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Capacity Region of the Finite-State Multiple

Access Channel with and without Feedback
Haim Permuter and Tsachy Weissman

Abstract

The capacity region of the Finite-State Multiple Access Channel (FS-MAC) with feedback that may be an

arbitrary time-invariant function of the channel output samples is considered. We characterize both an inner and an

outer bound for this region, using Masseys’s directed information. These bounds are shown to coincide, and hence

yield the capacity region, of FS-MACs where the state process is stationary and ergodic and not affected by the

inputs. Though ‘multi-letter’ in general, our results yield explicit conclusions when applied to specific scenarios of

interest. E.g., our results allow us to:

• Identify a large class of FS-MACs, that includes the additive mod-2 noise MAC where the noise may have

memory, for which feedback does not enlarge the capacity region.

• Deduce that, for a general FS-MAC with states that are not affected by the input, if the capacity (region) without

feedback is zero, then so is the capacity (region) with feedback.

• Deduce that the capacity region of a MAC that can be decomposed into a ‘multiplexer’ concatenated by a point-

to-point channel (with, without, or with partial feedback), the capacity region is given by
P

m
Rm ≤ C, where

C is the capacity of the point to point channel andm indexes the encoders. Moreover, we show that for this

family of channels source-channel coding separation holds.

Index Terms

Feedback capacity, multiple access channel, capacity region, directed information, causal conditioning, code-tree,

source-channel coding separation, sup-additivity of sets.

I. I NTRODUCTION

The Multiple Access Channel (MAC) has received much attention in the literature. To put our contributions

in context, we begin by briefly describing some of the key results in the area. The capacity region for the

memoryless MAC was derived by Ahlswede in [1]. Cover and Leung derived an achievable region for a memoryless

MAC with feedback in [2]. Using block Markov encoding, superposition and list codes, they showed that the

region R1 ≤ I(X1;Y |X2, U), R2 ≤ I(X2;Y |X1, U) and R1 + R2 ≤ I(X1, X2;Y ) whereP (u, x1, x2, y) =

p(u)p(x1|u)p(x2|u)p(y|x1, x2) is achievable for a memoryless MAC with feedback. Willems showed in [3] that
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the achievable region given by Cover and Leung for a memoryless channel with feedback is optimal for a class of

channels where one of the inputs is a deterministic functionof the output and the other input. More recently Bross

and Lapidoth [4] improved Cover and Leung’s region, and Wu et. al. [5] have extended Cover and Leung’s region

for the case that non-causal state information is availableat both encoders.

Ozarow derived the capacity of a memoryless Gaussian MAC with feedback in [6], and showed it to be achievable

via a modification of the Schalkwijk-Kailath scheme [7]. In general, the capacity in the presence of noisy feedback

is an open question for the point-to-point channel and a fortiori for the MAC. Lapidoth and Wigger [8] presented an

achievable region for the case of the Gaussian MAC with noisyfeedback and showed that it converges to Ozarow’s

noiseless-feedback sum-rate capacity as the feedback-noise variance tends to zero. Other recent variations on the

Schalkwijk-Kailath scheme of relevance to the themes of ourwork include the case of quantization noise in the

feedback link [9] and the case of interference known non-causally at the transmitter [10].

Verdú characterized the capacity region of a Multi-Accesschannel of the formP (yi|xi
1, x

i
2, y

i−1) =

P (yi|xi
1,i−m, xi

2,i−m) without feedback in [11]. Verdú further showed in that workthat in the absence of frame

synchronism between the two users, i.e., there is a random shift between the users, only stationary input distributions

need be considered. Cheng and Verdú built on the capacity result from [11] in [12] to show that for a Gaussian

MAC there exists a water-filling solution that generalizes the point-to-point Gaussian channel.

In [13] [14], Kramer derived several capacity results for discrete memoryless networks with feedback. By using

the idea of code-trees instead of code-words, Kramer derived a ‘mulit-letter’ expression for the capacity of the

discrete memoryless MAC. One of the main results we develop in the present paper extends Kramer’s capacity

result to the case of a stationary and ergodic Markov Finite-State MAC (FS-MAC), to be formally defined below.

In [15] [16], Han used the information-spectrum method in order to derive the capacity of a general MAC

without feedback, when the channel transition probabilities are arbitrary for everyn symbols. Han also considered

the additive mod-q MAC, which we shall use here to illustrate the way in which ourgeneral results characterize

special cases of interest. In particular, our results will imply that feedback does not increase the capacity region of

the additive mod-q MAC.

In this work, we consider the capacity region of the Finite-State Multiple Access Channel (FS-MAC), with

feedback that may be an arbitrary time-invariant function of the channel output samples. We characterize both an

inner and an outer bound for this region. We further show thatthese bounds coincide, and hence yield the capacity

region, for the important subfamily of FS-MACs with states that evolve independently of the channel inputs. Our

derivation of the capacity region is rooted in the derivation of the capacity of finite-state channels in Gallager’s

book [17, ch 4,5]. More recently, Lapidoth and Telatar [18] have used it in order to derive the capacity of a

compound channel without feedback, where the compound channel consists of a family of finite-state channels. In

particular, they have introduced into Gallager’s proof theidea of concatenating codewords, which we extend here

to concatenating code-trees.

Though ‘multi-letter’ in general, our results yield explicit conclusions when applied to more specific families

of MACs. For example, we find that feedback does not increase the capacity of the mod-q additive noise MAC
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(where q is the size of the common alphabet of the input, output and noise), regardless of the memory in the

noise. This result is in sharp contrast with the finding of Gaarder and Wolf in [19] that feedback can increase the

capacity even of amemorylessMAC due to cooperation between senders that it can create. Our result should also

be considered in light of Alajaji’s work [20], where it was shown that feedback does not increase the capacity of

discrete point-to-point channels with mod-q additive noise. Thus, this part of our contribution can be considered

a multi-terminal extension of Alajaji’s result. Our results will in fact allow us to identify a class of MACs larger

than that of the mod-q additive noise MAC for which feedback does not enlarge the capacity region.

Further specialization of the results will allow us to deduce that, for a general FS-MAC with states that are

not affected by the input, if the capacity (region) without feedback is zero, then so is the capacity (region) with

feedback. It will also allow us to identify a large class of FS-MACs for which source-channel coding separation

holds.

The remainder of this paper is organized as follows. We concretely describe our channel model and assumptions

in Section II. In Section III we introduce some notation, tools and results pertaining to directed information and the

notion of causal conditioning that will be key in later sections. We state our main results in Section IV. In Section V

we apply the general results of Section IV to obtain the capacity region for several interesting classes of channels,

as well as establish a source-channel separation result. The validity of our inner and outer bounds is established,

respectively, in Section VI and Section VII. In Section VIIIwe show that our inner and outer bounds coincide,

and hence yield the capacity region, when applied to the FS-MAC without feedback. This result can be thought

of as the natural extension of Gallager’s results [17, Ch. 4]to the MAC or, alternatively, as the natural extension

of Gallager’s derivation of the MAC capacity region in [21] to channels with states. In Section IX we characterize

the capacity region for the case of arbitrary (time-invariant) feedback and FS-MAC channels with states that evolve

independently of the input, as well as the FS-MAC with limited ISI (which is the natural MAC-analogue of Kim’s

point-to-point channel [22]), by showing that our inner andouter bounds coincide for this case. We conclude in

Section X with a summary of our contribution and a related future research direction.

II. CHANNEL MODEL

In this paper, we consider an FS-MAC (Finite state MAC) with atime invariant feedback as illustrated in Fig. 1.

The MAC setting consists of two senders and one receiver. Each senderl ∈ {1, 2} chooses an indexml uniformly

from the set{1, ..., 2nRl} and independently of the other sender. The input to the channel from encoderl is

denoted by{Xl1, Xl2, Xl3, ...}, and the output of the channel is denoted by{Y1, Y2, Y3, ...}. The state at timei,

i.e., Si ∈ S, takes values in a finite set of possible states. The channel is stationary and is characterized by a

conditional probabilityP (yi, si|x1i, x2i, si−1) that satisfies

P (yi, si|xi
1, x

i
2, s

i−1, yi−1) = P (yi, si|x1i, x2i, si−1), (1)

where the superscripts denote sequences in the following way: xi
l = (xl1, xl2, ..., xli), l ∈ {1, 2}. We assume a

communication with feedbackzil where the elementzli is a time-invariant function of the outputyi. For example,
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PSfrag replacements

Encoder 1

x1,i(m1, z
i−1
1 )

Encoder 2

x2,i(m2, z
i−1
2 )

m1

∈ {1, ..., 2nR1}

m2

∈ {1, ..., 2nR2}

Finite State MAC

P (yi, si|x1,i, x2,i, si−1)

z2,i = f2(yi)

Time-Invariant

Time-Invariant

Function

Function

z2,i(yi)

z1,i(yi)

z2,i−1

z1,i−1

Decoder

Unit

Unit

Delay

Delay

m̂1(y
N )

m̂2(y
N )

m̂1, m̂2

Function

zi−1(yi−1)

yi

yi

m̂

Estimated

Message

Fig. 1. Channel with feedback that is a time invariant deterministic function of the output.

zli could equalyi (perfect feedback), or a quantized version ofyi, or null (no feedback). The encoders receive the

feedback samples with one unit delay.

A code with feedback consists of two encoding functionsgl : {1, ..., 2nR1} × Zn−1
l → Xn

l , l = 1, 2, where the

kth coordinate ofxn
l ∈ Xn

l is given by the function

xlk = glk(ml, z
k−1
l ), k = 1, 2, . . . , n, l = 1, 2 (2)

and a decoding function,

g : Yn → {1, ..., 2nR1} × {1, ..., 2nR2}. (3)

The average probability of errorfor ((2nR1 , 2nR2 , n) code is defined as

P (n)
e =

1

2n(R1+R2)

∑

w1,w2

Pr{g(Y n) 6= (w1, w2)|(w1, w2) sent}. (4)

A rate (R1, R2) is said to beachievablefor the MAC if there exists a sequence of((2nR1 , 2nR2), n) codes with

P
(n)
e → 0. The capacity regionof MAC is the closure of the set of achievebale(R1, R2) rates.

III. D IRECTED INFORMATION

Throughout this paper we use theCausal Conditioningnotation(·||·). We denote the probability mass function

(pmf) of Y N causally conditioned onXN−d, for some integerd ≥ 0, asP (yN ||xN−d) which is defined as

P (yN ||xN−d) ,

N
∏

i=1

P (yi|yi−1, xi−d), (5)

(if i− d ≤ 0 thenxi−d is set to null). In particular, we extensively use the cases whered = 0, 1:

P (yN ||xN ) ,

N
∏

i=1

P (yi|yi−1, xi) (6)
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Q(xN ||yN−1) ,

N
∏

i=1

Q(xi|xi−1, yi−1), (7)

where the lettersQ andP are both used for denoting pmfs.

