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Many of the traditional results in information theory, such as the channel coding theorem or the
source coding theorem, are restricted to scenarios where the underlying resources are independent
and identically distributed (i.i.d.) over a large number of uses. To overcome this limitation, two
different techniques, the information spectrum method and the smooth entropy framework, have been
developed independently. They are based on new entropy measures, called spectral entropy rates
and smooth entropies, respectively, that generalize Shannon entropy (in the classical case) and von
Neumann entropy (in the more general quantum case). Here, we show that the two techniques are
closely related. More precisely, the spectral entropy rate can be seen as the asymptotic limit of the
smooth entropy. Our results apply to the quantum setting and thus include the classical setting as
a special case.

INTRODUCTION

Traditional results in information theory, e.g., the
noisy channel coding theorem or the source coding (or
data compression) theorem, typically rely on the as-
sumption that underlying resources, e.g., information
sources and communication channels, are “memoryless”.
A memoryless information source is one which emits sig-
nals that are independent of each other. Similarly, a
channel is said to be memoryless if the noise acting on
successive inputs to the channel is uncorrelated. Such
resources can be described by a sequence of identical and
independently distributed (i.i.d.) random variables.

In reality, however, this assumption cannot generally
be justified. This is particularly problematic in cryp-
tography, where the accurate modeling of the system is
essential to derive any claim about its security.

In the past decade, two approaches have been proposed
independently to overcome this limitation. The infor-
mation spectrum approach was introduced by Han and
Verdú [11, 12, 28] in an attempt to generalize the noisy
channel coding theorem. This approach yields a unifying
mathematical framework for obtaining asymptotic rate
formulae for many different operational schemes in infor-
mation theory, such as data compression, data transmis-
sion, and hypothesis testing. The power of this method
lies in the fact that it does not rely on the specific nature
of the sources or channels involved in the schemes.

The main ingredients of this method are new entropy-
type measures, called spectral entropy rates, which are
defined asymptotically for sequences of probability dis-
tributions. They can be seen as generalizations of the
Shannon entropy, and also inherit many of its proper-
ties, such as subadditivity, strong subadditivity, mono-
tonicity, and Araki-Lieb inequalities. They also sat-
isfy chain rule inequalities. Their main feature, how-
ever, is that they characterize various other asymptotic
information-theoretic quantities, e.g., the data compres-
sion rate, without relying on the i.i.d. assumption.

Subsequently, Hayashi, Nagaoka, and Ogawa have gen-
eralized the information-spectrum method to quantum-
mechanical settings. They have applied the method to
study quantum hypothesis testing and quantum source
coding [16, 18], as well as to determine general expres-
sions for the optimal rate of entanglement concentration
[14] and the classical capacity of quantum channels [13].
The method has been further extended by Bowen and
Datta [3] and used to obtain general formulae for the
optimal rates of various information-theoretic protocols,
e.g., the dense coding capacity for a noiseless quantum
channel, assisted by arbitrary shared entanglement [4]
and the entanglement cost for arbitrary sequences of pure
[5] and mixed [6] states. Recently, Matsumoto [15] has
also employed the information spectrum method to ob-
tain an alternative (but equivalent) expression for the
entanglement cost for an arbitrary sequence of states.

In a simultaneous but independent development, the
necessity to generalize Shannon’s theory became appar-
ent in the context of cryptography. Roughly speaking,
one of the main challenges in cryptography is that one
needs to deal with an adversary who might pursue an
arbitrary (and unknown) strategy. In particular, the ad-
versary might introduce undesired correlations which, for
instance, make it difficult to justify assumptions on the
independence of noise in a communication channel.

Bennett, Brassard, Crépeau, and Maurer [1] were
among the first to make this point explicit, arguing that
the Shannon entropy is not an appropriate measure for
the ignorance of an adversary about a (partially secret)
key. They proposed an alternative measure based on the
collision entropy (i.e., Rényi entropy [24] of order 2) and
a notion called spoiling knowledge, which can be seen as a
predecessor of smooth entropies. This approach has been
further investigated by Cachin [7], who also found con-
nections to other entropy measures, in particular Rényi
entropies of arbitrary order.

Motivated by the work of Bennett et al. and Cachin,
smooth Rényi entropies have been introduced by Ren-
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ner et al., first for the purely classical case (in [22]), and
later for the more general quantum regime (in [20, 21]).
In contrast to the spectral entropy rates, smooth Rényi
entropies are defined for single distributions (rather
than sequences of distributions). Because of their non-
asymptotic nature, they depend on an additional param-
eter ε, called smoothness.
Similarly to the spectral entropy rates, it has been

shown that smooth entropies have many properties in
common with Shannon and von Neumann entropy (for
example, there is a chain rule, and strong subadditivity
holds) [20, 23]. Furthermore, they allow for a quantita-
tive analysis of a broad variety of information-theoretic
tasks—but in contrast to Shannon entropy, neither the
i.i.d. assumption nor asymptotics are needed. For exam-
ple, in the classical regime, it is possible to give a fully
general formula for the number of classical bits that can
be transmitted reliably (up to some error ε) in one (or
finitely many) uses of a classical channel [25]. In the
quantum regime, they proved very useful in the context
of randomness extraction [20, 21], which, in turn, is used
for cryptographic applications [8, 9, 10, 27]. In particu-
lar, they are employed for the study of real-world imple-
mentations of cryptographic schemes, where the available
resources (e.g., the computational power or the memory
size) are finite [26].
Our aim in this paper is to find connections between

the two different approaches described above, by explor-
ing the relationships between spectral entropy rates and
smooth entropies. We do this in two steps. First, we
consider the special case where the entropies are not con-
ditioned on an additional system, in the following called
the non-conditional case. Then, in a second step, we con-
sider the general conditional case where the entropies are
conditioned on an extra system.

