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Abstract

The error performance of the ensemble of typical LDPC codasstnitted over the binary erasure channel
(BEC) is analyzed. In the past, lower bounds on the error eepts were derived. In this paper a probabilistic
upper bound on this error exponent is derived. This boundshelith some confidence level.

Index Terms: Block codes, error exponent, expurgated ensemble, stgggits, low-density parity-check
(LDPC) codes, iterative decoding, binary erasure charBgC).

. INTRODUCTION

Low-density parity-check (LDPC) codes, discovered by &gl [1], have been widely researched over
the last decade and a half. Asymptotic results are widelywnior these codes, including results on the
performance under maximume-likelihood (ML) decoding [4],[[3], [4], [5], average ensemble distance
spectra [1], [6], [7], [8], [9], stopping set distributiofig], [8], [9], [10], thresholds for iterative decoding
using density evolution [11], [12], and others. Howevergwate finite-length analysis of LDPC codes
under iterative sum-product decoding is currently avadamly for the binary erasure channel (BEC) [13].
This is due to the simplicity of the channel model and the hrbased iterative decoder which lends
itself to a more detailed analysis. Analysis of the comlmnat properties of stopping sets and their
contribution to the error performance reveals that theagyererror performance of the LDPC ensemble
is proportional to the inverse of a polynomial in the blockdéh NV [7]. This behavior is attributed to the
existence of “bad” codes which possess small stopping aetsptherwise would decreaegonentially
with N if these codes were removed from the ensemble. Fortuné#telse “bad” codes constitute a small
fraction of the entire ensemble whose size is proportiondhé inverse of a polynomial itV.

After removing the undesirable codes, we obtainegpurgated ensemble, for which there exists a
positive error exponent. In [7], lower bounds on this ermpanent of typical codes in the regular and
irregular LDPC code ensembles were derived. In this papeobtain an upper bound on this exponent,
and compare it with the above mentioned lower bounds. Sirnteig5], which considers upper bounds
on the error exponent of LDPC codes under ML decoding, ountsulepend on some confidence level.

The correspondence is organized as follows. Segfion lbdhices notation and preliminary material.
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Sectionll introduces a lower bound on the error (erasurepability from which an upper bound on
the exponent is derived. Sectibn] IV introduces numericsiliite and comparisons with previous results.
Section Y concludes the paper.

[I. PRELIMINARIES
A. Notation
We will use the following notation throughout the paper.

o Let {oy}F_ | be a set of non-negative real numbers, such Fiaty < 1. The entropy function of
{oy}r_, is defined as

k k k
h(ay,...,a) = —Zallog(al) — <1 — Zal> log (1 — Zal>
1=1 =1 1=1

wherelog is the base-2 logarithm. We use the conventidog 0 = 0.
« Given an integern. and integergn,...,n;) such thaty , n; < n,

( n )A n!
ny,n2,...,Ng nl'ng'(n—Zlenl)'

is the multinomial coefficient ofn over (nq,...,n;). We will use the following property of

multinomial coefficients

log <n1,n2,n...,nk> :n<h <%”%) +0(1)> @)

which is easily proven using Stirling’s approximation.
« If p(z) is a polynomial, then we will denote the coefficientsfby [2'] p(x), i.e,

The same notation is extended for use with multivariate patyials, e.g.,

p(w,y,2) =Y {w"yjzk] pla,y, 2)z'y’ 2*
i7j7k

B. A Second-Order Inequality for Probabilities

Dawson and Sankoff [14] obtained a lower bound on the prdibabf a finite union of events. Their
result asserts the following. LétA;}2, be a finite family of events in a probability spa@, P). Denote
Si=> Pr(4;)  Sy= ) Pr(4;NA4))

il ijel
i>j

wherel = {1,...,M}. Then

2 = 2 ~
Pr (UAz) > 74%_15'1— 74(T+1)S2 (2

iel



foranyr e {1,...,M —1}.

