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Abstract

A two-user discrete memoryless compound multiple access channel with a common message and

conferencing decoders is considered. The capacity region is characterized in the special cases of physically

degraded channels and unidirectional cooperation, and achievable rate regions are provided for the general

case. The results are then extended to the corresponding Gaussian model. In the Gaussian setup, the provided

achievable rates are shown to lie within some constant number of bits from the boundary of the capacity

region in several special cases. An alternative model, in which the encoders are connected by conferencing

links rather than having a common message, is studied as well, and the capacity region for this model is

also determined for the cases of physically degraded channels and unidirectional cooperation. Numerical

results are also provided to obtain insights about the potential gains of conferencing at the decoders and

encoders.
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I. INTRODUCTION

In today’s complex communication networks there are often multiple “signal paths” to utilize in

delivering data between a given transmitter and receiver. Such signal paths may take the form of

(generalized) feedback from the channel to the transmitters or additional (orthogonal) communica-

tion links between either the transmitters or the receivers. The first case corresponds to scenarios

in which the additional signal paths share the spectral resources with the direct transmitter-receiver

links (in-band signalling), while the second case refers toscenarios in which orthogonal spectral

resources are available at the transmit and/or the receive side (out-of-band signalling).

In this work, we focus on the latter case discussed above and model the out-of-band signal paths

as finite-capacity directed links. This framework is typically referred to as “conferencing” (or “partial

cooperation”) in the literature to emphasize the possibly interactive nature of communication on such

links. Conferencing encoders in a two-user multiple accesschannel (MAC) have been investigated

in [1] [2]1 and in [3] for a two-user interference channel. These works show that conferencing

encoders can create dependence between the transmitted signals by coordinating the transmission

via the out-of-band links, thus mimicking multiantenna transmitters. Conferencing decoders have

been studied in [4] for a relay channel and in [5] - [9] for a broadcast channel. Such decoders

can use the out-of-band links to exchange messages about thereceived signals so as to mimic a

multiantenna receiver (see also [10]).

This work extends the state of the art described above by considering the compound MAC

with conferencing decoders and a common message (see Fig. 1)and then with both conferencing

encoders and decoders (see Fig. 5). These models generalizethe setup of a single-message broadcast

(multicast) channel with two conferencing decoders studied in [5]2 - [9], in that there are two

transmitters that want to broadcast their messages to the conferencing receivers. Moreover, the

transmitters can have a common message (Fig. 1) or be connected by conferencing links (Fig.

5). The model also generalizes the compound MAC with common messages studied, among other

models, in [3], by allowing conferencing among the decoders. The main contributions of this work

1It is noted that a MAC with conferencing encoders can be seen as a special case of a MAC with generalized feedback.

2Reference [5] also considers a broadcast channel with private messages to the two users.



are summarized as follows:

• The capacity region is derived for the two-user discrete-memoryless compound MAC with

a common message and conferencing decoders in the special cases of physically degraded

channels and unidirectional cooperation (Sec. IV);

• Achievable rate regions are given for the general model of Fig. 1 (Sec. V);

• Extension to the corresponding Gaussian case is provided, establishing the capacity region

with unidirectional cooperation and deriving general achievable rates. Such achievable rates

are also shown to be within some constant number of bits of thecapacity region in several

special cases (Sec. VI);

• The capacity region is determined for the compound MAC with both conferencing encoders

and decoders as in Fig. 5 in the special cases of physically degraded channels and unidirectional

cooperation (Sec. VII).

Finally, numerical results are also provided to obtain further insight into the main conclusions.

II. SYSTEM MODEL AND MAIN DEFINITIONS

We start by considering the model in Fig. 1, which is a discrete-memoryless compound MAC

with conferencing decoders and common information (here, for short, we will refer to this channel

as the CM channel). The CM channel is characterized by(X1, X2, p
∗(y1, y2|x1, x2), Y1, Y2) with

input alphabetsX1,X2 and output alphabetsY1,Y2. Theith encoder,i = 1, 2, is interested in sending

a private messageWi ∈ Wi = {1, 2, ..., 2nRi} of rateRi [bits/channel use] to both receivers and, in

addition, there is a common messageW0 ∈ W0 = {1, 2, ..., 2nR0} of rateR0 to be delivered by both

encoders to both receivers. The channel is memoryless and time-invariant in that the conditional

distribution of the output symbols at any timej = 1, 2, ..., n satisfies

p(y1,j, y2,j|xn
1 , x

n
2 , y

j−1
1 , yj−1

2 , w̄) = p∗(y1,j, y2,j|x1,j , x2,j) (1)

with w̄ = (w0, w1, w2) ∈ W0 × W1 × W2 being a given triplet of messages. Notation-wise, we

employ standard conventions (see, e.g., [11]), where the probability distributions are defined by the

arguments, upper-case letters represent random variablesand the corresponding lower-case letters

represent realizations of the random variables. The superscripts identify the number of samples to be



included in a given vector, e.g.,yj−1
1 = [y1,1 · · · y1,j−1]. It is finally noted that the channel defines the

conditional marginalsp(y1|x1, x2) =
∑

y2∈Y2
p∗(y1, y2|x1, x2) and similarly forp(y2|x1, x2). Further

definitions are in order.

Definition 1: A ((2nR0, 2nR1, 2nR2), n,K) code for the CM channel consists of two encoding

functions (i = 1, 2)

fi: W0 ×Wi → X n
i , (2)

a set of2K “conferencing” functions and corresponding output alphabetsVi,k (k = 1, 2, ..., K):

g1,k: Yn
1 × V2,1 × · · · × V2,k−1 → V1,k (3a)

g2,k: Yn
2 × V1,1 × · · · × V1,k−1 → V2,k, (3b)

and decoding functions:

h1: Yn
1 × V2,1 × · · · × V2,K → W0 ×W1 (4a)

h2: Yn
2 × V1,1 × · · · × V1,K → W0 ×W2. (4b)

Notice that the conferencing functions (3) prescribeK conferencing rounds between the decoders

that start as soon as the two decoders receive the entire block of n output symbolsyn1 and yn2 .

Each conference round, say thekth, corresponds to a simultaneous and bidirectional exchange of

messages between the two decoders taken from the alphabetsV1,k andV2,k, similarly to [1], [14]. It

is noted that other works have used slightly different definitions of conferencing rounds [7], [16].

After theK conferencing rounds, the receivers perform decoding with functions (4) by capitalizing

on the exchanged conferencing messages. Due to the orthogonality between the main channel and

the conferencing links, the transmission from the users on one channel and conferencing/ decoding

on the other can take place simultaneously.

Definition 2: A rate triplet (R0, R1, R2) is said to beachievablefor the CM channel with decoders

connected by conferencing links with capacities(C12, C21) (see Fig. 1) if for anyε > 0 there exists,

for all n sufficiently large, a((2nR0, 2nR1, 2nR2), n,K) code with anyK ≥ 0 such that the probability

of error satisfies
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Fig. 1. A discrete-memoryless compound MAC channel with conferencing decoders and common information (for short, CM).
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 ≤ ε (5)

and the conferencing alphabets are such that
K∑

k=1

|V1,k| ≤ nC12 and
K∑

k=1

|V2,k| ≤ nC21. (6)

The capacity regionCCM(C12, C21) is the closure of the set of all achievable rates (R0, R1, R2).

III. PRELIMINARIES AND AN OUTER BOUND

Similarly to [3], it is useful to define the rate regionRMAC,i(p(u), p(x1|u), p(x2|u)) for the MAC

seen at theith receiver (i = 1, 2) as the set of rates

RMAC,i

(
p(u), p(x1|u), p(x2|u)

)
=

{
(R0, R1, R2):R0 ≥ 0, R1 ≥ 0, R2 ≥ 0,

R1 ≤ I(X1; Yi|X2U), (7a)

R2 ≤ I(X2; Yi|X1U), (7b)

R1 +R2 ≤ I(X1X2; Yi|U), (7c)

R0 +R1 +R2 ≤ I(X1X2; Yi)

}
, (7d)

where the joint distributions of the involved variables is given by

p(u)p(x1|u)p(x2|u)p(yi|x1, x2).