DEFINITIONS OF SMOOTH ENTROPY AND

SPECTRAL ENTROPY RATES

Mathematical Preliminaries

Let B(H) denote the algebra of linear operators acting
on a finite-dimensional Hilbert space H. The von Neu-
mann entropy of a state ρ, i.e., a positive operator of unit
trace in B(H), is given by S(ρ) = −Trρ log ρ. Through-
out this paper, we take the logarithm to base 2 and all
Hilbert spaces considered are finite-dimensional.
The quantum information spectrum approach requires

the extensive use of spectral projections. Any self-
adjoint operator A acting on a finite-dimensional Hilbert
space may be written in its spectral decomposition A =∑

i λi|i〉〈i|. We define the positive spectral projection
on A as {A ≥ 0} :=

∑
λi≥0 |i〉〈i|, the projector onto

the eigenspace of A corresponding to positive eigenval-
ues. Corresponding definitions apply for the other spec-

tral projections {A < 0}, {A > 0} and {A ≤ 0}. For
two operators A and B, we can then define {A ≥ B} as
{A−B ≥ 0}. The following key lemmas are useful. For
a proof of Lemma 1, see [16, 18].

Lemma 1 For self-adjoint operators A, B and any pos-
itive operator 0 ≤ P ≤ I the inequality we have

Tr
[
P (A−B)

]
≤ Tr

[{
A ≥ B

}
(A−B)

]
(1)

Tr
[
P (A−B)

]
≥ Tr

[{
A ≤ B

}
(A−B)

]
. (2)

Identical conditions hold for strict inequalities in the
spectral projections {A < B} and {A > B}.
Lemma 2 Given a state ρn and a self-adjoint operator
ωn, for any real γ we have

Tr
[
{ρn ≥ 2−nγωn}ωn

]
≤ 2nγ .

Proof Note that

Tr
[
{ρn ≥ 2−nγωn}(ρn − 2−nγωn)

]
≥ 0

Hence,

2−nγTr
[
{ρn ≥ 2−nγωn}ωn

]
≤ Tr

[
{ρn ≥ 2−nγωn}ρn

]

≤ Trρn = 1 (3)

Therefore,

Tr
[
{ρn ≥ 2−nγωn}ωn

]
≤ 2nγ .

The trace distance between two operators A and B is
given by

||A−B||1 := Tr
[
{A ≥ B}(A−B)

]
−Tr

[
{A < B}(A−B)

]

(4)
The fidelity of states ρ and ρ′ is defined to be

F (ρ, ρ′) := Tr

√
ρ

1

2 ρ′ρ
1

2 .

The trace distance between two states ρ and ρ′ is related
to the fidelity F (ρ, ρ′) as follows (see (9.110) of [17]):

1

2
‖ρ− ρ′‖1 ≤

√
1− F (ρ, ρ′)2 ≤

√
2(1− F (ρ, ρ′)) . (5)

We also use the following simple corollary of Lemma 1:

Corollary 1 For self-adjoint operators A, B and any
positive operator 0 ≤ P ≤ I, the inequality

||A−B||1 ≤ ε,

for any ε > 0, implies that

Tr
[
P (A−B)

]
≤ ε.

We also use the “gentle measurement” lemma [19, 29].

Lemma 3 For a state ρ and operator 0 ≤ Λ ≤ I, if
Tr(ρΛ) ≥ 1− δ, then

||ρ−
√
Λρ
√
Λ||1 ≤ 2

√
δ.

The same holds if ρ is only a subnormalized density op-
erator.
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Definition of spectral divergence rates

In the quantum information spectrum approach one
defines spectral divergence rates, defined below, which
can be viewed as generalizations of the quantum relative
entropy.

Definition 1 Given a sequence of states ρ̂ = {ρn}∞n=1

and a sequence of positive operators ω̂ = {ωn}∞n=1, the
quantum spectral sup-(inf-)divergence rates are defined in
terms of the difference operators Πn(γ) = ρn − 2nγωn as

D(ρ̂‖ω̂) := inf
{
γ : lim sup

n→∞
Tr

[
{Πn(γ) ≥ 0}Πn(γ)

]
= 0

}

(6)

D(ρ̂‖ω̂) := sup
{
γ : lim inf

n→∞
Tr

[
{Πn(γ) ≥ 0}Πn(γ)

]
= 1

}

(7)

respectively.

Although the use of sequences of states allows for im-
mense freedom in choosing them, there remain a number
of basic properties of the quantum spectral divergence
rates that hold for all sequences. These are stated and
proved in [3]. In the i.i.d. case the sequence is generated
from product states ρ = {̺⊗n}∞n=1, which is used to re-
late the spectral entropy rates for the sequence ρ to the
entropy of a single state ̺.

Note that the above definitions of the spectral diver-
gence rates differ slightly from those originally given in
(38) and (39) of [13]. However, they are equivalent, as
stated in the following two propositions (proved in [3]).
The proofs have been included in the Appendix for com-
pleteness.

Proposition 1 The spectral sup-divergence rate D(ρ‖ω)
is equal to

D(ρ‖ω) = inf
{
α : lim sup

n→∞
Tr

[
{ρn ≥ enαωn}ρn

]
= 0

}

(8)
which is the previously used definition of the spectral sup-
divergence rate. Hence the two definitions are equivalent.

Proposition 2 The spectral inf-divergence rate D(ρ‖ω)
is equivalent to

D(ρ‖ω) = sup
{
α : lim inf

n→∞
Tr

[
{ρn ≥ enαωn}ρn

]
= 1

}

(9)
which is the previously used definition of the spectral inf-
divergence rate.

Despite these equivalences, it is useful to use the defi-
nitions (6) and (7) for the divergence rates as they allow
the application of Lemmas 1 and 2 in deriving various
properties of these rates.