Following the derivation in [14], we derive a result whichngealizes[(R). For a probability everit,
denote byl 4, to be the indicator (random variable) ovér i.e, forw € €,
1 wed
Ly W) = { 0 wgA

Our result asserts that for all € Q,

2 g 2
r+1t r(r+1)

Lium ay 2 S 3)

where

S1=> ay  S$=) laylay
il ijel
1>]
By taking the expectation over both sides[df (3), we @t (22 apecial case. We prove (3) in Appendix
I

C. LDPC Code Ensembles

We consider the standard bipartite graph-baged)-regular LDPC code ensemble with block length
N and design rate?. In this ensemble a randomly chosen permutation is used tohnthe cN left
sockets to thel(1 — R)N right sockets. The actual rate of the code is at lgasgt 1 — c/d.

I1l. UPPERBOUND ON ERROREXPONENT FOR THEBEC

Recall that astopping set S of a bipartite graph representation of an LDPC code is a seapnible
nodes, such that each check node neighb& & connected t& by at least two edges. As explained in
[13], iterative decoding of LDPC codes succeeds if and ditllye set of variable nodes which correspond
to erasures does not contain a subset which is a stopping set.

The expurgated (c, d)-regular LDPC ensemblé” is derived from the(c, d)-regular ensemblé€® by
removing all the codes containing stopping sets of sixeor less. It was shown in [7] that for ensembles
with ¢ > 2, if 7 is selected below a certain threshaig, then almost all codes i6° belong toC”. In
other words, ifC is drawn at random frong"

Pr(CeC’)=1-o0(l) Yvy<ag 4)

The numberayN may therefore be considered to be the typical minimum stapiet size ofC’.
Since the behavior of® is dominated by a small fraction of “bad” codes, we will beeirasted in the
performance of codes drawn at random frém Let C be such a code.



3

Consider a BEC with erasure probabilify the probability of unsuccessful decoding of any codeword

from C, P¢ is given by
N
Pf:g;vala SN lZ1{U ) (5)

where the indexn runs over all sets of variable nodes containing exactligdes; for a particular s&,,,
of [ variable nodes{ A"} is the event that théth (non-empty) subset of,,, (wherei =1,...,2" — 1)
is a stopping set. Note that every set/éf1 — R) + 1 variable nodes contains the support of a nonzero
codeword. Hence (since every codeword is a stopping set), every séf(of— R) + 1 variable nodes
contains a stopping set. Therefore, the indicator appganinhe RHS of [(b) may be replaced hyfor
[ > N(1 - R), which yields

N(1-R) N

Z 5l N l Z 1{U lAm Z <];[> 5l(1 o 5)N—l (6)

I=yN I=N(1—R)+1
Next, we use[(3) to lower-bound the indicator function[ih, @ying

2
{U lAm} o+ 15 l(Tl + 1)S2

wherer is allowed to depend on the size of the set, and

()

2t—1 20—14—1

S1=2 Ty Se=20 ) Luamlu (8)
i=1

i=1 k=1

Consider a stopping sef containingk variable nodes, whergé < [. The number of sets of variable

nodes of sizéd containingS as a subset i ) Hence, again letting: run over all subsets of size
we have
- N—k L /N—k
C _
ZZMMZ@kM—Z@%M ©
m =1 k=yN

WhereS,g is the number of stopping sets withvariable nodes irC; note that since&€ belongs to the
expurgated ensemble, we hagg =0 for k < yN.

