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How Much Information can One Get from a Wireless Ad Hoc

Sensor Network over a Correlated Random Field?

Youngchul Sung† , H. Vincent Poor and Heejung Yu

Abstract

New large deviations results that characterize the asymptotic information rates for general d-dimensional

(d-D) stationary Gaussian fields are obtained. By applying the general results to sensor nodes on a two-

dimensional (2-D) lattice, the asymptotic behavior of ad hoc sensor networks deployed over correlated

random fields for statistical inference is investigated. Under a 2-D hidden Gauss-Markov random field

model with symmetric first order conditional autoregression and the assumption of no in-network data

fusion, the behavior of the total obtainable information [nats] and energy efficiency [nats/J] defined as the

ratio of total gathered information to the required energy is obtained as the coverage area, node density

and energy vary. When the sensor node density is fixed, the energy efficiency decreases to zero with rate

Θ
(

area−1/2
)

and the per-node information under fixed per-node energy also diminishes to zero with rate

O(N
−1/3
t ) as the number Nt of network nodes increases by increasing the coverage area. As the sensor

spacing dn increases, the per-node information converges to its limit D with rate D − √
dne

−αdn for a

given diffusion rate α. When the coverage area is fixed and the node density increases, the per-node

information is inversely proportional to the node density. As the total energy Et consumed in the network

increases, the total information obtainable from the network is given by O (logEt) for the fixed node

density and fixed coverage case and by Θ
(

E
2/3
t

)

for the fixed per-node sensing energy and fixed density

and increasing coverage case.
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fields, conditional autoregressive model.

I. Introduction

Sensor networks have drawn much attention in recent years because of their promising appli-

cations such as scientific research, environmental monitoring, and surveillance [1]. In the design

of sensor networks, there are several distinctive features. First, sensor networks are designed

to sense and monitor various physical phenomena such as temperature, humidity, density of a

certain gas or stress level of different locations in a structure. Many of these physical processes

can be modelled as two-dimensional (2-D) random fields over a certain area, where the uncer-

tainty of the underlying signal is captured as the randomness of samples and the proximity of

samples close in location is modelled by the correlation among the samples. Second, sensors

in different locations should be able to deliver the measured data to a control center (or fusion

center) where the decision is made, and thus the communication capability is required as in ad

hoc communication networks. Such communication functionality can be provided by networking

sensor nodes, for example, using multi-hop routing. Third, energy is one of the critical issues

in sensor network design since both sensing and communication require energy and it is difficult

to recharge batteries in already deployed sensor nodes. Hence, it is of interest to design energy

efficient sensor networks.

������������������������������������������������
������������������������������������������������
������������������������������������������������
������������������������������������������������
������������������������������������������������
������������������������������������������������
������������������������������������������������
������������������������������������������������
������������������������������������������������
������������������������������������������������
������������������������������������������������

������������������������������������������������
������������������������������������������������
������������������������������������������������
������������������������������������������������
������������������������������������������������
������������������������������������������������
������������������������������������������������
������������������������������������������������
������������������������������������������������
������������������������������������������������
������������������������������������������������

PSfrag replacements

Information

Sensor network

Physical process

(Uncertainty)

Fig. 1

Ad hoc sensor network over physical process
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In this paper, we consider the design of such sensor networks, and investigate the behavior and

efficiency of these networks from an information-theoretic perspective. From the information-

theoretic viewpoint, the process of sensing and communication mentioned above can be viewed

as extracting information (about the underlying 2-D physical process) using imperfect sensor

nodes by expending energy for statistical inference such as detection or reconstruction of the

sensed signal field [2, 3], as shown in Fig. 1. Relevant questions regarding the network design

are as follows. How much information can one obtain from the network for given coverage

and node density? How does the amount of gathered information change as we increase the

coverage area or node density? How do the field correlation and measurement signal-to-noise

(SNR) affect the amount of information obtainable from the network? What is the optimal node

density? What are the information and energy trade-offs in such a sensor network with ad hoc

routing? Answering these questions is difficult, especially, because of the 2-D spatial correlation

structure of the signal process inherent to the two dimensionality of network deployment. To

circumvent this problem, several studies based on one-dimensional (1-D) spatial signal models

have been conducted (see, e.g., [2], [4], [5]). However, there is an important difference between

1-D signal models and actual spatial signals. Suppose that we take observations from sensors

located equidistantly along a line transect laid over an area. The observations may then be

viewed as samples generated by a 1-D process along the line transect and results from time series

analysis could be applied to examine their statistical properties. In the 2-D case, however, there

is no natural notion of signal flow or dependence direction along the transect as there is in a

more traditionally obtained time series. For samples from sensors placed over a 2-D area, it is

necessary to consider the signal dependence in all direction in the plane.

A. The Approach and Summary of Results

In this paper, we consider ad hoc sensor networks deployed for making statistical inferences

about underlying 2-D random fields, and address the above questions in a general 2-D setting.

In particular, we investigate the amount of information obtainable from the network and related

trade-offs among information, coverage, density and energy in various asymptotic settings, and

reveal the fundamental behavior of large scale planar ad hoc sensor networks. We model the

signal field as a 2-D Gauss-Markov random field (GMRF), which is suitable for many physical

processes, and consider the Kullback-Leibler information (KLI) and mutual information (MI) as

our information measures [6, 7]. Our approach for calculating the total obtainable information

October 30, 2018 DRAFT
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is based on the large deviations principle (LDP). Under a stationarity assumption, the amount

of information from a sensor node becomes independent of sensor location as the network size

grows, and the total amount of information is approximately given by the product of the number

of sensor nodes and the asymptotic information rate or asymptotic per-node information. (Thus,

the units of these quantities is nats/node.) To quantify the information content, we first derive

closed-form expressions for the asymptotic per-node KLI and MI for stationary Gaussian fields

in a general d-dimensional (d-D) lattice in the spectral domain, and then apply these results

to the 2-D case. We do so by exploiting the spectral structure of d-D stationary Gaussian

signals and the relationship between the eigenvalues of the block circulant approximation to a

block Toeplitz matrix describing the d-D correlation structure. However, the general expressions

obtained in this way render the investigation of the field correlation and SNR difficult. To address

this problem, we adopt the conditional autoregression (CAR) model, which is a generalization

of the autoregressive (AR) model of classical time series analysis. We further investigate the

properties of the asymptotic per-node KLI and MI as functions of the field correlation and the

measurement SNR under the symmetric first order conditional autoregression (SFCAR) model,

which captures the 2-D correlation on the plane effectively. In this case, the asymptotic per-node

KLI and MI are given explicitly in terms of the SNR and the field correlation. The behavior of the

asymptotic per-node KLI and MI as functions of correlation strength is seen to divide into two

regions depending on the value of the SNR. At high SNR, uncorrelated observations maximize

the per-node information for a given SNR, whereas there is non-zero optimal correlation at low

SNR. Interestingly, it is seen that there is a discontinuity in the optimal correlation strength as a

function of SNR. In the perfectly correlated case, the asymptotic per-node KLI and MI are zero

as expected. As a function of SNR, the asymptotic per-node information increases as log SNR

for a given correlation strength at high SNR. At low SNR, the two information measures show

different rates of convergence to zero.

Based on the derived expressions for asymptotic per-node information and their properties

under the SFCAR and corresponding correlation function, we then investigate the fundamental

behavior of large scale ad hoc sensor networks deployed over correlated random fields for statistical

inference. Specifically, we examine the total information [nats] (about the underlying physical

process) obtainable from the network and the energy efficiency [nats/J] defined as the ratio of

total gathered information to the required energy as the coverage, density and energy vary. We
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assume that sensors are located on a 2-D lattice and all sensor nodes in the network deliver the

measured data to a fusion center in the center of the 2-D lattice via minimum hop routing without

in-network data fusion. Under these assumptions, we have the following results on the trade-offs

among the information, coverage, density and energy, and the results provide guidelines for the

design of sensor networks for statistical inference about many interesting physical processes that

can be modelled as 2-D correlated random fields:

(1) When the sensor node density is fixed, the amount of total information increases linearly

with respect to (w.r.t.) the coverage area, and the energy efficiency decreases to zero with rate

Θ
(

area−1/2
)

as the coverage area increases. Further, in this case the amount of information per

sensor node diminishes to zero as the network size grows with fixed energy per node.

(2) As the sensor spacing dn increases, the per-node information converges to its limit D with

rate D−
√
dne

−αdn for a given diffusion rate α. Hence, the per-node information saturates almost

exponentially as we increase the sensor spacing.

(3) When the coverage area is fixed and the node density increases, the per-node information

is inversely proportional to the node density for any nontrivial diffusion rate. Hence, the total

amount of information from a given area is upper bounded unless the random field is spatially

white.

(4) As the total energy Et consumed in the network increases, the total information obtainable

from the network is given by Θ
(

E
2/3
t

)

for fixed node density and increasing coverage, whereas

the total information increases only with rate of O (logEt) for fixed node density and fixed

coverage.

B. Related Work

Large deviations analysis of Gaussian processes in Gaussian noise has been considered previ-

ously, e.g., [8–13]. However, most work in this area considers only 1-D signals or time series.

A closed-form expression for the asymptotic KLI rate was obtained and its properties were in-

vestigated for 1-D hidden Gauss-Markov random processes in [12]. Large deviations analyses

were used to examine the issues of optimal sensor density and optimal sampling in a 1-D signal

model in [2] and [4]. For a 2-D setting, an error exponent was obtained for the detection of 2-D

GMRFs in [14], where the sensors are located randomly and the Markov graph is based on the

nearest neighbor dependency enabling a loop-free graph. Our work here focuses on the analysis

of the fundamental behavior of 2-D sensor networks deployed for statistical inference via new
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large deviations results for general d-D and 2-D stationary Gaussian random fields and their

application to 2-D SFCAR GMRFs, which enable us to investigate the impact of field correla-

tion and measurement SNR on the information and the fundamental behavior of ad hoc sensor

networks for statistical inference with preliminary presentation of the work in [15].

C. Notation and Organization

We will make use of standard notational conventions. Vectors and matrices are written in

boldface with matrices in capitals. All vectors are column vectors. For a matrix A, AT indicates

the transpose and A(i, j) denotes the (i, j)-th element of A. We reserve Im for the identity

matrix of size m (the subscript is included only when necessary). For a random vector x, Ej{x}
is the expectation of x under probability density pj, j = 0, 1. The notation x ∼ N (µ,Σ) means

that x is Gaussian distributed with mean vector µ and covariance matrix Σ. For a set A, |A|
denotes the cardinality of A.

The paper is organized as follows. The background and signal model are described in Section

II. In Section III, the closed-form expressions for the asymptotic KLI and MI rates are obtained

in the spectral domain, and their properties are investigated as functions of the correlation and

the SNR under the symmetric first order CAR model. The trade-offs related to ad hoc sensor

networks deployed for statistical inference are presented in Section IV, followed by conclusions

in Section V.