The spectral generalizations of the von Neumann en-
tropy, the conditional entropy and the mutual informa-
tion can all be expressed as spectral divergence rates with
appropriate substitutions for the sequence of operators
ω̂ = {ωn}∞n=1.

Definition of spectral entropy rates

Consider a sequence of Hilbert spaces {Hn}∞n=1, with
Hn = H⊗n. For any sequence of states ρ̂ = {ρn}∞n=1,
with ρn being a density matrix acting in the Hilbert space
Hn, the sup- and inf- spectral entropy rates are defined
as follows:

S(ρ̂) = inf
{
γ : lim inf

n→∞
Tr

[
{ρn ≥ 2−nγIn}ρn

]
= 1

}
(10)

S(ρ̂) = sup
{
γ : lim sup

n→∞
Tr

[
{ρn ≥ 2−nγIn}ρn

]
= 0

}
.

(11)

Here In denotes the identity operator acting in Hn.
These are obtainable from the spectral divergence rates
as follows [see [3]:

S(ρ̂) = −D(ρ̂||Î) ; S(ρ̂) = −D(ρ̂||Î), (12)

where Î = {In}∞n=1 is a sequence of identity operators.
It is known [3] that the spectral entropy rates of ρ̂ are

related to the von Neumann entropies of the states ρn as
follows:

S(ρ̂) ≤ lim inf
n→∞

1

n
S(ρn) ≤ lim sup

n→∞

1

n
S(ρn) ≤ S(ρ̂). (13)

Moreover for a sequence of states ρ̂ = {ρ⊗n}∞n=1:

S(ρ̂) = lim
n→∞

1

n
S(ρn) = S(ρ̂). (14)

For sequences of bipartite states ρ̂ = {ρAB
n }∞n=1, with

ρAB
n ∈ B ((HA ⊗HB)

⊗n), the conditional spectral en-
tropy rates are defined as follows:

S(A|B) := −D(ρ̂AB|ÎA ⊗ ρ̂B); (15)

S(A|B) := −D(ρ̂AB|ÎA ⊗ ρ̂B). (16)

In the above, ÎA = {IAn }∞n=1 and ρ̂A = {ρAn }∞n=1, with IAn
being the identity operator acting in in H⊗n

A and ρAn =
TrBρ

AB
n , the partial trace being taken on the Hilbert

space H⊗n
B .

Definition of min- and max-entropies

We start with the definition of non-smooth min- and
max-entropies.
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Definition 2 ([20]) The min- and max-entropies of a
bipartite state ρAB relative to a state σB are defined by

Hmin(ρAB|σB) := − logmin{λ : ρAB ≤ λ · IA ⊗ ρB}

and

Hmax(ρAB |σB) := log Tr
(
πAB(IA ⊗ σB)

)
,

where πAB denotes the projector onto the support of ρAB.

In the special case where the system B is trivial
(i.e., 1-dimensional), we simply write Hmin(ρA) and
Hmax(ρA). These entropies then correspond to the usual
non-conditional Rényi entropies of order infinity and
zero,

Hmin(ρA) = H∞(ρA) = − log ‖ρA‖∞
Hmax(ρA) = H0(ρA) = log rank(ρA) ,

where ‖ · ‖∞ denotes the L∞-norm.

Definition of smooth min- and max-entropies

Smooth min- and max-entropies are generalizations
of the above entropy measures, involving an additional
smoothness parameter ε ≥ 0. For ε = 0, they reduce to
the non-smooth quantities.

Definition 3 ([20]) For any ε ≥ 0, the ε-smooth min-
and max-entropies of a bipartite state ρAB relative to a
state σB are defined by

Hε
min(ρAB|σB) := sup

ρ̄∈Bε

Hmin(ρ̄|σB)

and

Hε
max(ρAB|σB) := inf

ρ̄∈Bε
Hmax(ρ̄|σB)

where Bε(ρ) := {ρ̄ ≥ 0 : ‖ρ̄− ρ‖1 ≤ ε,Tr(ρ̄) ≤ Tr(ρ)}.

In the following, we will focus on the smooth min- and
max-entropies for the case where σB = ρB. Note that the
quantities Hε

min(ρAB |B) := maxσB
Hε

min(ρAB|σB) and
Hε

max(ρAB|B) := minσB
Hε

max(ρAB |σB) defined in [20]
are not studied in this paper.

RELATION BETWEEN NON-CONDITIONAL

ENTROPIES

Relation between S(bρ) and Hε

min(ρ)

Theorem 1 Given a sequence of states ρ̂ = {ρn}∞n=1,
where ρn ∈ B(Hn), with Hn = H⊗n, the inf-spectral en-
tropy rate S(ρ̂) is related to the smooth min-entropy as
follows:

S(ρ̂) = lim
ε→0

lim inf
n→∞

1

n
Hε

min(ρn) (17)

Proof For any constant γ > 0, let us define projection
operators

Qγ
n := {ρn < 2−nγIn} (18)

and

P γ
n := In −Qγ

n = {ρn ≥ 2−nγIn}. (19)

In terms of these projections, we can write

S(ρ̂) = sup
{
γ : lim sup

n→∞
Tr

[
P γ
n ρn

]
= 0

}
, (20)

or alternatively as

S(ρ̂) = sup
{
γ : lim inf

n→∞
Tr

[
Qγ

nρn
]
= 1

}
, (21)

since each ρn in the sequence ρ̂ is a state (i.e., Trρn = 1).
From Proposition 2 and (12) of S(ρ̂) it follows that the
latter is equivalently given by the expression

S(ρ̂) = sup
{
γ : lim sup

n→∞
Tr

[
P γ
n (ρn − 2−nγIn)

]
= 0

}
,

(22)
From (21) it follows that, for any γ < S(ρ̂) and any

δ > 0, for n large enough,

Tr
[
Qγ

nρn
]
> 1− δ. (23)

For any given α > 0, let γ := S(ρ̂)− α, and let

ρ̃γn := Qγ
nρnQ

γ
n (24)

Then using (23) and Lemma 3 we infer that, for n large
enough,

||ρn − ρ̃γn||1 ≤ 2
√
δ. (25)

In other words, for n large enough, ρ̃γn ∈ Bε(ρn) with
ε = 2

√
δ.