If C12 = C21 = 0, the capacity regionCCM (0, 0) is given by [3]:

CCM(0, 0) =
⋃
{
⋂

i=1,2

RMAC,i(p(u), p(x1|u), p(x2|u))
}

(8a)

=
⋃{

(R0, R1, R2): R0 ≥ 0, R1 ≥ 0, R2 ≥ 0, (8b)

R1 ≤ min{I(X1; Y1|X2U), I(X1; Y2|X2U)}, (8c)

R2 ≤ min{I(X2; Y1|X1U), I(X2; Y2|X1U)}, (8d)

R1 +R2 ≤ min{I(X1X2; Y1|U), I(X1X2; Y2|U)}, (8e)

R0 +R1 +R2 ≤ min{I(X1X2; Y1), I(X1X2; Y2)}
}
, (8f)

where the union is taken over all joint distributions of the form

p(u)p(x1|u)p(x2|u)p∗(y1, y2|x1, x2).

It is remarked that no convex hull operation is necessary in (8) as the regionCCM (0, 0) is convex

[3] (see also [1], Appendix I).

We now derive an outer bound on the capacity regionCCM(C12, C21). To this end, it is useful to

define the capacity region achievable when the two receiversare allowed to fully cooperate (FC),

thus forming a two-antenna receiver. In this case, we have

RMAC,FC

(
p(u), p(x1|u), p(x2|u)

)
=

{
(R0, R1, R2):R0 ≥ 0, R1 ≥ 0, R2 ≥ 0, (9a)

R1 ≤ I(X1; Y1Y2|X2U), (9b)

R2 ≤ I(X2; Y1Y2|X1U), (9c)

R1 +R2 ≤ I(X1X2; Y1Y2|U), (9d)

R0 +R1 +R2 ≤ I(X1X2; Y1Y2)

}
, (9e)

where the joint distributions of the involved variables is given by

p(u)p(x1|u)p(x2|u)p∗(y1, y2|x1, x2). (10)



Proposition 3.1:We haveCCM(C12, C21) ⊆ CCM−out(C12, C21) where (dropping the dependence

on p(u), p(x1|u), p(x2|u) to simplify the notation)

CCM−out(C12, C21) =
⋃{

(RMAC,1 + C12) ∩ (RMAC,2 + C21) ∩ (RMAC,FC)
}

(11a)

=
⋃{

(R0, R1, R2): R0 ≥ 0, R1 ≥ 0, R2 ≥ 0, (11b)

R1 ≤ min{I(X1; Y1|X2U) + C21, I(X1; Y2|X2U) + C12,

I(X1; Y1Y2|X2U)}, (11c)

R2 ≤ min{I(X2; Y1|X1U) + C21, I(X2; Y2|X1U) + C12,

I(X2; Y1Y2|X1U)}, (11d)

R1 +R2 ≤ min{I(X1X2; Y1|U) + C21, I(X1X2; Y2|U) + C12, (11e)

I(X1X2; Y1Y2|U)}, (11f)

R0 +R1 +R2 ≤ min{I(X1X2; Y1) + C21, I(X1X2; Y2) + C12,

I(X1X2; Y1Y2)}
}
, (11g)

in which the union is taken over all the joint distributions that factorize as (10).

Similarly to (8), region (11) can be proven to be convex following [1].

Proof: See Appendix I.

IV. CAPACITY REGION WITH PHYSICALLY DEGRADED CHANNELS AND UNIDIRECTIONAL

COOPERATION

The next proposition establishes the capacity regionCCM−DEG(C12, C21) in the case of physically

degraded outputs.

Proposition 4.1: If the CM channel is physically degraded in the sense that(X1X2)− Y1 − Y2



forms a Markov chain, then the capacity region is obtained as

CCM−DEG(C12, C21) = CCM−out(C12, 0) = (12a)

=
⋃

{(R0, R1, R2): R0 ≥ 0, R1 ≥ 0, R2 ≥ 0, (12b)

R1 ≤ min{I(X1; Y1|X2U), I(X1; Y2|X2U) + C12}, (12c)

R2 ≤ min{I(X2; Y1|X1U), I(X2; Y2|X1U) + C12}, (12d)

R1 +R2 ≤ min{I(X1X2; Y1|U), I(X1X2; Y2|U) + C12}, (12e)

R0 +R1 +R2 ≤ min{I(X1X2; Y1), I(X1X2; Y2) + C12}}. (12f)

Notice that herep∗(y1y2|x1, x2) = p(y1|x1, x2)p(y2|y1) due to degradedness.

Proof: See Appendix II.

Remark 4.1:A symmetric result clearly holds for the physically degraded channel(X1X2) −
Y2 − Y1.

Establishment of the capacity region is also possible in thespecial case where only unidirectional

cooperation is allowed, that isC12 = 0 or C21 = 0. This result is akin to [9] where a broadcast

channel with two receiver under unidirectional cooperation was considered.

Proposition 4.2: In the case of unidirectional cooperation (C12 = 0 or C21 = 0), the capacity

region of the CM channel is given by

CCM(0, C21) = CCM−out(0, C21) (13)

or

CCM (C12, 0) = CCM−out(C12, 0). (14)

Proof: Achievability follows by using the same scheme as in the proof of Proposition 4.1.

The converse is immediate.

V. GENERAL ACHIEVABLE RATES

Achievable rates can be derived for the general CM channel, extending the analysis of [5] from

the broadcast setting with one transmitter to the CM channel. Notice that [5] uses a different



definition for the operation over the conferencing channelsbut this turns out to be immaterial for

the achievable rates discussed below.

Proposition 5.1:The following region is achievable with one-round conferencing, i.e.,K = 1:

ROR(C12, C21) =
⋃

{(R0, R1, R2): R0 ≥ 0, R1 ≥ 0, R2 ≥ 0, (15a)

R1 ≤ min{I(X1; Y1Ŷ2|X2U), I(X1; Y2Ŷ1|X2U)}, (15b)

R2 ≤ min{I(X2; Y1Ŷ2|X1U), I(X2; Y2Ŷ1|X1U)}, (15c)

R1 +R2 ≤ min{I(X1X2; Y1Ŷ2|U), I(X1X2; Y2Ŷ1|U)} (15d)

R0 +R1 +R2 ≤ min{I(X1X2; Y1Ŷ2), I(X1X2; Y2Ŷ1)}} (15e)

subject to

C12 ≥ I(Y1; Ŷ1|Y2) (16a)

C21 ≥ I(Y2; Ŷ2|Y1) (16b)

with |Ŷi| ≤ |Yi|+ 1, and the union is taken over all the joint distributions thatfactorize as

p(u)p(x1|u)p(x2|u)p∗(y1, y2|x1, x2)p(ŷ1|y1)p(ŷ2|y2).
Proof: (Sketch): The proof is similar to that of Theorem 3 in [5] and is thus only sketched here.

A one-step conference (K = 1) is used. Encoding and transmission are performed as for a MAC

with common information (see proof of Proposition 4.1). Each receiver compresses its received

signal using Wyner-Ziv compression exploiting the fact that the other receiver has a correlated

observation as well. The compression indices are exchangedduring the one conferencing round

via symbolsV1,1 and V2,1. Decoding is then carried out at each receiver using joint typicality:

For instance, receiver 1 looks for jointly typical sequences (un(w0), x
n
1 (w0, w1), x

n
2 (w0, w2), y

n
1 , ŷ

n
2 )

with wi ∈ Wi, whereŷn2 is the compressed sequence received by the second decoder.

The achievable strategy of Proposition 5.1 is based onK = 1 round of conferencing. It is easy

to construct examples where such a strategy fails to achievethe outer bound (11) as discussed in

the example below.

Example 1. Consider a symmetric scenario withR0 = 0 and equal private ratesR1 = R2 = R

(i.e.,p∗(y1, y2|x1, x2) = p∗(y2, y1|x1, x2) = p∗(y1, y2|x2, x1) = p∗(y2, y1|x2, x1)). Fix U to a constant



without loss of generality (given the absence of a common message) and the input distribution to

p(x1)p(x2). We are interested in finding the maximum achievable equal rateR1 = R2 = R. Assume

that the conferencing capacities satisfyC12 = H(Y1|Y2) = H(Y2|Y1) and 1/2 · I(X1X2; Y2|Y1) ≤
C21 < H(Y1|Y2). In this case, it can be seen that the maximum equal rate is upper bounded as

R ≤ Rout = 1/2 · I(X1X2; Y1Y2) by the outer bound (11), which corresponds to the maximum

equal rate of a system with full cooperation at the receiver side. This bound can be achieved if both

receivers have access to both outputsY1 andY2. With the one-round strategy, sinceC12 = H(Y1|Y2)

receiver 1 can provideY1 to receiver 2 via Slepian-Wolf compression, but receiver 2 cannot do

the same with receiver 1 sinceC21 < H(Y1|Y2). Therefore, rateRout cannot be achieved by this

strategy, which in fact attains equal rateROR = 1/2 · I(X1X2; Y1Ŷ2) < Rout (recall (16)).