II. Background and Signal Model

We assume that sensors are distributed over a 2-D area and each sensor measures the underlying

signal field at its location. To simplify the problem and gain insights into behavior in 2-D, we

assume that sensors are located on a 2-D square lattice

In ∆
= {(i, j), i = 0, 1, · · · , n− 1, and j = 0, 1, · · · , n− 1}, (1)

where the distance between two adjacent nodes (i, j) and (i+1, j) is dn, as shown in Fig. 2. (We

will use ij to denote (i, j) when there is no ambiguity of notation.) We model the 2-D signal field

{Xij , ij ∈ In} (or simply {Xij}) sampled by sensors as a GMRF∗ w.r.t. an undirected graph in

which a node corresponds to a sensor node or its signal sample. We assume that each sensor has

∗The Markov dependence structure may be restrictive. However, it is a meaningful model capturing 2-D spatial

correlation structure and allowing further analysis.
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Gaussian measurement noise. The noisy measurement Yij of Sensor ij on the 2-D lattice In is

then given by

Yij = Xij +Wij , ij ∈ In, (2)

where {Wij} represents independent and identically distributed (i.i.d.) N (0, σ2) noise with a

known variance σ2, and the GMRF {Xij} is assumed to be independent of the measurement

noise {Wij}. Thus, the observation samples form a 2-D hidden GMRF.† In the following, we

briefly review results on GMRFs relevant to our further development.

Definition 1 (Undirected graph) An undirected labelled graph G is a collection (N , E) of nodes
and edges, where N = {1, 2, · · · , N} is the set of nodes in the graph, and E is the set of edges

{(l,m) : l,m ∈ N and l 6= m}. There exists an undirected edge between two nodes l and m if

and only if (l,m) ∈ E .

We will use the terms node, sample and sensor interchangeably hereafter.

Definition 2 (GMRF) A Gaussian random vector x = [X1,X2, · · · ,XN ]T ∈ R
N with mean

vector µ and covariance matrix Σ > 0 is a GMRF w.r.t. a labelled graph G = (N , E) if Xl and

Xm are independent given X−lm if and only if there exists no edge between nodes l and m, where

X−lm
∆
= {Xk, k ∈ N and k 6= l,m}.

PSfrag replacements
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Fig. 2

Sensors on a 2-D lattice: hidden Markov structure

Note that a GMRF is defined using conditional independence on a graph. However, its distri-

bution is easily characterized by the mean µ and the precision matrix Q (
∆
= Σ−1), and is given

†In this paper, we focus primarily on the spatial correlation structure of 2-D sensor fields, and the signal evolution

over time is not considered.
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by

p(x) = (2π)−N/2|Q|1/2 exp
(

−1

2
(x− µ)TQ(x− µ)

)

, (3)

and Qlm 6= 0 if and only if (l,m) ∈ E for all l 6= m, i.e.,

Qlm = 0 ⇐⇒ Xl ⊥ Xm|X−lm. (4)

Note that the covariance matrix Σ is completely dense in general while the precision matrix Q

has nonzero elements Qlm only when there is an edge between nodes l and m in the Markov

random field. Hence, when the graph is not fully connected, the precision matrix is sparse [16].

The 2-D indexing scheme (i, j) in (1) and (2) can properly be converted to a 1-D scheme to apply

Definitions 1 and 2. From here on, we again use the 2-D indexing scheme for convenience.

Definition 3 (Stationarity) A GMRF {Xij} on a 2-D infinite lattice I∞ is said to be (second

order) stationary if the mean vector is constant and the covariance between samples Xij and

Xi′j′ depends only on the difference of the node index, i.e.,

Cov(Xij ,Xi′j′) = E{(Xij − µ)(Xi′j′ − µ)} = c(i− i′, j − j′)

for some function c(·, ·), where µ is the mean of the stationary field.

Without loss of generality, we assume that the signal GMRF {Xij} is zero-mean.‡ For a 2-D

zero-mean and stationary GMRF {Xij}, the covariance {γij} is defined as

γij
∆
= E{Xi′j′Xi′+i,j′+j} = E{X00Xij}, (5)

which does not depend on i′ or j′ due to the stationarity. The spectral density function of a

stationary GMRF {Xij} on I∞ with covariance γij is defined as

f(ω1, ω2) =
1

(2π)2

∑

ij∈I∞

γije
−ι(iω1+jω2), (6)

where ι =
√
−1 and (ω1, ω2) ∈ [−π, π)2. Note that (6) is a 2-D extension of the conventional

1-D Fourier transform. We can express {γij} from the spectral density function via the inverse

transform

γij =

∫ π

−π

∫ π

−π
f(ω1, ω2)e

ι(iω1+jω2)dω1dω2. (7)

‡Of course, if a stationary GMRF has a known and non-zero mean, the known mean can be subtracted to yield

a zero-mean field.

October 30, 2018 DRAFT
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A stationary GMRF can be implicitly specified by a conditional autoregressive (CAR) model,

which is a natural generalization of the autoregressive (AR) model arising in 1-D time series and

which provides an efficient tool for capturing the spatial correlation structure of the sensor field

considered here.

Definition 4 (The conditional autoregression [16]) A zero-mean CAR GMRF is defined by a

set of full conditional normal distributions with mean and precision:

E{Xij |X−ij} = − 1

θ00

∑

i′j′∈I∞\{00}

θi′j′Xi+i′,j+j′, (8)

and

E
−1{X2

ij |X−ij} = θ00 > 0, (9)

where X−ij denotes the set of all variables except Xij .

Note in (8) that the the conditional mean of Xij given all other node variables depends on nodes

(i + i′, j + j′) such that θi′j′ 6= 0, and the relationship between the CAR model of (8) and (9)

and the precision matrix is given by

Q(i,j),(i+i′,j+j′) = θi′j′ . (10)

Hence, the Markov dependence structure on the graph is easily captured by the CAR model

through (4), and {θi′j′} directly represent the connectivity of the Markov graph.

Theorem 1 (Spectrum of a CAR model [16]) The GMRF defined by the CAR model of (8)

and (9) is a zero-mean stationary Gaussian process on I∞ with the spectral density function

f(ω1, ω2) =
1

(2π)2
1

∑

ij∈I∞
θij exp(−ι(iω1 + jω2))

, (11)

if

|{θij 6= 0}| < ∞, θij = θ−i,−j, θ00 > 0, (12)

and

{θij} is such that f(ω1, ω2) > 0, ∀(ω1, ω2) ∈ [−π, π)2. (13)

Henceforth, we assume that the 2-D stochastic signal {Xij} in (2) is given by a stationary GMRF

defined by the CAR model of (8) and (9) satisfying (12) and (13) as n → ∞.

October 30, 2018 DRAFT
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The SNR of the observation Yij in (2) is well defined due to the stationarity as n → ∞, and

is given by

SNR =
E{X2

ij}
E{W 2

ij}
=

P

σ2
, ∀ ij, (14)

where the signal power is constant over (i, j) ∈ I∞ and is given, using the inverse Fourier

transform of (6), by

P = γ00 =

∫ π

−π

∫ π

−π
f(ω1, ω2)dω1dω2. (15)

III. Asymptotic Information Rates: Closed-Form Expressions and Impact of

Correlation and Signal-to-Noise Ratio

In this section, we derive closed-form expressions for the asymptotic KLI and MI rates under

the 2-D CAR GMRF model discussed in the previous section. We further investigate the proper-

ties of the asymptotic information rates under a symmetric correlation assumption. For the MI,

the signal model (2) is directly applicable, whereas for the KLI the probability density functions

of the null (noise-only) and alternative (signal-plus-noise) distributions are given by

p0(Yij) : Yij = Wij , ij ∈ In, and (16)

p1(Yij) : Yij = Xij +Wij, ij ∈ In, (17)

respectively. The asymptotic KLI rate K is defined as

K = lim
n→∞

1

|In|
log

p0
p1

({Yij , ij ∈ In}) almost surely (a.s.) under p0, (18)

where p0 and p1 are given by (16) and (17), respectively. Under a Neyman-Pearson detection

formulation, the miss probability PM decays exponentially in many cases, including (16) and

(17), and the error exponent is defined as the exponential decay rate

lim
|In|→∞

− 1

|In|
logPM , (19)

where |In| is the total number of samples in In. It is known that the error exponent is given by

the asymptotic KLI rate K defined in (18) in this case [17]. Hence, a larger KLI rate (or per-node

KLI) implies better detection performance with a given network size, or a smaller network size

required for a given level of performance.

While the asymptotic KLI rate determines the error exponent for Neyman-Pearson detection,

the asymptotic MI rate is interpreted as the amount of uncertainty reduction about the hid-

den signal field resulting from one observation sample, in the large sample size regime. The

October 30, 2018 DRAFT
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asymptotic MI rate I is given by

I = lim
n→∞

1

|In|
I({Xij , ij ∈ In}; {Yij , ij ∈ In}),

= lim
n→∞

1

|In|
[H({Xij , ij ∈ In})−H({Xij , ij ∈ In}|{Yij , ij ∈ In})]. (20)

It is shown in the sequel that the asymptotic KLI rate is smaller than the asymptotic MI rate

and that the two information measures converge when SNR increases. Thus, at high SNR the

two information measures are equivalent.

A. Asymptotic Information Rates in General d-Dimension

While the 2-D results are relevant to our analysis of fundamental trade-offs in planar sensor

networks, it is of theoretical interest to investigate the statistical properties of stationary Gaussian

random fields in general higher dimension. In this section, we first derive closed-form expressions

for the asymptotic KLI and MI rates for stationary Gaussian random fields in d-D, and then

apply the results to the 2-D case. For a stationary d-D Gaussian random field {Yi, i ∈ Z
d},

where Z is the set of all integers, the autocovariance function under p1 is given by

γh = E1{YiYi+h}, h = (h1, h2, · · · , hd) ∈ Z
d, (21)

and the corresponding Fourier transform (i.e., the power spectral density) and its inverse are

given by

f1(ω) =
1

(2π)d

∑

h∈Zd

γhe
−ιh·ω , ω = (ω1, ω2, · · · , ωd) ∈ [−π, π)d, (22)

and

γh =

∫

eιh·ωf1(ω)dω, (23)

respectively, where the integration is over ω ∈ [−π, π)d, and h · ω denotes the inner product

between h and ω. Note that (21), (22) and (23) are the extensions of (5), (6) and (7), respectively,

to d-D. The null and alternative distributions arising in the KLI in d-D are given by






p0(Yi) : Yi = Wi, i ∈ Dn,

p1(Yi) : Yi = Y
(1)
i , i ∈ Dn,

(24)

where {Wi} are i.i.d. Gaussian from N (0, σ2), {Y (1)
i

} is a stationary d-D Gaussian random field

with spectrum f1(ω)§, and

Dn
∆
= [0, 1, · · · , n− 1]d. (25)

§Note that {Y
(1)
i

} need not be a hidden Markov field.
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Based on the previous work [18], we further exploit the relationship between the eigenvalues

of block circulant and block Toeplitz matrices representing correlation structure in d-D and the

i.i.d. null distribution, and obtain the KLI for (24) given by the following theorem.

Theorem 2 (Asymptotic KLI rate in d-D) Suppose that

A.1 the alternative spectrum f1(ω) has a positive lower bound, and

A.2 ∃ M < ∞ such that ∀ k = 1, 2, · · · , d, ∑

h∈Zd(1 + |hk|)|γh| < M.