We first prove the upper bound

S(ρ̂) ≤ lim
ε→0

lim inf
n→∞

1

n
Hε

min(ρn) (26)

For n large enough,

Hε
min(ρn) ≡ sup

ρ
n
∈Bε(ρn)

Hmin(ρn)

≥ Hmin(ρ̃
γ
n) = − log ‖ρ̃γn‖∞

> nγ = n(S(ρ̂)− α) (27)

The last line follows from the inequality ρ̃γn < 2−nγIn,
and since α is arbitrary, we obtain the desired bound
(26).
We next prove the converse, i.e.,

S(ρ̂) ≥ lim
ε→0

lim inf
n→∞

1

n
Hε

min(ρn) (28)
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Consider an operator ρεn ∈ Bε(ρn) for which

− log ‖ρεn‖∞ = sup
ρ
n
∈Bε(ρn)

[
− log ‖ρn‖∞

]
. (29)

We shall also make use of a quantity Υ(ω̂), defined
for any sequence of positive operators ω̂ = {ωn}∞n=1 as
follows:

Υ(ω̂) = sup
{
α : lim sup

n→∞
Tr

[
{ωn ≥ 2−nαIn}Πα

n

]
= 0

}
,

(30)
where Πα

n := (ωn − 2−nαIn). Note that Υ(ω̂) reduces to
the inf-spectral entropy rate S(ω̂) given by (22), if ω̂ is a
sequence of states.
By the definition of the smooth min-entropy, (28) then

follows from Lemma 4 below.

Lemma 4 For any sequence of states ρ̂ = {ρn}∞n=1, and
any ε > 0, there exists an n0 ∈ N, such that for all
n ≥ n0

S(ρ̂) ≥ 1

n

[
− log ‖ρεn‖∞

]
, (31)

with ρεn defined by (29).

Proof We prove this in two steps. We first prove that
for any ε > 0 and n large enough,

Υ(ρ̂ε) ≥ − 1

n
log ‖ρεn‖∞, (32)

where ρ̂ε := {ρεn}∞n=1. We then prove that

lim
ε→0

Υ(ρ̂ε) ≤ S(ρ̂) (33)

For any arbitrary η > 0, let α be defined through the
relation

‖ρεn‖∞ = 2−n(α+η). (34)

This implies the operator inequality, ρεn−2−n(α+η)In ≤ 0,
and hence ρεn < 2−nαIn.
Hence,

Tr
[
{ρεn ≥ 2−nαIn}(ρεn − 2−nαIn)] = 0, (35)

Using this, and the definition of Υ(ρ̂ε), we infer that
α ≤ Υ(ρ̂ε). Then, using (34) we obtain the bound

− 1

n
log ‖ρεn‖∞ − η ≤ Υ(ρ̂ε),

which in turn yields (32), since η is arbitrary.
To prove (33) note that

0 ≤ Tr(P γ
n ρn)

= Tr(P γ
n ρ

ε
n) + Tr

[
P γ
n (ρn − ρεn)

]

≤ Tr
[
P γ
n (ρ

ε
n − 2−nαIn)

]
+ 2−nαTrP γ

n + ε

≤ Tr
[
{ρεn ≥ 2−nαIn}(ρεn − 2−nαIn)

]
+ 2−n(α−γ) + ε.

(36)

The third line in (36) is obtained by using the bound

Tr
[
P γ
n (ρn − ρεn)

]
≤ ε,

which follows from Corollary 1, since ρεn ∈ Bε(ρn).
To arrive at the last line of (36) we use Lemma 1 and

the fact that TrP γ
n ≤ 2nγ , which follows from Lemma 2.

Let us choose γ = α−δ/2, for an arbitrary δ > 0, with
α = Υ(ρ̂ε) − δ/2. Then both the first and second terms
on the r.h.s. of (36) goes to zero as n → ∞. Therefore,
for n large enough and any δ

′

> 0, in the limit ε→ 0, we
must have that

Tr(P γ
n ρn) ≤ δ

′

, (37)

which in turn implies that γ ≤ S(ρ̂).
From the choice of the parameters α and γ it follows

that

lim
ε→0

Υ(ρ̂ε)− δ < S(ρ̂). (38)

But since δ is arbitrary, we obtain the inequality (33).

Relation between S(bρ) and Hε
max(ρ)

Theorem 2 Given a sequence of states ρ̂ = {ρn}∞n=1,
where ρn ∈ B(Hn), with Hn = H⊗n, the sup-spectral
entropy rate S(ρ̂) is related to the smooth max-entropy
as follows:

S(ρ̂) = lim
ε→0

lim sup
n→∞

1

n
Hε

max(ρn) (39)

Proof By definition, the sup-spectral entropy rate for the
given sequence of states is

S(ρ̂) = inf
{
γ : lim inf

n→∞
Tr

[
P γ
n ρn

]
= 1

}
, (40)

where P γ
n is the projection operator defined by (19).

From (40) it follows that, for any γ ≥ S(ρ̂) and any
δ > 0, for n large enough

Tr
[
P γ
n ρn

]
> 1− δ. (41)

For any given α > 0, choose γ = S(ρ̂) + α, and let

ρ̃γn := P γ
n ρnP

γ
n (42)

Then using (41) and Lemma 3 we infer that, for n large
enough,

||ρn − ρ̃γn||1 ≤ 2
√
δ. (43)

and hence ρ̃γn ∈ Bε(ρn) with ε = 2
√
δ.