In a similar fashion we obtain

1

2'—111—1 . .
N—=(i+j—k)\
Y Yueien= Y (C0)se @
m =1 j=1 YN<j<i<l L=(i+i-k)
0<k<j+min(i—j—1,0)
i+j—k<l

Wh(areSZ.CJ,,C is the number opairs of stopping sets(S;, Sz) satisfying|Si| = i, |S2| = j, and|S1 NS, | =

k. Recalling that botls; and S, must be subsets of a particular set of dizéheir union must also be a
subset, and therefoté&; US,| = i+j —k < I. Furthermore, the application d¢fl(3) requires summing over
pairs ofdistinct events. Consequently, we cannot ha&{e= S, i.e., wheni = j, we must have: < j;

1This is tantamount to saying thaf(1 — R) + 1 columns in the parity check matrix, regardless of how theyarosen, are
linearly dependent; this follows since the matrix H&$1 — R) rows.
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this requirement is subsumed by imposing £ < j + min(i — j — 1,0) in (I0). Plugging[(¥){(T0) into
(©), we get

N(1-R) 9 ! N
C > l _ S\N—=1 - C,
Fe =2 Z o(1-9) rl+1,z <l—z">S’
l=yN i'=yN
2 N—(i+j—k) al N
e itimFNge | ( >5l(1—5)N—l
r(r+1) 7N<§j:'<i<l < l—(i+j5—k) ) gk l:N(lE—:R)Jrl l
0<k<j4min(i—j—1,0)
itj—k<l |
N(1-R)
_ 2 N(1—n)
> Nerq1 s \N(1—e) C
= l_z {5 =9 12 (e - ) )
_ny
N1 = (m +n2 —5))) c
—— = _(eN)? max S
ri(r + 1)( ) Y<na<mi<e <N(€ —(m +nm2—05)) ml AN
0<B<n2
m+n2—pB<e

N Ner1 _ s\N(1—e)
LR AL

> max {6V -V IP e M)+ max {(jvv )5N6<1—6>N“—6>}
€

| max 1-R<e<1
where
A 2 N(1—mn)
PC N é SC
e (& N) [TEN + 142 <N(€ - 77)> "
) , N1~ (m +m - 5))) c
% (N max 5 H
ren(reny + 1) ) y<ma<m <e <N(€ = (m + 12— 5)) e )
0<B<n2
m+n2—B<e

ande 2 L on & & om 2 Lo , and 3 £ £; a sufficient condition in order for (a) to hold is

g
N
that P¢(e, N) be non-negative fory <

e < 1— R. Later we will choose the value af y so that this
condition is fulfilled.

By expressing the bound in exponential form, we get the Walig upper bound on the error exponent

1 c LlogP°(e,N) v<e<1—-R
- < _ o o N e \& > C >
N log PS < Inax {elog5 + (1 —¢)log(1—9)+ { he) | “R<e<1 +o(1)
where we rely upor{1), and
2 , 2 /
Pf(e,N) 4 o NEL = 9-NE 12
6(67 ) renv + 1 TEN(TEN—Fl) ( )
roo_ . €E—n i C
E, = Vr%lre%(e {(1 n)h T 77> + N log SnN} (13)
ro_ . . e—(m +n—p) i C
Ey, = wﬁv?é}viﬁe {(1 (m +mn2—B))h <1 B PR + N log SmN,nzN,BN 14)
SP)2

m+n2—B<e
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Let C’ be a randomly selected code fragfi, and letS; and.S; ;. be the averages, ovéf, of S¢° and
SCJ .» respectively. We evaluate these average quantities @mdrélate them t&¢ and SC . In order
to evaluate these quantities, we introduce the followintatian.

dilwsd) = i;@) (1+ )¢ ?f() (15)

. d\ .
VR ey s ) = YD ( . k)xyk (16)

1
i <i<i, »Js

J-<7<j+
ko <k<ky
i+j+k<d
The average quantities satisfy
— N
S = ( ; >Ps,1(z‘) 7
_ N o
Si,j,k - <'l . k, k,j . k> PS,Z(Za,]7 k) (18)

where P, ; (i) is the probability that a specific set of variable nod®sis a stopping set, and »(i, j, k)
is the probability that a specific pair of set§r containing: variable nodes and, containing; variable
nodes, with|S; N Sy| = k, are both stopping sets.