Then, the asymptotic KLI rate K for (24) is given by

K =
1

(2π)d

∫

[−π,π)d

[

1

2
log

(2π)df1(ω)

σ2
− 1

2

(

1− σ2

(2π)df1(ω)

)]

dω (26)

=
1

(2π)d

∫

[−π,π)d
D(N (0, σ2)||N (0, (2π)df1(ω)))dω, (27)

where D(·||·) denotes the Kullback-Leibler distance.

Proof: See Appendix I.

Theorem 2 is an extension to general d-D of the asymptotic KLI rate in 1-D obtained in [12],

and shows that the frequency binning interpretation of (27) holds in the general d-D case under

some regularity conditions on the alternative spectrum. Note that the integrand in (27) is the

Kullback-Leibler information between two zero-mean Gaussian distributions with variances σ2

and (2π)df1(ω), respectively. For each d-D frequency segment dω, the spectra can be thought

of as being flat, i.e., the signals are independent, and Stein’s lemma [19] can be applied for the

segment. The overall KLI is the sum of contributions from each bin. The smoothness of the

spectrum f1(ω) is a sufficient condition for Assumption A.2 for second-order stationary fields,

and thus the frequency binning in Theorem 2 is valid for a wide class of spectra. Theorem 2

follows from the fact that K is given by the almost-sure limit of the normalized log-likelihood

ratio in (18) and that we have Gaussian distributions for p0 and p1. That is, K is given by the

almost sure limit

K = lim
n→∞

1

|Dn|

(

1

2
log

det(Σ1,|Dn|)

det(Σ0,|Dn|)
+

1

2
yT
|Dn|

(Σ−1
1,|Dn|

−Σ−1
0,|Dn|

)y|Dn|

)

under p0, (28)

where y|Dn| is a vector consisting of |Dn| observation samples {Yi, i ∈ Dn} with elements arranged

in lexicographic order; for example, in 2-D

y|In| = [y1, · · · , y|In|]T
∆
= [Y00, Y10, · · · , Yn−1,0, Y01, · · · , Yn−1,n−1]

T , (29)
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and Σ0,|Dn| and Σ1,|Dn| are the covariance matrices of y|Dn| under p0 and p1, respectively. Note

that the log-likelihood ratio in (28) consists of two terms: one is a deterministic term and the

other is a quadratic random term. The overall convergence follows from the convergence of each

of the two terms. Note that the deterministic term in (28) is simply the mutual information

between {Xi, i ∈ Dn} and {Yi, i ∈ Dn} for the model

Yi = Xi +Wi, i ∈ Dn. (30)

Using the convergence of the first term in the right-handed side (RHS) of (28), the asymptotic

MI rate I for d-D is given by

I =
1

(2π)d

∫

[−π,π)d

1

2
log

σ2 + (2π)df(ω)

σ2
dω, (31)

where f(ω) is the spectrum of the signal {Xi}. This is simply a d-D extension of the 1-D MI

rate in spectral form [20], and shows the validity of the log (1+ SNR) formula and frequency

binning approach in general d-D under some regularity conditions on the spectrum; a sufficient

condition is provided in Theorem 2.

Applying the d-D results to the 2-D hidden GMRF model of (16) and (17), we have the

following corollary for 2-D.

Corollary 1 (Asymptotic information rates in 2-D) Assuming that the conditions (12) and (13)

hold, the asymptotic KLI and MI rates for the hidden CAR GMRF model with (16) and (17)

are given by

K =
1

4π2

∫ π

−π

∫ π

−π

[

1

2
log

σ2 + 4π2f(ω1, ω2)

σ2
− 1

2

(

1− σ2

σ2 + 4π2f(ω1, ω2)

)]

dω1dω2, (32)

and

I =
1

4π2

∫ π

−π

∫ π

−π

1

2
log

σ2 + 4π2f(ω1, ω2)

σ2
dω1dω2, (33)

where f(ω1, ω2) is the 2-D spectrum of the signal GMRF {Xij , ij ∈ I∞} defined in (11).

Proof: See Appendix I.

Comparing (32) and (33), we note that the asymptotic KLI rate is strictly less than the

asymptotic MI rate for any positive signal spectrum, and that the two information measures

converge with a fixed offset of -1/2 as the SNR increases without bound since σ2

σ2+4π2f(ω1,ω2)
→ 0

in (32) as SNR → ∞. Hence, the two information measures can be equivalently used at high

SNR.
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B. Symmetric First-Order Conditional Autoregression

In the previous section, we have derived closed-form expressions for the asymptotic KLI and MI

rates for hidden CAR GMRFs with general 2-D spectra defined in (11) in the spectral domain.

However, these general spectral expressions render further analysis infeasible. To investigate

the impact of the field correlation and the SNR on the information rates, we further adopt the

symmetric first order conditional autoregression (SFCAR) model, described by the conditions

E{Xij|X−ij} =
λ

κ
(Xi+1,j +Xi−1,j +Xi,j+1 +Xi,j−1), (34)

and

E
−1{X2

ij |X−ij} = κ > 0, (35)

where 0 ≤ λ ≤ κ
4 .

¶ Note that the parameters in (8) and (9) for this model are given by θ00 = κ,

θ1,0 = θ−1,0 = θ0,1 = θ0,−1 = −λ and all other θij = 0. In this model, the correlation is

PSfrag replacements

−λ

−λ

−λ−λ

κ
(i, j)

(i, j + 1)

(i− 1, j) (i+ 1, j)

(i, j − 1)

Fig. 3

Symmetric first order conditional autoregression model

symmetric for each set of four neighboring nodes, as seen in Fig. 3. The SFCAR model is a

simple yet meaningful extension of the 1-D first order autoregression (AR) model which has the

conditional causal dependency only on the previous sample. Here in the 2-D SFCAR we have the

conditional dependency on four neighboring nodes in the four (planar) directions. By Theorem

1 the spectrum of the SFCAR is given by

f(ω1, ω2) =
1

4π2κ(1 − 2ζ cosω1 − 2ζ cosω2)
, (36)

¶This is a sufficient condition to satisfy (12) and (13).
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where we define the edge dependence factor ζ as

ζ
∆
=

λ

κ
, 0 ≤ ζ ≤ 1/4. (37)

Note that for the range of 0 ≤ ζ ≤ 1/4 the 2-D spectrum (36) is always non-negative and the

conditions (12) and (13) are satisfied. Note also that ζ = 0 corresponds to the i.i.d. case whereas

ζ = 1/4 corresponds to the perfectly correlated case, i.e., Xij = Xi′j′ for all i, j, i′, j′. Hence,

the correlation strength can be captured in this single quantity ζ for 2-D SFCAR signals: larger

ζ implies stronger correlation. The power of the SFCAR signal is obtained using the inverse

Fourier transform via the relation (6), and is given by [21]

P = γ00 =
2K(4ζ)

πκ
,

(

0 ≤ ζ ≤ 1

4

)

, (38)

where K(·) is the complete elliptic integral of the first kind. The SNR is given by

SNR =
P

σ2
=

2K(4ζ)

πκσ2
. (39)

Using (32), (36) and (39), we now obtain the asymptotic KLI and MI rates in the SCFAR signal

case, denoted by Ks and Is and given in the following corollary to Corollary 1.

Corollary 2: For the hidden 2-D SFCAR signal model the asymptotic per-node KLI Ks is

given by

Ks =
1

4π2

∫ π

−π

∫ π

−π

[

1

2
log

(

1 +
SNR

(2/π)K(4ζ)(1 − 2ζ cosω1 − 2ζ cosω2)

)

− 1

2



1− 1

1 + SNR
(2/π)K(4ζ)(1−2ζ cosω1−2ζ cos ω2)





]

dω1dω2, (40)

and the asymptotic per-node MI Is is given by

Is =
1

4π2

∫ π

−π

∫ π

−π

1

2
log

(

1 +
SNR

(2/π)K(4ζ)(1 − 2ζ cosω1 − 2ζ cosω2)

)

dω1dω2. (41)

Proof: The result follows upon substitution of (36) and (39) into (32) and (33), respectively.

�

Note that the SNR for the hidden SFCAR model is dependent on correlation through ζ (see

(39)). However, the SNR and correlation are separated in the expressions (40) and (41) for the

asymptotic per-node information, which enables us to investigate the effects of each term on the

per-sample information separately.
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B.1 Properties of the asymptotic per-node KLI and MI for the hidden SFCAR model

First, it is readily seen from Corollary 2 that the asymptotic per-node KLI Ks and MI Is are

continuously differentiable functions of the edge dependence factor ζ (0 ≤ ζ ≤ 1/4) for a given

SNR since f : x → K(x) is a continuously differentiable C∞ function for 0 ≤ x < 1 [22]. Now

we examine the asymptotic behavior of Ks and Is as functions of ζ. The values of Ks at the

extreme correlations are given by noting that the values of the complete elliptic integral at the

two extreme correlation points

K(0) =
π

2
and K(1) = ∞.

Therefore, in the i.i.d. case (i.e., ζ = 0), Corollary 2 reduces to Stein’s lemma [19] as expected,

and Ks is given by

Ks(0) =
1

2
log(1 + SNR)− 1

2

(

1− 1

1 + SNR

)

(42)

= D(N (0, 1)||N (0, 1 + SNR)). (43)

For the perfectly correlated case (ζ = 1/4), on the other hand, Ks = 0. In fact, in this case as

well as in the i.i.d. case, the two-dimensionality is irrelevant. The known result in the 1-D case

[12] is applicable. With regard to Is, we have similar behavior at the extreme correlations. In

the i.i.d. case, the mutual information is given by the well known formula

Is(0) =
1

2
log(1 + SNR), (44)

whereas we have Is = 0 in the perfectly correlated case. Thus, both information measures are

zero at perfect correlation (ζ = 1/4). The limiting behavior of the asymptotic information rates

near the extreme correlation values is given by Taylor’s theorem. Due to the differentiability of

Ks and Is w.r.t. ζ, we have

Ks(ζ) = c1 · (ζ − 1/4) + o(|ζ − 1/4|), (45)

and

Is(ζ) = c′1 · (ζ − 1/4) + o(|ζ − 1/4|), (46)

in a neighborhood of ζ = 1/4 for some constants c1 and c′1 as ζ → 1/4. Similarly, we also have

the linear limiting behavior for Ks and Is in a neighborhood of ζ = 0 with non-zero limiting

values, D(N (0, 1)||N (0, 1 + SNR)) and 1
2 log(1 + SNR), respectively, as ζ → 0. That is,

Ks(ζ) = Ks(0) + c2ζ + o(ζ), (47)
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and

Is(ζ) = Is(0) + c′2ζ + o(ζ), (48)

for some c2 and c′2, as ζ → 0.
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Fig. 4

Ks as a function of ζ: (a) SNR = 10 dB, (b) SNR = 0 dB, (c) SNR = -3 dB, (d) SNR = -5

dB

For intermediate values of correlation, we evaluate (40) and (41) for several different SNR

values, as shown in Fig. 4. It is seen that, at high SNR, Ks decreases monotonically as ζ

increases. Hence, i.i.d. observations yield the largest per-node information for a given value of

SNR when SNR is large, as in the 1-D case [12]. As we decrease the SNR, it is seen that a second

mode grows near ζ = 1/4, i.e., in the strong correlation region. As we decrease the SNR further,
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the value of ζ of the second mode shifts toward 1/4, and the value of the second mode exceeds

that of the i.i.d. case. Hence, there is a discontinuity in the optimal correlation as a function

of SNR in the 2-D case even if the maximal Ks itself is continuous, as seen in Fig. 5. That

is, there is a phase transition for optimal correlation w.r.t. SNR: above a certain SNR value

i.i.d. observations yield the best performance, whereas below that SNR point suddenly strong

correlation is preferred. This is not the case for 1-D Gauss-Markov time series, where the optimal

correlation maximizing the information rate is continuous w.r.t. SNR. Although it is not shown

here, the per-node MI Is exhibits similar behavior as a function of the edge dependence factor ζ.
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O
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 ζ PSfrag replacements

(i, j)

Xij

Wij

Yij

Sensor ij

Fig. 5

Optimal ζ maximizing Ks vs. SNR

With regard to Ks and Is as functions of SNR, it is straightforward to see from (40) that they

are continuously differentiable functions, and the behavior of Ks and Is with respect to SNR is

given by the following theorem.