Directed informationI(XN → Y N ) was defined by Massey in [23] as

I(XN → Y N ) ,

N
∑

i=1

I(X i;Yi|Y i−1). (8)

It has been widely used in the characterization of capacity of point-to-point channels [22], [24]–[29], compound

channels [30], network capacity [14], [31], rate distortion [32]–[34] and computational biology [35], [36]. Directed

information can also be expressed in terms of causal conditioning as

I(XN → Y N ) =
N
∑

i=1

I(X i;Yi|Y i−1) = E

[

log
P (Y N ||XN)

P (Y N )

]

, (9)

whereE denotes expectation. The directed information fromXN to Y N , conditioned onS, is denoted asI(XN →
Y N |S) and is defined as:

I(XN → Y N |S) ,
N
∑

i=1

I(X i;Yi|Y i−1, S). (10)

Directed information betweenXN
1 to Y N causally conditioned onXN

2 is defined as

I(XN
1 → Y N ||XN

2 ) ,

N
∑

i=1

I(X i
1;Yi|X i

2, Y
i−1) = E

[

log
P (Y N ||XN

1 , XN
2 )

P (Y N ||XN
2 )

]

. (11)

whereP (yN ||xN
1 , xN

2 ) =
∏N

i=1 P (yi|yi−1, xi
1, x

i
2).

Throughout this paper we are using several properties of causal conditioning and directed information that follow

from the definitions and simple algebra. Many of the key properties that hold for mutual information and regular

conditioning carry over to directed information and causalconditioning, whereP (xN ) is replaced byP (xN ||yN−1)

andP (yN ) is replaced byP (yN ||xN ). Specifically,

Lemma 1: (Analogue toP (xN
1 , yN ) = P (xN

1 )P (yN |xN
1 ).) For arbitrary random vectors(XN

1 , XN
2 , Y N ),

P (xN
1 , yN ) = P (xN

1 ||yN−1)P (yN ||xN
1 ) (12)

P (xN
1 , yN ||xN

2 ) = P (xN
1 ||yN−1, xN

2 )P (yN ||xN
1 , xN

2 ). (13)

Lemma 2: (Analogue to|I(XN
1 ;Y N )− I(XN

1 ;Y N |S)| ≤ H(S).) For arbitrary random vectors and variables,

∣

∣I(XN
1 → Y N )− I(XN

1 → Y N |S)
∣

∣ ≤ H(S) ≤ log |S| (14)

∣

∣I(XN
1 → Y N ||XN

2 )− I(XN
1 → Y N ||XN

2 , S)
∣

∣ ≤ H(S) ≤ log |S|. (15)

The proofs of Lemma 1 and Lemma 2 can be found in [27, Sec. IV], along with some additional properties of causal

conditioning and directed information. The next lemma, which is proven in Appendix I, shows that by replacing

regular pmf with causal conditioning pmf we get the directedinformation. Let us denote the mutual informa-

tion I(Xn
1 ;Y

n|Xn
2 ) as a functional ofQ(xN

1 , xN
2 ) and P (yN |xN

1 , xN
2 ), i.e., I(Q(xN

1 , xN
2 );P (yN |xN

1 , xN
2 )) ,
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I(Xn
1 ;Y

n|Xn
2 ). Consider the case that the random variablesXN

1 , XN
2 are independent, i.e.,Q(xN

1 , xN
2 ) =

Q(xN
1 )Q(xN

2 ), then by definition

I(Q(xN
1 )Q(xN

2 );P (yN |xN
1 , xN

2 )) ,
∑

yN ,xN
1 ,xN

2

Q(xN
1 )Q(xN

2 )P (yN |xN
1 , xN

2 )
P (yN |xN

1 , xN
2 )

∑

x′N
1
Q(x′N

1 )P (yN |x′N
1 , xN

2 )
. (16)

Lemma 3: If the random vectorsXN
1 and XN

2 are causal-conditionally independent givenY N−1, i.e.,

Q(xN
1 , xN

2 ||yN−1) = Q(xN
1 ||yN−1)Q(xN

2 ||yN−1) then

I(Q(xN
1 ||yN−1)Q(xN

2 ||yN−1);P (yN ||xN
1 , xN

2 )) = I(XN
1 → Y N ||XN

2 ). (17)

The next lemma, which is proven in Appendix II, shows that in the absence of feedback, mutual information

becomes directed information.

Lemma 4: If Q(xN
1 , xN

2 ||yN−1) = Q(xN
1 )Q(xN

2 ) then

I(XN
1 ;Y N |XN

2 ) = I(XN
1 → Y N ||XN

2 ). (18)

IV. M AIN THEOREMS

We dedicate this section to a statement of our main results, proofs of which will appear in the subsequent sections.

Let Rn denote the following region inR2
+ (2D set of nonnegative real numbers):

Rn =
⋃

Q(w)Q(xn
1 ||z

n−1
1 ,w)Q(xn

2 ||z
n−1
2 ,w)























R1 ≤ mins0
1
n
I(Xn

1 → Y n||Xn
2 ,W, s0)− log |S|

n
,

R1 ≤ mins0
1
n
I(Xn

2 → Y n||Xn
1 ,W, s0)− log |S|

n
,

R1 +R2 ≤ mins0
1
n
I((X1, X2)

n → Y n|W, s0)− log |S|
n

.

(19)

Having the auxiliary random variableW is equivalent to taking the convex hull of the region. It is shown in

the Appendix that the inclusion (or omission) ofW in the definition of the regionRn has vanishing effect with

increasingn.

Theorem 5:(Inner bound.) For any FS-MAC with time invariant feedback as shown in Fig.1, and for any integer

n ≥ 1, the regionRn is achievable.

Let Rn denote the following region inR2
+

Rn =
⋃

Q(xn
1 ||z

n−1
1 )Q(xn

2 ||z
n−1
2 )























R1 ≤ 1
n
I(Xn

1 → Y n||Xn
2 ),

R1 ≤ 1
n
I(Xn

2 → Y n||Xn
1 ),

R1 +R2 ≤ 1
n
I((X1, X2)

n → Y n).

(20)

In the following theorem we use the standard notion of convergence of sets. Confer Appendix IV for the details of

the definition.

Theorem 6:(Outer bound.) Let (R1, R2) be an achievable pair for a FS-MAC with time invariant feedback,

as shown in Fig. 1. Then, for anyn there exists a distributionQ(xn
1 ||zn−1

1 )Q(xn
2 ||zn−1

2 ) such that the following
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inequalities hold:

R1 ≤ 1

n
I(Xn

1 → Y n||Xn
2 ) + ǫn

R2 ≤ 1

n
I(Xn

2 → Y n||Xn
1 ) + ǫn

R1 +R2 ≤ 1

n
I((X1, X2)

n → Y n) + ǫn, (21)

whereǫn goes to zero asn goes to infinity. Moreover, the outer bound can be written aslim infRn.

For the case where there is no feedback, i.e.,zi is null, Rn and Rn can be expressed in terms of mutual

information and regular conditioning due to Lemma 4.

Theorem 7:(Capacity of FS-MAC without feedback.) For any indecomposable FS-MAC without feedback, the

achievable region islimn→∞ Rn, and the limit exists.

Theorem 8:(Capacity of FS-MAC with feedback.) For any FS-MAC of the form

P (yi, si|x1i, x2,i, si−1) = P (si|si−1)P (yi|x1i, x2,i, si−1), (22)

where the state processSi is stationary and ergodic, the achievable region islimn→∞ Rn, and the limit exists.

The next theorems will be seen to be consequences of the capacity theorems given above.

Theorem 9:For the channel described in (22), where the state processsi is stationary and ergodic, if the capacity

without feedback is zero, then it is also zero in the case thatthere is feedback.

Corollary 10: For a memoryless MAC, the capacity with feedback is zero if and only if it is zero without

feedback.

Corollary 11: Feedback does not enlarge the capacity region of a discrete additive (mod-|X |) noise MAC.

In fact, among other results, we will see in the next section that the (mod-|X |) noise MAC is only a subset of a

larger family of MACs for which feedback does not enlarge thecapacity region.

V. A PPLICATIONS

The capacity formula of a FS-MAC given in Theorems 7 and 8 is a multi-letter characterization. In general, it

is very hard to evaluate it but, for the finite state point to point channel, there are several cases where the capacity

with and without feedback was found numerically [37] [38], [26], [25] and analytically [28].1

The multi-letter capacity expression is also valuable for deriving useful concepts in communication. For instance,

in order to show that feedback does not increase the capacityof a memoryless channel (cf. [43]), we can use

the multi-letter upper bound of a channel with memory. Further, in [27] it was shown that for the cases where

the capacity is given by the multi-letter expressionC = limN→∞
1
N
maxQ(xN ||zN−1) I(X

N → Y N ), the source-

channel coding separation holds. It was also shown that if the state of the channel is known at both the encoder and

decoder and the channel is connected (i.e., every state can be reached with some positive probability from every

other state under some input distribution), then feedback does not increase the capacity of the channel.

1For the Gaussian case without feedback there exists the water filling solution [39], and recently the feedback capacity was found analytically,

for the case that the noise is an ARMA(1)-Gaussian process (cf. [40]–[42]).
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In this section we use the capacity formula in order to derivethree conclusions:

1) For a stationary ergodic Markovian channels, the capacity is zero if and only if the capacity with feedback

is zero.

2) Identify FS-MACs that feedback does not enlarge the capacity and show that for a MAC that can be

decomposed into a ‘multiplexer’ concatenated by a point-to-point channel (with, without, or with partial

feedback), the capacity region is given by
∑

m Rm ≤ C, whereC is the capacity of the point to point

channel.

3) Source-channel coding separation holds for a MAC that canbe decomposed into a ‘multiplexer’ concatenated

by a point-to-point channel (with, without, or with partialfeedback).

As a special case of the second concept we show that the capacity of a Binary Gilbert-Ellliot MAC isR1+R2 ≤
1−H(V) whereV is the entropy rate of the hidden Markov noise that specifies the Binary Gilbert-Ellliot MAC.

A. Zero capacity

The first concept is given in Theorem 9 and is proved here. The proof of Theorem 9 is based on the following

lemma which is proven in Appendix III.

Lemma 12:For a MAC described by an arbitrary causal conditioningp(yn||xn
1 , x

n
2 ) the following holds:

max
Q(xn

1 ||yn−1)Q(xn
2 ||yn−1)

I(Xn
1 , X

N
2 → Y n) = 0 ⇐⇒ max

Q(xn
1 )Q(xn

2 )
I(Xn

1 , X
N
2 → Y n) = 0, (23)

and each condition also implies thatP (yn||xn
1 , x

n
2 ) = P (yn) for all xn

1 , x
n
2 .

