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Abstract

The error performance of the ensemble of typical LDPC codes transmitted over the binary erasure channel

(BEC) is analyzed. In the past, lower bounds on the error exponents were derived. In this paper a probabilistic

upper bound on this error exponent is derived. This bound holds with some confidence level.

Index Terms: Block codes, error exponent, expurgated ensemble, stopping sets, low-density parity-check

(LDPC) codes, iterative decoding, binary erasure channel (BEC).

I. INTRODUCTION

Low-density parity-check (LDPC) codes, discovered by Gallager [1], have been widely researched over

the last decade and a half. Asymptotic results are widely known for these codes, including results on the

performance under maximum-likelihood (ML) decoding [1], [2], [3], [4], [5], average ensemble distance

spectra [1], [6], [7], [8], [9], stopping set distributions[7], [8], [9], [10], thresholds for iterative decoding

using density evolution [11], [12], and others. However, accurate finite-length analysis of LDPC codes

under iterative sum-product decoding is currently available only for the binary erasure channel (BEC) [13].

This is due to the simplicity of the channel model and the graph-based iterative decoder which lends

itself to a more detailed analysis. Analysis of the combinatorial properties of stopping sets and their

contribution to the error performance reveals that the average error performance of the LDPC ensemble

is proportional to the inverse of a polynomial in the block lengthN [7]. This behavior is attributed to the

existence of “bad” codes which possess small stopping sets,and otherwise would decreaseexponentially

with N if these codes were removed from the ensemble. Fortunately,these “bad” codes constitute a small

fraction of the entire ensemble whose size is proportional to the inverse of a polynomial inN .

After removing the undesirable codes, we obtain anexpurgated ensemble, for which there exists a

positive error exponent. In [7], lower bounds on this error exponent of typical codes in the regular and

irregular LDPC code ensembles were derived. In this paper weobtain an upper bound on this exponent,

and compare it with the above mentioned lower bounds. Similar to [5], which considers upper bounds

on the error exponent of LDPC codes under ML decoding, our bounds depend on some confidence level.

The correspondence is organized as follows. Section II introduces notation and preliminary material.

http://arxiv.org/abs/0803.2460v1
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Section III introduces a lower bound on the error (erasure) probability from which an upper bound on

the exponent is derived. Section IV introduces numerical results and comparisons with previous results.

Section V concludes the paper.

II. PRELIMINARIES

A. Notation

We will use the following notation throughout the paper.

• Let {αl}kl=1 be a set of non-negative real numbers, such that
∑

l αl ≤ 1. The entropy function of

{αl}kl=1 is defined as

h (α1, . . . , αk) = −
k
∑

l=1

αl log(αl)−
(

1−
k
∑

l=1

αl

)

log

(

1−
k
∑

l=1

αl

)

wherelog is the base-2 logarithm. We use the convention0 log 0 = 0.

• Given an integern and integers(n1, . . . , nk) such that
∑

l nl ≤ n,
(

n

n1, n2, . . . , nk

)

,
n!

n1! · n2! · . . . ·
(

n−∑k
l=1 nl

)

!

is the multinomial coefficient ofn over (n1, . . . , nk). We will use the following property of

multinomial coefficients

log

(

n

n1, n2, . . . , nk

)

= n
(

h
(n1
n
, . . . ,

nk
n

)

+ o(1)
)

(1)

which is easily proven using Stirling’s approximation.

• If p(x) is a polynomial, then we will denote the coefficient ofxi by
[

xi
]

p(x), i.e,

p(x) =
∑

i

[

xi
]

p(x)xi

The same notation is extended for use with multivariate polynomials, e.g.,

p(x, y, z) =
∑

i,j,k

[

xiyjzk
]

p(x, y, z)xiyjzk

B. A Second-Order Inequality for Probabilities

Dawson and Sankoff [14] obtained a lower bound on the probability of a finite union of events. Their

result asserts the following. Let{Ai}Mi=1 be a finite family of events in a probability space(Ω, P ). Denote

S̃1 =
∑

i∈I

Pr(Ai) S̃2 =
∑

i,j∈I
i>j

Pr(Ai ∩Aj)

whereI = {1, . . . ,M}. Then

Pr

(

⋃

i∈I

Ai

)

≥ 2

r + 1
S̃1 −

2

r(r + 1)
S̃2 (2)
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for any r ∈ {1, . . . ,M − 1}.