Theorem 3 (Per-node information vs. SNR) The asymptotic per-node KLI Ks for the hidden

SFCAR model is continuous and monotonically increasing as SNR increases for a given edge

dependence factor ζ ∈ [0 1/4]. Moreover, Ks increases with rate 1
2 log SNR as SNR → ∞. As

SNR decreases to zero, on the other hand, Ks converges to zero and the rate of convergence is

given by

Ks(SNR) = c3 · SNR2 + o(SNR2), (49)
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as SNR → 0, where c3 is given by

c3 =
1

26K2(4ζ)

∫ π

−π

∫ π

−π

1

(1− 2ζ cosω1 − 2ζ cosω2)
2dω1dω2. (50)

The per-node MI Is has similar properties as a function of SNR, i.e., it is a continuous and

monotonically increasing function of SNR. At high SNR, it increases with rate 1
2 log SNR, whereas

it decreases to zero with rate of convergence

Is(SNR) = c′3 · SNR + o(SNR), (51)

as SNR → 0, where c′3 is given by

c′3 =
1

23πK(4ζ)

∫ π

−π

∫ π

−π

1

1− 2ζ cosω1 − 2ζ cosω2
dω1dω2. (52)

Proof: See the Appendix I.
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Ks and Is as functions of SNR (ζ = 0.1)

Note that the limiting behavior as SNR → 0 is different for Ks and Is; Ks decays to zero

quadratically while Is decreases linearly. Fig. 6 shows Ks and Is with respect to SNR for

ζ = 0.1. The log SNR behavior is evident at high SNR for both information measures. Note that

Ks and Is increase with the same slope in the logarithmic scale with offset 1/2. This is easily

seen from (40) and (41) because the second term in the integrand of (40) converges to -1/2, and

thus Ks → Is− 1
2 as SNR increases. However, the offset is negligible as SNR increases. It is easy
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to see from (40) and (41) that for a given edge dependence factor ζ the convergence between the

two information measures is characterized by Ks

Is
= 1 +O

(

1
logSNR

)

as SNR → ∞.

IV. Ad Hoc Sensor Networks: Fundamental Trade-Offs among Information,

Coverage, Density and Energy

Using the results of the previous sections, we now answer the fundamental questions, raised in

Section I, concerning planar ad hoc sensor networks deployed over correlated random fields for

statistical inference under the 2-D hidden SFCAR GMRF model. We first derive relevant physical

correlation parameters for the SFCAR from the corresponding continuous-index stochastic model.

Once the physical correlation parameters for the SFCAR are obtained, the analysis of information

obtainable from an ad hoc sensor network and related trade-offs is straightforward.

A. Physical Correlation Model

We first derive how the physical correlation is related to the edge dependence factor ζ in the

2-D SFCAR model. The edge correlation coefficient ρ is defined as

ρ
∆
=

γ01
γ00

=
γ10
γ00

, (0 ≤ ρ ≤ 1), (53)

due to the spatial symmetry, where γij = E{X00Xij}. ρ represents the correlation strength

between the signal samples of two adjacent sensor nodes connected by the Markov dependence

graph defined by the SFCAR model. The edge correlation coefficient ρ is obtained using the

following relationship [21]:

κγ00 = 1 + 4ζκγ01 ⇒ γ01 =
κγ00 − 1

4κζ
, (54)

and by substituting (38) and (54) into (53), we have

ρ =
(2/π)K(4ζ) − 1

(2/π)(4ζ)K(4ζ)
=: g−1(ζ). (55)

Note that the correlation coefficient ρ is not dependent on the power factor κ in (35), as expected,

even though γ00 and γ01 are. Note that function g−1 : ζ → ρ is a continuous and differentiable

C1 function on the domain 0 ≤ ζ ≤ 1/4 due to the continuous differentiability of K(x) for

0 ≤ x < 1, and g−1(1) = limx→1
(2/π)K(x)−1
(2/π)xK(x) = 1 by K(1) = ∞. Note also that g−1(0) = 0 since

K(0) = π/2. Thus, the inverse mapping g : ρ → ζ from the edge correlation factor ρ to the edge

dependence factor ζ, which maps zero and one to zero and 1/4, respectively, behaves as shown

in Fig. 7 (a).
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(a) edge dependence factor ζ vs. edge correlation coefficient ρ and (b) ρ vs. edge

length dn

Now we consider the correlation coefficient ρ as a function of the sensor spacing dn. In general,

the correlation function h : dn → ρ is a positive and monotonically decreasing function of dn with

h(0) = 1 and h(∞) = 0. It is well known that for the 1-D first order AR signal a corresponding

underlying (continuous-index) physical model is given by the Ornstein-Uhlenbeck process

ds(x)

dx
= −As(x) +Bu(x), (56)

and its discrete-time equivalent is given by







si+1 = asi + ui,

a = E{sisi−1}/E{s2i } = e−Adn ,
(57)

where A ≥ 0, B ∈ R, si = s(idn), and the input processes u(x) and ui are zero-mean white

Gaussian processes. Here, dn is the spacing between two adjacent signal samples. For the 2-D

SFCAR signal, however, the same stochastic differential equation is not applicable. Note that

the dependence in the signal in (56) and (57) is only on the past in 1-D space, whereas the signal

(34) has symmetric dependence in all four direction in the plane. The SFCAR signal is given by

the solution of a second-order difference equation

Xij = ζ(Xi+1,j +Xi−1,j +Xi,j+1 +Xi,j−1) + ǫij , (58)
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and the corresponding continuous-index physical model is given by the stochastic Laplace equation

[23].
[

(

∂

∂x

)2

+

(

∂

∂y

)2

− α2

]

X(x, y) = ǫ(x, y), (59)

where α (≥ 0) is the physical diffusion rate, and ǫij and ǫ(x, y) are 2-D white zero-mean Gaussian

perturbations. Note that the solution of (59) is circularly symmetric, i.e., it depends only on

r =
√

x2 + y2, and samples of the solution X(x, y) of (59) on lattice In do not form a discrete-

index SFCAR GMRF. However, (59) is still the continuous-index counterpart of (58), and we

use its correlation function for the SFCAR model. The correlation function corresponding to

(59) is given by [23]

ρ = h(dn) = αdnK1(αdn), (60)

where K1(·) is the modified Bessel function of the second kind. Fig. 7 (b) shows the correlation

function w.r.t. dn for α = 1. The asymptotic behavior of K1(x) is given by







K1(x) →
√

π
2xe

−x as x → ∞,

K1(x) → 1
x as x → 0.

(61)

The correlation function (60) can be regarded as the representative correlation in 2-D, similar to

the exponential correlation function e−Adn in 1-D. Both functions decrease monotonically w.r.t.

dn. However, the 2-D correlation function is flat at dn = 0 [23], i.e.,

(

dρ

ddn

)

dn=0

= 0, (62)

and it decays with rate
√
dne

−αdn as dn → ∞. Note that the 2-D correlation function has
√
dn

in front of the exponential decay as dn → ∞. However, this polynomial term is not significant

and the exponential decay is dominant for large dn. Thus, we have ζ = g(h(dn)), and for given

physical parameters (with a slight abuse of notation),

Ks(SNR, ζ) = Ks(SNR, g(h(dn))) = Ks(SNR, dn),

and

Is(SNR, ζ) = Is(SNR, g(h(dn))) = Is(SNR, dn).

We will use the arguments SNR, ζ and dn for Ks and Is properly as needed for exposition.
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B. Scaling Laws in Ad Hoc Sensor Networks over Correlated Random Fields

In this section, we investigate the fundamental behavior of wireless flat multi-hop ad hoc

sensor networks deployed for statistical inference based on the 2-D hidden SFCAR model and the

corresponding correlation functions (55) and (60). We consider several criteria for determining

the efficiency of the sensor network. Specifically, we consider the total amount of information

[nats] obtainable from the network and the energy efficiency η of a sensor network, defined as

η =
total gathered information It

total required energy Et
[nats/J], (63)

where the gathered information is about the underlying physical process.

In the following, we summarize the assumptions for the planar ad hoc sensor network that we

consider.

(A.1) n2 sensors are located on the grid In with spacing dn, as shown in Fig. 2, and a fusion

center is located at the center (⌊n/2⌋, ⌊n/2⌋). The network size is L×L, where L = ndn. Thus,

the node density µn on In is given by

µn =
n2

L2
=

n2

(ndn)2
. (64)

(A.2) The observations {Yij} of sensor nodes form a 2-D hidden (discrete-index) SFCAR GMRF

on the lattice for each dn > 0, and the edge dependence factor is given by the correlation functions

(55) and (60).

(A.3) The fusion center gathers the measurements from all nodes using minimum hop routing.

Note that the links in Fig. 2 are not only the Markov dependence edges but also the routing

links. The minimum hop routing requires a hop count of |i− ⌊n/2⌋| + |j − ⌊n/2⌋| to deliver Yij

to the fusion center.

(A.4) The communication energy per link is given by Ec(dn) = E0d
ν
n, where ν ≥ 2 is the

propagation loss factor of the wireless channel.

(A.5) Sensing requires energy, and the sensing energy per node is denoted by Es. Moreover, we

assume that the measurement SNR in (14) is linearly increasing w.r.t. Es, i.e., SNR = βEs for

some constant β.

Remark 1: Assumption (A.2) facilitates the analysis. Since discrete samples of a continuous-

index GMRF do not form a discrete-index GMRF almost surely, we assume that for each dn

sensor samples on In form a discrete-index SFCAR GMRF, and match the correlation between

two neighboring nodes with the physically meaningful correlation function (60).
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Remark 2: In Assumption (A.3) we assume that there is no data fusion during the information

gathering, i.e., no in-network data fusion. The fusion center collects the raw measurements from

all sensors.

Remark 3: We can also consider a routing graph different from the Markov dependence graph

in Fig. 2. For example, sensors not directly connected to the transmitting node via the Markov

dependence edge can deliver the data to the fusion center. However, this results in a reduced

number of hops with a larger hop length, and the corresponding routing path consumes more

energy. Thus, Assumption (A.3) of minimum hop routing via the Markov dependence edge

ensures least energy consumption with a minimum hop routing strategy.