Proof of Theorem 9:Since the channel is a Markovian channel, i.e.,

P (yi, si|x1,i, x2,i, si−1) = p(si|si−1)P (yi|x1,i, x2,i, si−1) (24)

and stationary and ergodic, its capacity region is given in Theorem 8 asC = limn→∞ Rn. Furthermore, since

the sequence{Rn} is sup-additive (Lemma 22), then according to Lemma 23 that is given in Appendix IV

limn→∞ Rn = cl
(

⋃

n≥1 Rn

)

, implying that if the capacity without feedback is zero, then for all n ≥ 1

max
Q(xn

1 )Q(xn
2 )
I(Xn

1 , X
N
2 → Y n) = 0. (25)

According to Lemma 12, the maximization of the objective in eq. (25) over the distribution

Q(xn
1 ||yn−1)Q(xn

2 ||yn−1) is still zero, hence, the capacity region is zero even if there is perfect feedback.

Corollary 10, which states that the capacity of a memorylessMAC without feedback is zero if and only if the

capacity with feedback is zero, follows immediately from Theorem 9 because a memoryless MAC can be considered

a FS-MAC with one state.

Clearly, Theorem 9 also holds for the case of a stationary andergodic FS-Markov point-to-point channel because

a MAC is an extension of a point-to-point channel. However, it does not hold for the case of a broadcast channel.

For instance, consider the binary broadcast channel given by y1,i = x⊕ni andy2,i = x⊕ni−1, whereni is an i.i.d
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Bernoulli(12 ) and⊕ denotes addition mod-2. The capacity without feedback is clearly zero, but if the transmitter

has feedback, namely if it knowsy1,i−1 andy2,i−1 at time i, then it can compute the noiseni−1 = y1,i−1 ⊕ xi−1

and therefore it can transmit 1 bit per channel use to the second user.

B. Examples of channels for which feedback does not enlarge capacity

y y

PSfrag replacements

α

1− α

β

1− β

G B

X1X1

X2X2

V ∼ Bernouli(pG) V ∼ Bernouli(pB)

Fig. 2. Gilbert-Elliot Mac. It has two states,“Good” and “Bad” where the transition between them is according to a first order Markov process.

Given that the channel is in a “Good” (or a “Bad”) state, it behaves as binary additive noise where the noise is Bernouli(pG) (or Bernouli(pB ))

1) Gilbert-Elliot MAC: The Gilbert-Elliot channel is a widely used example of a finite state channel. It is often

used to model wireless communication in the presence of fading [37], [38], [44]. The Gilbert-Elliot is a Markov

channel with two states, denoted as “good” and “bad”. Each state is a binary symmetric channel and the probability

of flipping the bit is lower in the “good” state. In the case of the Gillber-Elliot MAC (Fig. 2), each state is an

additive MAC with i.i.d noise, where in the “good” channel the probability that the noise is ’1’ is lower than in

the bad channel. This channel can be represented as an additive MAC as in Fig. 2, where the noise is a hidden

Markov process.

Since the Gilbert-Elliot MAC is an ergodic FS-MAC, its capacity with feedback when the initial state distribution

over the states “good” and “bad” is the stationary distribution is given bylimn→∞ Rn (Theorem 8). For the Gilbert

Elliot MAC, the regionlimn→∞ Rn reduces to the simple region,

R1 +R2 ≤ 1−H(V), (26)

whereH(V) denotes the entropy rate of the hidden Markov noise. The following equalities and inequalities upper

bound the regionRn and this upper bound can be achieved for any deterministic feedback by an i.i.d input

distributionX1,i ∼ Bernoulli(12 ) andX2,i ∼ Bernoulli(12 ), i = 1, 2, ..., n andXn
1 andXn

2 are independent of each

other.
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I((X1, X2)
n → Y n) =

n
∑

i=1

H(Yi|Y i−1)−H(Yi|Y i−1, X i
1, X

i
2)

(a)
=

n
∑

i=1

H(Yi|Y i−1)−H(Vi|Y i−1, X i
1, X

i
2)

=

n
∑

i=1

H(Yi|Y i−1)−H(Vi|V i−1, Y i−1, X i
1, X

i
2)

(b)
=

n
∑

i=1

H(Yi|Y i−1)−H(Vi|V i−1)

(c)

≤
n
∑

i=1

log 2−H(Vi|V i−1)

= n(1− H(V n)

n
). (27)

Equality (a) is due to the facts thatyi is a function of (vi, x1,i, x2,i) and vi is a deterministic function of

(yi, x1,i, x2,i), i.e. yi = x1,i ⊕ x2,i ⊕ vi and vi = yi ⊕ x1,i ⊕ x2,i. Equality (b) follows from the fact thatvi

is independent of the messages. Inequality (c) is due to the fact that the size of the alphabetY is 2. Similarly

1
n
I(Xn

1 → Y n||Xn
2 ) ≤ 1 − H(V n)

n
, and 1

n
I(Xn

2 → Y n||Xn
1 ) ≤ 1 − H(V n)

n
and equality is achieved with an

i.i.d input distribution Bernoulli(12 ).Finally, by dividing both sides byn and using the definition of entropy rate

H(V) = limn→∞
1
n
H(V n) we conclude the proof.

2) Multiplexer followed by a point-to-point channel:Here we extend the Gilber-Elliot MAC to the case where

the discrete MAC can be decomposed into two components as shown in Fig. 3. The first component is a MAC

that can behave as a multiplexer and the second component is apoint-to-point channel. The definitions of those

components are the following:

Delay

Delay

PSfrag replacements

γ

W1

WM

X1i(W1, Y
n−1)

XMi(WM , Y i−1)

X0i

Zi

Yi

Zi

(Ŵ1, . . . , ŴM )

X1i(W1, Y
i−1)

XMi(WM , Y i−1)

...
...

...
point-to-point

channelMAC
Multiplexer

Fig. 3. Discrete MAC that can be decomposed into two parts. The first part is a MAC that behaves as a multiplexer and the second part is a

point-to-point channel

Definition 1: A MAC behaves asa multiplexerif the inputs and the output have common alphabets and for all

m ∈ 1, ...,M there exists a choice of input symbols for all senders exceptsenderm, such that the output is the

mth input, i.e.Y = Xm.
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An example of a multiplexer-MAC for the Binary case is a MAC whose output is one of and/or/xor of the inputs.

For a general alphabetq those operations could be max/min/addition-mod-q. For instance, if the channel is binary

with two users and it is addition-mod-2, i.e., y = x1 ⊕ x2, then we can ensure thaty = x1 by choosingx2 = 0.

Theorem 13:The capacity region of a multiplexer MAC followed by a point-to-point channel with a time invariant

feedback to all encoders, as shown in Fig. 3, is
M
∑

m=1

Rm ≤ C (28)

whereC is the capacity of the point-to-point channel with the time invariant feedbackzi−1(yi−1).

Proof: The achievability is proved simply by time sharing. At each time, only one selected user sends

information and the other users send a constant input that insures that the output is the input of the selected user.

The converse is based on the fact that the maximum rate that can be transmitted through the point-to-point

channel isC and it is an upper bound sum-rate of multiplexer-MAC. If it hadn’t been an upper bound for the

multiplexer-MAC, we could build a fictitious Multiplexer-MAC before the point-to-point channel and achieve by

that a higher rate than its upper bound which would be contradiction.

3) Discrete additive MAC:An immediate consequence of Theorem 13 is an extension of Alajaj’s result [20] to

the additive MAC which is given in Corollary 11. Corollary 11states that feedback does not enlarge the capacity

region of a discrete additive (mod-|X |) noise MAC.

The proof of the corollary is based on the following observation. If feedback does not increase the capacity of

a particular point-to-point channel then feedback also does not increase the capacity of the MUX followed by the

same particular channel. Specifically, feedback does not increase the achievable region of an additive MAC (Fig.

4) and the achievable region is given by
M
∑

m=1

Rm ≤ log q −H(V), (29)

whereH(V) is the entropy rate of the additive noise.

delay

delay

PSfrag replacements

γ

W1W1

WMWM

X1n(W1)

XMn(WM )

YnYn

VnVn

(Ŵ1, . . . , ŴM )(Ŵ1, . . . , ŴM )

X1n(W1, Y
n−1)

XMn(WM , Y n−1)

...
...

...
...

...
...

Fig. 4. Additive noise MAC with and without feedback. The random variablesX1n, ...,XMn, Yn, Vn, n ∈ 1, 2, 3, ..., are from a common

alphabet of sizeq, and they denote the input from sender 1,...,M, the output and the noise at timen, respectively. The relation between the

random variables is given byyn = x1n ⊕ x2n... ⊕ xMn ⊕ vn where⊕ denotes addition mod-q. The noiseVn, possibly with memory, is

independent of the messagesW1, ...,WM .
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4) Multiplexer followed by erasure channel:Consider the case of the multiplexer-erasure MAC which is a

multiplexer followed by an erasure channel, possibly with memory.

Definition 2: A point-to-point channel is callederasurechannel if the output at timen can be written asYn =

f(Xn, Zn), and the following properties hold:

1) The alphabet ofZ is binary and the alphabet ofY is the same asX plus one additional symbol called the

erasure.

2) The processZn is stationary and ergodic and is independent of the message.

3) If zn = 0, thenyn = xn and if zn = 1, then the output is an erasure regardless of the input.

For the mutltiplexr-erasure channel we have the following theorem.

Corollary 14: The capacity region of the multiplexer-erasure MAC with or without feedback is
M
∑

m=1

Rm ≤ (1− pe) log q, (30)

where pe is the marginal probability of having an erasure. Moreover,even if the encoder has non causal side

information, i.e. the encoders know where the erasures appear noncausally, the capacity is still given by (30).

Proof: According to Theorem 13 the capacity region is
M
∑

m=1

Rm ≤ C, (31)

whereC is the capacity of the erasure point-to-point channel. Diggavi and Grossglauser [45, Thm. 3.1] showed

that the capacity of a point-to-point erasure channel, withand without feedback, is given by(1 − pe) log q. Since

the probability of having an erasure does not depend on the input to the channel, we deduce that even in the the

case where the encoder knows the sequenceZn non-causally, which is better than feedback, the transmitter can

transmit only fraction1− pe of the time, hence the capacity cannot exceed(1 − pe) log q.

5) Multiplexer followed by the trapdoor channel:In this example feedback increases the capacity. Based on the

fact that the capacity of the trapdoor channel with feedback[28] is the logarithm of the golden ratio, i.e.log
√
5+1
2 ,

the achievable region of a Multiplexer followed by the trapdoor channel is
M
∑

m=1

Rm ≤ log

√
5 + 1

2
. (32)

C. Source-channel coding separation

Cover, El-Gamal and Salehi [46] showed that, in general, thesource channel separation does not hold for MACs

even for a memoryless channel without feedback. However, for the case where the MAC is a discrete Multiplexer

followed by a channel we now show that it does hold.