We first prove the bound

lim
ε→0

lim sup
n→∞

1

n
Hε

max(ρn) ≤ S(ρ̂) (44)
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For n large enough,

Hε
max(ρn) = inf

ρn∈Bε(ρn)
Hmax(ρn)

≤ Hmax(ρ̃
γ
n)

= log rank (ρ̃γn) (45)

From the definition (42) of ρ̃γn it follows that rank ρ̃γn ≤
TrP γ

n . Hence,

Hε
max(ρn) ≤ logTrP γ

n

≤ nγ = S(ρ̂) + α, (46)

where once again we use the bound TrP γ
n ≤ 2nγ . The

last line of (46) yields the desired bound (44) since α is
arbitrary.
To complete the proof of Theorem 2 we assume that

lim
ε→0

lim sup
n→∞

1

n
Hε

max(ρn) < S(ρ̂) (47)

and show that this leads to a contradiction.
Let σn,ε be the operator for which

Hmax(σn,ε) := inf
ρn∈Bε(ρn)

Hmax(ρn). (48)

Hence, Hε
max(ρn) = log rankσn,ε, and the assumption

(47) is equivalent to the following assumption:

lim
ε→0

lim
n→∞

1

n
log rankσn,ε < S(ρ̂). (49)

Since σn,ε ∈ Bε(ρn), Trσn,ε ≥ 1− ε. Let σ0
n,ε denote the

projection onto the support of σn,ε. Then

Tr
(
σ0
n,ερn

)
= Tr

[(
(ρn − σn,ε) + σn,ε

)
σ0
n,ε

]

= Tr
[
(ρn − σn,ε)σ

0
n,ε

]
+Trσn,ε

≥ Tr
[
{ρn ≤ σn,ε}(ρn − σn,ε)

]
+ 1− ε

≥ −ε+ 1− ε = 1− 2ε. (50)

The inequality in the third line follows from Lemma 1.
We arrive at the last inequality in (50) by using the bound

Tr
[
{ρn ≤ σn,ε}(ρn − σn,ε)

]
≥ −ε,

which arises from the fact that σn,ε ∈ Bε(ρn).
Note, however, that for n large enough, (50) leads to

a contradiction, in the limit ε → 0. This is because, for
any real number R < S(ρ̂) and any projection πn, with
Trπn = 2nR, for n large enough, we have

Tr(πnρn) ≤ 1− c0, (51)

for some constant c0 > 0. The inequality (51) can be
proved as follows:

Tr(πnρn) = Tr
[
πn(ρn − 2−nβIn)

]
+ 2−nβTrπn

≤ Tr
[
{ρn ≥ 2−nβIn}(ρn − 2−nβIn)

]

+2−n(β−R)

(52)

Choose S(ρ̂) > β > R. For such a choice, the second term
on the right hand side of (52) tends to zero asymptotically
in n. However, the first term does not tend to 1 and we
hence obtain the bound (51).

RELATION BETWEEN CONDITIONAL

ENTROPIES

Consider a sequence of bipartite states ρ̂AB =
{ρAB

n }∞n=1, with ρAB
n ∈ B

(
(HA ⊗ HB)

⊗n
)
. Let ρ̂AB =

{ρAB
n }∞n=1 denote the corresponding sequence of reduced

states.
For the sequence ρ̂AB, the sup-spectral conditional en-

tropy rate S(A|B) and the inf-spectral conditional en-
tropy rate S(A|B), defined respectively by (15) and (16),
can be expressed as follows:

S(A|B) = inf
{
γ : lim inf

n→∞
Tr

[
P γ
n ρ

AB
n

]
= 1

}
, (53)

S(A|B) = sup
{
γ : lim sup

n→∞
Tr

[
P γ
n ρ

AB
n

]
= 0

}
, (54)

where

P γ
n := {ρAB

n ≥ 2−nγIAn ⊗ ρBn }. (55)

Here IAn denotes the identity operator in B(H⊗n
A ).

We use the following key properties of Hε
min(ρAB |ρB)

given by Lemma 5 and Lemma 6 below.

Lemma 5 Let ρAB and σB be density operators, let ∆AB

be a positive operator, and let λ ∈ R such that

ρAB ≤ 2−λ · IA ⊗ σB +∆AB .

Then Hε
min(ρAB |σB) ≥ λ for any ε ≥

√
8Tr(∆AB).

Proof Define

αAB := 2−λ · IA ⊗ σB

βAB := 2−λ · IA ⊗ σB +∆AB .

and

TAB := α
1

2

ABβ
− 1

2

AB .

Let |Ψ〉 = |Ψ〉ABR be a purification of ρAB and let |Ψ′〉 :=
TAB ⊗ IR|Ψ〉 and ρ′AB := TrR(|Ψ′〉〈Ψ′|).
Note that

ρ′AB = TABρABT
†
AB

≤ TABβABT
†
AB

= αAB = 2−λ · IA ⊗ σB ,

which implies Hmin(ρ
′
AB|σB) ≥ λ. It thus remains to be

shown that

‖ρAB − ρ′AB‖1 ≤
√
8Tr(∆AB) . (56)
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We first show that the Hermitian operator

T̄AB :=
1

2
(TAB + T †

AB) .

satisfies

T̄AB ≤ IAB . (57)

For any vector |φ〉 = |φ〉AB,

‖TAB|φ〉‖2 = 〈φ|T †
ABTAB|φ〉 = 〈φ|β− 1

2

ABαABβ
− 1

2

AB |φ〉

≤ 〈φ|β− 1

2

ABβABβ
− 1

2

AB |φ〉 = ‖|φ〉‖2

where the inequality follows from αAB ≤ βAB. Similarly,

‖T †
AB|φ〉‖2 = 〈φ|TABT

†
AB|φ〉 = 〈φ|α

1

2

ABβ
−1
ABα

1

2

AB|φ〉

≤ 〈φ|α
1

2

ABα
−1
ABα

1

2

AB|φ〉 = ‖|φ〉‖2

where the inequality follows from the fact that β−1
AB ≤

α−1
AB which holds because the function τ 7→ −τ−1 is op-

erator monotone on (0,∞) (see Proposition V.1.6 of [2]).
We conclude that for any vector |φ〉,