Remark 4: Assumption (A.5) does not imply that we can increase the power of the underlying

signal, but it means that we can increase the SNR of effective sensor samples. Suppose that E1

joules are required for one sensing to obtain one sample Yij(1) = Xij(1)+Wij(1) at location ij and

the measurement SNR of this sample is SNR1. Now assume that we have M identical subsensors

at location ij and obtain M samples with one sample per each subsensor, requiring M ·E1 joules,

and we take an average of M samples at location ij, yielding Yij = (1/M)
∑M

m=1 Yij(m) where

Yij(m) denotes the sample at the mth subsensor at location ij. The measurement SNR of the

effective sample Yij is given by M · SNR1 assuming that the measurement noise is i.i.d. across

the subsensors. Thus, the effective measurement SNR at each sensor can be increased linearly

w.r.t. the sensing energy. However, this linear SNR model is an optimistic assumption since

the observation SNR may saturate as the sensing energy is increased without bound in practical

situation.

From here on, we consider various asymptotic scenarios and investigate the fundamental be-

havior of ad hoc sensor networks deployed over correlated random fields for statistical inference

under assumptions (A.1)-(A.5). Our asymptotic analysis in the previous sections enables us to

calculate the total information It for large sensor networks. The total amount of information

is given approximately by the product of the number of sensor nodes in the network and the

asymptotic per-node information Ks or Is, i.e.,

It = n2
Ks(SNR, dn) or It = n2

Is(SNR, dn), (65)

for KLI or MI, respectively. The total energy Et required for data gathering via the minimum
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hop routing is given by

Et = n2Es + Ec(dn)
n−1
∑

i=0

n−1
∑

j=0

(|i − ⌊n/2⌋| + |j − ⌊n/2⌋|),

=







n2Es +
1
2n(n− 1)(n + 1)Ec(dn) if n odd,

n2Es +
1
2n

3Ec(dn) if n even.
(66)

First, we consider an infinite area model with fixed density. In this case, the number of sensor

nodes per unit area is fixed and the total area increases without bound as we increase n. The

behavior of the information vs. area and energy in this case is given in the following theorem.

Theorem 4 (Fixed density and infinite area) For an ad hoc sensor network with a fixed and

finite node density and fixed sensing energy per node, the total amount of information increases

linearly w.r.t. area, but the amount of gathered information per unit energy decays to zero with

rate

η = Θ
(

area−1/2
)

, (67)

for any non-trivial diffusion rate α, i.e., 0 < α < ∞, as we increase the area. Further, in this case

the total amount of information obtainable from the network as a function of total consumed

energy increases with rate of

Total information It = Θ
(

E
2/3
t

)

, (68)

for any propagation loss factor ν > 0, as the total energy Et consumed by the network increases

without bound, i.e., Et → ∞.

Proof: See Appendix I.

Theorem 4 enables us to investigate the asymptotic behavior of ad hoc sensor networks with

fixed available energy per node. From the detection perspective the error probability is given by

PM ∼ e−It(Et(Nt(A))), (69)

for large networks, where Nt(A) represents the total number of sensor nodes in the network with

coverage area A. Now consider that each node has a fixed amount of energy denoted by Ē (< ∞).

Then, the total energy in the network is given by

Et = Nt(A)Ē. (70)
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Note in this case that the total energy available in the network increases linearly w.r.t. the number

of sensor nodes. The asymptotic behavior of ad hoc networks with fixed per-node energy is given

by the following corollary to Theorem 4.

Corollary 3: For an ad hoc sensor network with a fixed and finite node density and fixed per-

node sensing energy, the information amount per sensor node diminishes to zero as the network

size grows, i.e.,

lim
Nt(A)→∞

− 1

Nt(A)
logPM (Et(Nt(A)))

= lim
Nt(A)→∞

O(Nt(A)
−1/3) = 0, (71)

if each sensor has a finite amount of available energy.

Proof: Substitute (68), (69) and (70) into It, PM and Et, respectively.

Corollary 3 states that a non-zero per-node information is not achievable as the coverage increases

without in-network data fusion in the case that each node has only a fixed amount of energy,

which is the case in most network design with fixed amount of battery. In this case, the per-node

information scales with O(N
−1/3
t ) as the network size grows. This result is by the communication

energy required for ad hoc routing without in-network data fusion. Note from (66) that for the

fixed density and increasing area model the sensing energy increases quadratically with n while

the communication energy without in-network data fusion increases cubically with n since dn is

fixed w.r.t. n. Hence, for ad hoc sensor networks with large coverage areas the communication

energy dominates the sensing energy, and both the energy efficiency for information and the per-

node information under fixed per-node energy constraint diminish to zero because of the slower

increasing rate of the total information amount than that of the communication energy required

for ad hoc routing without in-network data fusion.

This diminishing energy efficiency and per-node information under fixed per-node energy con-

straint can be fixed with in-network data fusion. Suppose that in-network data fusion is per-

formed so that each node needs to deliver (aggregated) data only to the neighboring node along

the minimum hop route to the fusion center in Fig. 2. In this case the number of transmission

associated with one node is just one and the total number of transmission in the network is given

by Θ(n2). So, the communication energy as well as the sensing energy increases quadratically

with n. Since the total amount of information also increases quadratically with n, the total
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amount of information as a function of total energy is given, under this aggregation scenario, by

It = Θ(Et), (72)

as we increase the area, and a non-zero energy efficiency and a non-zero per-node information

under fixed per-node energy constraint are achieved. Thus, in-network data fusion is essential

for energy-efficiency in large sensor networks.

Next, we consider the case in which the node density diminishes, i.e., dn → ∞. Especially, this

case is of interest at high SNR since at high SNR less correlated samples yield larger per-node

information, as seen in Section III-B.1. However, the per-node information is upper bounded as

dn → ∞, and the asymptotic behavior is given by the following theorem.

Theorem 5: As dn → ∞, the per-node information Ks and Is converge to D(N (0, 1)||N (0, 1+

SNR)) and 1
2 log SNR, respectively, and the convergence rates are given by

Ks(dn) = D(N (0, 1)||N (0, 1 + SNR))− c4
√

dne
−αdn + o

(

√

dne
−αdn

)

(73)

and

Is(dn) =
1

2
log(1 + SNR)− c′4

√

dne
−αdn + o

(

√

dne
−αdn

)

, (74)

with positive constants c4 and c′4.

Proof: See Appendix I.

Theorem 5 explains how much gain in information is obtained from less correlated observation

samples by making the sensor spacing larger. Fig. 8 shows the per-node KLI Ks and the com-

munication energy Ec for each link as functions of dn for α = 1, c4 = 1 and 10 dB SNR. The gain

in information is given by
√
dne

−αdn for large dn, whereas the required per-link communication

energy increases without bound, i.e., Ec(dn) = E0d
ν
n (ν ≥ 2). Since the exponential term is

dominant in the gain as dn increases, the information gained by increasing the sensor spacing dn

decreases almost exponentially fast, and no significant gain is obtained by increasing the sensor

spacing further after some point. Hence, it is not effective, in terms of energy efficiency, to

increase the sensor spacing too much to obtain less correlated samples at high SNR.

From Theorem 5 we have seen that increasing the sensor spacing is not so effective in terms

of the information gain per unit of consumed energy since the per-link communication energy

increases without bound. On the other hand, the per-link communication energy can be made
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Per-node information and per-link communication energy w.r.t. sensor spacing dn (SNR

= 10 dB, α = 1, c4 = 1)

arbitrarily small by decreasing the sensor spacing. To investigate the effect of diminishing com-

munication energy Ec as dn → 0, we now consider the asymptotic case in which the node density

goes to infinity for a fixed coverage area. In this case, the per-node information decays to zero

as dn → 0 since ζ → 1/4 as dn → 0, and Ks(ζ) and Is(ζ) converge to zero as ζ → 1/4, as shown

in Section III-B.1. The asymptotic behavior in this case is given by the following theorem.

Theorem 6 (Infinite density model) For the infinite density model with a fixed coverage area

S with nontrivial diffusion rate α, the per-node information decays to zero with convergence rate

Ks = c5µ
−1
n + o

(

µ−1
n

)

, (75)

for some constant c5 as the node density µn → ∞. Hence, the amount of total information from

the coverage area converges to the constant c5S as µn → ∞. Furthermore, in the case of no

sensing energy, a non-zero energy efficiency η is achievable if the propagation loss factor ν = 3,

and even an infinite energy efficiency‖ is achievable under Assumption (A.4) if ν > 3 as µn → ∞.

‖Of course, this is under Assumption (A.4) for any dn > 0. In reality, Assumption (A.4) is valid for dn ≥ dmin

for some dmin > 0.
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Is has similar behavior.

Proof: See Appendix I.

Remark 5: The finite total information for the infinite density and fixed area model follows

our intuition. The maximum information provided by the samples from the continuous-index

random field does not exceed the information between X(x, y) and Y (x, y) except in the case of

spatially white fields. Here, the relevance of (62) in 2-D is evident. From (62) we have

Ks,2−D(ζ(ρ(dn))) = c6 · d2n + o(d2n), (76)

as dn → 0 since h : dn → ζ has slope zero at dn = 0 and Ks is a continuous and differentiable

function of ζ. In the 1-D case, it is shown in [12] thatKs,1−D is also a continuous and differentiable

function of a = e−Adn for 0 ≤ a ≤ 1 with Ks,1−D|a=1 = 0. However, the exponential correlation

e−Adn has a nonzero slope at dn = 0, and thus we have

Ks,1−D(a(dn)) = c′6 · dn + o(dn), (77)

as dn → 0. The number of nodes in the space is given by Θ(n2) and Θ(n) for 2-D and 1-D,

respectively, and dn = L/n in both cases. Hence, the total amount of information from the

coverage space (given by the product of the per-node information and the number of nodes in

the space) converges to a constant both in 1-D and 2-D as the node density increases. Thus, any

proper 2-D correlation function w.r.t. the sample distance should have a flat top at a distance

of zero.

Remark 6: It is common that the propagation loss factor ν > 3 for near field propagation (i.e.,

dn → 0). Hence, infinite energy efficiency is theoretically achievable under Assumption (A.4)

as we increase the node density for a fixed area assuming that only communication energy is

required. Note that the total amount of information converges to a constant as we increase the

node density. So, the infinite energy efficiency is achieved by diminishing communication energy

as dn → 0.

Remark 7: Considering the sensing energy, infinite energy efficiency is not feasible even theo-

retically since we have in this case

Et = n2Es +Θ(n3−ν), (78)

and

η =
c5S + o(1)

n2Es +Θ(n3−ν)
, ν ≥ 2, (79)
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as n → ∞ for fixed coverage area. In this case the sensing energy n2Es is the dominant factor

for low energy efficiency, and the energy efficiency decreases to zero with rate O
(

µ−1
n

)

. Thus,

it is critical for densely deployed sensor networks to minimize the sensing energy or processing

energy for each sensor.

In the infinite density model, we have observed that energy is an important factor in efficiency.