We now consider a second strategy that generalizes the previous one and is based on two rounds

of conferencing(K = 2). As will be shown below, this strategy is able to improve upon the

one-round scheme, while still failing to achieve the outer-bound (11) in the general case.

Proposition 5.2:The following rate region is achievable with two rounds of conferencing, i..e.,

K = 2:

RTR(C12, C21) = co
⋃

{RTR,12 ∪ RTR,21} (17)

where “co” indicates the convex hull operation, and we have

RTR,12 = {(R0, R1, R2): R0 ≥ 0, R1 ≥ 0, R2 ≥ 0, (18a)

R1 ≤ min{I(X1; Y1|X2U) + C21, I(X1; Y2Ŷ1|X2U)}, (18b)

R2 ≤ min{I(X2; Y1|X1U) + C21, I(X2; Y2Ŷ1|X1U)}, (18c)

R1 +R2 ≤ min{I(X1X2; Y1|U) + C21, I(X1X2; Y2Ŷ1|U)}, (18d)

R0 +R1 +R2 ≤ min{I(X1X2; Y1) + C21, I(X1X2; Y2Ŷ1)}}, (18e)



RTR,21 is similarly defined:

RTR,21 = {(R0, R1, R2): R0 ≥ 0, R1 ≥ 0, R2 ≥ 0, (19a)

R1 ≤ min{I(X1; Y1Ŷ2|X2U), I(X1; Y2|X2U) + C12}, (19b)

R2 ≤ min{I(X2; Y1Ŷ2|X1U), I(X1; Y2|X2U) + C12}, (19c)

R1 +R2 ≤ min{I(X1X2; Y1Ŷ2|U), I(X1; Y2|X2U) + C12}, (19d)

R0 +R1 +R2 ≤ min{I(X1X2; Y1Ŷ2), I(X1; Y2|X2) + C12}}, (19e)

subject to

C12 ≥ I(Y1; Ŷ1|Y2)

C21 ≥ I(Y2; Ŷ2|Y1)

with |Ŷi| ≤ |Yi|+ 1, and the union is taken over all the joint distributions thatfactorize as

p(u)p(x1|u)p(x2|u)p∗(y1y2|x1, x2)p(ŷ1|y1)p(ŷ2|y2).
Proof: (Sketch): The proof is quite similar to Theorem 4 in [5], and here we only sketch

the main points. Conferencing takes place viaK = 2 conferencing rounds. Moreover, two possible

strategies are considered, giving rise to the convex hull operation in (17) by time-sharing. The two

corresponding rate regionsRTR,12 in (18) andRTR,21 in (19) are obtained as follows. Consider

RTR,12. Receiver 2 randomly partitions the message setsW0, W1 andW2 into 2nα0C12 , 2nα1C12 and

2nα2C12 subsets, respectively, for a given0 ≤ αi ≤ 1 and
∑2

i=0 αi = 1, as in the proof of Proposition

4.1. Encoding and transmission are performed as for the MAC with common information. Receiver

1 compresses its received signal using Wyner-Ziv quantization as for the scheme discussed in the

proof of Proposition 5.1. This index is sent in the first conferencing round (notice that|V1,1| = nC12

and |V2,1| = 0). Upon reception of the compression indexV1,1, receiver 2 proceeds to decoding via

joint typicality and then sends the subset indices (see proof of Proposition 4.1) to receiver 1 via

V2,2 (now, |V1,2| = 0 and |V2,2| = nC21). The latter decoder performs joint-typicality decoding on

the subsets of messages left undecided by the conferencing messageV1,1 received by 1. The rate

regionRTR,21 is obtained similarly by simply swapping the roles of decoder 1 and decoder 2.



Example 1 (cont’d): To see the impact of the two-round scheme, here we reconsider Example

1 discussed above. It was shown that, for the scenario discussed therein, the one-round scheme

is not able to achieve the outer boundRout. However, it can be seen that the two-round scheme

does indeed achieve the outer bound. In fact, receiver 1 can provideY1 to receiver 2 via Slepian-

Wolf compression as for the one-round case, while receiver 2does not send anything in the first

conferencing round (̂Y2 is a constant). Now, receiver 2 decodes and sends the bin index of the

decoded messages to receiver 1 in the second conferencing round according to the two-round

strategy discussed above (receiver 1 is silent in the secondround). SinceC21 ≥ 1/2·I(X1X2; Y2|Y1)

by assumption, it can be seen from Proposition 5.2 that the maximum equal rate achieved by the

two round scheme isRTR = Rout.

We finally remark that it is possible in principle to extend the achievable rate regions derived

above to more than two conferencing rounds, following [6] [7]. This is generally advantageous

in terms of achievable rates. While conceptually not difficult, a description of the achievable rate

region would require cumbersome notation and is thus omitted here.

VI. GAUSSIAN COMPOUND MAC

Here we consider the Gaussian version of the CM channel:

Y1 = γ11X1 + γ21X2 + Z1 (20a)

Y2 = γ22X2 + γ12X1 + Z2, (20b)

with channel gainsγij ≥ 0, independent white zero-mean unit-power Gaussian noise{Zi}ni=1

and per-symbol power constraintsE[X2
i ] ≤ Pi. Notice that the channel described by (20) is not

physically degraded.

The outer bound of Proposition 3.1 can be extended to (20) by using standard arguments. In

particular, the capacity region of the Gaussian CM,CG
CM(C12, C21) satisfies the following.



Proposition 6.1:We haveCG
CM(C12, C21) ⊆ CG

CM−out(C12, C21) where:

CG
CM−out(C12, C21) =

⋃

0≤P ′
i
≤Pi

i=1,2

{
(R0, R1, R2):R0 ≥ 0, R1 ≥ 0, R2 ≥ 0, (21a)

R1 ≤ min
{
C(γ2

11P
′
1) + C21, C(γ2

12P
′
1) + C12, C(P ′

1

(
γ2
11 + γ2

12

)
)
}
, (21b)

R2 ≤ min
{
C(γ2

21P
′
2) + C21, C(γ2

22P
′
2) + C12, C(P ′

2

(
γ2
21 + γ2

22

)
)
}
, (21c)

R1 +R2 ≤ min





C(γ2
11P

′
1 + γ2

21P
′
2) + C21, C(γ2

22P
′
2 + γ2

12P
′
1) + C12,

C (P ′
1 (γ

2
11 + γ2

12) + P ′
2 (γ

2
21 + γ2

22) +K)



 (21d)

R0 +R1 +R2 ≤ min





C(γ2
11P

′
1 + γ2

21P
′
2 + ρ1) + C21, C(γ2

22P
′
2 + γ2

12P
′
1 + ρ2) + C12,

C




P ′
1 (γ

2
11 + γ2

12) + P ′
2 (γ

2
21 + γ2

22) +K
+ρ1 (1 + P ′

1γ
2
12 + P ′

2γ
2
22) + ρ2(1 + P ′

1γ
2
11 + P ′

2γ
2
21)

−2
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with

K = P ′
1P

′
2(γ12γ21 − γ11γ22)

2 (22a)

ρ1 = (γ11
√

P1 − P ′
1 + γ21

√
P2 − P ′

2)
2 (22b)

ρ2 = (γ22
√

P2 − P ′
2 + γ12

√
P1 − P ′

1)
2 (22c)

andC(x) , 1
2
log(1 + x).

Proof: Similarly to Proposition 3.1, one can prove that the rate region (11) is an outer

bound on the achievable rates. It then remains to be proved that a Gaussian joint distribution

p(u)p(x1|u)p(x2|u) with Xi =
√
P − P ′

iU +
√

P ′
iVi, where isU, V1 and V2 are independent

Gaussian zero-mean unit-power random variables, is optimal. This can be done following the steps

of [2], where the proof is given for a single MAC channel with common information (see also

[15]). The proof is concluded with some algebra.

The achievable rates in Proposition 5.1 (forK = 1) and Proposition 5.2 (forK = 2) can also be

extended to the Gaussian CM channel. In so doing, we focus on jointly Gaussian auxiliary random

variables for Wyner-Ziv compression. While no general claim of optimality is put forth here, some

conclusion on the optimality of such schemes can be drawn as discussed later in Sec. VI-A.