‖T̄AB|φ〉‖ ≤
1

2
‖TAB|φ〉+ T †

AB|φ〉‖

≤ 1

2
‖TAB|φ〉‖+

1

2
‖T †

AB|φ〉‖ ≤ ‖|φ〉‖ ,

which implies (57).
We now determine the overlap between |Ψ〉 and |Ψ′〉,

〈Ψ|Ψ′〉 = 〈Ψ|TAB ⊗ IR|Ψ〉
= Tr(|Ψ〉〈Ψ|TAB ⊗ IR) = Tr(ρABTAB) .

Because ρAB has trace one, we have

1− |〈Ψ|Ψ′〉| ≤ 1−ℜ〈Ψ|Ψ′〉 = Tr
(
ρAB(IAB − T̄AB)

)

≤ Tr
(
βAB(IAB − T̄AB)

)

= Tr(βAB)− Tr(α
1

2

ABβ
1

2

AB)

≤ Tr(βAB)− Tr(αAB) = Tr(∆AB) .

Here, the second inequality follows from the fact that,
because of (57), the operator IAB − T̄AB is positive and

ρAB ≤ βAB. The last inequality holds because α
1

2

AB ≤
β

1

2

AB, which is a consequence of the operator monotonicity
of the square root (Proposition V.1.8 of [2]).
Using (5) and the fact that the fidelity between two

pure states is given by their overlap, we find

‖|Ψ〉〈Ψ| − |Ψ′〉〈Ψ′|‖1 ≤ 2
√
2(1− |〈Ψ|Ψ′〉|)

≤ 2
√
2Tr(∆AB) ≤ ε .

Inequality (56) then follows because the trace distance
can only decrease when taking the partial trace.

Lemma 6 Let ρAB and σB be density operators. Then

Hε
min(ρAB|σB) ≥ λ

for any λ ∈ R and

ε =
√
8Tr

(
{ρAB > 2−λ · IA ⊗ σB}ρAB

)
.

Proof Let ∆+
AB and ∆−

AB be mutually orthogonal posi-
tive operators such that

∆+
AB −∆−

AB = ρAB − 2−λ · IA ⊗ σB .

Furthermore, let PAB be the projector onto the support
of ∆+

AB , i.e.,

PAB = {ρAB > 2−λ · IA ⊗ σB} .

We then have

PABρABPAB = PAB(2
−λ · IA ⊗ σB +∆+

AB −∆−
AB)PAB

≥ ∆+
AB

and, hence,

√
8Tr(∆+

AB) ≤
√
8Tr(PABρAB) = ε .

The assertion now follows from Lemma 5 because

ρAB ≤ 2−λ · IA ⊗ σB +∆+
AB .

In the following sections we state and prove the rela-
tions between the conditional spectral entropy rates and
the smooth conditional max- and min-entropy.

Relation between S(A|B) and Hε
max(ρAB|ρB)

Theorem 3 Given a sequence of bipartite states ρ̂AB =
{ρAB

n }∞n=1, where ρAB
n ∈ B

(
(HA ⊗ HB)

⊗n
)
, the sup-

spectral conditional entropy rate S(A|B), defined by (53),
satisfies

S(A|B) = lim
ε→0

lim sup
n→∞

1

n
Hε

max(ρ
AB
n |ρBn ), (58)

where Hε
max(ρ

AB
n |ρBn ) is the smooth max-entropy of the

state ρAB
n of the sequence, conditional on the correspond-

ing reduced state ρBn .

Proof From the definition (53) of S(A|B) it follows that
for any γ ≥ S(A|B) and any δ > 0, for n large enough

Tr
[
P γ
n ρ

AB
n

]
> 1− δ, (59)

where P γ
n is defined by (55).
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For any given α > 0, choose γ = S(A|B) + α, and let

ρAB
n,γ := P γ

n ρ
AB
n P γ

n (60)

Then using (59) and Lemma 3 we infer that, for n large
enough, ρAB

n,γ ∈ Bε(ρAB
n ) with ε = 2

√
δ. Let πAB

n,γ denote

the projection onto the support of ρAB
n,γ .

We first prove bound

lim
ε→0

lim sup
n→∞

1

n
Hε

max(ρn) ≤ S(A|B). (61)

For n large enough,

Hε
max(ρ

AB
n |ρBn ) := inf

ρ
n
∈Bε(ρAB

n
)
Hmax(ρ

AB
n |ρBn )

≤ Hmax(ρ
AB
n,γ |ρBn )

= logTr
(
(IAn ⊗ ρBn )π

AB
n,γ

)

≤ logTr
(
(IAn ⊗ ρBn )P

γ
n

)

≤ nγ (62)

The last inequality in (62) follows from Lemma 2. Hence,
for n large enough,

1

n
Hε

max(ρ
AB
n |ρBn ) ≤ γ = S(A|B) + α, (63)

and since α is arbitrary, we obtain the desired bound
(61).
To complete the proof of Theorem 3, we assume that

lim
ε→0

lim sup
n→∞

1

n
Hε

max(ρ
AB
n |ρBn ) < S(A|B), (64)

and prove that this leads to a contradiction. Let σAB
n,ε be

the operator for which

Hmax(σ
AB
n,ε |ρBn ) = inf

ρAB∈Bε(ρAB
n

)
Hmax(ρ

AB|ρBn ). (65)