Following the derivation in [14], we derive a result which generalizes (2). For a probability eventA,

denote by1{A} to be the indicator (random variable) overA, i.e, for ω ∈ Ω,

1{A}(ω) =

{

1 ω ∈ A
0 ω /∈ A

Our result asserts that for allω ∈ Ω,

1{∪M
i=1Ai} ≥

2

r + 1
S1 −

2

r(r + 1)
S2 (3)

where

S1 =
∑

i∈I

1{Ai} S2 =
∑

i,j∈I
i>j

1{Ai}1{Aj}

By taking the expectation over both sides of (3), we get (2) asa special case. We prove (3) in Appendix

I.

C. LDPC Code Ensembles

We consider the standard bipartite graph-based(c, d)-regular LDPC code ensemble with block length

N and design rateR. In this ensemble a randomly chosen permutation is used to match the cN left

sockets to thed(1 −R)N right sockets. The actual rate of the code is at leastR , 1− c/d.

III. U PPERBOUND ON ERROR EXPONENT FOR THEBEC

Recall that astopping set S of a bipartite graph representation of an LDPC code is a set ofvariable

nodes, such that each check node neighbor ofS is connected toS by at least two edges. As explained in

[13], iterative decoding of LDPC codes succeeds if and only if the set of variable nodes which correspond

to erasures does not contain a subset which is a stopping set.

The expurgated (c, d)-regular LDPC ensembleCγ is derived from the(c, d)-regular ensembleC0 by

removing all the codes containing stopping sets of sizeγN or less. It was shown in [7] that for ensembles

with c > 2, if γ is selected below a certain thresholdα0, then almost all codes inC0 belong toCγ . In

other words, ifC is drawn at random fromC0

Pr (C ∈ Cγ) = 1− o(1) ∀γ < α0 (4)

The numberα0N may therefore be considered to be the typical minimum stopping set size ofC0.

Since the behavior ofC0 is dominated by a small fraction of “bad” codes, we will be interested in the

performance of codes drawn at random fromCγ . Let C be such a code.
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Consider a BEC with erasure probabilityδ; the probability of unsuccessful decoding of any codeword

from C, P C
e is given by

P C
e =

N
∑

l=γN

δl(1− δ)N−l
∑

m

1n

∪2l−1
i=1 Am

i

o (5)

where the indexm runs over all sets of variable nodes containing exactlyl nodes; for a particular setSm

of l variable nodes,{Am
i } is the event that thei’th (non-empty) subset ofSm (wherei = 1, . . . , 2l − 1)

is a stopping set. Note that every set ofN(1−R) + 1 variable nodes contains the support of a nonzero

codeword1. Hence (since every codeword is a stopping set), every set ofN(1 − R) + 1 variable nodes

contains a stopping set. Therefore, the indicator appearing in the RHS of (5) may be replaced by1 for

l > N(1−R), which yields

P C
e =

N(1−R)
∑

l=γN

δl(1− δ)N−l
∑

m

1n

∪2l−1
i=1 Am

i

o +

N
∑

l=N(1−R)+1

(

N

l

)

δl(1− δ)N−l (6)

Next, we use (3) to lower-bound the indicator function in (6), giving

1n

∪2l−1
i=1 Am

i

o ≥ 2

rl + 1
S1 −

2

rl(rl + 1)
S2 (7)

wherer is allowed to depend on the size of the set, and

S1 =

2l−1
∑

i=1

1{Am
i } S2 =

2l−1
∑

i=1

i−1
∑

k=1

1{Am
i }1{Am

k } (8)

Consider a stopping setS containingk variable nodes, wherek ≤ l. The number of sets of variable

nodes of sizel containingS as a subset is
(

N−k
l−k

)

. Hence, again lettingm run over all subsets of sizel,

we have
∑

m

2l−1
∑

i=1

1{Am
i } =

l
∑

k=1

(

N − k

l − k

)

SC
k =

l
∑

k=γN

(

N − k

l − k

)

SC
k (9)

whereSC
k is the number of stopping sets withk variable nodes inC; note that sinceC belongs to the

expurgated ensemble, we haveSC
k = 0 for k < γN .

