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. INTRODUCTION

In today’s complex communication networks there are oftesitiple “signal paths” to utilize in
delivering data between a given transmitter and receivechSignal paths may take the form of
(generalized) feedback from the channel to the transmitieadditional (orthogonal) communica-
tion links between either the transmitters or the receivére first case corresponds to scenarios
in which the additional signal paths share the spectraluress with the direct transmitter-receiver
links (in-band signalling), while the second case refersdenarios in which orthogonal spectral
resources are available at the transmit and/or the recelee(sut-of-band signalling).

In this work, we focus on the latter case discussed above anttinthe out-of-band signal paths
as finite-capacity directed links. This framework is tyfliceeferred to as “conferencing” (or “partial
cooperation”) in the literature to emphasize the possiitigractive nature of communication on such
links. Conferencing encoders in a two-user multiple acobssinel (MAC) have been investigated
in [1] [Z]H and in [3] for a two-user interference channel. These woh@asthat conferencing
encoders can create dependence between the transmittedsdy coordinating the transmission
via the out-of-band links, thus mimicking multiantennansmitters. Conferencing decoders have
been studied in [4] for a relay channel and in [5] - [9] for a d&dloast channel. Such decoders
can use the out-of-band links to exchange messages abowtdbiged signals so as to mimic a
multiantenna receiver (see also [10]).

This work extends the state of the art described above byidensg the compound MAC
with conferencing decoders and a common message (sek! Fagdlthen with both conferencing
encoders and decoders (see Eig. 5). These models genéhalizetup of a single-message broadcast
(multicast) channel with two conferencing decoders sulidie [5@ - [9], in that there are two
transmitters that want to broadcast their messages to thieremcing receivers. Moreover, the
transmitters can have a common message (Big. 1) or be cednbygt conferencing links (Fig.
). The model also generalizes the compound MAC with commessages studied, among other

models, in [3], by allowing conferencing among the decod&he main contributions of this work

LIt is noted that a MAC with conferencing encoders can be seem special case of a MAC with generalized feedback.

2Reference [5] also considers a broadcast channel withtprivessages to the two users.



are summarized as follows:

« The capacity region is derived for the two-user discreteroryless compound MAC with
a common message and conferencing decoders in the speses o physically degraded
channels and unidirectional cooperation ($ed. 1V);

« Achievable rate regions are given for the general model of[Fi(Sec[V);

« Extension to the corresponding Gaussian case is providadbleshing the capacity region
with unidirectional cooperation and deriving general aghble rates. Such achievable rates
are also shown to be within some constant number of bits otcépacity region in several
special cases (Sec.VI);

« The capacity region is determined for the compound MAC witithbconferencing encoders
and decoders as in Fig. 5 in the special cases of physicajlyaded channels and unidirectional
cooperation (Se¢._Vil).

Finally, numerical results are also provided to obtainHartinsight into the main conclusions.

II. SYSTEM MODEL AND MAIN DEFINITIONS

We start by considering the model in Fid. 1, which is a diseraemoryless compound MAC
with conferencing decoders and common information (heneslfiort, we will refer to this channel
as the CM channel). The CM channel is characterized Xy X5, p*(y1, y2|x1, 2), V1, V) with
input alphabetst;, X; and output alphabefg;, )». Theith encoder; = 1,2, is interested in sending
a private message’; € W; = {1, 2, ..., 2"%%} of rate R; [bits/channel use] to both receivers and, in
addition, there is a common messddig € W, = {1, 2, ..., 2"} of rate R, to be delivered by both
encoders to both receivers. The channel is memoryless arditivariant in that the conditional
distribution of the output symbols at any time= 1,2, ..., n satisfies

1

p(yrj, vl a5, vl @) = p*(yr, Yol 225) (1)

with @w = (wo, w1, wy) € Wy x Wy x W, being a given triplet of messages. Notation-wise, we
employ standard conventions (see, e.g., [11]), where tblegiility distributions are defined by the

arguments, upper-case letters represent random variabteshe corresponding lower-case letters

represent realizations of the random variables. The sapetsidentify the number of samples to be



included in a given vector, e.gy ' = [y1,1- - y1,;-1]. Itis finally noted that the channel defines the

conditional marginal®(y, |z, z2) = > p*(y1, yo|z1, z2) @nd similarly forp(ys |z, o). Further

Y2€V2
definitions are in order.

Definition T A ((2nfo, 2nf1 9nf2) n K) code for the CM channel consists of two encoding
functions ¢( =1, 2)

fii Wo x W; — X, (2)

a set of2K “conferencing” functions and corresponding output almtaly; ., (k =1,2,..., K):

Gres VI X Vo1 X oo X Va1 — Vig (3a)
Go: Vo X Vi1 X - X V1 — Vay, (3b)
and decoding functions:
hi: VI X Vaq X -+ X Vo g — Wy x W) (4a)
hot Y3 x Vi1 X -+ X Vi g — Wy X Wa. (4b)

Notice that the conferencing functions (3) prescrbeonferencing rounds between the decoders
that start as soon as the two decoders receive the entir& bfoe output symbolsy? and y5.
Each conference round, say thth, corresponds to a simultaneous and bidirectional exgdnarh
messages between the two decoders taken from the alpnghetnd) i, similarly to [1], [14]. It
is noted that other works have used slightly different defins of conferencing rounds [7], [16].
After the K conferencing rounds, the receivers perform decoding witittions [(4) by capitalizing
on the exchanged conferencing messages. Due to the orthldagdretween the main channel and
the conferencing links, the transmission from the usersra@amnannel and conferencing/ decoding
on the other can take place simultaneously.

Definition 2 A rate triplet Ry, R, R») is said to beachievabldor the CM channel with decoders
connected by conferencing links with capacit{€s., C5;) (see FiglL) if for any > 0 there exists,
for all n sufficiently large, g (2", 21 2nf2) n ) code with anyK > 0 such that the probability
of error satisfies
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Fig. 1. A discrete-memoryless compound MAC channel withfe@ncing decoders and common information (for short, CM).

hy (Y, V) # wu
P, = 2n(R0+1R1+R2) Z Pr { 1( : ’k 2 ) # w} s€ (5)
WEW X W1 XWa {hZ(Yva Vl ) 7é EJH’LB sent
and the conferencing alphabets are such that
K K
Z|Vl,k| < nCi2 and Z|V2,k| < nCy. (6)

k=1 k=1
The capacity regionCe(Ch2, Co1) is the closure of the set of all achievable rat&s, (R, Rs).
I1l. PRELIMINARIES AND AN OUTER BOUND

Similarly to [3], it is useful to define the rate regi@w, 4c:(p(u), p(x1|u), p(z2|u)) for the MAC
seen at thé&th receiver { = 1, 2) as the set of rates

Raraci (p(w), p(a|u), p(aa|u)) = {(R07R17R2>:R0 >0, Ry 20, Ry >0,

Ry < I(X1; Y| XoU), (7a)

Ry < I(Xy: Yi|X1U), (7b)

Ry + Ry < I(X, X5, Y3|U), (7c)
Ro+Ri+ Ry < I(Xng;Yi)}, (7d)

where the joint distributions of the involved variables igayp by

p(u)p(wi|u)p(w2|u)p(yiz1, v2).



If C1o = Cy =0, the capacity regioil@q,, (0, 0) is given by [3]:

Cem(0,0) = U { ﬂ RMAC,@'(Z?(“)ap($1|u)ap(x2|u))} (8a)
i=1,2

:U{(RO,Rl,R2): Ry >0, Ry >0, Ry >0, (8b)

Ry < min{I(X1; V1| XoU), I(Xy:Ya|XoU)}, (8c)

Ry < min{I(Xy; V1| X1U), I(Xy:Ya| X U)}, (8d)

Ri 4 Ry < min{I(X,Xo; 1|U), (X1 X2; Ys|U)}, (8e)

Ry + Ry 4+ Ry < min{I(X, X5 V1), (X, X,; 1/2)}}, (8)

where the union is taken over all joint distributions of thoenf

p(w)p(a1|w)p(@2|w)p™ (Y1, yo| 71, 22).