We want to send the sequence of symbolsUn
1 , U

n
2 over the MAC, so that the receiver can reconstruct the

sequence. To do this we can use a joint source-channel codingscheme where we send through the channel the

symbolsx1,i(u
n
1 , z

i−1) andx2,i(u
n
2 , z

i−1). The receiver looks at his received sequenceY n and makes an estimate

Ûn
1 , Û

n
2 . The receiver makes an error if̂Un

1 6= Un
1 or if Ûn

2 6= Un
2 , i.e., the probability of errorP (n)

e is P
(n)
e =

Pr((Ûn
1 , Û

n
2 ) 6= (Un

1 , U
n
2 )).
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Theorem 15:(Source-channel coding theorem for a Multiplexer followed by a channel.) Let (U1, U2)n≥1 be a

finite alphabet, jointly stationary and ergodic pair of processes and let the MAC channel be a multiplexer followed

by a point-to-point channel with time invariant feedback and capacityC = limN→∞
1
N
maxQ(xn||zn−1) I(X

n;Y n)

(e.g., a memoryless channel, an indecomposable FSC withoutfeedback, stationary and ergodic Markovian channel).

For the source and the MAC described above:

(direct part.) There exists a source-channel code withP
(n)
e → 0, if H(U1,U2) < C, whereH(U1,U2) is the

entropy rate of the sources andC is the capacity of the point-to-point channel with a time-invariant feedback.

(converse part). IfH(U1,U2) > C, then the probability of error is bounded away from zero (independent of the

blocklength).

Proof: The achievability is a straightforward consequence of the Slepian-Wolf result for Ergodic and stationary

processes [47] and the achievability of the multiplexer followed by a point-to-point channel. First, we encode the

sources by using the Sepian-Wolf achievability scheme where we assign everyun
1 to one of2nR1 bins according

to a uniform distribution on{1, ..., 2nR1} and independently we assign everyun
2 to one of2nR2 bins according to

a uniform distribution on{1, ..., 2nR2}. Second, we encode the bins as if they were messages, as shownin Fig. 5.

In the converse, we assume that there exists a sequence of codes withP
(n)
e → 0, and we show that it implies

thatH(U1,U2) ≤ C. Fix a given coding scheme and consider the following:

H(Un
1 , U

n
2 )

(a)

≤ I(Un
1 , U

n
2 ; Û

n
1 , Û

n
2 ) + nǫn

(b)

≤ I(Un
1 , U

n
2 ;Y

n) + nǫn

= H(Y n)−H(Y n|Un
1 , U

n
2 ) + nǫn

=

n
∑

i=1

H(Yi|Y i−1)−H(Yi|Un
1 , U

n
2 , Y

i−1) + nǫn

(c)
=

n
∑

i=1

H(Yi|Y i−1)−H(Yi|Un
1 , U

n
2 , Y

i−1, X i
1, X

i
2) + nǫn

(d)
=

n
∑

i=1

H(Yi|Y i−1)−H(Yi|Y i−1, X i
1, X

i
2) + nǫn

=

n
∑

i=1

H(Yi|Y i−1)−H(Yi|Y i−1, X i
1, X

i
2) + nǫn

=

n
∑

i=1

I(X i
1, X

i
2;Yi|Y i−1) + nǫn

(e)

≤
n
∑

i=1

I(X i
0;Yi|Y i−1) + nǫn

= I(Xn
0 → Y n) + nǫn

≤ max
Q(xn

0 ||zn−1)
I(Xn

0 → Y n) + nǫn (33)

Inequality (a) is due to Fano’s inequality wherenǫn = 1 + P
(n)
e n|U1||U2|. Inequality (b) follows from the data
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processing inequality because(UN
1 , UN

2 )− Y N − (ÛN
1 , ÛN

2 ) form a Markov chain. Equality (c) is due to the fact

that, for a given code,X i
1 is a deterministic function ofUn

1 , Y
i−1 and, similarly,X i

2 is a deterministic function of

Un
2 , Y

i−1. Equality (d) is due to the Markov chain(UN
1 , UN

2 )− (X i
1, X

i
2, Y

i−1)− Yi. The notationX0,i denotes

the output of the multiplexer which is also the input to the point-to-point channel at timei. The inequality in(e) is

due to the data processing inequality which can be invoked thank to the fact that givenY i−1 we have the Markov

chainX i
1, X

i
2 −X i

0 − Yi.

By dividing both sides of (33) byn, taking the limit n → ∞, and recalling that C =

limn→∞
1
n
maxQ(xn||zn−1) I(X

n;Y n) we have

H(U1,U2) = lim
n→∞

1

n
H(Un

1 , U
n
2 ) ≤ C. (34)

Delay

Delay

PSfrag replacements

W1(U
n
1 )Un

1

∈ {1, ..., 2nR1}

W2(U
N
2 )Un

2

∈ {1, ..., 2nR2}

X1i(W1, Y
n−1)

X2i(W2, Y
i−1)

X0i

Zi

Yi

Zi

Ŵ1(Y
n)

Ŵ2(Y
n)

Ûn
1 (Ŵ1, Ŵ2)

Ûn
2 (Ŵ1, Ŵ2)

X1i(W1, Y
i−1)

X2i(W2, Y
i−1)

...

point-to-point
channelMAC

Multiplexer

Fig. 5. Source-channel coding separation in a discrete Multiplexer followed by a point-to-point channel.

VI. PROOF OFACHIEVABILITY (THEOREM 5)

The proof of achievability for the FS-MAC with feedback is similar to the proof of achievability for the point-

to-point FSC given in [27, Sec. V], but there are two main differences:

1) In the case of FSC, only one message is sent, and in the case of FS-MAC, two independent messages are

sent, which requires that we analyze three different types of errors: the first type occurs when only the first

message is decoded with error, the second type occurs when only the second message is decoded with error,

and the third type occurs when both messages are decoded witherror.

2) In both cases, we generate the encoding scheme (code-trees) randomly but the distribution that is used is

different. In the case of FSC we generate, for each message in[1, ..., 2NR], a code-tree of lengthN by using

the causal conditioning distributionQ∗(xN ||zN−1) = argmaxQ(xN ||zN−1) mins0 I(X
N → Y N |s0), and here

we generate for each message in[1, ..., 2NRl ], l = 1, 2 a code-tree of lengthN = Kn by concatenatingK

independent code-trees where each one is created with a causal conditioning distributionQ(xn
l ||zn−1

l ), l = 1, 2.

Encoding scheme: Randomly generate for encoder{l ∈ 1, 2}, 2NRl code-trees of lengthN = Kn by drawing

it with the fixed distributionsQ(xn
l ||zn−1

l ). In other words, given a feedback sequencezN−1
1 the causal conditioning
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probability that the sequencexN
1 will be mapped to a given message is

Q(xN
1 ||zN−1

1 ) =

K
∏

k=1

Q(xkn
1,(k−1)n+1||zkn1,(k−1)n+1), (35)

where xkn
1,(k−1)n+1 denotes the vector(x1,(k−1)n+1, x1,(k−1)n+2, ..., x1,kn). Fig. 6 illustrates the concatenation

of trees graphically. In order to shorten the notation we will sometimes use the notationQN to denote

Q(xN
1 ||zN−1

1 )Q(xN
2 ||zN−1

2 ) and we will express the concatenation of pmfs in (35) asQN =
∏K

k=1 Qn.

PSfrag replacements

x1 = 0 x2 = 1

i = 1i = 1i = 1

x3 = 1

i = 2i = 2i = 2

x4 = 0

i = 3i = 3i = 3

x1 = 0x1 = 0 x 2
=
1

x 2
=
1

x
2 =

1

x
2 =

1 x3 = 0

x3 = 0x3
=
0

x
3 = 1

x3
=
1

x
3 = 1

x4
=
0

x4
=
0

x
4 = 1

x
4 = 1

i = 4

zi−1 = 0

zi−1 = 1

(no feedback)

codeword (case of no feedback) code-tree (used in [27]) concatenated code-tree (used here)

Fig. 6. Illustration of coding scheme for setting without feedback, setting with feedback as used for point-to-point channel [27] and a code-tree

that was created by concatenating smaller code-trees. In the case of no feedback each message is mapped to a codeword, andin the case of

feedback each message is mapped to a code-tree. The third scheme is a code-tree of depth 4 created by concatenating two trees of depth 2.

Decoding Errors: For each code in the ensemble, the decoder uses maximum likelihood decoding and we want

to upper bound the expected valueE[Pe] for this ensemble. LetPe1, Pe2, Pe3 be defined as follows.

Pe1 (type 1 error): probability that the decoded pair(m1,m2) satisfiesm̂1 6= m1, m̂2 = m2,

Pe2 (type 2 error): probability that the decoded pair(m1,m2) satisfiesm̂1 = m1, m̂2 6= m2,

Pe3 (type 3 error): probability that the decoded pair(m1,m2) satisfiesm̂1 6= m1, m̂2 6= m2.

Because the error events are disjoint we have

Pe = Pe1 + Pe2 + Pe3 (36)

In the next sequence of theorems and lemmas, we upper bound the expected value of each error type and show that

if (R1, R2) satisfies the three inequalities that defineRn then the correspondingE[Pei], i = 1, 2, 3 goes to zero

and henceE[Pe] goes to zero.

Theorem 16:Suppose that an arbitrary messagem1,m2, 1 ≤ m1 ≤ M1, 1 ≤ m2 ≤ M2, enters the encoder with

feedback and that ML decoding is employed. LetE[Pe1 |m1,m2] denote the probability of decoding error averaged
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over the ensemble of codes when the messagesm1,m2 were sent. Then for any choice ofρ, 0 < ρ ≤ 1,

E[Pe1 |m1,m2] ≤ (M1 − 1)ρ
∑

yN ,xN
2

Q(xN
2 ||zN−1)





∑

xN
1

Q(xN
1 ||zN−1

1 )P (yN ||xN
1 , xN

2 )
1

(1+ρ)





1+ρ

, (37)

E[Pe2 |m1,m2] ≤ (M2 − 1)ρ
∑

yN ,xN
1

Q(xN
1 ||zN−1

1 )





∑

xN
2

Q(xN
2 ||zN−1)P (yN ||xN

1 , xN
2 )

1
(1+ρ)





1+ρ

, (38)

E[Pe3 |m1,m2] ≤ ((M2 − 1)(M2 − 1))ρ
∑

yN





∑

xN
1 ,xN

2

Q(xN
1 ||zN−1

1 )Q(xN
2 ||zN−1)P (yN ||xN

1 , xN
2 )

1
(1+ρ)





1+ρ

.