Proposition 6.2:The following rate region is achievable with one-round conferencing,K = 1:

RG
OR(C12, C21) =

⋃

0≤P ′
i
≤Pi

i=1,2

{(R0, R1, R2): R0 ≥ 0, R1 ≥ 0, R2 ≥ 0, (23a)

R1 ≤ min

{
C
(
P ′
1

(
γ2
11 +

γ2
12

1 + σ2
2

))
, C
(
P ′
1

(
γ2
12 +

γ2
11

1 + σ2
1

))}
, (23b)

R2 ≤ min
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P ′
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γ2
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2
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, C
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P ′
2

(
γ2
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(23c)
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(23d)
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},

with (22) and quantization noise variances satisfying

σ2
1 ≥ 1 + (γ2

11 + γ2
12)P1 + (γ2

21 + γ2
22)P2 + (γ12γ21 − γ11γ22)

2P1P2

(22C12 − 1)(1 + γ2
12P1 + γ2

22P2)
(24a)

σ2
2 ≥ 1 + (γ2

11 + γ2
12)P1 + (γ2

21 + γ2
22)P2 + (γ12γ21 − γ11γ22)

2P1P2

(22C21 − 1)(1 + γ2
11P1 + γ2

21P2)
. (24b)

Proof: As stated above, we consider Gaussian auxiliary random variables and evaluate the

region (15). In particular, the test channels for Wyner-Zivcompression are selected asŶi = Yi+Zq,i

where the compression noiseZq,i is zero-mean Gaussian with varianceσ2
i and independent ofYi.

The proposition follows from some algebraic manipulation.

The one-round strategy can be generalized by enabling two rounds of conferencing (K = 2),

obtaining the following achievable rate region:



Proposition 6.3:The following rate region is achievable with two rounds of conferencing,K =

2:

RG
TR(C12, C21) = co

⋃

0≤P ′
i
≤Pi

i=1,2

{RG
TR,12 ∪ RG

TR,21} (25)

with

RG
TR,21 =

{
(R0, R1, R2): R0 ≥ 0, R1 ≥ 0, R2 ≥ 0, (26a)
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RTR,12 is similarly defined:

RG
TR,12 =

{
(R0, R1, R2): R0 ≥ 0, R1 ≥ 0, R2 ≥ 0, (27a)

R1 ≤ min

{
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}
,

with (22) and (24).

A. Discussion

Here we draw some conclusions on the optimality of the one andtwo-round schemes discussed

above for the Gaussian CM channel. We start with the one-round scheme of Proposition 6.2 and

notice that, by comparison with the outer bound (21), it can be easily seen that the scheme at hand

is optimal in the asymptotic regime of large conferencing capacitiesC12 → ∞ and C21 → ∞.

Further conclusions on the gap between the upper bound (21) and the performance achievable with

one round of conferencing at the decoders can be drawn in two special cases. Consider first the

case of a broadcast channel with conferencing encoders [5] [7], which is obtained asR0 = 0 and

R2 = 0 and thusP2 = 0 without loss of generality (a symmetric statement can be straightforwardly

obtained forR0 = 0 andR1 = 0). In this case, we show below that the one-round scheme achieves

the upper bound (21) to within half a bit, irrespective of thechannel gains of the broadcast channel

and the capacities of the conferencing links. To elaborate,notice that the outer bound (21) for the

case at hand is given by

R1 ≤ R1,out = min{C(γ2
11P1) + C21, C(γ2

12P1) + C12, C((γ2
11 + γ2

12)P1)}, (28)

whereas the rate achievable with one-round conferencing isgiven by

R1,OR = min

{
C
(
γ2
11P1 +

γ2
12P1

1 + σ2
2

)
, C
(
γ2
12P1 +

γ2
11P1

1 + σ2
1

)}
, (29)

where

σ2
1 =

1 + (γ2
11 + γ2

12)P1

(22C12 − 1)(1 + γ2
12P1)

,

and

σ2
2 =

1 + (γ2
11 + γ2

12)P1

(22C21 − 1)(1 + γ2
11P1)

.



Using these two expressions, we can prove the following proposition (see Appendix III for a full

proof).

Proposition 6.4:We haveR1,OR ≥ R1,out − 1
2
. Moreover, for the symmetric channel case, i.e.,

γ2
11 = γ2

12, we haveR1,OR ≥ R1,out − log 3−1
2

.

Next, we consider the symmetric Gaussian CM channel, that is, we letR0 = 0, γ2
11 = γ2

22 = a,

γ2
12 = γ2

21 = b, andP1 = P2 , P . We also assume symmetric conferencing link capacitiesC12 =

C21 , C. In such a case, the outer bound and the achievable rates withone-round conferencing

are:

CG
CM−out(C) = {(R1, R2) : R1 ≥ 0, R2 ≥ 0,

R1 ≤ min{C(aP ) + C, C(bP ) + C, C((a+ b)P )}, (30a)

R2 ≤ min{C(bP ) + C, C(aP ) + C, C((a+ b)P )}, (30b)

R1 +R2 ≤ min{C((a + b)P ) + C, C(2(a+ b)P + (b− a)2P 2)}}, (30c)

and

RG
OR(C) = {(R1, R2) : R1 ≥ 0, R2 ≥ 0,

R1 ≤ min

{
C
((

a+
b

1 + σ2

)
P

)
, C
((

b+
a

1 + σ2

)
P

)}
, (31a)

R2 ≤ min

{
C
((

b+
a

1 + σ2

)
P

)
, C
((

a+
b

1 + σ2

)
P

)}
, (31b)

R1 +R2 ≤ C
((

a + b+
a+ b

1 + σ2
+

(b− a)2P

1 + σ2

)
P

)}
, (31c)

with σ2 , 1+2(a+b)P+(b−a)2P 2

(1+(a+b)P )(22C−1)
, respectively. The following result can be proved (see Appendix IV).

Proposition 6.5:RG
OR ⊇ {(R1, R2) : R1 ≥ 0, R2 ≥ 0, (R1+δ, R2+(∆−δ)) ∈ CG

CM−out(C) for all δ ∈
[0,∆]} with ∆ = log(1+β)

2
whereβ , max(a,b)

min(a,b)
. Moreover, in the special casea = b, the gap∆ can

be further reduced to∆ =
(
log 3−1

2

)
≈ 0.293 bits.

The proposition above is equivalent to saying that the totalrate loss of using one round of

conferencing relative to the sum capacity is less thanlog(1+β)
2

, which is a constant that depends

only on the relative qualities of the direct channels and thecross channels.



Let us now consider the two-round scheme of Proposition 6.3.SinceRG
TR(C12, C21) ⊇ RG

OR(C12, C21),

all the conclusions above on the one-round scheme apply alsoto the two-round strategy. Alterna-

tively, we can interpret these results as a finite bit limit onthe potential gain of going from one

round of conferencing to two rounds. Moreover, it should be noted that the two-round approach

was defined as single-session in [16] and shown therein to be optimal among several classes of

multi-session protocols for a broadcast channel with cooperating decoders. Finally, we can prove

the following.

Proposition 6.6:The two-round scheme is optimal in the case ofunidirectional cooperation:

RG
TR(0, C21) = CG

CM−out(0, C21) andRG
TR(C12, 0) = CG

CM−out(C12, 0), thus establishing the capacity

of the Gaussian CM channel for this special case.

Proof: This result follows by comparing the achievable region withthe outer bound (21).

Next, we comment on thesum-rate multiplexing gainof the Gaussian CM channel. Consider a

symmetric system withP1 = P2 , P, γ11 = γ22, γ12 = γ21, andC12 = C21 , C. We are interested

in studying the conditions on the conferencing capacityC such that the maximum multiplexing

gain on the sum-rate,limP→∞ sup(0,R1,R2)∈CG
CM

(C,C)(R1 +R2)/(
1
2
logP ) = 2, corresponding to full

cooperation, can be achieved. From the outer bound in (21), it is clear thatC should scale at

least as1
2
logP as the sum rate is limited byC(P (γ2

11 + γ2
21)) + C. By considering the achievable

regions with one (23) or two (25) conferencing rounds, it canbe also concluded that ifC scales

as (1 + ǫ) logP with any ǫ > 0, then the optimal multiplexing gain is indeed achievable. This

is because withC = 1
2
(1 + ǫ) logP the quantization noise variances in (24) are proportional to

P−ǫ and thus tend to zero for largeP. It is noted that this result would hold even if the decoders

used regular compression that neglects the side information at the other decoder, as in this case we

would haveσ2
i =

γ2

11
P+γ2

21
P+1

22C−1
, which is still proportional toP−ǫ for C = 1

2
(1 + ǫ) logP.

