m, an upper bound for the number of users n
has been found. For example for m = 64, the upper bound predicts a maximum of
n = 268. A tight lower bound and an upper bound for the channel capacity of a
noiseless binary channel matrix have been derived. The lower bound suggests the
existence of COW/COO codes that can reach the capacity without any errors.
Mathematically, we have proved the existence of codes of size (64,164). However,
since the decoding of such over-loaded codes are not practical, we have developed
codes of size (64,104) that are generated by Kronecker product of a Hadamard
matrix by a small matrix of size (8,13). The decoding can be done by alook-up table
of size 32 rows. These types of COW codes outperform BWBE codes and other
random codes at high over-loaded factors and probability of errors of approximately
lessthan 1073,

We suggest for future work to get better upper bounds for the over-loaded CDMA

systems, more practical codes at higher over-loading factors, and better decoding



agorithms. Extensions to non-binary over-loaded CDMA, asynchronous CDMA, and
channel capacity evaluations under fading and multipath environments are other
issues that need further research. Also, to include fairness among users, we need to
investigate the minimum distance of each COW/COO codes and its random
allocation.
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Appendix A

According to Theorem 3, if we find an upper bound for the number of users n for a
given number of chips m for the COO codes, then this upper bound is also valid for
COW codes. Suppose C is a COO matrix, using part ¢ of Corollary 1, we can add an
al 1 row as the 0" row to C. If X and Y are two vectors in the proof of Theorem 6,
then we have
H(Y) = H(yo, y1,¥2) + Hyz, yulyo, ¥1,¥2) + - + HOme1, YmlYo, Y1, o) Yim—2)

< H(o,¥1,¥2) + H(yz, y4ly0) + - + HYm-1, Yim1¥0)

= H(yo, y1,¥2) + HYo, ¥3,¥4) — H(o) + - + HYo, Yin—1, Ym)

— H(yo).
If we denote the maximum value of H(y,, y,,y,) over all possible configurations of
the first and the second rows of C by H3 and set H1 = H(y,), then we have H(Y) <

%(HS — H1) + H1. Since C is a COO matrix, H(Y) = n. Consequently, n <
%(HS — H1) + H1. H1 is the entropy of a binomial r.v. and is depicted in the proof

of Theorem 6.

1 e e 11 e e 1
For calculating H3, let |1 = o 1 0 e 0 e gin 95t ang 2™ rows of
11 00 1-+1 0--0
a b c n—a—b-c

C. Thus, we have H(yo,¥1,¥2) = — Xy, 1.9, P00, ¥1,¥2) log, P(¥o, y1,¥2), where

P(yo, ¥1,¥2) = Z'(n_a;b_c)(3’0‘;1‘1')(YO—IJ’fz—i)(yz—y(?+y1+i)
) ) i )

2n

Appendix B

For testing a matrix to be a COW matrix, according to Lemma 1, the crudest
algorithm is to check 3™-1 vectors for the zero-vector. Now we introduce a better
method to decrease this number down to (3"™™ — 1)/2. Assume that the matrix
Couxn IS Tull rank (thisis not a very restricting condition). Then there are m columns
of C that form an invertible m X m matrix. Suppose these columns are the first m
columns of C and coin the consructed invertible matrix by A and the other columns by
B. Thus, C = [A|B]. Using Lemma 1, we know that if C is not a COW matrix, then



there exists a {—1,0,1}-vector X such that CX = 0. Suppose XT = [x,T x,T] such
that CX = AX; + BX, = 0. Thus X; = —A"1BX,. Hence to check that C is a COW
matrix, we should search through different possibilities for X,, i.e, {—1,0,1}"™™
(except {0}*™) to see whether —A"'BX, belongs to {—1,0,1}™ or not. This needs
3n~™ — 1 searches, but one half of these vectors are the negatives of the other half,
thus we need only (3"~™ — 1) /2 searches.

Appendix C
We prove thistheorem in 3 steps. DefineD = H,®C and § = {DX|X € {—1,0,1}*"}.

Sepl
An interesting observation is that if Z € {1,—1}*™ and Z ¢ §, then the matrix
augmentation [D|Z] isa COW matrix. The proof of this step istrivial.

Sep 2

We would like to prove that if P = Q + {1, —1}*™, where Q is an arbitrary 2m x 1
integer vector, then |8 N P| < 2™*1, To show this, suppose that Y € § N P. Then
there exists a {—1,0,1}-vector X,,; = [X;* X,']T, where X;,X, € {—1,0,1}" and
Y = DX.