In a similar fashion we obtain

∑

m

2l−1
∑

i=1

i−1
∑

j=1

1{Am
i }1{Am

j } =
∑

γN≤j≤i≤l
0≤k≤j+min(i−j−1,0)

i+j−k≤l

(

N − (i+ j − k)

l − (i+ j − k)

)

SC
i,j,k (10)

whereSC
i,j,k is the number ofpairs of stopping sets,(S1,S2) satisfying|S1| = i, |S2| = j, and|S1∩S2| =

k. Recalling that bothS1 andS2 must be subsets of a particular set of sizel, their union must also be a

subset, and therefore|S1∪S2| = i+j−k ≤ l. Furthermore, the application of (3) requires summing over

pairs of distinct events. Consequently, we cannot haveS1 = S2, i.e., wheni = j, we must havek < j;

1This is tantamount to saying thatN(1−R) + 1 columns in the parity check matrix, regardless of how they are chosen, are
linearly dependent; this follows since the matrix hasN(1−R) rows.
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this requirement is subsumed by imposing0 ≤ k ≤ j +min(i− j − 1, 0) in (10). Plugging (7)-(10) into

(6), we get

P C
e ≥

N(1−R)
∑

l=γN

δl(1− δ)N−l





2

rl + 1

l
∑

i′=γN

(

N − i′

l − i′

)

SC
i′

− 2

rl(rl + 1)

∑

γN≤j≤i≤l
0≤k≤j+min(i−j−1,0)

i+j−k≤l

(

N − (i+ j − k)

l − (i+ j − k)

)

SC
i,j,k















+
N
∑

l=N(1−R)+1

(

N

l

)

δl(1− δ)N−l

≥
N(1−R)
∑

l=γN

{

δNǫ(1− δ)N(1−ǫ)

[

2

rl + 1
max
γ≤η≤ǫ

(

N(1− η)

N(ǫ− η)

)

SC
ηN

− 2

rl(rl + 1)
(ǫN)3 max

γ≤η2≤η1≤ǫ
0≤β≤η2

η1+η2−β≤ǫ

(

N(1− (η1 + η2 − β))

N(ǫ− (η1 + η2 − β))

)

SC
η1N,η2N,βN





























+ max
1−R≤ǫ≤1

{(

N

Nǫ

)

δNǫ(1− δ)N(1−ǫ)

}

(a)

≥ max
γ≤ǫ≤1−R

{

δNǫ(1− δ)N(1−ǫ)P̂ C
e (ǫ,N)

}

+ max
1−R≤ǫ≤1

{(

N

Nǫ

)

δNǫ(1− δ)N(1−ǫ)

}

where

P̂ C
e (ǫ,N) ,

[

2

rǫN + 1
max
γ≤η≤ǫ

(

N(1− η)

N(ǫ− η)

)

SC
ηN

− 2

rǫN(rǫN + 1)
(ǫN)3 max

γ≤η2≤η1≤ǫ
0≤β≤η2

η1+η2−β≤ǫ

(

N(1− (η1 + η2 − β))

N(ǫ− (η1 + η2 − β))

)

SC
η1N,η2N,βN











(11)

and ǫ , l
N

, η , i′

N
, η1 , i

N
, η2 ,

j
N

, andβ , k
N

; a sufficient condition in order for (a) to hold is

that P̂ C
e (ǫ,N) be non-negative forγ ≤ ǫ ≤ 1 − R. Later we will choose the value ofrǫN so that this

condition is fulfilled.