It is remarked that no convex hull operation is necessar{Bjraé the regioc,,(0,0) is convex
[3] (see also [1], Appendik I).

We now derive an outer bound on the capacity rediggy (C12, C21). To this end, it is useful to
define the capacity region achievable when the two recemersallowed to fully cooperate (FC),

thus forming a two-antenna receiver. In this case, we have

Rarac,re(p(u), p(ei|u), p(aslu)) = {(Ro,Rl,Rz)iRo >0, Ry 20, Ry >0, (9a)
Ry < I(X1; Y1Ye| XpU), (9b)

Ry < I(Xy; V1Yo | X U), (9¢)

Ry + Ry < I1(X1Xo; Y1Y2|U), (9d)

Ro+ R+ Ry < [(Xle;Ylyz)}a (9e)

where the joint distributions of the involved variables igelp by

p(w)p(xrw)p(xalw)p® (Y1, yo|1, 2). (10)



Proposition 3.1: We haveCcy (Ci2, C21) C Conm—out(Cia, Ca1) Where (dropping the dependence
on p(u), p(z1|u), p(xz|u) to simplify the notation)

Com—out(Cr2, Cor) = U{(RMAC,l + Ci2) N (Rayrace + Co1) N (Rarac,re) } (11a)
= U{(RO,Rl,RQ): Ry>0, Ry >0, Ry >0, (11b)

Ry < min{l(Xy; V1| XoU) + Cop, 1(X1;Ys|XoU) + Cia,
I(X1; Y1Ys| XoU) b, (11c)

Ry <min{I(Xy; V1| X U) + Co1, I(Xo;Y2| X U) + Cho,

I(Xy; Y1Y5| X4 U)}, (11d)
Ry + Ry < min{I (X, Xo; Y1|U) + Co1, [(X1X9;Ya|U) + Chz, (11e)
I(X1 X2 V1Y |U) b, (11f)

Ry + Ry + Ry < min{/ (X1 X2; Y1) + Co1, 1(X1X5;Y3) + Cho,

1(X1 Xo; m@)}}, (11g)

in which the union is taken over all the joint distributiorat factorize as (10).
Similarly to (8), region[(Ill) can be proven to be convex faileg [1].
Proof: See AppendiX]|. [ |

IV. CAPACITY REGION WITH PHYSICALLY DEGRADED CHANNELS AND UNIDIRECTIONAL

COOPERATION

The next proposition establishes the capacity re@ion_prq(Cia, Co1) in the case of physically
degraded outputs.
Proposition 4.1:1f the CM channel is physically degraded in the sense thatX,) — Y, — Y5



forms a Markov chain, then the capacity region is obtained as

Corv-pEG(Cr2, Con) = Conr—out(Ci2,0) = (12a)
= [J{(Ro, R, Ry): Ro > 0, Ry >0, Ry >0, (12b)

Ry <min{l(X; V1| XoU), 1(Xy;Y2|XoU) + Cha}, (12c¢)

Ry < min{l(Xo; V1| X1U), 1(Xy;Y2| X U) + Cha}, (12d)

Ry + Ry < min{I(X: Xo; Vi|U), [(X1Xs: V|U) + Cha), (12€)

Ry + Ry + Ry <min{/ (X, X5; Y1), I(X1X2;Ys) + Cha}}. (12f)

Notice that here* (y1ys|z1, x2) = p(y1|1, x2)p(y2|y1) due to degradedness.
Proof: See Appendix]l. [ |

Remark 4.1:A symmetric result clearly holds for the physically degrddgannel(X;X5) —

Yo =Y.

Establishment of the capacity region is also possible irspgezial case where only unidirectional
cooperation is allowed, that 61 = 0 or Cy; = 0. This result is akin to [9] where a broadcast
channel with two receiver under unidirectional cooperaticas considered.

Proposition 4.2:1n the case of unidirectional cooperatiofi;§ = 0 or Cy; = 0), the capacity

region of the CM channel is given by

Com(0,Cs) = Conr—out (0, Ca1) (13)

or
Cem(Chz2,0) = Conr—out(Cha, 0). (14)
Proof: Achievability follows by using the same scheme as in the pafaProposition[4.1L.
The converse is immediate. [ |

V. GENERAL ACHIEVABLE RATES

Achievable rates can be derived for the general CM chanrt#nding the analysis of [5] from

the broadcast setting with one transmitter to the CM chanNetice that [5] uses a different



definition for the operation over the conferencing chanmbeisthis turns out to be immaterial for
the achievable rates discussed below.
Proposition 5.1: The following region is achievable with one-round confeieg, i.e., K = 1:

Ror(Ci2,Ca1) = U{(Ro, Ri,Ry): Ry >0, Ry >0, Ry >0, (15a)
Ry < min{I(X1; Y1Ya| XoU), I(X1; YaV1|XoU)}, (15b)
Ry < min{I(Xo; V1Y3| X1U), 1(Xy; YaY1|X1U)}, (15¢)
Ry 4 Ry < min{I(X, Xo; V1Y5|U), I(X1Xy:; YoY:1|U)} (15d)
Ro+ Ry 4+ Ry < min{I(X1Xo; Y1Y3), I(X1Xo; YY)} (15e)
subject to
Cia > I(Y1; Y1|Y2) (16a)
Cor > I(Ya; Ya| V) (16b)

with |3A/i| < |¥:] + 1, and the union is taken over all the joint distributions tfaattorize as

p(u)p(z1|w)p(@2|uw)p* (Y1, ya|z1, ©2)p(G1y1)P(G2]y2)-
Proof: (Sketch): The proof is similar to that of Theorem 3 in [5] asdhus only sketched here.

A one-step conferencek( = 1) is used. Encoding and transmission are performed as for & MA
with common information (see proof of Propositibn]4.1). Eaeceiver compresses its received
signal using Wyner-Ziv compression exploiting the factttttze other receiver has a correlated
observation as well. The compression indices are exchadgedg the one conferencing round
via symbolsV;; and V,;. Decoding is then carried out at each receiver using joinicgljy:
For instance, receiver 1 looks for jointly typical sequen@€ (wy), x7 (wq, w ), x5 (wo, we), Y7, 95)
with w; € W;, whereyy is the compressed sequence received by the second decoder. =

The achievable strategy of Proposition]5.1 is based<oa 1 round of conferencing. It is easy
to construct examples where such a strategy fails to actieveuter bound (11) as discussed in
the example below.

Example 1 Consider a symmetric scenario wity = 0 and equal private rateB; = Ry = R

(i.e., p* (Y1, yalz1, 22) = p*(y2, y1|w1, T2) = P* (Y1, Y2| T2, ¥1) = p* (Y2, Y1 |22, 21)). Fix U to a constant



without loss of generality (given the absence of a commonsags) and the input distribution to
p(z1)p(z2). We are interested in finding the maximum achievable equaliat= R, = R. Assume
that the conferencing capacities satigfy, = H(Y1|Ys) = H(Y2|Y1) and1/2 - I( X, Xo; Y3|Y7) <
Cy1 < H(Y1]Ys). In this case, it can be seen that the maximum equal rate isr uppeded as
R < R, = 1/2- I(X1X>;Y1Y5) by the outer bound_(11)which corresponds to the maximum
equal rate of a system with full cooperation at the receiida § his bound can be achieved if both
receivers have access to both outggt&ndY;. With the one-round strategy, sin€g, = H(Y;|Y3)
receiver 1 can providé@; to receiver 2 via Slepian-Wolf compression, but receiveragnot do
the same with receiver 1 sineggy, < H(Y;]Y,). Therefore, rateR,,;, cannot be achieved by this
strategy, which in fact attains equal ralleyr = 1/2 - I(X; X5; YlYg) < R,y (recall [16)).