As a final remark, extending the achievable rates defined above for the Gaussian channel (and as-

suming Gaussian channel and compression codebooks as done above) to more than two conferencing

rounds would not lead to any further gain, since with Gaussian variables, “conditional” compression

and compression with side information have the same efficiency (see [7] for a discussion).
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Fig. 2. Outer bound (21), rate region achievable with one-round ( 23) and two-round (25) strategies and with no cooperation

(C12 = C21 = 0) for R0 = 0, and a symmetric scenario withP1 = P2 = 5dB, γ2

12 = γ2

21 = −3dB, γ2

11 = γ2

22 = 0dB,

C21 = C12 = 0.5.

B. Numerical results

Since the rate region expressions provided for the outer bound and the one-round and two-

round achievable schemes give little insight, in this section we present numerical results to see how

much gain is obtained via decoder cooperation. In Fig. 2, we consider a symmetric scenario with

P1 = P2 = 5 dB, γ2
12 = γ2

21 = −3 dB, γ2
11 = γ2

22 = 0 dB, C21 = C12 = 0.3, and we plot the outer

bound (21), the rate region achievable with one-round (23) and two-round (25) conferencing as

well as with no cooperation (C12 = C21 = 0) (obtained from either (23) and (25)) forR0 = 0 (so

that selectingP ′
i = Pi is sufficient in all the capacity regions). It can be seen thatcooperation via

conferencing decoders enables the achievable rate region to be increased both in terms of sum-rate

and individual rates. Moreover, the two-step strategy provides relevant gains with respect to the

one-step approach, while still not achieving the outer bound (21).
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Fig. 3. Sum of the private ratesR1 +R2 (with R0 = 0) versus the conferencing link capacityC21 for the outer bound (21), the

one-round (23) and two-round (25) strategies and with no cooperation (P1 = P2 = 10dB, γ2

12 = 0dB, γ2

22 = 0dB, γ2

21 = −3dB,

γ2

11 = −3dB, C12 = 0.2).

Fig. 3 and Fig. 4 show the sum of the private ratesR1+R2 (with R0 = 0) versus the conferencing

link capacitiesC21 andC12, respectively, for the outer bound (21), the achievable schemes with one-

round (23) and two-round (25) conferencing and with no cooperation. In both figures, we consider

cases in which receiver 1 has a worse signal quality than receiver 2 (stochastically degraded):

P1 = P2 = 10dB, γ2
12 = 0dB, γ2

22 = 0dB, γ2
21 = −3dB, γ2

11 = −3dB. Fig. 3 shows the

achievable sum-rates versusC21 for C12 = 0.2. It is seen that ifC21 = 0 the upper bound coincides

with the rate achievable with no cooperation, showing that if the link from the ”good” receiver

to the degraded receiver is disabled, the performance is dominated by the worse receiver and

there is no gain in havingC12 > 0. IncreasingC21 enables the rate of the worse receiver to

be increased via cooperation, thus harnessing significant gains with respect to no cooperation.

In particular, it is seen that forC21 sufficiently small (hereC21 . 0.5) the two-step strategy is
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one-round (23) and two-round (25) strategies and with no cooperation (P1 = P2 = 10dB, γ2

12 = 0dB, γ2
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11 = −3dB, C21 = 0.8).

optimal, since in this region the performance is dominated by the worse receiver whose achievable

rate increases linearly withC21 due to cooperation via binning of the message set performed

at the good receiver. The one-step protocol instead lags behind and its performance saturates at

C
(
γ2
22P2 + γ2

21P1 +
γ2

11
P1+γ2

21
P2

1+σ2

1

)
≃ 2.26. Finally, for sufficiently largeC21, the achievable sum-rate

at the worse receiver becomes larger than2.26 and the performance tends to the sum-rate of the

best receiver,C (γ2
22P2 + γ2

12P1) + C12 ≃ 2.4, unlessC12 is too large.

Further insight is shown in Fig. 4 where the rates are plottedversusC12 for C21 = 0.8. We

notice that forC12 = 0 only the two-step protocol is able to achieve the upper bound, since

in this regime it is optimal for the good receiver to decode and bin its decision. Moreover,

similarly, increasingC12 enhances the gain of the two-round strategy over the one-round strategy

up to the point where the perfomance is limited by the sum-rate at the worse receiver, i.e.,



by C (P1 (γ
2
11 + γ2

12) + P2 (γ
2
21 + γ2

22) + P1P2(γ12γ21 − γ11γ22)
2) ≃ 2.48, which coincides with the

upper bound.

VII. CONFERENCING ENCODERS AND DECODERS

In this section, we extend the capacity results of Sec. IV to the scenario in Fig. 5 in which

instead of having a common message (as in the previous sections), the encoders are connected

via conferencing links of capacitȳC12 and C̄21. Here, each encoder has only one messageWi

of rateRi (i = 1, 2) to deliver to both decoders. We refer to this channel as a compound MAC

with conferencing decoders and encoders (for short, the CMEchannel). Definitions of encoders

and conferencing at the transmission side follows the standard reference [1] (see also [3]). A

((2nR1, 2nR2), n, K̄,K) code for the CME channel consists of2K̄ “conferencing” functions at the

encoders, wherēK is the number of conferencing rounds between the transmitters (k = 1, 2, ..., K̄):

h̄1,k: W1 × V̄2,1 × · · · × V̄2,k−1 → V̄1,k (32a)

h̄2,k: W2 × V̄1,1 × · · · × V̄1,k−1 → V̄2,k. (32b)

with alphabets̄Vi,k (k = 1, 2, ..., K̄) satisfying the capacity budget on the conferencing links:

K∑

k=1

|V̄1,k| ≤ nC̄12 and
K∑

k=1

|V̄2,k| ≤ nC̄21, (33)

and encoding functions:

f1: W1 × V̄K̄
2 → X n

1 (34a)

f2: W2 × V̄K̄
1 → X n

2 . (34b)

It is noted that encoding takes place after theK̄ conferencing rounds at the transmit side, similar to

the operation at the receivers where decoding occurs after theK decoder-side conferencing rounds.

Decoding and conferencing at the receiver side are defined asin Sec. II (by setting the common

messageW0 to a constant). Achievability of a rate pair (R1, R2) is defined by requiring the existence

of a code with such rates and with a vanishing probability of error on the two messagesW1 and

W2. The capacity region of the CME channel is denoted asCCME(C̄12, C̄21, C12, C21).



An outer bound can be established similarly to Proposition 3.1.

Proposition 7.1:We haveCCME(C̄12, C̄21, C12, C21) ⊆ CCME−out(C̄12, C̄21, C12, C21) with

CCME−out(C̄12, C̄21, C12, C21) = {(R1, R2): ((R12 +R21), R1 − R12, R2 −R21)

∈ CCM−out(C12, C21) whereR12 = min{R1, C̄12}

andR21 = min{R2, C̄21}}, (35)

whereCCM−out(C12, C21) is defined in (11). It is shown in [3] that with only conferencing encoders

we haveCCME(C̄12, C̄21, 0, 0) = CCME−out(C̄12, C̄21, 0, 0).

Proof: See Appendix V.

The following capacity results can be established similarly to Proposition 4.1 and 4.2, respec-

tively.

Proposition 7.2: If the CME channel is physically degraded such that(X1X2)− Y1 − Y2 forms

a Markov chain, then the capacity region is obtained as

CCME−DEG(C̄12, C̄21, C12, C21) = CCME−out(C̄12, C̄21, C12, 0). (36)

Notice that herep∗(y1y2|x1, x2) = p(y1|x1, x2)p(y2|y1) due to degradedness. A symmetric result

holds for the physically degraded channel(X1X2)− Y2 − Y1.

Proof: The converse follows from the same reasoning used in Proposition 4.1 and Proposition

6.3. Achievability is obtained by using a scheme similar to Proposition 4.1 with the only difference

being that here transmission is performed according to the optimal strategy for a MAC with

conferencing encoders [1] (see also Theorem 2 in [3]). It is noted that this strategy requires only

one conferencing round at the encoders,K̄ = 1.