(39)

The proof is given in Appendix VI and is similar to [27, Theorem 9] only that here we take into account the fact

that there are two encoders rather than one.

Let Pei(s0), i = 1, 2, 3 be the probability of error of typei given that the initial state of the channel iss0. Also

let R1 = 1
N
logM1 andR2 = 1

N
logM2 be the rate of the code andR3 be the sum rate, i.e.R3 = R1 +R2. The

following theorem establishes exponential bounds onE[Pei(s0)].

Theorem 17:The average probability of error over the ensemble, for all initial statess0, and allρ, 0 ≤ ρ ≤ 1,

is bounded as

E[Pei(s0)|m1,m2] ≤ |S|2{−N [−ρRi+FN,i(ρ,QN )]}, i = 1, 2, 3 (40)

where

FN,i(ρ,QN ) = −ρ log |S|
N

+

[

min
s0

EN,i(ρ,QN , s0)

]

, i = 1, 2, 3 (41)

EN,1(ρ,QN , s0) = − 1

N
log

∑

yN ,xN
2

Q(xN
2 ||zN−1)





∑

xN
1

Q(xN
1 ||zN−1

1 )P (yN ||xN
1 , xN

2 , s0)
1

(1+ρ)





1+ρ

(42)

EN,2(ρ,QN , s0) = − 1

N
log

∑

yN ,xN
1

Q(xN
1 ||zN−1

1 )





∑

xN
2

Q(xN
2 ||zN−1)P (yN ||xN

1 , xN
2 .s0)

1
(1+ρ)





1+ρ

(43)

EN,3(ρ,QN , s0) = − 1

N
log

∑

yN





∑

xN
1 ,xN

2

Q(xN
1 ||zN−1

1 )Q(xN
2 ||zN−1)P (yN ||xN

1 , xN
2 , s0)

1
(1+ρ)





1+ρ

. (44)

The proof is based on algebraic manipulation of the bounds given in (37)-(39). It is similar to the proof of Theorem

9 in [27] and therefore omitted. There are two differences between the proofs (and both are straightforward to

accommodate): Here the input distributionQN = Q(xN
1 ||zN1 )Q(xN

2 ||zN2 ) is arbitrary while in [27] we chose the

one that maximizes the error exponent. Second, here we boundthe averaged error over the ensemble and in [27] we

have an additional step where we claim that there exists a code that has an error that is bounded by the expression

in (40). Because of this difference the bound on the probability of error in [27] has an additional factor of4.

The following theorem presents a few properties of the functionsEN,i(ρ,QN , s0), i = 1, 2, 3, such as positivity

of the function and its derivative, convexity with respect to ρ, and an upper bound on the derivative which is

achieved forρ = 0.
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Lemma 18:The termEN,i(ρ,QN , s0) has the following properties:

EN,i(ρ,QN , s0) ≥ 0; ρ ≥ 0, i = 1, 2, 3, (45)

1

N
I(XN

1 → Y N ||XN
2 , s0) ≥ ∂EN,1(ρ,QN , s0)

∂ρ
> 0; ρ ≥ 0

1

N
I(XN

2 → Y N ||XN
1 , s0) ≥ ∂EN,2(ρ,QN , s0)

∂ρ
> 0; ρ ≥ 0

1

N
I(XN

1 , XN
2 → Y N |s0) ≥ ∂EN,3(ρ,QN , s0)

∂ρ
> 0; ρ ≥ 0 (46)

∂2EN,i(ρ,QN , s0)

∂ρ2
> 0; ρ ≥ 0, i = 1, 2, 3. (47)

Furthermore, equality holds in (45) whenρ = 0, and equality holds on the left sides of eq. (46) whenρ = 0 for

i = 1, 2, 3.

The proof of the theorem is the same proof as [21, eq. (2.20)],[17, Theorem 5.6.3]. In [21] the argumentsQN of

EN,1(ρ,QN , s0) are regular conditioning i.e.,Q(xN
1 )Q(xN

2 ), and the channel is given byP (yN |xN
1 , xN

2 , s0), hence

the derivative ofEN,1(ρ,QN , s0) with respect toρ is upper-bounded byI(XN
1 ;Y N |XN

2 , s0). Here we replace

Q(xN
1 )Q(xN

2 ) with Q(xN
1 ||zN−1

1 )Q(xN
2 ||zN−1

2 ) andP (yN |xN
1 , xN

2 , s0) with P (yN ||xN
1 , xN

2 , s0) and, according to

Lemma 3, the upper-bound becomesI(XN
1 → Y N ||XN

2 , s0). The next lemma establishes the sup-additivity of

FN,i(ρ,QN ), i = 1, 2, 3.

Lemma 19: Sup-additivity ofFN,i(ρ,QN). For any finite-state channel,FN,i(ρ,QN ), as given by eq. (41),

satisfies

Fn+l,i(ρ,Qn+l) ≥
n

n+ l
Fn,i(ρ,Qn) +

l

n+ l
Fl,i(ρ,Ql), i = 1, 2, 3. (48)

The proof steps are identical to the proof of the sub-additivity for the point-to-point channel [27, Lemma 11].

Invoking this lemma on the pmfQN =
∏K

k=1 Qn whereN = nK we get

FN,i(ρ,QN ) ≥ K
n

N
Fn,i(ρ,Qn) = Fn,i(ρ,Qn). (49)

Let us define

CN,1(QN ) =
1

N
min
s0

I(XN
1 → Y N ||XN

2 , s0) (50)

CN,2(QN ) =
1

N
min
s0

I(XN
2 → Y N ||XN

1 , s0) (51)

CN,3(QN ) =
1

N
min
s0

I(XN
1 , XN

2 → Y N |s0) (52)

where the joint distribution ofXN
1 , XN

2 , Y N conditioned on s0 is given by P (xN
1 , xN

2 , yN |s0) =

Q(xN
1 ||zN−1

1 )Q(xN
2 ||zN−1

2 )P (yN ||xN
1 , xN

2 , s0).
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Theorem 5 (inner bound) given in Sec. IV states that for everyn and0 ≤ Ri < Cn,i(Qn)− log |S|
n

, i = 1, 2, 3

(recall,R3 , R1 + R2) and everyη > 0 there exists anN and an(N, ⌈2NR1⌉, ⌈2NR1⌉) code with a probability

of errorPe(s0) (averaged over the messages) that is less thanη for all initial statess0.

Proof of Theorem 5:The proof consists of the following three steps:

• Showing that for a fixedn if Ri < Cn,i(Qn)− log |S|
n

, i = 1, 2, 3 then there existsρ∗ such that,

Fn,i(ρ
∗, Qn)− ρ∗Ri > 0, i = 1, 2, 3. (53)

• We chooseǫ < mini∈{1,2,3} Fn,i(ρ
∗, Qn)− ρ∗Ri and show that for sufficiently largeN

E[Pei(s0)|m1,m2] ≤ 2−N([Fn,i(ρ
∗,Qn)−ρ∗Ri]−ǫ), ∀s0. (54)

• From the last step we deduce the existence of a(N, ⌈2NR1⌉, ⌈2NR1⌉) code s.t.

Pe(s0) < η, ∀s0. (55)

First step: for any pair(R1, R2), we can rewrite eq. (40) for i=1,2,3 as

E[Pei(s0)|m1,m2] ≤ 2−N(FN,i(ρ,QN )−ρRi− log |S|
N

). (56)

By using (49), which states thatFN,i(ρ,QN ) ≥ Fn,i(ρ,Qn), we get

E[Pei(s0)|m1,m2] ≤ 2−N(Fn,i(ρ,Qn)−ρRi− log |S|
N

). (57)

Note thatFn,i(ρ,Qn) and thereforeFn,i(ρ,Qn) − ρR is continuous inρ ∈ [0, 1], so there exists a maximizing

ρ. Let us show that ifR1 < Cn,1(Qn) − log |S|
n

, thenmax0≤ρ≤1[Fn,1(ρ,Qn) − ρR1] > 0 (the casesi = 2, 3 are

identical toi = 1). Let us defineδ , Cn,1 − R1 . From Lemma 18, we have thatEn,1(ρ,QN , s0) is zero when

ρ = 0, is a continuous function ofρ, and its derivative at zero with respect toρ is equal or greater toCn,1, which

satisfiesCn,1 ≥ R1 +
log |S|

n
+ δ

2 . Thus, for each states0 there is a rangeρ > 0 such that

En,1(ρ,QN , s0)− ρ(R1 +
log |S|

n
) > 0. (58)

Moreover, because the number of states is finite, there exists aρ∗ > 0 for which the inequality (58) is true for all

s0. Thus, from the definition ofFn,1(ρ
∗, Qn) given in (41) and from (58),

Fn,1(ρ
∗, Qn) = −ρ∗

log |S|
n

+min
s0

En,1(ρ
∗, Qn, s0) > ρ∗R1, ∀s0. (59)

Second step: We choose a positive numberǫ such thatǫ < mini∈{1,2,3} Fn,i(ρ
∗, Qn) − ρ∗Ri. It follows from

(57) that for everyN that satisfiesN > log |S|
ǫ

,

E[Pei(s0)|m1,m2] ≤ 2−N(Fn,i(ρ
∗,Qn)−ρ∗Ri−ǫ), (60)

and according to the first step of the proof the exponentFn,i(ρ
∗, Qn, s0)− ρ∗Ri − ǫ is strictly positive.
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Third step: According to the previous step, for allη3|S|+1 > 0 there exists anN such thatE[Pei(s0)|m1,m2] ≤
η

3|S+1| for all i ∈ 1, 2, 3 all s0 ∈ S and all messages. SincePe(s0) =
∑3

i=1 Pei(s0), thenE[Pe(s0)|m1,m2] ≤
η

|S|+1 ; furthermoreE[Pe(s0)] ≤ η
|S|+1 for all s0 ∈ S. By using the Markov inequality, we have

Pr(Pe(s0) ≥ η) ≤ 1

|S|+ 1
, (61)

and by using the union bound we have

Pr(Pe(s0) ≥ η, for somes0 ∈ S) ≤
∑

s0∈S
Pr(Pe(s0) ≥ η) =

|S|
|S|+ 1

< 1. (62)

Because the probability over the ensemble of codes of havinga code with error probability (averaged over all

messages) that is less thanη for all initial states is positive, there must exist at leastone code that has an error

probability (averaged over all messages) that is less thanη for all initial states.

VII. PROOF OF THEOUTER BOUND (THEOREM 6)

In this section we prove Theorem 6, which states that for any FS-MAC there exists a distribution

Q(xn
1 ||zn−1

1 )Q(xn
2 ||zn−1

2 ) such that the following inequalities hold:

R1 ≤ 1

n
I(Xn

1 → Y n||Xn
2 ) + ǫn

R1 ≤ 1

n
I(Xn

2 → Y n||Xn
1 ) + ǫn

R1 +R2 ≤ 1

n
I((X1, X2)

n → Y n) + ǫn, (63)

whereǫn goes to zero asn goes to infinity.