By expressing the bound in exponential form, we get the following upper bound on the error exponent

− 1

N
log P C

e ≤ − max
γ≤ǫ≤1

{

ǫ log δ + (1− ǫ) log(1− δ) +

{

1
N
log P C

e (ǫ,N) γ ≤ ǫ ≤ 1−R
h(ǫ) 1−R ≤ ǫ ≤ 1

}

+ o(1)

where we rely upon (1), and

P C
e (ǫ,N) ,

2

rǫN + 1
2−NE′

1 − 2

rǫN (rǫN + 1)
2−NE′

2 (12)

E′
1 = − max

γ≤η≤ǫ

{

(1− η)h

(

ǫ− η

1− η

)

+
1

N
logSC

ηN

}

(13)

E′
2 = − max

γ≤η2≤η1≤ǫ
0≤β≤η2

η1+η2−β≤ǫ

{

(1− (η1 + η2 − β))h

(

ǫ− (η1 + η2 − β)

1− (η1 + η2 − β)

)

+
1

N
logSC

η1N,η2N,βN

}

(14)
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Let C′ be a randomly selected code fromC0, and letSi andSi,j,k be the averages, overC0, of SC′

i and

SC′

i,j,k, respectively. We evaluate these average quantities and then relate them toSC
i andSC

i,j,k
2. In order

to evaluate these quantities, we introduce the following notation.

ψi(x; d) =
d
∑

l=i

(

d

l

)

xl = (1 + x)d −
i−1
∑

l=0

(

d

l

)

xl (15)

Ψ
i+,k+,j+
i−,k−,j−

(x, y, z, d) =
∑

i−≤i≤i+
j−≤j≤j+
k−≤k≤k+

i+j+k≤d

(

d

i, j, k

)

xiyjzk (16)

The average quantities satisfy

Si =

(

N

i

)

Ps,1(i) (17)

Si,j,k =

(

N

i− k, k, j − k

)

Ps,2(i, j, k) (18)

wherePs,1(i) is the probability that a specific set of variable nodes,S, is a stopping set, andPs,2(i, j, k)

is the probability that a specific pair of sets -S1 containingi variable nodes andS2 containingj variable

nodes, with|S1 ∩ S2| = k, are both stopping sets.

To evaluatePs,1(i), we need to fix a setS of i variable nodes and count the number of possibilities

of connecting theiric variable sockets toic check sockets such that each of theL check nodes is either

(a) not connected to any of theic variable sockets, or (b) connected by at least two check sockets. This

combinatorial problem can be solved by means of the enumeration function in (15). The total number

of ways to connectic variable sockets toNc check sockets is
(

Nc
ic

)

, therefore

Ps,1(i) =

[

xic
]

(1 + ψ2(x, d))
L

(

Nc
ic

)

We proceed with the evaluation ofPs,2(i, j, k). Given two setsS1 and S2 of variable nodes with

|S1| = i, |S2| = j, |S1 ∩ S2| = k, we need to count the number of possibilities of connecting(i − k)c

sockets fromS1/S2, kc sockets fromS1 ∩ S2 and (j − k)c sockets fromS2/S1 to (i + j − k)c check

sockets, such that bothS1 andS2 are stopping sets. This situation is depicted in Figure 1. Consider a

check nodeα in the graph. From the definition of a stopping set, it can be seen that in order to have

bothS1 andS2 as stopping sets,α has to fall into one of the following disjoint categories:

• α is not connected at all to nodes inS1 ∪ S2.

• α is connected by at least two edges to nodes inS1/S2 and is not connected to nodes inS2.

• α is connected by at least two edges to nodes inS2/S1 and is not connected to nodes inS1.

• α is connected by at least two edges to nodes inS1/S2 and by at least two edges to nodes inS2/S1,

but is not connected to any node inS1 ∩ S2.

2recall that in our contextC is selected uniformly fromCγ
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d

2
1

α

S1

i nodes

k nodes

S2

j nodes

S1 ∩ S2

Fig. 1. Two intersecting stopping sets and a check nodeα

• α is connected by exactly one edge to a node inS1∩S2, and by at least one edge to nodes inS1/S2

and inS2/S1.