Proposition 7.3: In the case of unidirectional cooperation at the receiver side (C12 = 0 or

C21 = 0), the capacity region is given by, respectively,

CCME(C̄12, C̄21, 0, C21) = CCME−out(C̄12, C̄21, 0, C21) (37a)

or

CCME(C̄12, C̄21, C12, 0) = CCME−out(C̄12, C̄21, C12, 0). (37b)



Proof: The proof is similar to those of Proposition 4.2 and Proposition 7.2.

It is finally noted that the outer bound and achievable rates derived in Sec. V and Section VI

can also be extended to the CME channel and the Gaussian CME channel (20) following the same

approach used to derive Propositions 7.2 and Proposition 7.3, that is, by considering the optimal

coding strategy for the MAC with conferencing encoders [1] (which requiresK̄ = 1). In terms

of the rate regions, this simply amounts to using the same transformation from(R0, R1, R2) to

(R1, R2) discussed above (see also [3]). For instance, an outer bound on the Gaussian capacity

regionCG
CME(C̄12, C̄21, C12, C21) can be obtained as

CG
CME−out(C̄12, C̄21, C12, C21) = {(R1, R2): ((R12 +R21), R1 − R12, R2 −R21)

∈ CG
CM−out(C12, C21) whereR12 = min{R1, C̄12}

andR21 = min{R2, C̄21}}, (38)

and similarly for the rate regions achievable with the one-round and two-round receiver-side

conferencing strategies ((23) and (25)) coupled with the optimal transmit cooperation [1].

Remark 7.1:(Conferencing encoders vs. conferencing decoders) While no general capacity re-

sults have been derived that enable a conclusive comparisonbetween the performance of confer-

encing encoders or decoders in the compound multiple accesschannel, some basic conclusions can

be drawn based on the analysis above. To start with, conferencing decoders tend to behave like a

multi-antenna receiver for large conferencing capacitiesand thus, as discussed in Sec. VI, have the

potential for increasing the multiplexing gain of the sum-rate up to the maximum value of two. In

contrast, it can be seen from the outer bound (38) that conferencing at the encoders alone does not

have such a potential advantage, as the coherent power combining afforded by cooperating encoders

is not enough to increase the multiplexing gain of the system3. However, this does not necessarily

mean that decoder conferencing is always to be preferred to encoder conferencing. Consider for

instance the case of unidirectional links, where sayC̄21 = C21 = 0, so that conferencing links

3It is noted that this conclusion would be significantly different for an interference channel, since in this case conferencing

at the encoders has the capability of creating an equivalenttwo-antenna broadcast channel with single-antenna receivers, whose

multiplexing gain is known to be two.
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Fig. 5. A discrete-memoryless compound MAC channel with conferencing decoders and encoders (for short, CME).

exist only from encoder 1 to encoder 2 on the transmit side andfrom decoder 1 to decoder 2

on the receive side. In this case, the capacity region is given in Proposition 7.3, and one can see

that, e.g., for a symmetric system (γ2
11 = γ2

22, γ
2
21 = γ2

12 andP1 = P2), the conferencing link at the

decoders alone never helps increase the achievable rates, while the conferencing link at the transmit

side can always enlarge the achievable rate region. Furtherperformance comparison is carried out

numerically below.

A. Numerical results

In this section, we present a numerical example related to the scenario in Fig. 5 for the Gaussian

CME channel (20). Fig. 6 shows the outer bound (38) evaluatedfor encoder-side (̄C12 = C̄21 = 0),

decoder-side (C12 = C21 = 0) or both-side conferencing, along with the rate regions achievable

with one-round and two-round strategies and with no cooperation for P1 = P2 = 5dB, γ2
12 =

γ2
21 = −3dB, γ2

11 = γ2
22 = 0dB, and conferencing capacities (when non-zero)C̄21 = C̄12 = C21 =

C12 = 0.3. Considering first the outer bounds, it can be seen that both conferencing at the encoders

and decoders have the same potential in terms of increasing the ratesR1 and R2, whereas for

this example the outer bound corresponding to decoder-sidecooperation leads to a larger sum-rate

R1+R2. Comparison of achievable rates via one or two rounds of conferencing at the receiver side

(recall that one round of encoder conferencing is enough to achieve all the rate points discussed
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Fig. 6. Outer bound (38) evaluated for encoder-side (C̄12 = C̄21 = 0), decoder-side (C12 = C21 = 0) or both-side conferencing,

along with the rate regions achievable with one-round and two-round strategies and with no cooperation forP1 = P2 = 5dB,

γ2

12 = γ2

21 = −3dB, γ2

11 = γ2

22 = 0dB, and conferencing capacities (when non-zero)C̄21 = C̄12 = C21 = C12 = 0.3.

here) is similar to that seen in Fig. 2.

VIII. C ONCLUSIONS

The model of conferencing encoders and/or decoders is a convenient framework that allows

evaluation of the potential gains arising from cooperationat the transmitter or receiver side in a

wireless network. From a practical standpoint, it accountsfor scenarios where out-of-band signal

paths exist at the two ends of a communication link, as is the case in wireless communication

systems where nodes are endowed with multiple radio interfaces. In this work, we have contributed

to the state of knowledge in this area by investigating a compound MAC with conferencing decoders

and, possibly, encoders. The compound MAC can be seen as a combination of two single-message

broadcast (multicast) channels from the standpoint of the transmitters, or two multiple access

channels as seen by the receivers. The scenario at hand generalizes a number of previously studied



setups, such as MAC or compound MAC with common message or conferencing encoders and

single-message broadcast channel with two conferencing decoders. A number of capacity results

have been derived that have shed light on the impact of decoder and encoder conferencing on

the capacity of the compound MAC. Among the conclusions, we have shown that in a compound

Gaussian MAC, one round of conferencing at the decoders achieves the entire capacity region

within a constant number of bits/s/Hz in several special cases. One round of conferencing at

the transmitters is also optimal in all the cases where the capacity region is known. Moreover,

comparing the performance of conferencing at the encoders and decoders, it has been pointed out

that examples can be constructed where either one outperforms the other. However, in the Gaussian

case, while conferencing at the decoders has the potential of increasing the sum-rate multiplexing

gain to the optimal value of two by mimicking a multiantenna receiver, the same is not true of

conferencing encoders, since coherent power combining afforded by cooperating encoders is not

enough to increase the multiplexing gain beyond one (recallthat the two decoders must estimate

both messages).

As a possible extension of this work we mention the study of aninterference channel, rather

than the compound MAC, with conferencing decoders. As already pointed out in the paper, some

of the conclusions here would be significantly different in this case, and the analysis could benefit

from the techniques used in [17] [18] to study interference channels with no cooperation.

APPENDIX I

PROOF OFPROPOSITION3.1

In order for rates (R0, R1, R2) to be achievable, the probability of errorPe needs to satisfy (5)

which, by the union bound, is implied byPe,i ≤ ε/2 for i = 1, 2 with

Pe,1 =
1

2n(R0+R1+R2)

∑

w̄∈W0×W1×W2

Pr[h1(Y
n
1 , V

k
2 ) 6= w̄|w̄ sent]

and similarly forPe,2. Consider the first receiver. By Fano’s inequality, we have

H(W0,W1,W2|Y n
1 , V

K
2 ) ≤ H(Pe,1) + n(R0 +R1 +R2)Pe,1 , nδn (39)



with δn → 0 asn → ∞. It also follows that

H(W1W2|Y n
1 , V

K
2 ,W0) ≤ nδn, (40a)

H(W1|Y n
1 , V

K
2 ,W0,W2) ≤ nδn and (40b)

H(W2|Y n
1 , V

K
2 ,W0,W1) ≤ nδn. (40c)

Now, from (39), we have

n(R0 +R1 +R2) ≤ I(W0,W1,W2; Y
n
1 , V

K
2 ) + nδn

≤ I(W0,W1,W2; Y
n
1 ) + I(W0,W1,W2;V

K
2 |Y n

1 ) + nδn

(a)

≤ I(W0,W1,W2; Y
n
1 ) + nC21 + nδn

(b)

≤
n∑

i=1

I(X1,i, X2,i; Y1,i) + nC21 + nδn,

where (a) follows from the fact thatI(W0,W1,W2;V
K
2 |Y n

1 ) ≤ H(V K
2 ) ≤ nC21 and (b) is obtained

similarly to [1], Sec. 3.4. From (40), using similar arguments as in the above chain of inequalities,

one can also obtain

n(R1 +R2) ≤
n∑

i=1

I(X1,i, X2,i; Y1,i|W0) + nC21 + nδn,

nR1 ≤
n∑

i=1

I(X1,i; Y1,i|X2,i,W0) + nC21 + nδn and

nR2 ≤
n∑

i=1

I(X2,i; Y1,i|X1,i,W0) + nC21 + nδn.