Proof of Theorem 6:Let W1 andW2 be two independent messages, chosen independently and according to a

uniform distributionPr(Wl = wl) = 2−nRl , l = 1, 2. The input to the channel from encoderl at time i is xli, and

is a function of the messageWi and the arbitrary deterministic feedback outputzi−1
l (yi−1).

The following sequence of equalities and inequalities proves that if a code that achieves rateR1 exists then the
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first inequality holds, i.e.,R1 ≤ 1
n
I(Xn

1 → Y n||Xn
2 ) + ǫn:

nR1
(a)
= H(W1)

(b)
= H(W1|W2)

= I(W1;Y
n|W2) +H(W1|Y n,W2)

(c)

≤ I(Y n;W1|W2) + 1 + P (n)
e nR

= H(Y n|W2)−H(Y n|W1,W2) + 1 + P (n)
e nR

(d)
=

n
∑

i=1

H(Yi|Y i−1,W2)−
n
∑

i=1

H(Yi|W1,W2, Y
i−1) + 1 + P (n)

e nR

(e)
=

n
∑

i=1

H(Yi|Y i−1,W2, X
i
2)−

n
∑

i=1

H(Yi|W1,W2, Y
i−1, X i

1, X
i
2) + 1 + P (n)

e nR

(f)

≤
n
∑

i=1

H(Yi|Y i−1, X i
2)−

n
∑

i=1

H(Yi|Y i−1, X i
1, X

i
2) + 1 + P (n)

e nR

=

n
∑

i=1

I(Yi;X
i
1|Y i−1, X i

2) + 1 + P (n)
e nR

≤ I(Xn
1 → Y n||Xn

2 ) + 1 + P (n)
e nR, (64)

where,

(a) and (b) follow from the fact that the messagesW1 andW2 are independent and chosen according to a uniform

distribution,

(c) follows from Fano’s inequality,

(d) follows from the chain rule,

(e) follows from the fact thatx1i is a deterministic function given the messageW1 and the feedbackzi−1
1 , where

the feedbackzi−1
1 is a deterministic function of the outputyi−1,

(f) follows from the fact that the random variablesW1,W2, X
i
1, X

i
2, Y

i form the Markov chain(W1,W2) −
(X i

1, X
i
2, Y

i−1)− Yi.

Dividing (64) by n, we conclude that if there exists a code for which the error probability of decoding the

messagesW1,W2 is P
(n)
e then the distributionQ(xn

1 ||zn−1
1 )Q(xn

2 ||zn−1
2 ) induced by the code satisfies the first

inequality of the outer bound theorem whereǫn = 1
n
+ P

(n)
e R. The proofs of the other two inequalities in (63)

follow by a completely analogous sequence of steps as in (64): The proof of the second inequality of the outer

bound starts with the equalitiesR2 = H(W2) = H(W2|W1) and the third withR1 +R2 = H(W1,W2).

Corollary 20: The outer bound given in Theorem 6 implies thatlim infRn is an outer bound for the achievable

region.

Proof: Recall the definition ofRn in eq. (20). Let(R1, R2) be an achievable rate pair. We will create a

sequence of rate pairs(R1,n, R2,n) ∈ Rn that converges to(R1, R2) and therefore, by the definition oflim inf of

a sequence of sets (given in Appendix IV),(R1, R2) ∈ lim infRn.
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If (R1, R2) ∈ Rn then we choose(R1,n, R2,n) = (R1, R2). Otherwise we choose the closest point inRn to

R1, R2. Because of inequality (63) the distance||(R1,n, R2,n) − (R1, R2)|| ≤ 2ǫn and, therefore, the sequence

(R1,n, R2,n) converges to(R1, R2).

VIII. C APACITY REGION OF THEFS-MAC WITHOUT FEEDBACK

The inner and outer bounds given in Theorems 5 and 6 specialize to the case where there is no feedback, i.e.,z1, z2

are null. Hence, we can use it in order to extend Gallager’s results [17, Ch. 4] on the capacity of indecomposable

FSCs to indecomposable FS-MACs. An indecomposable FS-MAC (FSC) is a FS-MAC (FSC) for which the effect

of the initial state vanishes with time. More precisely:

Definition 3: A FS-MAC (FSC) isindecomposableif, for every ǫ > 0, there exists ann0 such that forn ≥ n0,

|P (sn|xn
1 , x

n
2 , s0)− P (sn|xn

1 , x
n
2 , s

′
0)| ≤ ǫ for all sn,xn

1 , x
n
2 , s0 ands′0.

Since there is no feedback, according to Lemma 4 directed information becomes mutual information and causal

conditioning becomes regular conditioning in all the expressions in the inner bound (Theorem 5) and outer bound

(Theorem 6).

The proof of the capacity region of FS-MAC is based on the following two lemmas. The first lemma is used for

showing that the difference between the lower bound and the upper bound goes to zero asn → ∞ and the second

lemma, which is proved in Appendix V, is used for showing thatthe limits exist.

Lemma 21:Let {Q(xn
1 )Q(xn

2 )}n≥1 be an arbitrary sequence of input distribution. If the channel is an

indecomposable FS-MAC then the following holds for alls′0, s
′′
0 :

lim
n→∞

1

n
|I(Xn

1 ;Y
n|Xn

2 , s
′
0)− I(Xn

1 ;Y
n|Xn

2 , s
′′
0)| = 0

lim
n→∞

1

n
|I(Xn

2 ;Y
n|Xn

1 , s
′
0)− I(Xn

2 ;Y
n|Xn

1 , s
′′
0)| = 0

lim
n→∞

1

n
|I(Xn

1 , X
n
2 ;Y

n|s′0)− I(Xn
1 , X

n
2 ;Y

n|s′′0)| = 0. (65)

Proof: The proof is identical to the proof of Theorem 4.6.4 in [17].

The following lemma, which is proved in Appendix V, establishes the sup-additivity of{Rn}.

Lemma 22:(sup-additivity ofRn. ) For any FS-MAC, the sequence{Rn}, which is defined in (19), is sup-

additive, i.e.,

(n+ l)Rn+l ⊇ nRn + lRl, (66)

and thereforelimn→∞ Rn exists. Moreover, for an indecomposable FS-MAC without feedback limn→∞ Rn =

limn→∞ Rn whereRn is defined (20).

Proof of Theorem 7:Theorem 5 implies thatlimn→∞ Rn is achievable, and Corollary 20 implies that

lim infn→∞ Rn is an outer bound. Finally, since according to Lemma 22 the two limits are equal tolimn→∞ Rn,

the capacity region is given by the last limit.
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IX. SUFFICIENT CONDITIONS FOR THEINNER AND OUTER BOUNDS TOCOINCIDE FORGENERAL FEEDBACK

A. Stationary Finite state Markovian MAC with feedback

A stationary finite state Markovian MAC satisfies

P (yi, si|x1i, x2i, si−1) = P (si|si−1)P (yi|si−1, x1i, x2i), (67)

where the initial state distribution is the stationary distribution P (s0). In words, the states are not affected by the

channel inputs.

For the stationary Markovian-MAC, the sequence{Rn} is sup-additive. It follows from the fact that if we

concatenate two input distributionsQn+k = QnQk, then I(Xn+k
1 → Y n+k||Xn+k

2 ) = I(Xn
1 → Y n||Xn

2 ) +

I(Xn+k
1,n+1 → Y n+k

n+1 ||Xn+k
2,n+1), hence(n+ k)Rn+k ⊇ nRn + kRk. According to Lemma 23, the limit exists and is

equal to

lim
n→∞

Rn = cl





⋃

n≥1

Rn



 . (68)

Next, we prove Theorem 8 that states that for a Markovian FS-MAC with a stationary ergodic state process, the

inner bound (Theorem 5) and the outer bound (Theorem 6) coincide and therefore the capacity region is given by

limn→∞ Rn.

Proof of Theorem 8:Recall that the inner bound is given in Theorem 5 asRN and the outer bound given in

Theorem 6 and in Corollary 20 aslim infRN . Next we show that the distance betweenRN andRN goes to zero

which implies by Lemma 25 that both limits equal and therefore the capacity region can be written aslimRN .

Let us consider a specific input distribution denoted byQ(xN
1 ||zN−1)Q(xN

2 ||zN−1) corresponding to the region

of the outer boundRN . Let us now consider an input distributionQ for n+N inputs corresponding to the inner

boundRN , such that it is arbitrary for the firstn inputs and then it isQ(xN
1 ||zN−1)Q(xN

2 ||zN−1).

Now let us show that the term of the inner bound, i.e.IQ(X
N
1 → Y N ||XN+n

2 , s0) and the term of the outer
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boundIQ(X
N
1 → Y N ||XN

2 ) are arbitrarily close to each other.

IQ(X
N+n
1 → Y N+n||XN+n

2 , s0)

(a)

≥ IQ(X
N+n
1 → Y N+n||XN+n

2 , Sn, s0)− log |S|
(b)

≥
N+n
∑

i=n+1

HQ(Yi|Y i−1, X i
2, Sn, s0)−HQ(Yi|Y i−1, X i

2, X
i
1, Sn, s0)− log |S|

(c)

≥
N+n
∑

i=n+1

HQ(Yi|Y i−1
n+1 , X

i
2,n+1, Sn, s0)−HQ(Yi|Y i−1

n+1, X
i
2,n+1, X

i
1,n+1, Sn, s0)− log |S|

= IQ(X
N+n
1,n+1 → Y N+n

n+1 ||XN+n
2,n+1, Sn, s0)−H(Sn)

(d)

≥ IQ(X
N+n
1,n+1 → Y N+n

n+1 ||XN+n
2,n+1, Sn)(1 − δ)− log |S|

≥ IQ(X
N+n
1,n+1 → Y N+n

n+1 ||XN+n
2,n+1, Sn)− δ(N + n) log |Y| − log |S|

(e)

≥ IQ(X
N+n
1,n+1 → Y N+n

n+1 ||XN+n
2,n+1)− δ(N + n) log |Y| − 2 log |S|

(f)

≥ IQ(X
N
1 → Y N ||XN

2 )− δ(N + n) log |Y| − 2 log |S|, (69)

where

(a) follows from Lemma 2 that states that conditioning onSn can differ at most bylog |S|,
(b) follows from omitting the firstn elements in the sum that defines directed information,

(c) follows from the fact that conditioning decreases entropy,

(d) follows from the fact that the Markov chain is ergodic, hence for anyδ > 0, there exists ann such that

|P (sn|s0)− P (sn)| ≤ δ for any s0 ∈ S andsn ∈ S, whereP (sn) is the stationary distribution ofsn,

(e) follows from Lemma 2 that states that conditioning onSn can differ by at mostlog |S|,
(f) follows from the stationarity of the channel.