• α is connected by at least two edges to nodes inS1 ∩ S2.

This combinatorial problem can be solved using the enumeration function given in (16). The total number

of possibilities of connecting(i− k)c sockets fromS1/S2, kc sockets fromS1 ∩S2 and(j− k)c sockets

from S2/S1 to Nc check sockets is
(

Nc
(i−k)c,kc,(j−k)c

)

. Therefore,

Ps,2(i, j, k) =
[

x(i−k)cykcz(j−k)c
]

B(x, y, z, d)L ·
(

Nc

(i− k)c, kc, (j − k)c

)−1

B(x, y, z, d) , 1 + Ψd,0,0
2,0,0(x, y, z, d) + Ψ0,0,d

0,0,2(x, y, z, d) + Ψd−2,0,d−2
2,0,2 (x, y, z, d)

+Ψd−1,1,d−1
1,1,1 (x, y, z, d) + Ψd,d,d

0,2,0(x, y, z, d) (19)

We turn our attention back to the relation between the average quantitiesSi andSi,j,k and those of the

randomly selected code,SC
i andSC

i,j,k. By assuming thatC is selected at random with uniform probability
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from C0 and using conditioning, we have

Pr
(

SC
i,j,k > NSi,j,k | C ∈ Cγ

)

=
Pr
(

SC
i,j,k > NSi,j,k

)

− Pr
(

C /∈ Cγ , SC
i,j,k > NSi,j,k

)

Pr (C ∈ Cγ)

(a)

≤
Pr
(

SC
i,j,k > NSi,j,k

)

1− o(1)

(b)

≤ 1

N(1− o(1))
(20)

where (a) is obtained using (4) and by omitting the negative term, and (b) is due to Markov’s inequality.

We conclude from (20) that w.p. (with probability)1 − o(1), for C chosen randomly with uniform

probability fromCγ ,
1

N
log SC

i,j,k ≤ 1

N
log Si,j,k + o(1) (21)

By using conditioning once more we obtain

Pr

(

1− ǫ ≤ SC
i

Si

≤ 1 + ǫ
∣

∣

∣
C ∈ Cγ

)

≥
Pr
(

1− ǫ ≤ SC

i

Si

≤ 1 + ǫ
)

− Pr (C /∈ Cγ)

Pr (C ∈ Cγ)
(a)

≥ Pr

(

1− ǫ ≤ SC
i

Si

≤ 1 + ǫ

)

+ o(1) (22)

where (a) is obtained by using (4) and replacing the denominator by 1.

Rathi [8] has obtained a concentration result on the stopping set distribution. His result implies the

following. For anyǫ > 0,

Pr

(

1− ǫ ≤
SC
ηN

SηN

≤ 1 + ǫ

)

≥ 1− βη,d,c
ǫ2

+ o(1) (23)

whereβη,d,c is a constant given in Eq. (37) in Appendix II, independent ofN , which satisfiesβη,d,c → 0

whend→ ∞ and c
d

is kept constant. By settingǫ→ 1 in (23) and using (22), we conclude that w.p. at

least1− βη,d,c

ǫ2
+ o(1), for C chosen randomly with uniform probability fromCγ ,

1

N
logSC

ηN ≥ 1

N
log SηN + o(1) (24)

Define

E1 , − max
γ≤η≤ǫ

{

(1− η)h

(

ǫ− η

1− η

)

+
1

N
logSηN

}

(25)

E2 , − max
γ≤η2≤η1≤ǫ
0≤β≤η2

η1+η2−β≤ǫ

{

(1− (η1 + η2 − β))h

(

ǫ− (η1 + η2 − β)

1− (η1 + η2 − β)

)

+
1

N
log Sη1N,η2N,βN

}

(26)

then by combining (12), (13), (14), (21) and (24), we obtain that, w.p. at least1− βη,d,c