Now definingUi = W0, the proof is completed as in [3]. We can repeat the same arguments

for receiver 2. Also the condition that(R0, R1, R2) ∈ RMAC,FC follows similarly considering full

cooperation between the receivers.

APPENDIX II

PROOF OFPROPOSITION4.1

Converse: The converse follows immediately from Proposition 3.1 andthe data processing

theorem. In fact, it is easy to see that, because of physical degradedness, receiver 1 cannot benefit



from V K
2 , which is a function ofY n

2 andY n
1 via V k

1 . For instance, condition (39) now becomes

H(W0,W1,W2|Y n
1 ) = H(W0,W1,W2|Y n

1 , V
K
2 ) ≤ H(Pe,1) + n(R1 +R2)Pe,1 , nδn,

due to the Markov chain(W0,W1,W2) − Y n
1 − V K

2 . Repeating the same arguments for the other

conditions (40), the converse is then completed as in Proposition 3.1.

Achievability: Codeword generation at the transmitters is performed as for the MAC with common

information [1] [13]:

Generate2nR0 sequencesun(w0) of lengthn, with the elements of each being chosen independent

identically distributed (i.i.d.) according to the distributionp(u), w0 ∈ W0. For any sequenceun(w0),

generate2nRi independent sequencesxn
i (w0, wi), wi ∈ Wi, again i.i.d. according top(xi|ui(w0)),

for i = 1, 2.

At receiver 1, the message setsW0, W1 andW2 are partitioned into2nα0C12 , 2nα1C12 and2nα2C12

subsets, respectively, for given0 ≤ αi ≤ 1 and
∑2

i=0 αi = 1. This is done by assigning each

codeword in the message setsW0, W1 and W2 independently and randomly to the index sets

{1, 2, ..., 2nα0C12}, {1, 2, ..., 2nα1C12} and{1, 2, ..., 2nα2C12}, respectively.

Encodingat transmitteri is performed by sending codewordxn
i (w0, wi) corresponding to the

common messagew0 ∈ W0 and local messagewi ∈ Wi (i = 1, 2). Encoding at decoder 1 takes

place after detection of the two messagesW0, W1 andW2 (see description of decoding below). In

particular, decoder 1 sends over the conferencing link 1-2 the indices of the subsets in which the

estimated messagesW0, W1 andW2 lie. Notice that this requiresnC12 bits andK = 1 conferencing

rounds (i.e.,|V1,1| = nC12). Also we emphasize again that the conferencing link 2-1 is not used

(|V2,k| = 0).

Decodingat the first decoder is carried out by finding jointly typical sequences(un(w0), x
n
1 (w0, w1),

xn
2 (w0, w2), yn1 ) with wi ∈ Wi [11]. As discussed above, once the first decoder has obtained

the messagesW0, W1 and W2, it sends the corresponding subset indices to receiver 2 over the

conferencing channels. Decoding at receiver 2 then takes place again based on a standard MAC

joint-typicality encoder with the caveat that the messagesW0, W1 andW2 are now known to belong

to the reduced set given by the subsets mentioned above.

The analysis of the probability of errorfollows immediately from [1] [13]. In particular, as far



as receiver 1 is concerned, it can be seen from [1] [13] that a sufficient condition for the probability

of error to approach zero asn → ∞ is given by(R0, R1, R2) ∈ RMAC,1(p(u), p(x1|u), p(x2|u)).
Considering receiver 2, a sufficient condition is that the rates belong to the region

{(R0, R1, R2): R0 ≥ 0, R1 ≥ 0, R2 ≥ 0, (41a)

R1 ≤ I(X1; Y2|X2U) + α1C12 (41b)

R2 ≤ I(X2; Y2|X1U) + α2C12 (41c)

R1 +R2 ≤ I(X1X2; Y2|U) + (α1 + α2)C12 (41d)

R0 + R1 +R2 ≤ I(X1X2; Y2) + C12}, (41e)

for the givenαi. Taking the union over all allowedαi in (41) concludes the proof.

APPENDIX III

PROOF OFPROPOSITION6.4

We first prove thatR1,OR ≥ R1,out − 1
2
. We consider three separate cases and show that the

statement of the theorem holds for each case separately. We define Pa , γ2
11P1, Pb , γ2

12P1,

C̆12 , 22C12 − 1 and C̆21 , 22C21 − 1 for simplicity of notation. We remark that using this notation

the compression noises (24) can be written for the case at hand asσ2
1 = 1+Pa+Pb

(1+Pb)C̆12

andσ2
2− 1+Pa+Pb

(1+Pa)P̃21

.

Case 1: Let

C̆21 ≥
Pb

1 + Pa

(42)

and

C̆12 ≥
Pa

1 + Pb

. (43)

In this case, the upper bound (28) isR1,out =
1
2
log(1 + Pa + Pb) and for the achievable rate with

one-round conferencing (29) we have

C
(
Pa +

Pb

1 + σ2
2

)
=

1

2
log

(
1 + Pa +

Pb

1 + 1+Pa+Pb

P̃21(1+Pa)

)

≥ 1

2
log

(
1 + Pa +

P 2
b

1 + Pa + 2Pb

)
(44)



=
1

2
log

(
(1 + Pa + Pb)

2

1 + Pa + 2Pb

)

=
1

2
log (1 + Pa + Pb) +

1

2
log

(
1 + Pa + Pb

1 + Pa + 2Pb

)

≥ Rout −
1

2
.

where (44) follows from (42). Similarly, using (43), we can also show thatC
(
Pb +

Pa

1+σ2

1

)
≥

Rout − 1
2
. It then follows thatR1,out ≥ Rout − 1

2
.

Case 2: Now, let

C̆21 ≤
Pb

1 + Pa

(45)

and

(1 + Pa)(1 + C̆21) ≤ (1 + Pb)(1 + C̆12). (46)

In this case, we haveR1,out =
1
2
log(1 + Pa)(1 + C̆21) and

C
(
Pa +

Pb

1 + σ2
2

)
=

1

2
log

(
1 + Pa +

Pb

1 + 1+Pa+Pb

P̃21(1+Pa)

)

=
1

2
log (1 + Pa) +

1

2
log

(
1 +

PbC̆21

(1 + Pa)C̆21 + (1 + Pa + Pb)

)

=
1

2
log (1 + Pa) +

1

2
log

(
(1 + Pa + Pb)(1 + C̆21)

(1 + Pa)C̆21 + (1 + Pa + Pb)

)

=
1

2
log (1 + Pa)

(
1 + C̆21

)
+

1

2
log

(
1 + Pa + Pb

(1 + Pa)C̆21 + (1 + Pa + Pb)

)

≥ Rout +
1

2
log

(
1 + Pa + Pb

1 + Pa + 2Pb

)
(47)

≥ Rout −
1

2
, (48)

where (47) follows from (45). On the other hand, we also have

C
(
Pb +

Pa

1 + σ2
1

)
=

1

2
log

(
1 + Pb +

Pa

1 + 1+Pa+Pb

P̃12(1+Pb)

)

=
1

2
log

[
(1 + Pb)

(
1 +

Pa

1 + Pb +
1+Pa+Pb

C̆21

)]



≥ 1

2
log

[
(1 + Pb)

(
1 +

Pa[(1 + Pa)(1 + C̆21)− (1 + Pb)]

(1 + Pb)[(1 + Pa)(1 + C̆21) + Pa]

)]
(49)

=
1

2
log

[
(1 + Pa)(1 + C̆21)(1 + Pa + Pb)

(1 + Pa)(1 + C̆21) + Pa

]

= Rout +
1

2
log

[
1 + Pa + Pb

(1 + Pa)(1 + P̃21) + Pa

]

≥ Rout +
1

2
log

[
1 + Pa + Pb

1 + 2Pa + Pb

]
(50)

≥ Rout −
1

2
, (51)

where (49) follows from (46); and (50) follows from (45). From (48) and (51), we see that the

theorem holds for Case 2 as well.

Case 3: Let

C̆12 ≤
Pa

1 + Pb

(52)

and

(1 + Pb)(1 + C̆12) ≤ (1 + Pa)(1 + C̆21). (53)

In this case,Rout =
1
2
log(1 + Pb)(1 + C̆12). Case 3 follows similarly to Case 2.