We now consider a second strategy that generalizes theopieoine and is based on two rounds
of conferencing(K = 2). As will be shown below, this strategy is able to improve upbe t
one-round scheme, while still failing to achieve the outeund [(11) in the general case.

Proposition 5.2: The following rate region is achievable with two rounds ohfayencing, i..e.,
K =2

Rrr(Ciz,Ca1) = COU{RTR,H URrro21} (17)

where “co” indicates the convex hull operation, and we have

Rrriz = {(Ro, Ry, Ry): Ry >0, R >0, Ry >0, (18a)
Ry < min{I(Xy; V1| XoU) + Cyy, 1(Xy; VoY1 | XoU)Y, (18b)

Ry < min{I(Xy; Yi| X1U) + Ca1, 1(Xo; VoY1 XU)}, (18c)

Ry + Ry < min{I(X,1Xo; Y1|U) + Cor, (X1 Xo; Y2Y1|U)}, (18d)

Ro+ Ry + Ry < min{I(X1X5; Y1) + Cay, I(X1X,;YoY1)} ), (18e)



Rrro1 is similarly defined:

Rrror = {(Ro, Ry, Ry): Ry >0, Ry >0, Ry >0, (19a)

Ry < min{I(Xy; Y1Ya|XoU), 1(X1; Ya|XoU) + Cua}, (19b)

Ry < min{I(Xo: V1Y X1U), 1(Xy; Y| XoU) + Ciy}, (19c)

Ry + Ry < min{I(X1Xo; Y1Ya|U), I(X1;Ya|XoU) + Cha}, (19d)

Ry + Ry + Ry < min{I(X,X2; V1Y), 1(Xy;Ys|Xy) + Cia}}, (19e)

subject to
Cha > I(Y1; Y1 |Y2)
Cyr > 1(Ya; Ya|V1)

with |37i| < |¥:| + 1, and the union is taken over all the joint distributions tfaattorize as

p(w)p(x1|u)p(a|w)p* (yrye|z1, 22)p(G1y1)p(Jaly2)-

Proof: (Sketch): The proof is quite similar to Theorem 4 in [5], anefdrwe only sketch
the main points. Conferencing takes place Kia= 2 conferencing rounds. Moreover, two possible
strategies are considered, giving rise to the convex hudtaton in [1¥) by time-sharing. The two
corresponding rate regiorB 12 in (I8) andRrr2; in (I9) are obtained as follows. Consider
Rrr.12. Receiver 2 randomly partitions the message s, and W, into 2ne0Ciz gneiCiz gnd
2na2Ciz gybsetsrespectively, for a give < o; < 1 ande:O «; = 1, as in the proof of Proposition
4.1. Encoding and transmission are performed as for the MAR e@ammon information. Receiver
1 compresses its received signal using Wyner-Ziv quambizads for the scheme discussed in the
proof of Propositiol 5]1. This index is sent in the first coafeeing round (notice thaV, ;| = nC\»
and|V, ;| = 0). Upon reception of the compression indgx,, receiver 2 proceeds to decoding via
joint typicality and then sends the subset indices (seefpb®roposition[4.11) to receiver 1 via

V272 (now,

V12| = 0 and |V, 5| = nCy). The latter decoder performs joint-typicality decoding o
the subsets of messages left undecided by the conferen@sgame); ; received by 1. The rate

regionRrr o1 IS obtained similarly by simply swapping the roles of degotieand decoder 2.m



Example 1 (cont'd)To see the impact of the two-round scheme, here we recanExmple
1 discussed above. It was shown that, for the scenario diedutherein, the one-round scheme
is not able to achieve the outer bouiy,;. However, it can be seen that the two-round scheme
does indeed achieve the outer bound. In fact, receiver 1 tande Y; to receiver 2 via Slepian-
Wolf compression as for the one-round case, while receivdo&s not send anything in the first
conferencing round is a constant). Now, receiver 2 decodes and sends the bix ivfdthe
decoded messages to receiver 1 in the second conferenaimgl mccording to the two-round
strategy discussed above (receiver 1 is silent in the semamdl). Since’y; > 1/2-1( X Xs; Ys|Y))
by assumption, it can be seen from Proposifiod 5.2 that thdérman equal rate achieved by the
two round scheme iRrr = R,

We finally remark that it is possible in principle to extenck thchievable rate regions derived
above to more than two conferencing rounds, following [6] [Vhis is generally advantageous
in terms of achievable rates. While conceptually not diffica description of the achievable rate

region would require cumbersome notation and is thus othhiere.

VI. GAUSSIAN CoMPOUND MAC

Here we consider the Gaussian version of the CM channel:

Yi =y Xi +yaXo+ 23 (20a)
Yy = 720 Xo + 712Xy + 2, (20Db)

with channel gainsy;; > 0, independent white zero-mean unit-power Gaussian npise!
and per-symbol power constrainfg X?] < P;. Notice that the channel described lhy](20) is not
physically degraded.

The outer bound of Propositidn 8.1 can be extended to (20)dimygustandard arguments. In

particular, the capacity region of the Gaussian @, ,(C», Co;) satisfies the following.



Proposition 6.1:We haveCf,,,(Cia, Ca1) € C& s ui(Cia, Ca1) Where:

Co s out(Cr2, Ca1) = U {(Ro,Rl>R2)iRo >0, Ry 20, Ry >0, (21a)
0<P/<P;
=12
Ry <min {C(7}; P}) + Ca1, C(viaP)) + Cha, C(P (71 +772)) ) (21b)
Ry <min {C(75,P) + Ca1, C(v5Py) + Cha, C(Py (731 +732))} 5 (21c)

C(~2 P! 2 P L (s C(A2 P 2 piy 1 (O
Ry + Ry < min (Vi1 Pl + 721 Ps) + Con, C(vae Py +712P1) + Chz, (21d)
C (P (7%1 + 7%2) + B (7%1 + 7%2) +K)

( )

COM P+ 93P+ p1) + Cor, CORLP; + 98P+ p2) + Chra,
PL (v + ) + Py (31 +73) + K }

C| 4o (14 Piviy + Pivsy) + p2(1 + Piviy + Piay) |
—2/p1p2(Py11712 + Pyya1vez)

Ry + Ry + Ry < min

with
K = PPy (2721 — 111722)° (22a)
p1= (Vllm + 721 m>2 (22b)
p2 = (Y22v/Po — Py + 7127/ P — P})? (22¢)

andC(z) £ Llog(1 + x).

Proof: Similarly to Proposition_3]1, one can prove that the rateomeg1l) is an outer
bound on the achievable rates. It then remains to be provatdahGaussian joint distribution
plu)p(zi|u)p(za|u) with X; = /P — P/U + \/P/V;, where isU, V; and V, are independent
Gaussian zero-mean unit-power random variables, is optifhé can be done following the steps
of [2], where the proof is given for a single MAC channel witbnemon information (see also
[15]). The proof is concluded with some algebra. [ |

The achievable rates in Proposition]5.1 (fér= 1) and Proposition 512 (fofl’ = 2) can also be
extended to the Gaussian CM channel. In so doing, we focusintty) Gaussian auxiliary random
variables for Wyner-Ziv compression. While no generalrolaif optimality is put forth here, some

conclusion on the optimality of such schemes can be drawnsasigbed later in Sec. VIIA.