Now we investigate the change of total information w.r.t. energy. There are many possible ways

to invest energy in the network. One simple way is to fix the node density and coverage area

and to increase the sensing energy. We assume that the network size is sufficiently large so that

our asymptotic analysis is valid. The energy-asymptotic behavior in this case is given in the

following theorem under Assumptions (A.1)-(A.5).

Theorem 7: As we increase the total energy Et consumed by a sensor network (including both

sensing and communication) with a fixed node density and fixed area, the total information

increases with rate

Total information It = O (logEt) (80)

as Et → ∞.

Proof: See Appendix I.

Theorem 7 suggests a guideline for investing the excess energy. It is not efficient in terms of the

total amount of gathered information to invest energy to improve the quality of sensed samples

from a limited area. This only provides an increase in total information at a logarithmic rate.

Note in Theorem 4 that the information gain is given by

It = Θ(E
2/3
t ) (81)

as we increase the coverage area with fixed density and sensing energy even without in-network

data fusion. Thus, the energy should be spent to increase the number of samples by enlarging the

coverage area even if it yields less accurate samples. In this way, we can achieve the information

increase with rate at least Θ(E
2/3
t ) which is much faster than the logarithmic increase obtained

by increasing the sensing energy.

C. Optimal Node Density

In the previous section, we investigated the asymptotic behavior of the total information

obtainable from the network and the energy efficiency as the coverage, density or energy change.
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We now consider another important problem in sensor network design for statistical inference

about underlying random fields, namely, the optimal density problem. Here, we are given a fixed

coverage area, and are interested in determining an optimal node density. The total amount of

information gathered from the network increases monotonically (even if it has an upperbound)

as we increase the node density, as shown in Theorem 6. Hence, the problem cannot be properly

formulated without some constraint. We consider a total energy constraint in which a fixed

amount of energy is available to the entire network for both sensing and communication. Thus,

we consider the following problem.

Problem 1 (Optimal density) Given a fixed coverage area with size L× L and total available

energy Et, find the density µn that maximizes the total information It obtainable from the sensor

network.

The above optimization problem can be solved using our analysis based on the large deviations

principle assuming the asymptotic result is still valid in the low density case, and the optimal

density for the KLI measure is given by

µ∗
n = argmax

µn

L2µnKs(SNR(Et, µn), dn(µn)), (82)

s.t. n2Es(µn) +
1

2
n(n− 1)(n + 1)Ec(dn(µn)) ≤ Et, (83)

where the sensing energy Es as well as n and dn are functions of the node density µn. From

µn (= n2/L2), we first calculate n and then dn = L/n. (Here, the quantization of n to the nearest

integer is not performed.) With the determined dn, Ec(dn) is obtained from the propagation

parameters E0 and ν, and then Es(µn) is obtained from the constraint (83). When Es(µn)

is determined, the measurement SNR is calculated using Assumption (A.5), i.e., SNR = βEs,

and finally we evaluate the per-node information Ks(SNR, ζ(ρ(dn))) and Is(SNR, ζ(ρ(dn))) from

Corollary 2.

Fig. 9 shows the total information obtainable from a 2 meter × 2 meter area as we change the

node density µn with a fixed total energy budget of Et joules. Other parameters that we use are

given by

α = 100, β = 1, E0 = 0.1 and ν = 2.

Here, the values of Et, E0 and β are selected so that the minimum and maximum per-node

sensing SNRs are roughly -10 to 10 dB for maximum and minimum densities, respectively. The

October 30, 2018 DRAFT



TO APPEAR IN IEEE TRANS. ON INFORMATION THEORY, JUNE 2009 32

0 20 40 60 80 100 120
0

5

10

15

20

µ
n
 [nodes/m2]

T
ot

al
 K

ul
lb

ac
k−

Le
ib

le
r 

in
fo

rm
at

io
n

 

 

E
t
=50 [J]

E
t
=100 [J]

E
t
=150 [J]

0 20 40 60 80 100 120
0

10

20

30

40

50

60

µ
n
 [nodes/m2]

T
ot

al
 m

ut
ua

l i
nf

or
m

at
io

n 
[n

at
s]

 

 

E
t
=50 [J]

E
t
=100 [J]

E
t
=150 [J]

(a) (b)
Fig. 9

(a) total KLI vs. density and (b) total MI vs. density

diffusion rate α = 100 is chosen for the edge correlation coefficient ρ to range from almost zero

to 0.6 as the node density varies. It is seen in the figure that there is an optimal density for each

value of Et under either information measure. It is also seen that the total KLI is sensitive to

the density change whereas the total MI is less sensitive. The existence of the optimal density

is explained as follows. At low densities, we have only a few sensors in the area. So, the energy

for communication is not large due to the small number of communicating nodes (see (108)

below) and most of the energy is allocated to sensing. Here, the per-node sensing energy is

even higher due to the small number of sensors. However, the per-node information increases

only logarithmically w.r.t. the sensing energy or SNR by Theorem 7, and this logarithmic gain

cannot compensate for the loss in the number of sensors. Hence, low density yields very poor

performance, and large gain is obtained initially as we increase the density from very low values,

as seen in Fig. 9. As we further increase the density, on the other hand, the per-node sensing

energy or SNR decreases due to the increase in the overall communication and the increase in

the number of sensor nodes, and the measurement SNR is in the low SNR regime eventually,

where (49) and (51) hold. From (66), we have

Es(µn) = β−1SNR = O(n−2) (84)
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for fixed Et and Ec = E0(L/n)
2, as n → ∞. By the quadratic decaying behavior of Ks at low

SNR given by (49), the total Kullback-Leibler information is given by

Total KLI = L2µnKs = O(n2n−4) = O(n−2) = O(µ−1
n ).

By (51), on the other hand, the mutual information decays linearly as SNR decreases to zero,

and the total mutual information is given by

Total MI = L2µnIs = O(n2n−2) = O(1).

This explains the initial fast decay after the peak in Fig. 9 (a) and flat curve in Fig. 9 (b). In

the above equations, however, the effect of ζ on Ks and Is is not considered. As the node density

increases, the sensor spacing decreases and the edge dependence factor ζ increases for a given

diffusion rate α. The behavior of the per-node information as a function of ζ is shown in Fig. 4.

Note in Fig. 4 that the per-node information has a second lobe at strong correlation at low SNR

while at high SNR it decreases monotonically as the correlation becomes strong. The benefit

of sample correlation is evident in the low energy case (Et = 50[J]) in 9 (a); the second peak

around µn = 95 [nodes/m2] is observed. Note that the second peak is not very significant. Since

the per-node information decays to zero as ζ → 1/4 eventually, the total amount of information

decreases eventually, as seen in the right corner of the figure, as we increases the node density

further.

V. Conclusion and Discussion

In this paper, we have considered the design of sensor networks for statistical inference about

correlated random fields in a 2-D setting. To quantify the information from the sensor network,

we have used a spectral domain approach to derive closed-form expressions for asymptotic KLI

and MI rates in general d-D and in 2-D in particular, and have adopted the 2-D hidden CAR

GMRF for our signal model to capture the spatial correlation and measurement noise for samples

in a 2-D sensor field. Under the first order symmetry assumption, we have further obtained the

asymptotic information rates explicitly in terms of the SNR and the edge dependence factor, and

have investigated the properties of the asymptotic information rates as functions of SNR and

correlation. Based on these LDP results, we have then analyzed the asymptotic behavior of ad

hoc sensor networks deployed over 2-D correlated random fields for statistical inference. Under

the SFCAR GMRF model, we have obtained fundamental scaling laws for total information and
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energy efficiency as the coverage, node density and consumed energy change. The results provide

guidelines for sensor network design for statistical inference about 2-D correlated random fields

such as temperature, humidity, or density of a gas on a certain area.

In closing, we discuss several issues related to some of the assumptions we have used to simplify

our analysis. First, of course, sensors in a real network may not be located on a 2-D grid.

However, we conjecture that similar scaling behaviors w.r.t. the coverage, density and energy

are valid for randomly and uniformly deployed sensors. Secondly, the spatial Markov assumption

may be restrictive. However, it is a minimal model that captures the two dimensionality of the

signal correlation structure in all planar directions and allows analysis to be tractable. And,

finally we have not considered the temporal evolution of the spatial signal field. In case of i.i.d.

temporal variation, the results here can be applied directly without modification. When the

signal variation over time is correlated, the modification to spatio-temporal fields is required.

Appendix I

Proof of Theorem 2

The asymptotic KLI rate K is given by the almost-sure limit

K = lim
n→∞

1

|Dn|
log

p0
p1

({Yi, i ∈ Dn}), (85)

evaluated under p0 [24]. We consider the following index mapping from d-D to 1-D in lexico-

graphic order:

l = fid(i), (i ∈ [0, 1, · · · , n− 1]d), (86)

and the corresponding observation vector y|Dn| generated from {Yi, i ∈ Dn}. Then, y|Dn| is a

zero-mean Gaussian vector with the covariance matrices Σ0,|Dn| and Σ1,|Dn| under p0 and p1,

respectively. Hence, the asymptotic KLI rate is given by

K = lim
n→∞

1

|Dn|

(

1

2
log

det(Σ1,|Dn|)

det(Σ0,|Dn|)
+

1

2
yT
|Dn|

(Σ−1
1,|Dn|

−Σ−1
0,|Dn|

)y|Dn|

)

, (87)

under p0. Now we consider the terms on the RHS of (87). First, we consider log det(Σ0,|Dn|).

Since Σ0,|Dn| = σ2Ind under the assumption of an i.i.d. null distribution, we simply have

1

|Dn|
log detΣ0,|Dn| =

1

nd
log det(σ2Ind) = log σ2. (88)

Next we consider the term 1
|Dn|

yT
|Dn|

Σ−1
0,|Dn|

y|Dn|. Since y|Dn| is i.i.d. Gaussian, d-D is irrelevant
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in this case, the known result from [25, Proposition 10.8.3] is applicable, and we have

1

|Dn|
yT
|Dn|

Σ−1
0,|Dn|

y|Dn| → 1 almost surely, (89)

assuming that the random vector y|Dn| is generated from the distribution p0. Now we consider the

term 1
|Dn|

log detΣ1,|Dn|. This is the entropy rate of a d-D Gaussian process, and the convergence

behavior of this term is studied in [18]. It is shown in [18, p. 391] under the assumption in

Theorem 2 that we have
∣

∣

∣

∣

∣

log detΣ1,|Dn| −
|Dn|
(2π)d

∫

[−π,π)d
log((2π)df1(ω))dω

∣

∣

∣

∣

∣

= O

( |Dn|
n

)

.

Applying this result, we have

1

|Dn|
log detΣ1,|Dn| →

1

(2π)d

∫

[−π,π)d
log((2π)df1(ω))dω. (90)

Finally, we consider the random term 1
|Dn|

yT
|Dn|

Σ−1
1,|Dn|

y|Dn|.
∗∗ By Lemma 2 in Appendix II, we

have
1

|Dn|
yT
|Dn|

Σ−1
1,|Dn|

y|Dn| →
1

(2π)d

∫

[−π,π)d

σ2

(2π)df1(ω)
dω, (91)

almost surely as n → ∞.