ǫ2
+ o(1),

P C
e (ǫ,N) ≥ 2

rǫN + 1
2−N(E1+o(1)) − 2

rǫN (rǫN + 1)
2−N(E2+o(1)) (27)

As we are interested in the asymptotic behavior ofE1 andE2 (and thus the exponential growth rate

of the stopping set distributions), we use [7, Theorem 2], which asserts the following3:

3Here we give the multivariate version of the theorem with 3 variables; the theorem generalizes to any number of variables.
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Let p(x, y, z) be a trivariate polynomial with non-negative coefficients.Let α1 > 0, α2 > 0 andα3 > 0

be some rational numbers and letni be the series of all indices such that

[xα1niyα2nizα3ni ] p(x, y, z)ni 6= 0

Then

lim
i→∞

1

ni
log [xα1niyα2nizα3ni ] p(x, y, z)ni = inf

x>0,y>0,z>0
log

(

p(x, y, z)

xα1yα2xα3

)

(28)

Using (17), (18), (25), (26) and (28) we obtain

E1 = −h(ǫ)− max
γ≤η≤ǫ

{

ǫh
(η

ǫ

)

− ch(η) +
c

d
inf
x>0

log

(

1 + ψ2(x, d)

xηd

)}

(29)

E2 = −h(ǫ)− max
γ≤η1≤η2≤ǫ
0≤β≤η2

0≤η1+η2−β≤ǫ

{

ǫh

(

η1 − β

ǫ
,
η2 − β

ǫ
,
β

ǫ

)

− ch (η1 − β, η2 − β, β)

+
c

d
inf

x,y,z>0
log

(

B(x, y, z, d)

x(η1−β)dyβdz(η2−β)d

)}

If E2 ≥ E1, we chooserǫN = 1 in (27). In this case, taking the union bound over all possible

stopping sets yields an exponentially tight bound. In the case thatE2 < E1, we use (27) withrǫN =

⌊2N(E1−E2+α)⌋, whereα > 0 can be made arbitrarily small (hence, the non-negativity ofP̂ C
e (ǫ,N) in

(11) is established). Thus, we obtain the following upper bound on the error exponent

− 1

N
log P C

e < − max
γ≤ǫ≤1

{

ǫ log δ + (1− ǫ) log(1− δ)−
{

E γ ≤ ǫ ≤ 1−R
−h(ǫ) 1−R ≤ ǫ ≤ 1

}

+ o(1)

E ,

{

E1 E2 ≥ E1

2E1 − E2 E2 < E1
(30)

This bound holds w.p. at least1− βη0,d,c

ǫ2
+ o(1), whereη0 is the maximizing value ofη in (29).

IV. N UMERICAL RESULTS

In this section, we compare our upper bound on the error exponent of the BEC with previously-known

lower bounds. These bounds were derived in [7, Theorems 8,12]; one of these bounds applies for iterative

decoding, while the other applies for ML decoding.

In Figure 2 we exemplify our bound for the regular(4, 8) LDPC ensemble. Recalling that the bound

applies with a certain probability, we have marked the plot where the bound has a confidence level above

99%. We note that the entire plot of the upper bound is true w.p. atleast70%.

Figure 3 shows the confidence level bound from (23) which corresponds to the upper bound plot in

Figure 2. Looking back at Figure 2 for low values ofδ, the upper bound on the exponent coincides with

the two lower bounds from [7, Theorems 6,8]. That is, our results indicate that in the regionδ ∈ [0, 0.17],

the bound on the error exponent of the expurgated ensemble in[7, Theorem 6], which coincides with

the bound in [7, Theorem 8] in this region, is tight. Similarly, for the (3, 6) ensemble andδ ∈ [0, 0.26],
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the lower bound on the error exponent of the expurgated ensemble in [7, Theorems 6] (which coincides

with the lower bound in [7, Theorem 8] in this region) is tight4.

Focussing on higher values ofδ where the confidence level is higher, comparison of our upperbound

with the lower bound on the ML decoding exponent reveals thatthere is a gap in performance between

iterative and ML decoders, at least for most codes in the ensemble.