Proposition 6.2: The following rate region is achievable with one-round esahcing,K = 1:

REp(Cira, Coy) =

0<P/<P;
i=1,2

2
. gl
Ry < min {C <P1/ <’yf1 + 1_:205) ,

2
. i
Ry < min {C <P2/ <’y221 + 1 4—2205)

2
P2, (7%2 + 11%;) +Pl (721 + 111; )

1+0
Piiy +P2“/22

J {(Ro.Ri.R2): Ry>0, Ry >0, Ry >0,

Vs

iz ) + Py (721 + 1125 ) + 1502

(
P (7%1 +
C
. +1f2
R, + Ry < min %2
¢ K
\ +1+0'1
(
Pl (711 +
Cl +m <1 +

1+cr

>+ Tro 2(1+P1/711+P2/7§1)

_ 2y/prp2(Pry11v12+P2y21722)

Ry+ Ry + Ry < min
P/<712+

1+0

2
111; ) + B <722 + 112;2

K
) + 1+cr%

1+

C +ps (1 + P1711+P2'Yzl> + 1+ 5 (1 —+ Pll’}/12 + P2/'722)
_ 2y/pip2(Pryinvi2+P2y21722)

\

1+0%

with (22) and quantization noise variances satisfying

2
01>

L4+ (v +75) P+ (93, +73.) Pa + (112721 — 111722) PP

(@0~ D+ B P+ B
1+ (7%1 + 712)]31 + (721 + 722)]32 + (712721 - 711722) P1P2

2
oy >

N (2262 — 1)(1 +~7, P + 75, )

(23a)

(23b)

(23c)

(23d)

(24a)

(24b)

Proof: As stated above, we consider Gaussian auxiliary randonablas and evaluate the
region [I5%). In particular, the test channels for Wyner-&vnpression are selected Bis= Yi+2Z,,

where the compression noisg ; is zero-mean Gaussian with varianggé and independent of;.

The proposition follows from some algebraic manipulation.

The one-round strategy can be generalized by enabling twods of conferencingi = 2),

obtaining the following achievable rate region:



Proposition 6.3: The following rate region is achievable with two rounds ohfasencing, K =

R7(Cia, Coy) = CO U {R] TR12 Y RTR o1} (25)
0<P/<P;
i=1,2
with
Rig“R,m = {(R07R17R2): RO > 07 Rl > 07 R2 > 07 (263)
2
R; < min {C (7%1P1/) + Ca, C (P/ (712 + n 2))} (26b)
1+ o7
2
1

C (Vi Pl + 73 P /) + Ca,
c (P (ot i) + B Ok + ) +
( COvi P +15, P + p1) + Con,
P <7%2 1+U )+P2 (722+11§;§>+%
Cl +p2 (1 + 1711+P2721) + 1&,—% (14 P{viy + Pyy3s) }

_2y/p1p2(P{y11m12+P5y21722)
L 1+0? /

Rrra2is similarly defined:

R; + Ry < min

(26d)
)

R0—|—R1+R2§min

R:QFR,12 = {(R07R17 Ry): Ry >0, Ry >0, Ry >0, (27a)
2
Ry < min {c (Pl’ (ﬁl + 1112 2)) , C (P + 012} (27b)
03
2
Ry < min {C (PQ' (731 + 11220_2)) , C(vP3) + 012} (27c¢)
p
2 2
P (711 + 111%) + Py <721 + 11253)
Ry 4+ Ry < min +P1’P2’(71zlvigvum)2 ’ (27d)

C (73, P + 7%, P)) + Cha



2
P <V11 1115 ) + B (721 11225) + 1-|’-CO'2
Cl +p <1 + 1712+P2722) + 1 L+ Pivd + Pyya1) | }

1+03
_ 2y/pip2(Piyiimie+P2y21722)
1+o2

L C(3. Py + 11 Pl + p2) + Chz

R0+R1+R2§min

with (22) and [(24).

A. Discussion

Here we draw some conclusions on the optimality of the onetaneround schemes discussed
above for the Gaussian CM channel. We start with the oneer@sheme of Propositidn 6.2 and
notice that, by comparison with the outer bound (21), it careasily seen that the scheme at hand
is optimal in the asymptotic regime of large conferencingawtiesCi, — oo and Cy; — oo.
Further conclusions on the gap between the upper baund (2iljhe performance achievable with
one round of conferencing at the decoders can be drawn in peoia cases. Consider first the
case of a broadcast channel with conferencing encoderg[5yhich is obtained a%2, = 0 and
Ry = 0 and thusP, = 0 without loss of generality (a symmetric statement can bagitforwardly
obtained forR, = 0 and R; = 0). In this case, we show below that the one-round scheme\azhie
the upper bound(21) to within half a bit, irrespective of thennel gains of the broadcast channel
and the capacities of the conferencing links. To elaboratéice that the outer bound (21) for the

case at hand is given by
Ry < Ryt = min{C(7}, P1) + Ca1,C(71,P1) + Cr2,C((711 + Vi) 1)}, (28)

whereas the rate achievable with one-round conferencigive by

) 2 P 2 P
on—minfe (1 + 22%) ¢ (1 + 225%) @)
2 1
where
o2 — 1+ (v + 7)) P
'@ DR
and

o2 = 1+ (7%1 + 7%2)P1
P @ - )+ R P




Using these two expressions, we can prove the following gsition (see Appendikll for a full

proof).

Proposition 6.4:We haveR; og > Riou — % Moreover, for the symmetric channel case, i.e.,
V3 =%, we haveR, or > Ry gy — 2251

Next, we consider the symmetric Gaussian CM channel, thataslet Ry = 0, %, = 73, = a,
73, =73 =b, andP, = P, 2 P. We also assume symmetric conferencing link capacifigs=

Cs1 = C. In such a case, the outer bound and the achievable ratesongtiound conferencing

are:
Cérr—ou(C) = {(R1,Ry) : Ry > 0, Ry >0,
Ry <min{C(aP) + C, C(bP) + C, C((a + b)P)}, (30a)
Ry < min{C(bP) + C, C(aP)+ C, C((a +b)P)}, (30b)
Ry + Ry <min{C((a +b)P)+ C, C(2(a+b)P + (b—a)*P*}}, (30c)
and
RER(C) = {(Ry, Ry) : Ry >0, Ry >0,
Ry < min {C (a + 1 f02 (31a)
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Rggmln{c<<b+1+U2)P),C<<a+1+g2 P)}, (31b)

a+b (b—a)*P
<
nemze (el B T

with o2 2 1+2(a+b) P+(b—a)? P

= TirarD P)(22C_1)2, respectively. The following result can be proved (see ApipeiV).

Proposition 6.5:RY,, O {(Ry, Ry) : Ry >0, Ry > 0, (R1+6, Ry+(A—0)) € CZyy ., (C) for all § €
[0, A]} with A = W where 3 £ ﬁi’f((jf)) Moreover, in the special case= b, the gapA can

be further reduced te\ = (*23=1) ~ 0.293 bits.
The proposition above is equivalent to saying that the toagé loss of using one round of

conferencing relative to the sum capacity is less tﬁfé%ﬂ), which is a constant that depends

only on the relative qualities of the direct channels anddiwss channels.



Let us now consider the two-round scheme of Propositidn®&eRS. , (Cia, Ca1) 2 RE 5(Cha, Cay),
all the conclusions above on the one-round scheme applyt@aldee two-round strategy. Alterna-
tively, we can interpret these results as a finite bit limittbe potential gain of going from one
round of conferencing to two rounds. Moreover, it should lo¢ed that the two-round approach
was defined as single-session in [16] and shown therein topbien@ among several classes of
multi-session protocols for a broadcast channel with coaipey decoders. Finally, we can prove
the following.