Dividing both sides byN + n we get that for anys0,

1

N + n
IQ(X

N+n
1 → Y N+n||XN+n

2 , s0)−
1

N + n
IQ(X

N
1 → Y N ||XN

2 ) ≥ −δ(1 +
n

N
) log |Y| − 2

log |S|
N + n

(70)

Inequality (70) shows that the difference between the upperbound region and the lower bound is arbitrarily small

for N large enough and, hence, in the limit the regions coincide.

B. Finite State Markovian MAC with limited ISI

In this subsection we consider a MAC inspired by Kim’s point-to-point channel [22]. The conditional probability

of the MAC is given by

P (yi, zi|xi
1, x

i
2, zi−1) = P (zi|zi−1)P (yi|zi−1, x

i
1,i−m, xi

2,i−m), i = 1, 2, 3, ... (71)

where the distribution ofZ0 is the stationary distributionP (z0), and there is also some initial distribution

P (x−m+1, ..., x0).
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This channel is a FS-MAC where the state at timei is (zi−1, x
i−1
1,i−m, xi−1

2,i−m) and therefore the inner bound

(Theorem 5) and the outer bound (Theorem 6) apply to this channel. Theorem 8 also holds for this kind of channels,

namely, the capacity region is given bylimn→∞ Rn. The proof is very similar, the only difference being that the

input Q for n+N inputs is constructed slightly differently: it is arbitrary for the firstn−m inputs, then it is as

the initial distributionP (x−m+1, ..., x0), and then it isQ(xN
1 ||zN−1)Q(xN

2 ||zN−1).

It is also possible to represent the channel with an alternative law, identical to the law of the channel given in eq.

(71) for i ≥ m+1 but for i ≤ m the outputyi is not influenced by the input and is, with probability 1, a particular

outputφ ∈ Y. Let us defineRφ
n similarly asRn but with the alternative law for the channel. On one hand, it is

clear thatRφ
n ⊆ Rn for all n, and on the other hand the difference betweenRφ

n andRn is at mostm logY because

it is possible to use the distribution of the firstm inputs,Q(xm
1 ), to create a desired initial distribution and then

use the same input as inRn. Hence,

lim
n→∞

Rφ
n = lim

n→∞
Rn. (72)

The advantage of analyzingRφ
n rather than analyzingRn is that the sequencenRφ

n is sup-additive, i.e.(n+l)Rφ
n+l ⊇

nRφ
n + lRφ

l , and according to Lemma 23,limn→∞ Rφ
n = cl

(

⋃

n≥1 R
φ
n

)

. Hence, we can conclude that Theorem

9 holds for this channel too, namely, if the capacity of the Finite state Markovian MAC with limited ISI is zero

without feedback then it is zero also in the presence of feedback.

X. CONCLUSIONS ANDFUTURE DIRECTIONS

In this paper we have shown that directed information and causal conditioning emerge naturally in characterizing

the capacity region of FS-MACs in the presence of a time-invariant feedback. The capacity region is given as a

‘multi-letter’ expression and it is a first step toward deriving useful concepts in communication. For instance, we

use this characterization in order to show that for a stationary and ergodic Markovian channel, the capacity is zero if

and only if the capacity with feedback is zero. Further, we identify FS-MACs for which feedback does not enlarge

the capacity region and for which source-channel separation holds.

For the point-to-point channel with feedback, recent work has shown that, for some families of channels such as

unifilar channels [28] or the additive Gaussian where the noise is ARMA [22], the directed information formula can

be computed and, further, can lead to the development of capacity achieving coding schemes. One future direction

is to use the characterizations developed in this paper to explicitly compute the capacity regions of classes of MACs

with memory and feedback (other than the multiplexer followed by a point-to-point channel), and to find optimal

coding schemes.
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APPENDIX I

PROOF OFLEMMA 3

Recall that Lemma 3 states that if

Q(xN
1 , xN

2 ||yN−1) = Q(xN
1 ||yN−1)Q(xN

2 ||yN−1), (73)

then

I(Q(xN
1 , xN

2 ||yN−1);P (yN ||xN
1 , xN

2 )) = I(XN
1 → Y N ||XN

2 ). (74)

Proof: The following sequence of equalities proves the lemma.

I(Q(xN
1 , xN

2 ||yN−1);P (yN ||xN
1 , xN

2 ))

(a)
= I(Q(xN

1 ||yN−1)Q(xN
2 ||yN−1);P (yN ||xN

1 , xN
2 ))

(b)
=

∑

yN ,xN
1 ,xN

2

Q(xN
1 ||yN−1)Q(xN

2 ||yN−1)P (yN ||xN
1 , xN

2 )
P (yN ||xN

1 , xN
2 )

∑

x′N
1
Q(x′N

1 ||yN−1)P (yN ||x′N
1 , xN

2 )

(c)
=

∑

yN ,xN
1 ,xN

2

P (xN
1 , xN

2 , yN)
P (yN ||xN

1 , xN
2 )

∑

x′N
1
Q(x′N

1 ||yN−1)P (yN ||x′N
1 , xN

2 )

= E

[

P (yN ||xN
1 , xN

2 )
∑

x′N
1
Q(x′N

1 ||yN−1, xN
2 )P (yN ||x′N

1 , xN
2 )

]

= E

[

Q(xN
2 ||yN−1)P (yN ||xN

1 , xN
2 )

Q(xN
2 ||yN−1)

∑

x′N
1
Q(x′N

1 ||yN−1, xN
2 )P (yN ||x′N

1 , xN
2 )

]

= E

[

Q(xN
2 ||yN−1)P (yN ||xN

1 , xN
2 )

∑

x′N
1
P (yN , x′N

1 , xN
2 )

]

= E

[

Q(xN
2 ||yN−1)P (yN ||xN

1 , xN
2 )

P (xN
2 , yN)

]

= E

[

P (yN ||xN
1 , xN

2 )

P (yN ||xN
2 )

]

(d)
= I(XN

1 → Y N ||XN
2 )

(75)

(a) follows from the assumption given in eq. (73).

(b) follows from the definition of the functionalI(Q;P ) given in eq. (16).

(c) follows from Lemma 1 that states thatP (xN
1 , xN

2 , yN) = Q(xN
1 , xN

2 ||yN−1)P (yN ||xN
1 , xN

2 ) and the

assumption given in (73).

(d) follows from the definition of directed information.
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APPENDIX II

PROOF OFLEMMA 4

Lemma 4 states that if

Q(xN
1 , xN

2 ||yN−1) = Q(xN
1 )Q(xN

2 ), (76)

then

I(XN
1 ;Y N |XN

2 ) = I(XN
1 → Y N ||XN

2 ). (77)

Proof: The following sequence of equalities proves the lemma.

I(XN
1 ;Y N |XN

2 ) = E

[

log
P (Y N , XN

1 |XN
2 )

P (Y N |XN
2 )Q(XN

1 |XN
2 )

]

(a)
= E

[

log
P (Y N , XN

1 , XN
2 )

P (Y N , XN
2 )Q(XN

1 |XN
2 )

]

(b)
= E

[

log
Q(XN

1 , XN
2 ||Y N−1)P (Y N ||XN

1 , XN
2 )

P (Y N ||XN
2 )Q(XN

2 ||Y N−1)Q(XN
1 |XN

2 )

]

(c)
= E

[

log
Q(XN

1 )Q(XN
2 )P (Y N ||XN

1 , XN
2 )

P (Y N ||XN
2 )Q(XN

2 )Q(XN
1 )

]

= E

[

log
P (Y N ||XN

1 , XN
2 )

P (Y N ||XN
2 )

]

= I(XN
1 → Y N ||XN

2 ). (78)

(a) follows from multiplying the numerator and denominatorby P (xN
2 ).

(b) follows from decomposing the joint distributionsP (yN , xN
1 , xN

2 ) andP (Y N , XN
2 ) into causal conditioning

distribution by using Lemma 1.

(c) follows from the fact that the assumption of the lemma given in (76) implies thatQ(XN
1 , XN

2 ) =

Q(XN
1 )Q(XN

1 ). This can be obtained by multiplying both sides of (76) byP (yn||xn
1 , x

n
2 ) and then summing

over all yn ∈ Yn.

APPENDIX III

PROOF OFLEMMA 12

Lemma 12 states that

max
Q(xn

1 ||yn−1)Q(xn
2 ||yn−1)

I(Xn
1 , X

n
2 → Y n) = 0 ⇐⇒ max

Q(xn
1 )Q(xn

2 )
I(Xn

1 , X
n
2 → Y n) = 0, (79)

and each condition also implies thatP (yn||xn
1 , x

n
2 ) = P (yn) for all xn

1 , x
n
2 .

Proof: Proving the direction=⇒ is trivial since

max
Q(xn

1 ||yn−1)Q(xn
2 ||yn−1)

I(Xn
1 , X

N
2 → Y n) ≥ max

Q(xn
1 )Q(xn

2 )
I(Xn

1 , X
n
2 → Y n). (80)
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For the other direction,⇐=, we have the assumption thatI(Xn
1 , X

n
2 → Y n) = 0 for all input distributions

Q(xn
1 )Q(xn

2 ), and in particular for the case thatXn
1 andXn

2 are uniformly distributed over their alphabets. Directed

information can be written as a Kullback Leibler divergence, i.e.,

∑

xn
1 ,x

n
2 ,y

n

Q(xn
1 )Q(xn

1 )P (yn||xn
1 , x

n
2 ) log

Q(xn
1 )Q(xn

1 )P (yn||xn
1 , x

n
2 )

P (yn)Q(xn
1 )Q(xn

2 )
= 0 (81)

and by using the fact that if the Kullback Leibler divergenceD(P ||Q) ,
∑

x∈X P (x) log P (x)
Q(x) is zero, then

P (x) = Q(x) for all x ∈ X , we conclude that (81) implies thatP (yn||xn
1 , x

n
2 ) = P (yn) for all xn

1 ∈ Xn
1 and all

xn
2 ∈ Xn

2 . It follows that

max
Q(xn

1 ||yn−1)Q(xn
2 ||yn−1)

I(Xn
1 , X

n
2 →Y n) = max

Q(xn
1 ||yn−1)Q(xn

2 ||yn−1)
E

[

log
P (Y n||Xn

1 , X
n
2 )

P (Y n)

]

= max
Q(xn

1 ||yn−1)Q(xn
2 ||yn−1)

E[0] = 0. (82)

APPENDIX IV

SUP-ADDITIVITY AND CONVERGENCE OF2D REGIONS

Let A,B be sets inR2, i.e.,A andB are sets of 2D vectors. The sum of two regions is denoted asA+B and

defined as

A+B = {a+ b : a ∈ A,b ∈ B}, (83)

and multiplication of a setA with a scalarc is defined as

cA = {ca : a ∈ A}. (84)

A sequence{An}, n = 1, 2, 3, ..., of 2D regions is said toconvergeto a regionA, written A = limAn if

lim supAn = lim inf An = A (85)

where

lim inf An = {a : a = liman, an ∈ An} ,

lim supAn = {a : a = limak, ak ∈ Ank
} , (86)

and nk denotes an arbitrary increasing subsequence of the integers. An alternative and equivalent definition of

lim sup and lim inf is given bylim supAn =
⋂

n≥1 cl
(

⋃

m≥n Am

)

and lim inf An =
⋃

n≥1 cl
(

⋂

m≥n Am

)

. For

more details on convergence of sets in finite dimensions see [48].