To evaluateP; ; (i), we need to fix a sef of i variable nodes and count the number of possibilities
of connecting theiric variable sockets tac check sockets such that each of theheck nodes is either
(a) not connected to any of the variable sockets, or (b) connected by at least two checketdscKhis
combinatorial problem can be solved by means of the enuiarainction in [15). The total number
of ways to connecic variable sockets tévVe check sockets |s§]jc C), therefore

2] (1 + ho(z, d))"
(%)

We proceed with the evaluation @ > (i, j, k). Given two setsS; and Sy of variable nodes with

P (i) = [

|S1] =1, |S2] = 7, |S1 N Sa| = k, we need to count the number of possibilities of connecting k)c
sockets fromsS; /Sa, ke sockets fromS; NSy and (j — k)c sockets fromSsy/S; to (i + j — k)c check
sockets, such that botf; and S, are stopping sets. This situation is depicted in Fidgure Insitter a
check nodex in the graph. From the definition of a stopping set, it can kendbat in order to have
both §; and S, as stopping setsy has to fall into one of the following disjoint categories:

e « iS not connected at all to nodes &) U Ss.
« «a is connected by at least two edges to nodes;ifiS; and is not connected to nodesdh.
« « is connected by at least two edges to node§JniS; and is not connected to nodes$h.

a is connected by at least two edges to nodeS;inS, and by at least two edges to nodesSiy Sy,
but is not connected to any node §h N Ss.

%recall that in our contex€ is selected uniformly front”



1 nodes

81 N 82
k nodes 1

j nodes

Fig. 1. Two intersecting stopping sets and a check nede

« « is connected by exactly one edge to a nod&;imS,, and by at least one edge to nodesSin'S,
and inSy/S;.

« « is connected by at least two edges to nodeS§im Ss.

This combinatorial problem can be solved using the enunegré&inction given in[(16). The total number

of possibilities of connectingi — k)c sockets fromS; /Sa, kc sockets fromS; NS, and (j — k)c sockets

from S»/S; to Nc check sockets i:é(i_k)cjljcc(j_k)c). Therefore,

- , Nc -1
Ps .’ .’ L _ [ (i—k)c, kc (j—k)c] B .Y, ,d L
2(6:3,k) S @9 2D be ke, (G — e
B(z,y,z,d) 2 1+ U500(z,y,2,d) + U005z, y, z,d) + U5 3" (2, y, 2,d)
U @y, 2, d) + UGS (2, y, 2, d) (19)

We turn our attention back to the relation between the aeegagntitiessS; and?id’k and those of the
randomly selected cods¢ andSifj’k. By assuming thaf is selected at random with uniform probability



from C° and using conditioning, we have

)

Pr ( S€. > NSL k] — Pr(C ¢ C'Y7SZC, > NSL ik
Pr (S, > NSijrlCeC) < e ’ > < ok J >

' Pr(CeCv)
(2) Pr <Sic,j,k > Ngmk) (2) 1 20
- 1—o0(1) ~ N(1-o0(1)) (20)

where (a) is obtained usingl(4) and by omitting the negagvent and (b) is due to Markov’s inequality.
We conclude from[{20) that w.p. (with probability) — o(1), for C chosen randomly with uniform
probability fromC?,

1. e 1.
N log S jr < N log S . +o(1) (21)

By using conditioning once more we obtain

SC Pr(l—eS%—C§1+e)—Pr(C§éCV)
—e< 2L v >
Pr(l e_Si_l—i-e C€C> > Pr(C el
(a) S¢
> Pr<1—e§?1§1+e>+0(1) (22)

where (a) is obtained by usingl (4) and replacing the dencunirsy 1.