Proposition 6.6: The two-round scheme is optimal in the caseuoidirectional cooperation
RY5(0,C4) = CZy 0 (0,C41) and RS, (Cha, 0) = CE,y, ... (Ci2, 0), thus establishing the capacity
of the Gaussian CM channel for this special case.

Proof: This result follows by comparing the achievable region with outer bound(21)m

Next, we comment on theum-rate multiplexing gaiof the Gaussian CM channel. Consider a
symmetric system withP, = P, £ P, y11 = Y22, Y12 = Y21, andCio = Cy = C. We are interested
in studying the conditions on the conferencing capacitysuch that the maximum multiplexing
gain on the sum-ratéimp o SUP (g p, r,)ecs,, (c.c) (B + Ry)/(3log P) = 2, corresponding to full
cooperation, can be achieved. From the outer bound_ih (213, ¢lear thatC' should scale at
least as} log P as the sum rate is limited b§(P(+}; +3,)) + C. By considering the achievable
regions with onel[(23) or twd_(25) conferencing rounds, it banalso concluded that if’ scales
as (1 + ¢)log P with any e > 0, then the optimal multiplexing gain is indeed achievablaisT
is because withC' = %(1 + €) log P the quantization noise variances [n1(24) are proportiooal t
P~¢ and thus tend to zero for large It is noted that this result would hold even if the decoders
used regular compression that neglects the side informatithe other decoder, as in this case we
would haveo? = %, which is still proportional toP~< for C' = £(1 + €) log P.

As a final remark, extending the achievable rates definedeatom\the Gaussian channel (and as-
suming Gaussian channel and compression codebooks aslitmre) o more than two conferencing
rounds would not lead to any further gain, since with Gaumsgaiables, “conditional” compression

and compression with side information have the same effigi¢see [7] for a discussion).
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Fig. 2. Outer bound[(21), rate region achievable with onedo([23) and two-round(25) strategies and with no coopmrati
(C12 = Co1 = 0) for R = 0, and a symmetric scenario witRy = P> = 5dB, v, = v3, = —3dB, vi1 = 73, = 0dB,
021 = 012 =0.5.

B. Numerical results

Since the rate region expressions provided for the outend@and the one-round and two-
round achievable schemes give little insight, in this sectve present numerical results to see how
much gain is obtained via decoder cooperation. In Eig. 2, erssider a symmetric scenario with
Py =P,=5dB, v}, =3, = =3 dB, 7} = 73, = 0 dB, Oy = Cj, = 0.3, and we plot the outer
bound [(21), the rate region achievable with one-rodnd (2®) @®vo-round [(2b) conferencing as
well as with no cooperation({;, = Cy; = 0) (obtained from eithel (23) and_(25)) fdt, = 0 (so
that selectingP’ = P, is sufficient in all the capacity regions). It can be seen tuatperation via
conferencing decoders enables the achievable rate regioa increased both in terms of sum-rate
and individual rates. Moreover, the two-step strategy piew relevant gains with respect to the

one-step approach, while still not achieving the outer loo(@il).
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Fig. 3. Sum of the private rateR; + R> (with Ry = 0) versus the conferencing link capacifys: for the outer bound(21), the
one-round[(ZB) and two-rounf {25) strategies and with nperation P = P> = 10dB, 73, = 0dB, 72, = 0dB, 3, = —3dB,
v} = —3dB, C12 = 0.2).

Fig.[3 and Figl ¥4 show the sum of the private ralks- R, (with Ry = 0) versus the conferencing
link capacities’y; and(C',, respectively, for the outer bourid (21), the achievablesws with one-
round [23) and two-round_(25) conferencing and with no coafgen. In both figures, we consider
cases in which receiver 1 has a worse signal quality thanivesc@ (stochastically degraded):
P, = P, = 10dB, 72, = 0dB, 73, = 0dB, 73, = —3dB, %, = —3dB. Fig.[3 shows the
achievable sum-rates vers@s; for ¢, = 0.2. It is seen that iiC';; = 0 the upper bound coincides
with the rate achievable with no cooperation, showing thahe link from the "good” receiver
to the degraded receiver is disabled, the performance isindded by the worse receiver and
there is no gain in having';, > 0. IncreasingC,; enables the rate of the worse receiver to
be increased via cooperation, thus harnessing significaimsgwith respect to no cooperation.

In particular, it is seen that fof; sufficiently small (hereCy; < 0.5) the two-step strategy is
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Fig. 4. Sum of the private rateR; + R> (with Ry = 0) versus the conferencing link capacify. for the outer bound(21), the
one-round[(ZB) and two-rounf(25) strategies and with ngemtion P, = P, = 10dB, vi, = 0dB, 73, = 0dB, ~3, = —3dB,
73 = —3dB, Ca1 = 0.8).

optimal, since in this region the performance is dominatgdhle worse receiver whose achievable
rate increases linearly witldy; due to cooperation via binning of the message set performed
at the good receiver. The one-step protocol instead lagmdeind its performance saturates at
C <7§2P2 + 2, P + %) ~ 2.26. Finally, for sufficiently largeCs, the achievable sum-rate
at the worse receiver becomes larger tRat6 and the performance tends to the sum-rate of the
best receiverC (v3,P, + 74, P;) + Ciz =~ 2.4, unlessC', is too large.

Further insight is shown in Fid.| 4 where the rates are plottecdusC,, for Cy; = 0.8. We
notice that forC;» = 0 only the two-step protocol is able to achieve the upper bpwirtte
in this regime it is optimal for the good receiver to decodal dnn its decision. Moreover,
similarly, increasingC;» enhances the gain of the two-round strategy over the onedrstrategy

up to the point where the perfomance is limited by the sura-i@t the worse receiver, i.e.,



by C (Pl (’}/%1 -+ ’}/%2) + Py (’}/221 -+ ’}/222) —+ Plpg(’}/lg’}/gl — ’}/11’}/22)2) ~ 248, which coincides with the

upper bound.

VII. CONFERENCING ENCODERS AND DECODERS

In this section, we extend the capacity results of $e¢. IVh d¢cenario in Fig.]5 in which
instead of having a common message (as in the previous sgitithe encoders are connected
via conferencing links of capacity;, and C,;. Here, each encoder has only one messége
of rate R; (: = 1,2) to deliver to both decoders. We refer to this channel as apooimd MAC
with conferencing decoders and encoders (for short, the @Chihnel). Definitions of encoders
and conferencing at the transmission side follows the stahdeference [1] (see also [3]). A
((2nf 2nf2) K| K) code for the CME channel consists 2K “conferencing” functions at the

encoders, wher& is the number of conferencing rounds between the transmijtte= 1,2, ..., K):

Bl,k: W1 X ]}2’1 X oo X T}Zk—l — T}l,k (328)
?Lng: W2 X )7171 X - X 917143_1 — 927143. (32b)

with alphabets); ;. (k = 1,2, ..., K) satisfying the capacity budget on the conferencing links:

K K
Z|T}1,k| < nC), and Z‘T}Zk‘ < nCoy, (33)
k=1 k=1
and encoding functions:
fui Wy x VK 5 ap (34a)
Foi Wy x VE = &1, (34b)

It is noted that encoding takes place after flieconferencing rounds at the transmit side, similar to
the operation at the receivers where decoding occurs &gk tdecoder-side conferencing rounds.
Decoding and conferencing at the receiver side are defined 8sc.[1 (by setting the common
messagél, to a constant). Achievability of a rate paik{, i) is defined by requiring the existence
of a code with such rates and with a vanishing probability méreon the two messagd$; and

W,. The capacity region of the CME channel is denoted@ag z(C,,, Co1, C1a, Co1).