V. CONCLUSION AND FURTHER RESEARCH

We have derived an upper bound on the error exponent of LDPC codes transmitted over the BEC. The

upper bound relies on Dawson’s inequality and holds with a certain confidence level. It was demonstrated

that for some values of the channel erasure probability there is a gap between our upper bound and some

previously reported lower bounds.

Continued research could focus on extending our results to irregular ensembles of LDPC codes. This

requires to extend the results of [8], regarding concentration of stopping sets, to irregular codes. Another

possible avenue is to try and bridge the gap between the lowerand upper bounds; with the asymptotic

decoding threshold for the(4, 8) ensemble at about0.38, there is still room for improvement in the

bounds.
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APPENDICES

APPENDIX I
PROOF OF(3)

Given the eventsA1, . . . , AM define the setBs, s = 1, . . . ,M as the set of points in
⋃M

i=1Ai contained

in exactlys sets. We thus have

M
∑

k=1

k1{Bk} =

M
∑

k=1

1{Ak} = S1 (31)

M
∑

k=2

(

k

2

)

1{Bk} =

M
∑

k=1

k−1
∑

i=1

1{Ak}1{Ai} = S2 (32)

We will find a lower bound for

V = 1{S

M
i=1 Ai} =

M
∑

k=1

1{Bk} (33)

First, fix the value ofr. Solving (31) and (32) to isolate1{Br} and1{Br+1} we get

1{Br} = S1 −
2S2
r

− 1{B1} −
M
∑

k=2
k 6=r

1{Bk}
k(r + 1− k)

r
(34)

1{Br+1} = 1{B1}
r − 1

r + 1
+

2S2
r + 1

− S1
r − 1

r + 1
−

M
∑

k=2
k 6=r+1

1{Bk}
k(k − r)

r + 1
(35)

Substituting (34) and (35) into (33) we get

V − 2S1
r + 1

+
2S2

r(r + 1)
=
r − 1

r + 1
1{B1} +

M
∑

k=2

1{Bk}
(r − k)(r − k + 1)

r(r + 1)
(36)

Note that the RHS of (36) contains only non-negative elements. Thus, if the RHS of (36) is replaced by

zero, we obtain the inequality

V ≥ 2

r + 1
S1 −

2

r(r + 1)
S2

which is the desired result.

APPENDIX II
CONFIDENCE INTERVAL OF STOPPINGSET DISTRIBUTION

Rathi [8] has obtained a result asserting the concentrationof the stopping set distribution. To state his

result, we introduce some notation.

• Denoteβ(x) , 1 + ψ2(x, d), whereψ is defined in (15).

• The equation

x
(1 + x)d−1 − 1

β(x)
= η

has a single real positive solution; denote this solution byxη.
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• Defineaβ(x) ,
x

β(x)
dβ(x)

dx andbβ(x) , xdaβ(x)
dx

• Let x = (x1, x2, x3). For a multivariate functionf(x), denoteaf (x) to be a 3-element vector whose

elements areaf(i) =
(

xi

f
∂f
∂xi

)

. Let Cf (x) denote a3 × 3 matrix whose elements are given by

Cf(i,j) = xj
∂af(i)

∂xj
= Cf(j,i).

The concentration result is as follows. The number of stopping setsSC
ηN in a randomly selected codeC

satisfies

Pr

(

1− ǫ ≤
SC
ηN

SηN

≤ 1 + ǫ

)

≥ 1− βη,d,c
ǫ2

+ o(1) (37)

where

βη,d,c =
bβ(xη)

√
dη(1− η)σc(η

2)
√

|CB̃(xη, x
2
η , xη)|(η2(1− η)2 − (c− 1)σ2c (η

2))
− 1

σ2c (η
2) =

1

cd|(−1, 1,−1) · CB̃(xη, x
2
η, xη)

−1 · (−1, 1,−1)T |
B̃(x) , B(x1, x2, x3, d)

andB(·, ·, ·, d) is defined in (19).
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