Rathi [8] has obtained a concentration result on the stappit distribution. His result implies the
following. For anye > 0,

SCN 5 d,c
Pril—e<==<1+¢|>1--"22+40(1) (23)
nN €

wheref, 4. is a constant given in EJ._(B7) in AppendiX Il, independenigfwhich satisfiess,, ;. — 0
whend — oo and § is kept constant. By setting— 1 in (23) and using[(22), we conclude that w.p. at

leastl — B’e—; + o(1), for C chosen randomly with uniform probability frogi”,

1 1. —
v log Sen > ~ 108 Sy +o(1) (24)
Define
A B €—n 1. =
I ;gggﬁ{(l 77)h<1_77>+N10gS17N} (25)
—(m+m—-5) 1.

B, & - 1= (my 4+ 0 — B))h (£ >+—1s }26
? v<71;£137}7{1<e{( (m+12 = ) (1—(7714_772_5) N 08 PmNn:N,BN (26)

0<B<n2

ni+n2—B<e

then by combining[(112)[(A3)[_(14), (R1) arid24), we obtdiattw.p. at least — 5;—; +o(1),

2 2
PCle.N)> — = o-N(Ei+o(1)) _ =  9—N(Ex+o(1)) 27
el N) = reny +1 ren(renv +1) @7)

As we are interested in the asymptotic behaviotFgfand £y (and thus the exponential growth rate
of the stopping set distributions), we use [7, Theorem 2Jicivlasserts the followi

Here we give the multivariate version of the theorem with Balges; the theorem generalizes to any number of variables
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Let p(z,y, z) be a trivariate polynomial with non-negative coefficiemist o; > 0,9 > 0 andas > 0
be some rational numbers and tetbe the series of all indices such that

oy a2 0

Then
lim ilog [l,almyagmza_gm]p(x y z)m — inf log M (28)
i—00 N 7 2>0,y>0,2>0 Ty 2 Qs
Using [17), [(A8),[(2b),[(26) and (P8) we obtain
_ o hfe) — m <, 1+l d)
E, = —h(e) Vr%lre%(e {eh (€> ch(n) + y ir;% log < o (29)
(e m=B8m=5 B\ _ By —
Ey = —h(e) e {6h< T e> ch(m — B,m2 — B, B)
<B<n
0<m+n2—B<e

c . B(:L'v Y,z d)
Taeiholo® (x(m—mdyﬁdzmz—md) }
If £ > FEi, we chooser.y = 1 in (7). In this case, taking the union bound over all possibl
stopping sets yields an exponentially tight bound. In theecthatE, < Fi, we use[(2l7) withr.y =

|2N(Bi—Ezta) | wherea > 0 can be made arbitrarily small (hence, the non-negativity’6fe, N') in
(11) is established). Thus, we obtain the following uppeuritbon the error exponent

1 c E y<e<1l—-R
_NlogP8 < —Wrélgéil{elogé—l—(l—e)log(l—é)—{ “h(e) 1-R<e<1 }+o(1)

g 2 {El Ey > FEy

280 — Ey, FEs < Ej (30)

. Bnoy e . .. .
This bound holds w.p. at least— =%~ + o(1), wherer; is the maximizing value of; in (29).

IV. NUMERICAL RESULTS

In this section, we compare our upper bound on the error exmiaof the BEC with previously-known
lower bounds. These bounds were derived in [7, Theorem§; & & of these bounds applies for iterative
decoding, while the other applies for ML decoding.

In Figure[2 we exemplify our bound for the regulal; 8) LDPC ensemble. Recalling that the bound
applies with a certain probability, we have marked the plbere the bound has a confidence level above
99%. We note that the entire plot of the upper bound is true w.peadt70%.