An outer bound can be established similarly to Proposltidh 3
PrOpOSition 7.1:We haVECCME(Clg, 021, 012, 021) - CCME—out(6127 621, 012, 021) with

Corrr—out(Cra, Car, Cha, Con) = {(R1, Re): ((Ri2 + Ra1), Ry — Rz, Ry — Ra)
€ Corr—out(Cha, Co1) Where Ryy = min{ Ry, C5}
and Roy = min{Rg, 021}}, (35)

whereCons—out (Cia, Co1) is defined in[(IlL). It is shown in [3] that with only conferengiencoders
we haveCeonp(Cha, Ca1,0,0) = Corrp—ou(Ciz, Cat, 0,0).
Proof: See AppendixV. [ |
The following capacity results can be established sinyiléwl Propositior 41 and 4.2, respec-
tively.
Proposition 7.2:1f the CME channel is physically degraded such th&t X,) — Y; — Y, forms

a Markov chain, then the capacity region is obtained as
CCME—DEG(012> C7(217 0127 C(21) = CCME—out(él2> C7217 C(127 0) (36)

Notice that herep*(y1yz2|x1, z2) = p(y1|z1, x2)p(y2|y1) due to degradedness. A symmetric result
holds for the physically degraded chanfal; X,) — Y5 — Y;.
Proof: The converse follows from the same reasoning used in Pribdpogi.]l and Proposition

[6.3. Achievability is obtained by using a scheme similar tog®sition 4.1 with the only difference
being that here transmission is performed according to th@mal strategy for a MAC with
conferencing encoders [1] (see also Theorem 2 in [3]). Itoted that this strategy requires only
one conferencing round at the encodéeis= 1. [ |

Proposition 7.3:1n the case of unidirectional cooperation at the receivde U, = 0 or

Cy = 0), the capacity region is given by, respectively,
CCME(0127 0217 07 C(21) = CCME—out(Cl2a 0217 07 C(21) (373)
or

CCME<C’127 C7'217 0127 0) = CCJ\/[E—out<C’127 C7’217 0127 0) (37b)



Proof: The proof is similar to those of Proposition 4.2 and Proposi{Z.2.

It is finally noted that the outer bound and achievable ratsved in Sec[ [V and Sectidn VI
can also be extended to the CME channel and the Gaussian CataH20) following the same
approach used to derive Propositions 7.2 and Propositi@ntfiat is, by considering the optimal
coding strategy for the MAC with conferencing encoders jhich requiresk = 1). In terms
of the rate regions, this simply amounts to using the samesfivtamation from(Ry, R, Rs) to
(R, Ry) discussed above (see also [3]). For instance, an outerdboonthe Gaussian capacity

regionCy,, »(Cia, Ca1, C12,Cay) can be obtained as

CgME_Out(C'u,62170127021) = {(Ry, R2): ((Ri2+ Ra21), R1 — R12, Ry — Ra1)
€ CgM—out(Cmv Cgl) WherEng = min{Rl, 012}
and Ry = min{Rg, 621}}, (38)

and similarly for the rate regions achievable with the ooad and two-round receiver-side
conferencing strategied ((23) and(25)) coupled with thénmad transmit cooperation [1].

Remark 7.1:(Conferencing encoders vs. conferencing decqdéfsile no general capacity re-
sults have been derived that enable a conclusive compabistveen the performance of confer-
encing encoders or decoders in the compound multiple actessiel, some basic conclusions can
be drawn based on the analysis above. To start with, cordegmecoders tend to behave like a
multi-antenna receiver for large conferencing capacied thus, as discussed in VI, have the
potential for increasing the multiplexing gain of the suaterup to the maximum value of two. In
contrast, it can be seen from the outer bound (38) that cenéémng at the encoders alone does not
have such a potential advantage, as the coherent power mogbifforded by cooperating encoders
is not enough to increase the multiplexing gain of the sygtehlnwever, this does not necessarily
mean that decoder conferencing is always to be preferrechd¢oder conferencing. Consider for

instance the case of unidirectional links, where §ay = C»; = 0, so that conferencing links

%t is noted that this conclusion would be significantly diéfet for an interference channel, since in this case confing
at the encoders has the capability of creating an equivalesiantenna broadcast channel with single-antenna mersgiwhose

multiplexing gain is known to be two.
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Fig. 5. A discrete-memoryless compound MAC channel withfem@ncing decoders and encoders (for short, CME).

exist only from encoder 1 to encoder 2 on the transmit side femth decoder 1 to decoder 2
on the receive side. In this case, the capacity region isnginePropositior_ 7.3, and one can see
that, e.g., for a symmetric system?( = 432,, 73, = 7%, and P, = 1), the conferencing link at the
decoders alone never helps increase the achievable rdtiés the conferencing link at the transmit
side can always enlarge the achievable rate region. Fupiéormance comparison is carried out

numerically below.

A. Numerical results

In this section, we present a numerical example relatedg®¢lnario in Fid.15 for the Gaussian
CME channel[(20). Fid.16 shows the outer bound (38) evalutaedncoder-side((;, = Cy; = 0),
decoder-side({;, = Cy; = 0) or both-side conferencing, along with the rate regionseseble
with one-round and two-round strategies and with no codjgerdor P, = P, = 5dB, 73, =
73, = —3dB, 73, = 73, = 0dB, and conferencing capacities (when non-zetg) = Cy, = Cy;, =
C12 = 0.3. Considering first the outer bounds, it can be seen that lmifecencing at the encoders
and decoders have the same potential in terms of increabmgatesR?; and R,, whereas for
this example the outer bound corresponding to decoderesidperation leads to a larger sum-rate
R+ R,. Comparison of achievable rates via one or two rounds of centéng at the receiver side

(recall that one round of encoder conferencing is enougltckoese all the rate points discussed
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Vi, = 73 = —3dB, i1 = v3, = 0dB, and conferencing capacities (when non-zef) = Ci2 = Co1 = C12 = 0.3.

here) is similar to that seen in Fig. 2.

VIIl. CONCLUSIONS

The model of conferencing encoders and/or decoders is aen@mnt framework that allows
evaluation of the potential gains arising from cooperatrihe transmitter or receiver side in a
wireless network. From a practical standpoint, it accodatsscenarios where out-of-band signal
paths exist at the two ends of a communication link, as is #me dn wireless communication
systems where nodes are endowed with multiple radio irtestaln this work, we have contributed
to the state of knowledge in this area by investigating a acmmgd MAC with conferencing decoders
and, possibly, encoders. The compound MAC can be seen aslaraimn of two single-message
broadcast (multicast) channels from the standpoint of thesmitters, or two multiple access

channels as seen by the receivers. The scenario at handligsen number of previously studied



setups, such as MAC or compound MAC with common message demting encoders and
single-message broadcast channel with two conferenciogdees. A number of capacity results
have been derived that have shed light on the impact of decand encoder conferencing on
the capacity of the compound MAC. Among the conclusions, aeetshown that in a compound
Gaussian MAC, one round of conferencing at the decodersaehithe entire capacity region
within a constant number of bits/s/Hz in several speciakesa®©ne round of conferencing at
the transmitters is also optimal in all the cases where thmaaty region is known. Moreover,
comparing the performance of conferencing at the encodetslacoders, it has been pointed out
that examples can be constructed where either one outpexfiiie other. However, in the Gaussian
case, while conferencing at the decoders has the poteftiati@asing the sum-rate multiplexing
gain to the optimal value of two by mimicking a multiantenreceaiver, the same is not true of
conferencing encoders, since coherent power combiniraydetl by cooperating encoders is not
enough to increase the multiplexing gain beyond one (re¢ball the two decoders must estimate
both messages).