Y = DX = +C +C ] [CX1+CX2

+c —c CX, — CX,
Since there is a one-to-one correspondence between the set of vectors

[(Y; + Y,)T (¥, —Y,)T]T and the set of vectors [v,T Y,"]7, the cardinality of the
th

] andY; = CX; thusY = [Y1+Y2]

two sets are equal. Denote the i entry of Y; by (¥;);, thus we have (Y;); =

2j=1¢ij(X1); = (the number of nonzero entries of X;) (mod 2). Hence the entries
of Y, are either all odd or all even. AlsothisholdsforY,. SinceY € P, then for every

(Y1)i + (Yz)i =Q; 1

i,1£i§m,wehave{ .
(Yl)i - (Yz)i =Qm+i =1

By an easy cadculation the solutions of the above equations are

QL+Qm i Ql Qm i
(1), = &rmst 4 1, (y,), = %Cms

(Yl)l QI_+Qm+l (Yz)l QI_ Qm+l+ 1



The above solutions are in two categories. Category 1 consists of the solutions which
have 2 choices for (Y;); and only one choice for (Y,);, while category 2 consists of

solutions with a single choice for (Y;); and 2 choices for (Y3);.

Now, for the determination of |§ N 2|, first assume that all entries of ¥; are even and
| entries of Y; have two choices. Hence, the number of [v,T Y,"]T vectors are
2t2m-t = 2™m pecause the | corresponding elements in Y, have only one choice and

the other m — [ elementsin Y, have 2 choices.

The same assertion holds when all entries of ¥; are odd. Thus, |§ N P| has at most

2M 4 2m = 2m+1 daments.

Sep 3

Now, suppose that we add k columnsto D, k < [(m — 1) logs 2], and the resultant
matrix, E, is a COW matrix. We wish to prove one can add another column to E to
obtain a COW matrix with 2n + k + 1 columns. Assume that E = [D|F], where

2n+k

F = [W,| W], and W; isa2m x 1 vector, for i = 1,.., k. Let X € {-1,0,1}" ",
X =[x," x,71T, where X, is a 2n x 1 vector and X, is a k x 1 vector. Hence,
DX, = EX — FX,. By Step 2 and the fact that X, has 3% different possibilities, we
have [V N {1,-1}*"| = ¥y {D - {—1,0,1}*"} n {—FX, + {1, —1}*™}| < 3k2m*1
where V = {EX|X € {1, —1}2"+k},

Now, if 3¥2™m*+1 < |{1,—1}*™| = 2?™, then we can add another column to matrix D
by applying Step 1. Thus, we can add at least [(m — 1) log; 2] vectors to D and
obtain a bigger COW matrix. [ ]

Appendix D
Assume H=[H,|'|H,] is a mxm Hadamard matrix. Let

n n
m m

C = |Hy|--- |Hy| -+ [Hp|- |H,, | be @an m X n code matrix. If X is a data vector, then




CX = a,H, + -+ a,,Hy,, where for every i, 1 < i < m, a; can take%+ 1 different

values. Thus, CX can have (% + 1)m different values and thus its logarithm is alower

bound for the sum channel capacity. [ ]
Appendix E

Pick f € F,,, randomly by choosing entries of the defining matrix of f
independently and uniformly from {1, —1}. For any vertex X of the n-dimensional

hyper-cube Q,,, one has

E(lF(reo)l) = E< z 1f(X)f(X’)> = Z E(Lrc0-r(x))

X'eQ, X'€eQ,

= > PP = £(X)
X"€Qy
where f71, Lrx)=r(x"), @d P are the pre-image set, conditional if statement, and the
probability function, respectively, and E is expectation over f.
If X and X' differ in k places, then
(0 ifk=2j+1

P(f(X) = f(X") = (@) ifk = 2j

22]

(Note that for f(X) and f(X') to be equal, al of their m entries should be equal

which are independent equiprobable events.) Combining the above equations, we get

S0 =3, (5) () =t st 00 -

2"A(m,n). Thus, there exists an f € Fp, such that Yxeo [F1H(f(X)| <
2"A(m,n). But if |f(Q,)| = k and the pre-images of the k values of f(Q,,) have
cardinalitiesny, ..., ny, then Yxeq, |f T (F(X))| = Thoy nj2.

By Cauchy-Schwartz  inequality: 2" =3Y7_ n; < (Zﬁlnjz)%(Zf:l 1)" <

(Z"A(m, n))%kl/z.