Hence,

Hε
max(ρ

AB
n |ρBn ) = Hmax(σ

AB
n,ε |ρBn )

= logTr
(
(IAn ⊗ ρBn )π

AB
n,ε

)
, (66)

where πAB
n,ε is the projection onto the support of σAB

n,ε .
Hence, the assumption (64) is equivalent to the follow-

ing assumption:

lim
ε→0

lim sup
n→∞

1

n
logTr

[
πAB
n,ε (I

A
n ⊗ ρBn )

]
< S(A|B). (67)

Note that

Tr(πAB
n,ε ρ

AB
n )

= Tr
[(
(ρAB

n − σAB
n,ε ) + σAB

n,ε

)
πAB
n,ε

]

= Tr
[
(ρAB

n − σAB
n,ε )π

AB
n,ε

]
+TrσAB

n,ε

≥ Tr
[
{ρAB

n ≤ σAB
n,ε }(ρAB

n − σAB
n,ε )

]
+Tr

[
σAB
n,ε

]

≥ −ε+ 1− ε = 1− 2ε. (68)

We arrive at the second last line of (68) using Lemma
1. The last line of (68) is obtained analogously to (50),
since σAB

n,ε ∈ Bε(ρAB
n ).

Note, however, that (68) leads to a contradiction. This
can be seen as follows: Let R be a real number satisfying

Tr
[
πAB
n,ε (I

A
n ⊗ ρBn )

]
= 2nR.

It follows from the assumption (67) that, for ε small
enough, R < S(A|B). Note that

Tr(πAB
n,ε ρ

AB
n )

= Tr
[
πAB
n,ε (ρ

AB
n − 2−nγIAn ⊗ ρBn )

]

+2−nγTr
[
πAB
n,ε (I

A
n ⊗ ρBn )

]

≤ Tr
[
{ρAB

n ≥ 2−nγIAn ⊗ ρBn }(ρAB
n − 2−nγIAn ⊗ ρBn )

]

+2−n(γ−R)

(69)

Choose S(A|B) > γ > R. For such a choice, the second
term on the right hand side of (69) tends to zero asymp-
totically in n. However, the first term does not tend to
1 and we hence obtain the bound

Tr(πAB
n,ε ρ

AB
n ) < 1− c0, (70)

for some constant c0 > 0. This contradicts (68) in the
limit ε→ 0.

Relation between S(A|B) andHε

min(ρAB|ρB)

Theorem 4 Given a sequence of bipartite states ρ̂AB =
{ρAB

n }∞n=1, where ρAB
n ∈ B

(
(HA ⊗ HB)

⊗n
)
, the inf-

spectral conditional entropy rate S(A|B) is related to the
smooth conditional min-entropy as follows:

S(A|B) = lim
ε→0

lim inf
n→∞

1

n
Hε

min(ρ
AB
n |ρBn ) (71)

Proof
We first prove the bound

S(A|B) ≥ lim
ε→0

lim inf
n→∞

1

n
Hε

min(ρ
AB
n |ρBn ) (72)

Let σAB
n,ε be the operator for which

Hmin(σ
AB
n,ε |ρBn ) = max

ρAB∈Bε(ρAB
n

)
Hmin(ρ

AB |ρBn ). (73)

Let us define

Υε(A|B)

:= sup
{
α : lim sup

n→∞
Tr

[
{σAB

n,ε ≥ 2−nαIAn ⊗ ρBn }Πα
n

]
= 0

}
,

(74)

where Πα
n := σAB

n,ε − 2−nαIAn ⊗ ρBn .
According to Definition 3 of the conditional smooth

min-entropy, that to prove (72), it suffices to prove the
following lemma:
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Lemma 7 For any sequence of bipartite states ρ̂AB =
{ρAB

n }∞n=1, and any ε > 0, there exists an n0 ∈ N, such
that for all n ≥ n0

S(A|B) ≥ − 1

n
log

[
{min{λ : σAB

n,ε ≤ λIAn ⊗ ρBn }}
]
, (75)

with σAB
n,ε defined by (73).

Proof We prove this lemma in two steps. We first prove
that for any ε > 0 and n large enough,

Υε(A|B) ≥ − 1

n
log

[
min{λ : σAB

n,ε ≤ λIAn ⊗ ρBn }
]
. (76)

We then prove that

S(A|B) ≥ lim
ε→0

Υε(A|B). (77)

Proof of (76): For any arbitrary η > 0, let α be defined
through the relation

min{λ : σAB
n,ε ≤ λIAn ⊗ ρBn } = 2−n(α+η). (78)

Hence,

− 1

n
log

[
min{λ : σAB

n,ε ≤ λIAn ⊗ ρBn }
]
= α+ η (79)

Note that (78) implies that σAB
n,ε ≤ 2−n(α+η)(IAn ⊗ ρBn ),

and hence (σAB
n,ε − 2−n(α+η)IAn ⊗ ρBn ) ≤ 0. This in turn

implies that (σAB
n,ε − 2−nαIAn ⊗ ρBn ) ≤ 0 and hence

Tr
[
{σAB

n,ε ≥ 2−nαIAn ⊗ ρBn }(σAB
n,ε − 2−nαIAn ⊗ ρBn )

]
= 0.
(80)

It then follows from the definition (74) of Υε(A|B) that
α ≤ Υε(A|B). Hence, using (79), we get

− 1

n
log

[
min{λ : σAB

n,ε ≤ λIAn ⊗ρBn }
]
−η ≤ Υε(A|B), (81)

which in turn yields (76), since η is arbitrary.