As a possible extension of this work we mention the study ofrderference channel, rather
than the compound MAC, with conferencing decoders. As dirgminted out in the paper, some
of the conclusions here would be significantly differenthistcase, and the analysis could benefit

from the techniques used in [17] [18] to study interferenbammels with no cooperation.

APPENDIX |

PROOF OFPROPOSITIONB. ]

In order for rates Ry, R, R,) to be achievable, the probability of errét needs to satisfy {5)
which, by the union bound, is implied b, ; < ¢/2 for i = 1,2 with

1 § o
Pe1= oot Tt 1) Z Prlhy (Y}, Vy') # @@ sen
WEWY X W1 X Wa

and similarly for P, ,. Consider the first receiver. By Fano’s inequality, we have

H(Wo, Wy, Wa| Y, V) < H(P.1)+n(Ry+ R+ Ry) P,y £ né, (39)



with 4,, — 0 asn — oo. It also follows that

H(W1W2|)/1nv VY2K7 WO) S n6n> (40a)
H(WH Y, V& W, W) < né, and (40b)
H<W2D/1n7‘/2K7W07W1) S nén (400)

Now, from (39), we have

n(Ro + Ry + Ry) < I(Wo, Wy, Wa; Y{", V5) + né,,

N

T(Wo, Wi, Wa; YY) + T(Wo, Wy, Wo; VIE|YT) 4 nd,

INE

I(Wo, Wl, WQ; YYL) + nC21 + nén

INS

ZI(XM, Xo,i; Y1) + nCa + 1oy,

i=1
where (a) follows from the fact that(WW,, Wy, Wa; V¥ Y7") < H(VS¥) < nCy; and (b) is obtained
similarly to [1], Sec. 3.4From (40), using similar arguments as in the above chainedualities,
one can also obtain

n(Ry + Ry) < ZI(XU’ Xo.i; Y1/ Wo) + nCa1 + néy,

i=1

niy < ZI(Xl,i; Y14 Xa,, Wo) + nCa + né, and

=1
nRy < ZI(Xzi; Y14 X1, Wo) +nCay + ndy,.
=1
Now defining U; = W, the proof is completed as in [3]. We can repeat the same angism
for receiver 2. Also the condition thai?,, R, R2) € Raracrc follows similarly considering full

cooperation between the receivers.

APPENDIX Il

PROOF OFPROPOSITIONZ]

Converse The converse follows immediately from Propositiobn]3.1 ahd data processing

theorem. In fact, it is easy to see that, because of physemladedness, receiver 1 cannot benefit



from VX which is a function ofY;* andY}" via V}*. For instance, conditiori (39) now becomes
H(Wo, Wy, WalY]") = H(Wo, Wy, Wo Y], Vi) < H(P.1) 4+ n(Ry + Ry)P.y £ né,,

due to the Markov chairiiW,, Wy, W) — Y* — VK. Repeating the same arguments for the other
conditions [(40), the converse is then completed as in Piopos.1.

Achievability Codeword generation at the transmitters is performedrat&MVAC with common
information [1] [13]:

Generate"o sequences™(w;) of lengthn, with the elements of each being chosen independent
identically distributed (i.i.d.) according to the distifon p(u), wy € Wy. For any sequence” (wy),
generate2"? independent sequences(wy, w;), w; € W;, again i.i.d. according te(z;|u;(wy)),
fori=1,2.

At receiver 1, the message s#g, W, andW, are partitioned int@"e0¢1z  gna1Ci2 gng2nazCiz
subsetsrespectively, for giverd < a; < 1 and E?:o «a; = 1. This is done by assigning each
codeword in the message seétg,, WW; and WV, independently and randomly to the index sets
{1,2,...,2n0C2} 1] 2 onaaCiz) gnd {1, 2, ..., 2"C12 ) respectively.

Encodingat transmitter; is performed by sending codeworg (w,, w;) corresponding to the
common message, € W, and local message; € W, (i = 1,2). Encoding at decoder 1 takes
place after detection of the two messadBs W, and 1V, (see description of decoding below). In
particular, decoder 1 sends over the conferencing link he2indices of the subsets in which the
estimated messagél,, 1W; and; lie. Notice that this requiresC, bits andK = 1 conferencing
rounds (i.e.,|V1 1| = nC}2). Also we emphasize again that the conferencing link 2-losused
(V| = 0).

Decodingat the first decoder is carried out by finding jointly typicatisencesu™ (wy), 27 (wo, w1 ),
xh(wo, we), yi) with w; € W; [11]. As discussed above, once the first decoder has obtained
the messagedl,, W; and WW,, it sends the corresponding subset indices to receiver P thee
conferencing channels. Decoding at receiver 2 then takasepgain based on a standard MAC
joint-typicality encoder with the caveat that the messdd@gsi; andWW, are now known to belong
to the reduced set given by the subsets mentioned above.

The analysis of the probability of errofollows immediately from [1] [13]. In particular, as far



as receiver 1 is concerned, it can be seen from [1] [13] thaffecent condition for the probability
of error to approach zero as — oo is given by (R, R1, R2) € Raraca(p(u), p(xi|u), p(z2|u)).
Considering receiver 2, a sufficient condition is that thiesébelong to the region

{(Ro, Ri, Rs): Ry >0, Ry >0, Ry >0, (41a)
Ry < I(X1: Ya| XoU) + a1 Chs (41b)

Ry < I(X2; Y| X1U) + axCis (41c)

Ry + Ry < I(X1 X9, Ya|U) + (a1 + ) Chz (41d)
Ry + Ry + Ry < I(X1X5;Ys) + Cha}, (41e)

for the givena;. Taking the union over all allowed; in (41) concludes the proof.

APPENDIX |11

PROOF OFPROPOSITIONG.4

We first prove thatR, or > Riout — % We consider three separate cases and show that the
statement of the theorem holds for each case separately.éfied®, = 2 P, P, & 12,P,,
Cip 22202 — 1 and Cy; £ 2202 — 1 for simplicity of notation. We remark that using this noteti

the compression noisds {24) can be written for the case atdmrf = 1t2tl gndg? — HLatl

(1+P;)Cr2 (14Py)Po1
Case 1 Let

o P,
Cy > 42
0> (42)

and

v P
Ciy > ‘. 43
> (43)

In this case, the upper bound (28) A5 ,.: = %log(l + P, + B,) and for the achievable rate with
one-round conferencing (P9) we have

B, 1 B,
C(Pa+72> :—log <1+Pa+w>
1‘|‘0’2 2 1+W+Pab)

2
> —log <1 + P, + L) (44)

1—|—Pa—|—2Pb

N | —



:hg<a+&+&F)

2 %\ 15 P, 12p,
1 1 1+ P, + B,
—Zlog(14+ P, +P)+—-log [ ——2aTb
5 log (1 + Fut w+2og<raa+2&)
1
2 Rout - 5

where [44) follows from [(42). Similarly, usindg (43), we cais@ show thatC (Pb + 15‘;5) >
Rout — 3. It then follows thatR; o, > Rouw — 3.