Figure[3 shows the confidence level bound frdml (23) whichesponds to the upper bound plot in
Figure[2. Looking back at Figufd 2 for low values®fthe upper bound on the exponent coincides with
the two lower bounds from [7, Theorems 6,8]. That is, our ltesndicate that in the regiofi € [0,0.17],
the bound on the error exponent of the expurgated ensemijie iftheorem 6], which coincides with
the bound in [7, Theorem 8] in this region, is tight. Simyaror the (3, 6) ensemble antle [0, 0.26],
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Fig. 2. Error exponents for the regular (4,8) LDPC ensemble.
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the lower bound on the error exponent of the expurgated doiseim [7, Theorems 6] (which coincides
with the lower bound in [7, Theorem 8] in this region) is tight

Focussing on higher values 6fwhere the confidence level is higher, comparison of our uppend
with the lower bound on the ML decoding exponent reveals thatte is a gap in performance between
iterative and ML decoders, at least for most codes in therehke

V. CONCLUSION AND FURTHER RESEARCH

We have derived an upper bound on the error exponent of LDRI€scwansmitted over the BEC. The
upper bound relies on Dawson’s inequality and holds withréageconfidence level. It was demonstrated
that for some values of the channel erasure probabilityetieea gap between our upper bound and some
previously reported lower bounds.

Continued research could focus on extending our resultgdégular ensembles of LDPC codes. This
requires to extend the results of [8], regarding conceptraif stopping sets, to irregular codes. Another
possible avenue is to try and bridge the gap between the lam&rupper bounds; with the asymptotic
decoding threshold for thé4,8) ensemble at aboui.38, there is still room for improvement in the
bounds.
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“We note that these lower bounds, as depicted in [7, Figureo3hat coincide with each other in thi® region due to a
numerical inaccuracy.
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APPENDICES

APPENDIX |
PrRoOOF OF(3)

Given the eventsly, ..., A define the seB;, s = 1,..., M as the set of points ih)f‘il A; contained
in exactly s sets. We thus have

M M
Y k) = Z Liay =51 (31)
k=1

B

M -1

N o
> <2> LBy > Lagliay =5 (32)
k=2 k=1 1=1
We will find a lower bound for
Vi=1qgu 4y =2 L (33)
k=1

First, fix the value ofr. Solving [31) and[(32) to isolaté(p y and1p ,,; we get

28, k(r+1—k
Lpy = S1—=2 1y - Z 1y N (34)
k;ﬁr
M
B r—1 25, r—1 k,‘(k‘—’l")
R ) I I s kzg BT (39)

ki1
Substituting [(3K) and(35) intd (B3) we get

251 252 r—l ( —]{7)(7"—]{74-1)
r+1 + rir4+1) 1{31} + Z Ligy r(r+1) (36)

Note that the RHS of(36) contains only non-negative elemertus, if the RHS ofl (36) is replaced by

zero, we obtain the inequality
2 2

_r+151_r(r+1)

Sa

which is the desired result.

APPENDIX I
CONFIDENCE INTERVAL OF STOPPINGSET DISTRIBUTION

Rathi [8] has obtained a result asserting the concentratidhe stopping set distribution. To state his
result, we introduce some notation.

o DenoteB(x) £ 1+ ¢»(x, d), wherey is defined in [(Ib).

« The equation
(1+2)1 -1

Bxy "

has a single real positive solution; denote this solutioncpy
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« Defineag(z) £ -2 B) andpy(z) £ p%®)

Blz) dx de
o Letz = (21,29, 23). For a multivariate functiorf(z), denotea(z) to be a 3-element vector whose
elements are ;) (%—) Let C¢(z) denote a3 x 3 matrix whose elements are given by
dasiy
Crtig) = %ias, = Crtia-

The concentration result is as follows. The number of sltm@;sietsS,fN in a randomly selected codé
satisfies

C
Pr (1—e<5 <1+6>21—BL;’C+0(1) (37)
SnN €
where
a bg(ay)Vdn(1 = n)oc (1) B
/Bndc - 1
VICa (@, a2, 2| 0P (1= )? = (e = 1)o2(r2)

2P = !
¢ cd|(=1,1,=1) - Clay, 22, 2y) 71 - (=1,1, =1)7T|
B(g) = B(x1>x27$37d)

and B(,-,-,d) is defined in[(1D).
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