Proof of (77): Defining P γ
n := {ρAB

n ≥ 2−nγIAn ⊗ ρBn },
note that

Tr
[
P γ
n ρ

AB
n

]

= Tr
[
P γ
nσ

AB
n,ε

]
+Tr

[
P γ
n (ρ

AB
n − σAB

n,ε )
]

≤ Tr
[
P γ
n (σ

AB
n,ε − 2−nα(IAn ⊗ ρBn )

]

+2−nαTr
[
P γ
n (I

A
n ⊗ ρBn )

]
+ ε

≤ Tr
[
{σAB

n,ε ≥ 2−nαIAn ⊗ ρBn }(σAB
n,ε − 2−nα(IAn ⊗ ρBn )

]

+2−n(α−γ) + ε (82)

In the above we have made use of Lemma 1, Lemma 2
and Corollary 1.
Let us choose γ = α−δ/2, for an arbitrary δ > 0, with

α = Υε(A|B)−δ/2. Then both the first and second terms
on the right hand side of (82) goes to zero as n → ∞.

Therefore, for n large enough and any δ
′

> 0, in the limit
ε→ 0, we must have that

Tr(P γ
n ρ

AB
n ) ≤ δ

′

, (83)

which in turn implies that γ ≤ S(A|B). Hence, from the
choice of the parameters α and γ it follows that

lim
ε→0

Υε(A|B)− δ ≤ S(A|B), (84)

and since δ is arbitrary, we obtain the inequality (77).

We next prove the bound

S(A|B) ≤ lim
ε→0

lim inf
n→∞

1

n
Hε

min(ρ
AB
n |ρBn ) (85)

Proof of (85): Let δ > 0 be arbitrary but fixed. Then by
the definition of the inf-spectral conditional entropy rate
there exists γ ∈ R such that

γ > S(A|B)− δ (86)

and

lim sup
n→∞

Tr
[
{ρAB

n ≥ 2−nγIAn ⊗ ρBn }ρAB
n

]
= 0 . (87)

In particular, for any ε > 0 there exists n0 ∈ N such that
for all n ≥ n0.

Tr
[
{ρAB

n > 2−nγ · IAn ⊗ ρBn }ρAB
n

]

≤ Tr
[
{ρAB

n ≥ 2−nγ · IAn ⊗ ρBn }ρAB
n

]
<

ε2

8
. (88)

Using Lemma 6 we then infer that for all n ≥ n0

Hε
min(ρ

AB
n |ρBn ) ≥ nγ (89)

and, hence

lim inf
n→∞

1

n
Hε

min(ρ
AB
n |ρBn ) ≥ γ . (90)

Because this holds for any ε > 0, we conclude

lim
ε→0

lim inf
n→∞

1

n
Hε

min(ρ
AB
n |ρBn ) ≥ γ > S(A|B) − δ . (91)

The assertion (85) then follows because this holds for any
δ > 0.

CONCLUSIONS

So far, the information spectrum approach and the
smooth entropy framework have been applied within
pretty different subfields of information theory [30]. In
the quantum regime, spectral entropy rates have mostly
been used to characterize information sources, commu-
nication channels and entanglement manipulations. In
contrast, smooth entropies proved useful in the context
of randomness extraction and cryptography. We hope
that our result bridges the gap between these two sub-
fields. In fact, for the study of asymptotic settings where
the underlying resources are available many times, both
the information-spectrum approach and the smooth en-
tropy framework can be used equivalently.
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APPENDIX

In this Appendix we give the proofs of Proposition 1
and Proposition 2.

PROOF OF PROPOSITION 1

Proof For any α = D(ρ‖ω) + δ, with δ > 0, implies

0 = lim
n→∞

Tr
[
{ρn ≥ enαωn}ρn

]

≥ lim
n→∞

Tr
[
{ρn ≥ enαωn}(ρn − enαωn)

]

≥ 0 (92)

giving D(ρ‖ω) ≥ D(ρ‖ω), as δ is arbitrary. For the con-
verse we assume that the inequality is strict, such that
D(ρ‖ω) = D(ρ‖ω) + 4δ for some δ > 0. Then choosing
α = D(ρ‖ω)+ 2δ, γ = D(ρ‖ω)+ δ, we have from Lemma
1,

Tr
[
{ρn ≥ enαωn}ρn

]
≤ Tr

[
{ρn ≥ enγωn}(ρn − enγωn)

]

+ enγTr
[
{ρn ≥ enαωn}ωn

]

≤ εn + e−nδ (93)

where εn = Tr
[
{ρn ≥ enγωn}(ρn−enγωn)

]
and Tr

[
{ρn ≥

enαωn}ωn

]
≤ e−nα holds for any α. As the right hand

side goes to zero asymptotically and since α < D(ρ‖ω)
we have a contradiction.

PROOF OF PROPOSITION 2

Proof For any α = D(ρ‖ω)− δ, with δ > 0, implies

1 ≥ lim
n→∞

Tr
[
{ρn ≥ enαωn}ρn

]

≥ lim
n→∞

Tr
[
{ρn ≥ enαωn}(ρn − enαωn)

]

= 1 (94)

giving D(ρ‖ω) ≥ D(ρ‖ω), as δ is arbitrary. For the con-
verse we assume that the inequality is strict, such that
D(ρ‖ω) = D(ρ‖ω) + 4δ for some δ > 0. Then choosing

α = D(ρ‖ω)− δ, γ = D(ρ‖ω)− 2δ, we have from Lemma
1,

1
n→∞← Tr

[
{ρn ≥ enαωn}ρn

]

≤ Tr
[
{ρn ≥ enγωn}(ρn − enγωn)

]

+ enγTr
[
{ρn ≥ enαωn}ωn

]

≤ Tr
[
{ρn ≥ enγωn}(ρn − enγωn)

]
+ e−nδ (95)

where Tr
[
{ρn ≥ enαωn}ωn

]
≤ e−nα holds for any α.

Thus limn→∞ Tr
[
{ρn ≥ enγωn}(ρn− enγωn)

]
= 1, where

γ > D(ρ‖ω), which is a contradiction.
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