Now, for the symmetric channel case, i.e.,γ2
11 = γ2

12, that is, ifPa = Pb , P , we have to prove

thatROR ≥ Rout − 0.29. This follows similarly to the treatment above as

ROR ≥ Rout −
1

2
log

[
1 + Pa + Pb

1 + 2Pa + Pb

]

= Rout −
1

2
log

[
1 + 2P

1 + 3P

]

≥ Rout −
1

2
(log 3− 1). (54)

APPENDIX IV

PROOF OFPROPOSITION6.5

To prove the theorem, we show that the bounds forR1, R2 andR1+R2 in CG
OR(C) are all within

log(1+β)
2

bits of the corresponding bounds inCG
CM−out(C). We defineC̆ , 22C − 1. Without loss of



generality, we assumeb ≥ a, and definex , aP . Then from the definition ofβ, we getbP = βx.

The outer bound and the achievable rates with one-round conferencing can now be written as

CG
CM−out(C) = {(R1, R2) : R1 ≥ 0, R2 ≥ 0,

R1 ≤ min{C(x) + C, C((1 + β)x)}, (55a)

R2 ≤ min{C(x) + C, C((1 + β)x)}, (55b)

R1 +R2 ≤ min{C((1 + β)x) + C, C(2(1 + β)x+ (β − 1)2x2)}}, (55c)

and

RG
OR(C) = {(R1, R2) : R1 ≥ 0, R2 ≥ 0,

R1 ≤ C
((

1 +
β

1 + σ2

)
x

)
, (56a)

R2 ≤ C
((

1 +
β

1 + σ2

)
x

)
, (56b)

R1 +R2 ≤ C
((

1 + β +
1 + β

1 + σ2
+

(β − 1)2x

1 + σ2

)
x

)}
(56c)

with σ2 , 1+2(1+β)x+(β−1)2x2

(1+(1+β)x)C̆
, respectively.

We first define functionsA andB as

A(x) , 1 + (1 + β)x

and

B(x) , 1 + 2(1 + β)x+ (β − 1)2x2. (57)

Consider the bound onR1. We analyze two cases separately. IfC̆ ≥ βx

1+x
, then the outer bound



is equivalent toR1 ≤ 1
2
logA. On the other hand, the bound on the achievableR1 is found as

1

2
log


1 + x+

βx

1 + 1+2(1+β)x+(β−1)2x2

(1+(1+β)x)C̆


 =

1

2
log

(
1 + x+

βx

1 + B

AC̆

)

≥ 1

2
log

(
1 + x+

β2Ax2

βAx+ (1 + x)B

)

≥ 1

2
log


A

(β2 + β)x2 + βx+ (1 + x)2
(
1 + (β−1)2

β+1
x
)

βAx+ (1 + x)B




≥ 1

2
log

A

1 + β

=
1

2
logA− 1

2
log(1 + β). (58)

If C̆ ≤ βx

1+x
, then the outer bound is equivalent toR1 ≤ 1

2
log((1+ C̆)(1+ x)). The achievable rate

bound can be written as

1

2
log

(
1 + x+

βx

1 + B

AC̆

)
=

1

2
log

(
(1 + x)(AC̆ +B) + βAC̆x

AC̆ +B

)

≥ 1

2
log(1 + x)

(
(1 + x)B + A2C̆

βxA + (1 + x)B

)

≥ 1

2
log(1 + x)

1 + C̆

1 + β

=
1

2
log(1 + x)(1 + C̆)− 1

2
log(1 + β). (59)

Combining (58) and (59), we conclude that the difference between the achievable rate bound and

the outer bound onR1 is not more than1
2
log(1 + β) bits. The same result applies for the bounds

on R2 in the same way.

Next, we consider the bounds on the sum-rate. IfC̆ ≥ B−A
A

, then the outer bound on the sum-rate



is equivalent toR1 +R2 ≤ 1
2
logB. On the other hand, the bound on achievable sum-rate is

1

2
log

[
1 + (1 + β)x

(
1 +

1

1 + σ2

)
+

(β − 1)2x2

1 + σ2

]

≥ 1

2
log

[
1 + (1 + β)x

(
1 +

1

2 + A
B−A

)
+

(β − 1)2x2

2 + A
B−A

]

=
1

2
log

(
A+

B − A

2 + A
B−A

)

=
1

2
log

(
B2

2B −A

)

≥ 1

2
logB − 1

2
. (60)

If C̆ ≤ B−A
A

, then the sum-rate outer bound is equivalent toR1 + R2 ≤ 1
2
log(1 + C̆)A. The

achievable sum-rate bound is

1

2
log

[
1 + (1 + β)x

(
1 +

1

1 + σ2

)
+

(β − 1)2x2

1 + σ2

]

≥ 1

2
log

[
1 + (1 + β)x

(
2C̆A+B

C̆A +B

)
+

(β − 1)2x2C̆A

C̆A+B

]

=
1

2
log

[
A +

AC̆(B −A)

AC̆ +B

]

=
1

2
log

[
AB(1 + C̆)

AC̆ +B

]

≥ 1

2
log

[
A(1 + C)

B

2B − A

]

≥ 1

2
logA(1 + C̆)− 1

2
. (61)

From (60) and (61), we see that the difference between the achievable sum-rate bound and the

sum-rate outer bound is always within half a bit. The claim for the casea = b can be similarly

proved. This concludes the proof.



APPENDIX V

PROOF OFPROPOSITION7.1

In order for rates (R1, R2) to be achievable, by Fano’s inequality, we have for the firstreceiver

(see also proof of Proposition 3.1):

H(W1,W2|Y n
1 , V

K
2 ) ≤ nδn (62)

with δn → 0 asn → ∞. From the previous inequality, it also follows that (i = 1, 2)

H(W1,W2|Y n
1 , V̄

K̄
1 , V̄ K̄

2 , V K
2 ) ≤ nδn, (63a)

H(W1|Y n
1 , V̄

K̄
1 , V̄ K̄

2 , V K
2 ,W2) ≤ nδn and (63b)

H(W2|Y n
1 , V̄

K̄
1 , V̄ K̄

2 , V K
2 ,W1) ≤ nδn, (63c)

where V̄ K̄
1 , V̄ K̄

2 represent the signals exchanged during theK̄ encoder-side conferencing rounds.

Now, we can treat (62)-(63) similarly to the proof of Proposition 3.1 and using the approach in

[1]. For instance, from (63a), we have

n(R1 +R2) ≤ I(W1,W2; Y
n
1 , V̄

K̄
1 , V̄ K̄

2 , V K
2 ) + nδn

≤ I(W1,W2; Y
n
1 |V̄ K̄

1 , V̄ K̄
2 ) + I(W1,W2; V̄

K̄
1 , V̄ K̄

2 )

+ I(W1,W2;V
K
2 |Y n

1 , V̄
K̄
1 , V̄ K̄

2 ) + nδn

(a)

≤ I(W1,W2; Y
n
1 |V̄ K̄

1 , V̄ K̄
2 ) + n(C̄12 + C̄21) + nC21 + nδn

(b)

≤
n∑

i=1

I(X1,i, X2,i; Y1,i|V̄ K̄
1 , V̄ K̄

2 ) + n(C̄12 + C̄21) + nC21 + nδn,

where (a) follows from the fact thatI(W1,W2; V̄
K̄
1 , V̄ K̄

2 ) ≤ H(V̄ K̄
1 , V̄ K̄

2 ) ≤ n(C̄12 + C̄21) and

I(W1,W2;V
K
2 |Y n

1 , V̄
K̄
1 , V̄ K̄

2 ) ≤ H(V K
2 ) ≤ nC21, and (b) is obtained similarly to [1], Sec. 3.4.

From (62) and the remaining inequalities in (63), using similar arguments as in the above chain of



inequalities, one obtains, respectively,

n(R1 +R2) ≤
n∑

i=1

I(X1,i, X2,i; Y1,i) + nC21 + nδn,

nR1 ≤
n∑

i=1

I(X1,i; Y1,i|X2,i, V̄
K̄
1 , V̄ K̄

2 ) + nC̄12 + nC21 + nδn and

nR2 ≤
n∑

i=1

I(X2,i; Y1,i|X1,i, V̄
K̄
1 , V̄ K̄

2 ) + nC̄21 + nC21 + nδn.

Now definingUi = (V̄ K̄
1 , V̄ K̄

2 ), the proof is completed similarly to Proposition 3.1, and byrepeating

the same arguments for receiver 2.
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