Combining (87) - (91), we have

K =
1

(2π)d

∫

[−π,π)d

[

1

2
log

(2π)df1(ω)

σ2
− 1

2

(

1− σ2

(2π)df1(ω)

)]

dω. (92)

Since

D(N (0, σ2
0)||N (0, σ2

1)) =
1

2
log

σ2
1

σ2
0

− 1

2

(

1− σ2
0

σ2
1

)

, (93)

(92) is given by

K =
1

(2π)d

∫

[−π,π)d
D(N (0, σ2)||N (0, (2π)df1(ω)))dω. (94)

�

Proof of Corollary 1

For the 2-D hidden model we have

f1(ω1, ω2) = (2π)−2σ2 + f(ω1, ω2), (95)

∗∗The proof given in [25] and [26] for the convergence of this term for the 1-D index case is not applicable for

general d-D, nor is the almost-sure convergence of the term shown in [18], where the convergence of the term in

probability to an integral involving the periodogram was shown. Thus, we prove the almost-sure convergence of

the term in Lemma 2 separately in Appendix II.
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where f(ω1, ω2) is the CAR spectrum (11) in 2-D satisfying (12) and (13). First, f1(ω1, ω2) has

a positive lower bound, and thus satisfies Assumption A.1 in Theorem 2. It is also known in [27]

that if k = (k1, · · · , kd) ∈ N
d and if f1(ω) is of class Ck (i.e., differentiable up to the kd-order

w.r.t. ωd), then

lim sup
h→∞

hk11 hk22 · · · hkdd |γh| < ∞, (96)

where N is the set of all natural numbers, and h → ∞ means that at least one coordinate tends

to infinity. Under the condition (12) and (13), the hidden CAR spectrum f1(ω1, ω2) in (95) is

C(∞,∞), i.e., smooth both in ω1 and ω2. This ensures that Assumption A.2 in Theorem 2 is

satisfied, and the corollary follows by substituting (95) and d = 2 into (26). �

Proof of Theorem 3

The continuity is straightforward. The monotonicity is shown as follows. Let s = 1+ SNRgζ(ω)

where gζ(ω) = ((2/π)K(4ζ)(1 − 2ζ cosω1 − 2ζ cosω2))
−1. Then, the partial derivative of Ks

w.r.t. SNR is given by

∂Ks

∂SNR
=

1

(2π)2

∫

ω∈[−π,π)2

∂

∂s

(

1

2
log s+

1

2s
− 1

2

)

∂s

∂SNR
dω, (97)

where
∂

∂s

(

1

2
log s+

1

2s
− 1

2

)

=
1

2

s− 1

s2
=

1

2

SNRgζ(ω)

s2
≥ 0, (98)

and
∂s

∂SNR
= gζ(ω) ≥ 0 (99)

for 0 ≤ ζ ≤ 1/4. Hence,
∂Ks

∂SNR
≥ 0, (100)

and Ks increases monotonically as SNR increases for a given ζ (0 ≤ a ≤ 1/4).

As SNR → ∞, we have

Ks ≈ 1

(2π)2

∫

ω∈[−π,π)2

1

2
log(SNRgζ(ω))dω,

=
1

2
log SNR +

1

(2π)2

∫

ω∈[−π,π)2

1

2
log(gζ(ω))dω.

Thus, we have 1
2 log SNR behavior at high SNR.

For (49) and (51), take the Taylor expansion around SNR = 0 to obtain

log(1 + SNRgζ(ω)) = SNRgζ(ω)− SNR2g2ζ (ω)/2 + · · · ,
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1

1 + SNRgζ(ω)
= 1− SNRgζ(ω) + SNR2g2ζ (ω)− · · · ,

and then integrate. �

Proof of Theorem 4

In this case, the edge length dn = d for all n, and thus the asymptotic per-sensor information

Ks(dn) or Is(dn) does not change with n. Considering the Kullback-Leibler information, we have

It = n2
Ks(d), and area = Θ(n2). Hence, the total information is linear w.r.t. area. The total

energy Et required for data gathering is given by

Et = n2Es + Ec(d)
n−1
∑

i=0

n−1
∑

j=0

(|i− ⌊n/2⌋| + |j − ⌊n/2⌋|),

= n2Es +Θ(n3)Ec(d), (101)

where the first term is the sensing energy and the second term is the energy consumed for

communication. The energy efficiency is given by

η =
n2

Ks(d)

n2Es +Θ(n3)Ec(d)
= Θ

(

1

n

)

, (102)

as n → ∞. Since area = Θ(n2), (67) follows.

For the second statement we have Et = Θ(n3). The total information is given by n2
Ks(SNR, d).

Since Ks is fixed, the total information is Θ(n2) as n → ∞, and we have (68). �

Proof of Theorem 5

The proof is by the asymptotic behavior of the modified Bessel function K1(·) of the second kind

and Taylor expansion of Ks (as a function of ζ) and ζ (as a function of ρ), which is allowed

because of their continuous differentiability. From (60) and (61) we have

ρ(dn) =

√

π

2
αdne

−αdn + o
(

αdne
−αdn

)

(103)

as dn → ∞. From the continuous differentiability of Ks as a function of ζ in (47) and ζ as a

function of ρ, we have

Ks = D(N (0, 1)||N (0, 1 + SNR))− c2ζ + o(ζ),

= D(N (0, 1)||N (0, 1 + SNR))− c2(c7ρ+ o(ρ)) + o(c7ρ+ o(ρ)),

= D(N (0, 1)||N (0, 1 + SNR))− c2c7ρ+ o(ρ),
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for some c2, c7 > 0. Applying (103) to the above equation, we have (73). The proof for the

mutual information Is is similar. �

Proof of Theorem 6

Consider a fixed area with size L×L and a lattice In on it. The sensor spacing dn for n is given

by

dn =
L

n
.

By (62), we have

ρ(dn) = 1 + c8 · d2n + o(d2n) (104)

for some constant c8. By the continuous differentiability of Ks (as a function of ζ) and ζ (as a

function of ρ), we have

ζ =
1

4
+ c9 · (1− ρ) + o((1− ρ)2),

and

Ks = c1 · (ζ − 1/4) + o(ζ − 1/4),

for some constant c9. Substituting (104) into the above equations gives

Ks = c10 · d2n + o(d2n), (105)

for some constant c10. The node density is given by

µn =
n2

L2
= d−2

n . (106)

Substituting (106) into (105) yields (75). The total amount of information per unit area is given

by

µnKs = c5 + o(1), (107)

and it converges to c5 as n → ∞.

To calculate the energy efficiency, we first calculate the total communication energy consumed

by the minimum hop routing, given by

E′
t = Ec(dn)

n−1
∑

i=0

n−1
∑

j=0

(|i− ⌊n/2⌋| + |j − ⌊n/2⌋|),

= Θ(n3)Ec(dn) = E0L
νn−νΘ(n3),

= Θ(n3−ν), (108)
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as n → ∞ (i.e., µn → ∞). Here, E′
t denotes the total energy considering only the communication

energy. The energy efficiency in this case is given by

η′ =
µnKs

E′
t

[nats/J/m2]. (109)

Applying (107) and (108) to the above equation, we have the claims. �

Proof of Theorem 7

Note that

Et = n2Es +Θ(n3)Ec(dn).

In this case, n and dn are fixed, and Theorem 3 is directly applicable. Since the number of nodes

and communication energy are fixed, the sensing energy increases linearly with the total energy

Et. By Assumption (A.5), the measurement SNR increases linearly with the sensing energy.

Applying Theorem 3 yields (80). �

Appendix II

To prove Lemma 2 (this will be stated below), we briefly introduce some relevant preliminary

results.

Definition 5 (Matrix norms [18,28]) Let A be an n × n matrix with singular value decompo-

sition

A = USVT =

n
∑

i=1

siuiv
T
i , (110)

whereU andV are unitary matrices with columns ui and vi, respectively, and S = diag(s1, s2, · · · , sn)
with nonnegative elements s1 ≥ s2 ≥ · · · sn ≥ 0. The operator norm of ‖A‖ is defined as

‖A‖ = s1 = sup
x 6=0

‖Ax‖/‖x‖, (111)

where ‖x‖ denotes the 2-norm of x. On the other hand, the trace class norm of A is defined as

‖A‖1 =
∑

i

si. (112)

Note that if A is a symmetric matrix with eigenvalues {λi}, then

‖A‖1 =
∑

i

|λi|. (113)
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Remark 8 (The covariance matrix and its circulant approximation) Using vector notation, the

covariance matrix of the vector y|Dn| in (29) under p1 is given by

Σ1,|Dn| = E1{y|Dn|y
T
|Dn|

} = [σf−1
id

(i),f−1
id

(j)], σf−1
id

(i),f−1
id

(j) = γi−j, i, j ∈ Dn, (114)

where γh is defined in (23) and fid is defined in (86). With slight abuse of notation, we use σij

for σf−1
id

(i),f−1
id

(j) for the sake of exposition.

The circulant approximation C|Dn| to Σ1,|Dn| is obtained by treating Dn as a high dimensional

torus with opposite ends being neighbors, and C|Dn| is given by

C|Dn| = [cij], cij = γπ(i−j), i, j ∈ In, (115)

where the mapping π : Zd → Z
d is defined as

π(h) = π(h1, h2, · · · , hd) = (h′1, h
′
2, · · · , h′d), (116)

and

h′k = hkI(|hk| ≤ n/2) + (n− |hk|)I(|hk | > n/2), k = 1, · · · , d.†† (117)

Here, I(·) is the indicator function. Note that Σ1,|Dn| is a block Toeplitz matrix, while C|Dn| is a

block circulant matrix. It is known that the eigenvalues of the block circulant matrix C|Dn| are

given by

λi =
∑

h∈Dn

γπ(h)e
ιh·ωi , (118)

for i = (i1, · · · , id) ∈ Dn, where

ωi = (ωi1 , ωi2 , · · · , ωid) =

(

2πi1
n

,
2πi2
n

, · · · , 2πid
n

)

. (119)

Define the periodic approximate spectral density by

f c
n(ω) = (2π)−d

∑

h∈Dn

γπ(h)e
ιh·ω . (120)

Then, the eigenvalues of C|Dn| are given by

λi = (2π)df c
n(ωi), i ∈ Dn. (121)

††The distinction of even and odd n will not be considered for simplicity, as this is merely a technical issue. In

either case, the asymptotic behavior is the same.
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Further, it is shown in [18, Lemma 4.1.(c)] that the periodic approximate spectral density con-

verges uniformly to the true spectral density f1(ω), i.e.,

sup
ω∈[−π,π)d

|f c
n(ω)− f1(ω)| → 0, (122)

as n → ∞.

Lemma 1: Under the assumption of Theorem 2, we have

(a) f c
n(ω) is uniformly continuous for sufficiently large n.

(b)

sup
ω∈[−π,π)d

∣

∣

∣

∣

1

f c
n(ω)

− 1

f1(ω)

∣

∣

∣

∣

→ 0 as n → ∞. (123)

(c) 1/f c
n(ω) is uniformly continuous for sufficiently large n.