Thus, k = 2™ /A(m,n) and C(m,n) = log, k = n-log, A(m,n). [ |
Appendix F

To prove the theorem, we need a classical inequality about large deviations of simple
random walk:

Let S, =6, + 38, + -+ &,, where §;’s are independent and equal to —1, 1 with

-2

probability 1/2. For any A > 0, from [30] we have P(|S,| > Avn) < 2e™2 . Let
f(X) = MX be the mapping with the maximum image size, i.e,, |f(Q,)| = 2¢(m™,
Pick X € Q,, randomly with uniform distribution and let Y = MX = [y1  ** Ym]T
forj, 1 <j<m,y; = Xi_1 mux, isasummation of n independent random —1, 1’s
(because of the randomness of x;’s) and so according to the random walk property,

_22
P(|y;| > Avn) < 22 . This implies that if R = [~Avn, 2va]™, then P(Y & R) =

2

-2
P(3j1<j<mly]| >Av/n) < 2mez, which means that there are at most

-2

2" 1me™2 pointsof £(Q,,) outside R.

Now, notice that |f(Q,,) N R| is at most equa to the number of integer pointsin R

with all coordinates having the same odd or even parity as n which is less than

(A\/ﬁ)m. Combining these two facts, we get 2™ = |£(Q,)| = |f(Q,) N R| +

F@u) N RE| < (WR)™ + 2 me ™ = 2(am)"

The last equality comes from definition of A given in Theorem 8, which implies that

Cim,n) < m(%log2 n + log, /1) + 1. |



RERENCES:

[1] S. Verdu, Multiuser Detection, Cambridge University Press, New York, NY,
USA, 1998.

[2] A. Kapur and M.K. Varanas, “Multiuser detection for over-loaded CDMA
systems,” IEEE Transactions on Information Theory, vol. 49, no. 7, pp. 1728-1742,
Jul. 2003.

[3] S. Moshavi, “Multi-user detection for DS-CDMA communications,” |EEE
Communications Magazine, vol. 34, no. 10, pp. 124-136, Oct. 1996.

[4] F.R.K. Chung, JA. Salehi, and V.K. Wei, “Optical orthogonal codes: design,
analysis and applications,” |EEE Transactions on Information Theory, vol. 35, no. 3,
pp. 595-604, May. 1989.

[5] S. Mashhadi and JA. Saehi, “Code-Division Multiple-Access techniques in
optical fiber networks—Part 111: Optical AND gate receiver structure with generalized
optical orthogonal codes,” |IEEE Transactions on Communications, vol. 54, no. 6, pp.
1349-1349, Jul. 2006.

[6] S. Verdu and S. Shamai, “Spectral efficiency of CDMA with random spreading,”
|EEE Transactions on Information Theory, vol. 45, no. 2, pp. 622-640, Mar. 1999.

[7] A.J. Grant and P.D. Alexander, “Random sequence multi-sets for synchronous
code-division multiple-access channels,” IEEE Transactions on Information Theory,
vol. 44, no. 7, pp. 2832-2836, Nov. 1998.

[8] F. Vanhaverbeke, M. Moeneclaey, and H. Sari, “DS-CDMA with two sets of
orthogonal spreading sequences and iterative detection,” IEEE Communications
Letters, val. 4, no. 9, pp. 289-291, Sep. 2000.

[9] H. Sari, F. Vanhaverbeke, and M. Moeneclaey, “Multiple access using two sets of
orthogonal signal waveforms,” IEEE Communications Letters, vol. 4, no. 1, pp. 4-6,
Jan. 2000.

[10] F. Vanhaverbeke, M. Moeneclagy, and H. Sari, “Increasing CDMA capacity
using multiple orthogonal spreading sequence sets and successive interference
cancellation,” in Proc. |EEE International Conference on Communications (ICC '02),
vol. 3, pp. 1516-1520, New York, NY, USA, April-May 2002.

[11] H. Sari, F. Vanhaverbeke, and M. Moeneclaey, “Extending the capacity of
multiple access channels,” IEEE Communications Magazine, vol. 38, no. 1, pp. 74-82,
Jan. 2000.



[12] M. Kobayashi, J. Boutros, and G. Caire, “Successive interference cancellation
with SISO decoding and EM channel estimation,” |IEEE Journal on Selected Areasin
Communications, vol. 19, no. 8, pp. 1450-1460, Aug. 2001.