Case 2 Now, let
P,

Coy <
A =11p,

(45)
and
(1+P)(1+Co) < (14 P)(1+ Cha). (46)

In this case, we hav&, ,,, = 5 log(1+ P,)(1 + Cy) and

P, 1 P,
C (Pa+ — +ag) — S log (1 + Pt T )

Po1(1+Pa)

1 1 P,C
=_—log(1+ P,)+=log |1+ 2
2 2 (14 P)Cor+ (1 + P+ By)

(1+ P, + P)(1+4 Cy)
1+ P)Co + (1+ P, + By)

1+ P, + P, )

1 1
= —1 1+ P, —1
20g( + )+20g<(

2 (1+ P)Co 4+ (1+ P+ By)

1 1+ P, + P,

> Ry + = log [ —— et 47

= t+2°g<r+&+aa> (47)
1

Z Rout - 57 (48)

where [47) follows from[(45). On the other hand, we also have

P, 1 P,

Pi2(14-Py)

P
(1+P) 1+ -
L+ Py 4 At

1 v 1
:§log<1+Pa) (1+021)+—10g<

1
= §log



> 1log (1+P) |1+ Pol(1+ Pa)(1 + Cn) _v(l‘i‘Pb)] (49)
2 7 (1+PB)[(1+ R)(1 + Co) + P
IO AR NES )
2 i (14 P)(1+Cy) + P,
1 1+P,+ P
:Rout+_10g |i + +~ b }
2 (1+ P)(1+ Py)+ P,
1 1+P,+ P,
> — I
2 Row + 3 1og {1 YoP, + PJ (50)
1
2 Rout ) (51)

2
where [(49) follows from[(46); and_(50) follows frorh (45). Fno(48) and [(5l1), we see that the

theorem holds for Case 2 as well.

Case 3 Let
y P,
<
Ci2 < gy} (52)
and
(14 P)(1+4 Cra) < (14 P)(1+ Cyy). (53)

In this case R, = 5 Llog(1 + P)(1 + 012) Case 3 follows similarly to Case 2.
Now, for the symmetric channel case, i€, =+, that is, if P, = P, = P, we have to prove

that Ror > R..: — 0.29. This follows similarly to the treatment above as

1 1+P,+ B
> —log | ———
1 1+2P
= Rou = 5 log [1+3P]
1
2 Rout — §(log3 — ].) (54)

APPENDIX IV

PROOF OFPROPOSITIONG.5

To prove the theorem, we show that the boundsior R, and R, + R, in ch(C) are all within
M bits of the corresponding bounds @, _,,(C). We defineC' £ 22¢ — 1. Without loss of



generality, we assumie> a, and definer £ «P. Then from the definition of}, we getbP = fz.

The outer bound and the achievable rates with one-rouncesemting can now be written as

CgM—out<C> = {(R17R2) : Rl 2 07 R2 Z 07

Ry <min{C(z) + C, C((1 + B)z)}, (55a)
Ry <min{C(z) + C, C((1+ B)z)}, (55b)
Ry + Ry <min{C((1 + B)z) + C, C(2(1 + Bz + (8 — 1)%2*)}}, (55¢)
and
REA(C) ={(Ri,Ry) : Ry >0, Ry >0,
R2§C<(1+1f02)x), (56b)
1\2
R1+R2§C<(1+ﬁ+11:fz+(ﬁlJr?f)x)} (56¢)
with o2 & L2089t (6-1%2 yocnectively,

(1+(148)z)C
We first define functionsd and B as

Alr) 21+ (14 B)z
and
B(x) £ 1+2(1+B)x+ (B—1)%" (57)

Consider the bound oR;. We analyze two cases separatelyClf> ﬁ—f‘;, then the outer bound



is equivalent toR; < %log A. On the other hand, the bound on the achievdblas found as

1 Bx 1 Bx
ilog (1+x+1+1+2(1+6)x+(ﬁ1)%2) —ilog <1+$+1+ B)

(1+(1+8)x)C AC
1 (% Az?
>
- 210g <1+x—l— ﬁAm+(1+x)B)
1 (8 + B)a* + B+ (1+2)? (1+ S2Ea)
> —log | A
2 fAx + (1+2)B
> L 1 A
=973
1 1
If C < 1%' then the outer bound is equivalent® < ; log((1 + C)(1+ x)). The achievable rate

bound can be written as

1 Bx 1 (1+2)(AC + B) + BACx
—1 1 =—1 >
20g<+$+1+3u> 20g< AC+B

AC
(1+x)B + A%C
prA+ (1+x)B

1 1+C
> —log(1
Z 5 og( —|—x)1+ﬁ

= %log(l—l—x)(l—l—é’) —~ %1og<1+6>. (59)

1
> 5 log(1 + z)

Combining [58) and[(39), we conclude that the differencevben the achievable rate bound and
the outer bound orR; is not more thar% log(1 + ) bits. The same result applies for the bounds

on R, in the same way.
Next, we consider the bounds on the sum-raté! 33 BT?“, then the outer bound on the sum-rate



is equivalent toR; + Ry <

>

N —

%log B. On the other hand, the bound on achievable sum-rate is

1 1 8 —1)2%2
ilog [1+(1+5)x<1+1+02)+( 1+;2x}
1 (B —1)%2?
log |1+ (1+5)x <1+2+Bé,4> + . ]

(V3
l\DlH [\DIH l\DlH

if ¢ < 24,

then the sum-rate outer bound is equivalenti’tp+ Ry, <

)

)

(23 y
gB — (60)

Llog(1 + C)A. The

achievable sum-rate bound is

1 1
§log [1+(1+5)x <1+1+02>+

>

N —

From (60) and[(61), we see that the difference between theadile sum-rate bound and the

(8 —1)%?
1+ o2

|

(8 —1)%22CA
CA+B

2CA+ B
CA+ B
AC(B — A)
7 AC+B
AB(1+C)
AC + B

log

1+(1+6)x< >+

A+

A(l+C)

B
2B—-A
1

log A(1 + C) 5

(61)

sum-rate outer bound is always within half a bit. The claim tlee casex = b can be similarly

proved. This concludes

the proof.



APPENDIX V
PROOF OFPROPOSITIONZ.1

In order for rates R;, R,) to be achievable, by Fano’s inequality, we have for the feseiver
(see also proof of Propositidn_3.1):

H (W, Wal Y, Vi) < né, (62)

with §,, — 0 asn — oo. From the previous inequality, it also follows that={ 1,2)

H(W17W2|}/1n7‘71]_{7‘_/2[_{7‘/21{) S n(sna (63a)
H(WhYy, ViE VR V) W) < né, and (63b)
H(Wo| Y, VIE, VE VI W) < nd,, (63c)

where 1711?,17{( represent the signals exchanged during fheencoder-side conferencing rounds
Now, we can treat[ (62)-(63) similarly to the proof of Propimsi [3.1 and using the approach in
[1]. For instance, from[(63a), we have

n(Rl + R2) S I(Wlu W27 }/lnv ‘71[(7 ‘721_(7 ‘/2K) + n(sn
< T(W, Wa YPVE V) 4 T(W, Wy VE V)

+ T(Wr, Wa; V| YT, ‘711?7 ‘72[() + no,
< I(Wy, Wo; YV, V) 4+ n(Chz + Car) + nCay + né,,
I(X1,, Xa; Yl,z'|‘71f(7 ‘72[() +n(Chz + C1) + nCyy + ndy,

=1
where (a) follows from the fact thak(Wy, Wy; VX, VE) < H(VE,VE) < n(Cy + Cy) and
T(Wy, Wo VEY?, VE, VE) < H(VF) < nCy, and (b) is obtained similarly to [1], Sec. 3.4

From (62) and the remaining inequalities [n1(63), using Emarguments as in the above chain of

—~
N

INS



inequalities, one obtains, respectively,

n(Ry + Ry) < ZI(XM’ X9, Y1) + nCap + néy,

i=1

nRy <Y I(X1 Yl X, VI V) 4+ nCa + nCy + né,, and

i=1

niy < Z[(Xz,i; Y14 X1, ‘_/1[_{7 ‘721_{) +nCay + nCayy + ndy,.

i=1

Now defininglU; = (V;X, V,X), the proof is completed similarly to Proposition]3.1, andrégeating

the same arguments for receiver 2.
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