Proof of Lemma 1

(a) By assumption, f1(ω) is continuous on the compact domain [−π, π]d. By the uniform conti-

nuity theorem, f1(ω) is uniformly continuous. For any ǫ > 0, ||ω − ω
′|| < δ imples

∣

∣f c
n(ω)− f c

n(ω
′)
∣

∣ ≤
∣

∣f c
n(ω)− f1(ω) + f1(ω)− f1(ω

′) + f1(ω
′)− f c

n(ω
′)
∣

∣ ,

≤ |f c
n(ω)− f1(ω)|+ |f1(ω)− f1(ω

′)|+ |f1(ω′)− f c
n(ω

′)|,

≤ ǫ/3 + ǫ/3 + ǫ/3,

for sufficiently large n. The convergence of the first and third terms is by (122) and that of the

second term is by the uniform continuity of f1(ω).

(b) Since the spectrum f1(ω) has a positive lower bound by assumption, its inverse 1/f1(ω) is

bounded from above. In addition, due to (122) there exists M1 > 0 such that

1

f1(ω)
≤ M1 and

1

f c
n(ω)

≤ M1, (124)

for all ω ∈ [−π, π)d and for sufficiently large n. Then, for any ǫ > 0
∣

∣

∣

∣

1

f c
n(ω)

− 1

f1(ω)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

f c
n(ω)

1

f1(ω)

∣

∣

∣

∣

|f c
n(ω)− f1(ω)| , (125)

≤ ǫM2
1 (126)

for all ω ∈ [−π, π)d and for sufficiently large n, by (122) and (124).

(c) For any ǫ > 0, ||ω − ω
′|| < δ implies

∣

∣

∣

∣

1

f c
n(ω)

− 1

f1(ω′)

∣

∣

∣

∣

≤
∣

∣

∣

∣

1

f c
n(ω)

− 1

f1(ω)
+

1

f1(ω)
− 1

f1(ω′)
+

1

f1(ω′)
− 1

f c
n(ω

′)

∣

∣

∣

∣

,
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≤
∣

∣

∣

∣

1

f c
n(ω)

− 1

f1(ω)

∣

∣

∣

∣

+

∣

∣

∣

∣

1

f1(ω)
− 1

f1(ω′)

∣

∣

∣

∣

+

∣

∣

∣

∣

1

f1(ω′)
− 1

f c
n(ω

′)

∣

∣

∣

∣

,

≤ ǫ/3 + ǫ/3 + ǫ/3,

for sufficiently large n. The convergence of the first and third terms is by (123) and that of

the second term is by the uniform continuity of 1/f1(ω). (The uniform continuity of 1/f1(ω) is

obvious due to the uniform continuity and strict positivity of f1(ω).) �

Lemma 2: Under the conditions of Theorem 2, we have

1

|Dn|
yT
|Dn|

Σ−1
1,|Dn|

y|Dn| → 1

(2π)d

∫

[−π,π)d

σ2

(2π)df1(ω)
dω,

almost surely.

Proof of Lemma 2

First, it is shown in [18, Lemma 4.1.(a)] that

|Dn|−1||Σ1,|Dn| −C|Dn|||1 = O

(

1

n

)

, (127)

as n → ∞. Let {λ|Dn|(i), i = 1, 2, · · · , |Dn|} be the eigenvalues of |Dn|−1(Σ1,|Dn|−C|Dn|), where

|Dn| = nd for d-D. Then, by (113) and (127) we have

nd

∑

i=1

|λ|Dn|(i)| = O

(

1

n

)

. (128)

Since the convergence of the eigenvalues of the block Toeplitz matrix Σ1,|Dn| and its block

circulant approximation C|Dn| is uniform (The eigenvalues of these matrices are the samples

of the corresponding spectra for sufficiently large n; see (121) and (122).), mini |λ|Dn|(i)| and
maxi |λ|Dn|(i)| have the same convergence rate, i.e., there exist M2, M3 and rn such that

M2rn ≤ min
i

|λ|Dn|(i)| ≤ max
i

|λ|Dn|(i)| ≤ M3rn. (129)

By (128) and (129) we have

rn = O

(

1

nd+1

)

. (130)

Since the spectra f1(ω) and f c
n(ω) have positive lower bounds by assumption, their inverses

1/f1(ω) and 1/f c
n(ω) are bounded from above. Hence, the eigenvalues of Σ−1

1,|Dn|
and C−1

|Dn|
are

bounded from above since the eigenvalues of these matrices are the samples of the corresponding

inverse spectra for sufficiently large n, and thus we have

||Σ−1
1,|Dn|

|| < M1 and ||C−1
|Dn|

|| < M1 (131)

October 30, 2018 DRAFT



TO APPEAR IN IEEE TRANS. ON INFORMATION THEORY, JUNE 2009 43

for all sufficiently large n.

Now consider the error between two quadratic terms.

∣

∣

∣
|Dn|−1yT

|Dn|
Σ−1

1,|Dn|
y|Dn| − |Dn|−1yT

|Dn|
C−1

|Dn|
y|Dn|

∣

∣

∣

=
∣

∣

∣|Dn|−1yT
|Dn|

(

Σ−1
1,|Dn|

−C−1
|Dn|

)

y|Dn|

∣

∣

∣ ,

=
∣

∣

∣|Dn|−1yT
|Dn|

C−1
|Dn|

(

C|Dn| −Σ1,|Dn|

)

Σ−1
1,|Dn|

y|Dn|

∣

∣

∣ ,

(a)

≤ CM2
1

|Dn|
∑

i=1

|λi|y2i ,

(b)

≤ CM2
1M3rn

|Dn|
∑

i=1

y2i ,

(c)

≤ CM2
1M3O

(

1

n

)

1

nd

nd

∑

i=1

y2i ,

(d)→ 0 a.s. (132)

for some C > 0. Here, step (a) is by (131) and the definition of the trace class norm (113), step

(b) is by (129), and step (c) is by (130). Step (d) is by the strong law of large numbers (SLLN)

on the sample mean of y2i . Since {yi} is i.i.d. N (0, σ2) under p0,
1
n2

∑n2

i=1 y
2
i → σ2 almost surely.

Thus, the quadratic form using the block circulant approximation converges almost surely to

that based on the true covariance matrix.

We next consider the asymptotic behavior of |Dn|−1yT
|Dn|

C−1
|Dn|

y|Dn|. Since C|Dn| is a block

circulant matrix, the eigendecomposition is given by [29,30]

C|Dn| = W|Dn|Λ|Dn|W
H
|Dn|

, (133)

where W|Dn| is the d-dimensional discrete Fourier transform (DFT) matrix which is unitary, and

Λ|Dn| = diag(λ0,···,0, · · · , λn−1,···,n−1). (134)

The inverse of C|Dn| is given by

C−1
|Dn|

= W|Dn|Λ
−1
|Dn|

WH
|Dn|

. (135)

Define

ȳ|Dn| = WH
|Dn|

y|Dn|. (136)
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Then, ȳ|Dn| is a vector of i.i.d. Gaussian random variables since W|Dn| is unitary and y|Dn| is a

vector with i.i.d. Gaussian elements under p0. Thus, |Dn|−1yT
|Dn|

C−1
|In|

y|Dn| is given by

Sn = |Dn|−1yT
|Dn|

C−1
|Dn|

y|Dn| = |Dn|−1ȳT
|Dn|

Λ−1
|Dn|

ȳ|Dn|,

=
1

nd

∑

i∈Dn

Ȳ 2
i

λi

, (137)

=
1

nd

n−1
∑

i1=0

· · ·
n−1
∑

id=0

Ȳ 2
i1,···,id

λi1,···,id

, (138)

where {Ȳi, i ∈ Dn} is i.i.d. zero-mean Gaussian with variance σ2. For sufficiently large n, fix K

(0 < K < n) and divide the indices of each dimension such that

I = [0, 1, · · · , n− 1] = I(0) ∪ I(1) ∪ · · · I(K − 1),

I(i) ∩ I(j) = φ if i 6= j, and

|I(0)| = · · · = |I(K − 2| = ⌊n/K⌋, |I(K − 1)| = n− (K − 1)|I(0)|.

Then, (138) is given by

Sn =
1

Kd

K−1
∑

j1=0

· · ·
K−1
∑

jd=0





1

|I(j1)| · · · |I(jd)|
∑

i1∈I(j1)

· · ·
∑

id∈I(jd)

Ȳ 2
i1,···,id

λi1,···,id



 . (139)

Now let i1, · · · , id(j1, · · · , jd) denote the index representing the center of the (j1, · · · , jd)th hyper-

cube. Then, by (121) we have

1

λi1,···,id(j1,···,jd)
=

1

(2π)d
1

f c
n(ωj)

, (140)

ωj = (ωj1 , · · · , ωjd) =

(

2πj1
K

, · · · , 2πjd
K

)

, (141)

and
1

(2π)d
1

f c
n(ωj)

− ǫ′ ≤ 1

λi1,···,id

≤ 1

(2π)d
1

f c
n(ωj)

+ ǫ′ (142)

for all (i1, · · · , id) in the (j1, · · · , jd)th hypercube. Here, ǫ′ (> 0) is independent of (j1, · · · , jd)
since 1/f c

n(ω) is uniformly continuous over ω ∈ [−π, π)d by Lemma 1 (c). Applying (142) to

(139), we have

Vn − ǫ′

nd

∑

i∈Dn

Ȳ 2
i ≤ Sn ≤ Vn +

ǫ′

nd

∑

i∈Dn

Ȳ 2
i , (143)

where

Vn =
1

Kd

K
∑

j1=1

· · ·
K
∑

jd=1

1

(2π)d
1

f c
n(ωj)





1

|I(j1)| · · · |I(jd)|
∑

i1∈I(j1)

· · ·
∑

id∈I(jd)

Ȳ 2
i1,···,id



 . (144)
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By the SLLN for the sample mean of Ȳ 2
i , we have

σ2 − ǫ′′ ≤ 1

|I(j1)| · · · |I(jd)|
∑

i1∈I(j1)

· · ·
∑

id∈I(jd)

Ȳ 2
i1,···,id

≤ σ2 + ǫ′′, (145)

almost surely for sufficiently large n given K. Thus, Vn is given by

(σ2 − ǫ′′)Zn ≤ Vn ≤ (σ2 + ǫ′′)Zn, (146)

where

Zn =
1

Kd

K
∑

j1=1

· · ·
K
∑

jd=1

1

(2π)df c
n(ωj)

. (147)

Now we take K → ∞, and the Riemann sum Zn converges to

Zn → 1

(2π)d

∫

−[π,π)d

1

(2π)df1(ω)
dω (148)

by Lemma 1 (b) and (c). Since ǫ′ and ǫ′′ can be made arbitrarily small by making n and K large,

and 1
(2π)d

∫

−[π,π)d
1

(2π)d
1

f1(ω)dω < M4 for some M4 > 0 and n−d
∑

i∈Dn
Ȳi → σ2 a.s., we have by

(143), (146) and (148), that

|Dn|−1yT
|Dn|

C−1
|Dn|

y|Dn| → (2π)−d

∫

ω∈[−π,π)2

σ2

(2π)df1(ω)
dω, (149)

almost surely as n → ∞. By (132) and (149) we have

|Dn|−1yT
|Dn|

Σ−1
1,|Dn|

y|Dn| → (2π)−d

∫

ω∈[−π,π)2

σ2

(2π)df1(ω)
dω, (150)

almost surely as n → ∞. This concludes the proof. �
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