[13] D. Guo, L.K. Rasmussen, S. Sun, and T.J. Lim, “A matrix-algebraic approach to
linear paralel interference cancellation in CDMA,” IEEE Transactions on
Communications, vol. 48, no. 1, pp. 152-161, Jan. 2000.

[14] G. Xue, J Weng, T. Le-Ngoc, and S. Tahar, “Adaptive multistage parallel
interference cancellation for CDMA,” IEEE Journal on Selected Areas in
Communications, vol. 17, no. 10, pp. 1815-1827, Oct. 1999.

[15] X. Wang and H.V. Poor, “lterative (turbo) soft interference cancellation and
decoding for coded CDMA,” |EEE Transactions on Communications, vol. 47, no. 7,
pp. 1046-1061, Jul. 1999.

[16] M.C. Reed, C.B. Schlegel, P.D. Alexander, and J.A. Asenstorfer, “Iterative
multiuser detection for CDMA with FEC: near-single-user performance,” |EEE
Transactions on Communications, vol. 46, no. 12, pp. 1693-1699, Dec. 1998.

[17] B. Natargan, C.R. Nassar, S. Shattil, M. Michelini, and Z. Wu, “High
performance MC-CDMA via carrier interferometry codes, ” |EEE Transactions on
Vehicular Technology, vol. 50, no. 6, pp. 1344-1353, Nov. 2001.

[18] M. Akhavan-Bahabdi, and M. Shiva, “Double orthogonal codes for increasing
capacity in MC-CDMA systems,” Wireless and Optical Communications Networks,
WOCN 2005, pp. 468-471, Mar. 2005.

[19] JL. Massey and T. Mittelholzer, “Welch’s bound and sequence sets for code-
divison multiple-access systems,” in Sequences I, Methods in Communication,
Security, and Computer Sciences, R. Capocelli, A. De Santis, and U. Vaccaro, Eds.
New Y ork: Springer-Verlag, 1993.

[20] L. Welch, “Lower bound on the maximum cross correlation of signals
(Coressp.),” IEEE Transactions on Information Theory, vol. 20, no. 3, pp. 397-399,
May. 1974.

[21] G.N. Karystinos and D.A. Pados, “Minimum total-squared-correlation design of
DS-CDMA binary signature sets,” in Proc. IEEE Global Telecommunications
CONFERENCE (GLOBE-COM '01), vol. 2, pp. 801-805, San Antonio, Tex, USA,
Nov. 2001.



[22] G.N. Karystinos and D. A. Pados, “New bounds on the total squared correlation
and optimum design of DS-CDMA binary signature sets,” |EEE Transactions on
Communications, vol. 51, no. 1, pp. 48-51, Jan. 2003.

[23] M. Rupf and J. L. Massey, “Optimum sequence multisets for synchronous code-
division multiple-access channels,” |IEEE Transactions on Information Theory, vol.
40, no. 4, pp. 1261-1266, Jul. 1994.

[24] P. Pad, F. Marvasti, K. Alishahi, and S. Akbari, “Errorless codes for over-loaded
synchronous CDMA systems and evaluation of channel capacity bounds,” in Proc.
IEEE International Symposium on Information Theory (IST '08), pp. 1378-1382,
Toronto, ON, Canada, Jul. 2008.

[25] D. Tse and P. Viswanath, Fundamentals of Wireless Communications,
Cambridge University Press, 2005.

[26] K. Alishahi, F. Marvasti, V. Aref, and P. Pad, “Bounds on the Sum Capacity of
Synchronous Binary CDMA Channels,” arXiv:0806.1659, Jun. 2008.

[27] P. Pad, M. Soltanolkotabi, S. Hadikhanlou, A. Enayati,and F. Marvasti,
“Errorless Codes for Over-loaded CDMA with Active User Detection,”
arXiv:0810.0763, Oct. 2008.

[28] R. van der Hofstad and M.J. Klok, “Performance of DS-CDMA systems with
optima hard-decision parallel interference cancellation,” IEEE Transactions on
Information Theory, vol. 49, no. 11, pp. 2918-2940, Nov. 2003.

[29] M.J. Fargi, P. Pad, and F. Marvasti, “A New Method for Constructing Large
Size WBE Codes with Low Complexity ML Decoder,” arXiv:0810.0764, Oct. 2008.
[30] N. Alon and J. Spencer, The Probabilistic Method, John Wiley & Sons, 2002.