Let A denote

A = cl





⋃

n≥1

An



 . (87)

We say that a sequence{An}n≥1 is boundedif sup{||a|| : a ∈ A} < ∞ where|| · || denotes a norm inR2.
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Lemma 23:Let An, n = 1, 2, ..., be a bounded sequence of sets inR
2 that includes the origin, i.e.(0, 0). If

nAn is sup-additive, i.e., for alln ≥ 1 and allN > n

NAN ⊇ nAn + (N − n)AN−n (88)

then

lim
n→∞

An = A. (89)

Proof: From the definitions we haveA ⊇ lim supAn ⊇ lim inf An. Hence it is enough to show thatA ⊆
lim inf An.

Let a be a point inA. Then for everyǫ > 0 there exists ann and a pointaǫ such thataǫ ∈ An and||a− aǫ|| ≤ ǫ.

By induction we prove that for any integerm ≥ 2, An ⊆ Amn, and this implies thataǫ ∈ Amn. For m = 2 we

chooseN = 2n and we get that

A2n ⊇ An

2
+

An

2
⊇ An. (90)

Now assume that it holds form− 1 and let us show that it holds form.

Amn ⊇ An

m
+

(m− 1)A(m−1)n

m
⊇ An

m
+

(m− 1)An

m
⊇ An. (91)

Now, for anyN > n, we can representN asmn+ j where0 ≤ j ≤ n− 1, hence

Amn+j ⊇
j

mn+ j
Aj +

mn

mn+ j
Amn. (92)

Becauseaǫ is in An, then it implies that it is inAmn too. Following (92) and the fact that(0, 0) ∈ Aj we obtain

mn

mn+ j
aǫ ∈ Amn+j . (93)

For anyδ > 0 and for anyN ≥ n
δ

we conclude the existence of an element inAN for which the distance froma

can be upper-bounded by
∥

∥

∥

∥

mn

mn+ j
aǫ − a

∥

∥

∥

∥

=

∥

∥

∥

∥

aǫ − a− j

mn+ j
aǫ

∥

∥

∥

∥

≤ ||aǫ − a||+ δ||aǫ|| ≤ ǫ+ δ||aǫ||. (94)

Becauseǫ andδ are arbitrarily small we can find a sequence of pointsan ∈ An that converges toa and therefore

a ∈ lim inf An, which implies thatA ⊆ lim inf An.

Corollary 24: For a sup-additive sequence, as defined in Lemma 23, the limitis convex.

This corollary follows immediately from the definition of the sup-additivity property, eq. (88) wheren = αN ,

where0 < α < 1, andN goes to infinity.

The (Hausdroff) distancebetween two setsA andB, is defined as

d(A,B) = max{sup[d(a, B : a ∈ A], sup[d(b, A) : b ∈ B]}, (95)

where the distance between a setA and a pointb is given by,

d(b, A) = inf
a
[||a− b|| : a ∈ A] (96)
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Lemma 25:If limn→∞ d(An, Bn) = 0 then

lim supAn = lim supBn,

lim inf An = lim inf Bn. (97)

Proof: The proof is straightforward. Given a sequence{ak} ∈ Ank
that converges toa, we construct a

sequence{bk} by finding a point inBnk
that is at a distance less than1

k
+d(ak, Bnk

). Since the distance between

the sets goes to zero,limbk = lim ak = a and from the definitions of limits of sets, it implies that (97) holds.

APPENDIX V

PROOF OFLEMMA 22

Recall the definition ofRn andRn in (19) and (20) respectively.

Lemma 22 states that

(n+ l)Rn+l ⊇ nRn + lRl. (98)

and for an indecomposable FS-MAC without feedbacklimn→∞ Rn = limn→∞ Rn.

Proof of Lemma 22:We notice that if a sequence of sets is sup-additive then the sequence of the convex hull

of the sets is also sup-additive. Hence, it is enough to provethe sup-additivity of the sequenceRn without the

appearance of the random variableW that its role is to convexify the regions.

The setRn is defined by three expressions that involve directed information. Because each expression is sup-

additive the whole set is sup-additive. We prove that the first expression, i.e.mins0 I(X
n
1 → Y n||Xn

2 , s0)− log |S|
is sup-additive (the proofs of the supper-additivity of theother expressions are similar and therefore omitted).

min
s0

I(Xn+l
1 → Y n+l||Xn+l

2 , s0)

(a)

≥ min
s0

n
∑

i=1

I(Yi;X
i
1|Y i−1, X i

2, s0) + min
s0

n+l
∑

j=n+1

I(Yj ;X
j
1 |Y j−1, Xj

2 , s0)

(b)

≥ I(Xn
1 → Y n||Xn

2 , s0) +

n+l
∑

j=n+1

I(Yj ;X
j
1,n+1|Y j−1, Xj

2 , s0)

(c)

≥ I(Xn
1 → Y n||Xn

2 , s0) +
n+l
∑

j=n+1

I(Yj ;X
j
1,n+1|Y j−1, Xj

2 , Sn, s0)− log |S|

= min
s0

I(Xn
1 → Y n||Xn

2 , s0) + min
s0

∑

sn

P (sn|s0)
n+l
∑

j=n+1

I(Yj ;X
j
1,n+1|Y j−1, Xj

2,n+1, sn)− log |S|

≥ min
s0

I(Xn
1 → Y n||Xn

2 , s0) + min
sn

n+l
∑

j=n+1

I(Yj ;X
j
1,n+1|Y j−1

n+1 , X
j
2,n+1, sn)− log |S|

(d)
= min

s0
I(Xn

1 → Y n||Xn
2 , s0) + min

s0
I(X l

1 → Y l||X l
2, s0)− log |S|. (99)

(a) follows the definition of the directed information the fact thatmins[f(s) + g(s)] ≥ mins f(s) + mins g(s),
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(b) follows the fact thatI(X ;Y, Z) ≥ I(X ;Y ),

(c) follows Lemma 2 that states that conditioning bySn can differ by at mostlog |S|,
(d) follows from the stationarity of the channel.

According to Lemma 23, since the sequence{Rn} is sup-additive the limit exists. In the rest of the proof we

show thatlimn→∞ Rn = limn→∞ Rn. The terms of the regionRn have an auxiliary random variableW whose

only role is to convexify the region. Let us denoteRo
n the same region asRn whereW is restricted to be null. We

show first that restrictingW to being null does not influence the limit, i.e.,limn→∞ Rn = limn→∞ Ro
n. In the first

half of the proof we showed thatRo
n is sub-additive. Using this fact, we show now, that any convex combination

with rational weights( l
k
, k−l

k
) of any two points fromRo

n is in Ro
kn.

Ro
kn ⊇ l

k
Ro

ln +
k − l

k
Ro

(k−l)n ⊇ l

k
Ro

n +
k − l

k
Ro

n (100)

The left and the right inclusions in (100) are due to the sup-additivity of Ro
n. The left inclusion is from the definition

of the sup-additivity and the right is due to the fact that sup-additivity of Ro
n also implies that for any two positive

integersm,n, Ro
mn ⊇ Ro

n (This is shown by induction in (90,91)). From (100) we can deduce that for anyǫ > 0

we can find ak(ǫ) such thatRn ⊆ Ro
nk+ ǫ. This fact, together with the trivial fact thatRn ⊇ Ro

n, and the fact that

the limits of both sequences exist, allow us to deduce that the limits are the same, i.e.,limn→∞ Rn = limn→∞ Ro
n.

We conclude the proof by showing that, for any input distribution Q(xn
1 )Q(xn

2 ), the difference between the terms

in the inequalities of{Ro
n} and{Rn} goes to zero asn → ∞, hence the distance between the sets of the sequences

goes to zero asn → ∞ and, by Lemma 25, the limits of the sequences are the same.

lim
n→∞

1

n

∣

∣

∣

∣

I(Xn
1 → Y n||Xn

2 )−min
s0

I(Xn
1 → Y n||Xn

2 , s0) + log |S|
∣

∣

∣

∣

(a)

≤ lim
n→∞

1

n

∣

∣

∣

∣

I(Xn
1 → Y n||Xn

2 , S0)−min
s0

I(Xn
1 → Y n||Xn

2 , s0) + log |S|
∣

∣

∣

∣

+ log |S|

= lim
n→∞

1

n

[

I(Xn
1 → Y n||Xn

2 , S0)−min
s0

I(Xn
1 → Y n||Xn

2 , s0))

]

(b)

≤ lim
n→∞

1

n

[

max
s0

I(Xn
1 → Y n||Xn

2 , s0)−min
s0

I(Xn
1 → Y n||Xn

2 , s0))

]

(c)
= 0 (101)

(a) follows from Lemma 2 and the triangle inequality.

(b) follows from the fact thatmaxs0 I(X
n
1 → Y n||Xn

2 , s0) ≥ I(Xn
1 → Y n||Xn

2 , S0).

(c) follows from Lemma 21 that states this equality for indecomposable FS-MAC without feedback (recall also

that directed information equals mutual information in theabsence of feedback).
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APPENDIX VI

PROOF OFTHEOREM 16

E[Pe1] =
∑

yN

∑

xN
1 ,xN

2

P (xN
1 , xN

2 , yN)P [error1|m1 ,m2, x
N
1 , xN

2 , yN ]

=
∑

yN

∑

xN
1 ,xN

2

Q(xN
1 ||zN−1

1 )Q(xN
2 ||zN−1)P (yN ||xN

1 , xN
2 )P [error1|m1,m2, x

N , yN ], (102)

whereP [error1|m1,m2, x
N , yN ] is the error probability of decodingm1 given thatm2 is decoded correctly.

Throughout the remainder of the proof we fix the messagem1,m2. For a given tuple(m1,m2, x
N
1 , xN

2 , yN )

define the eventAm′
1
, for eachm′

1 6= m1, as the event that the messagem′
1 is selected in such a way that

P (yN |m′
1,m2) > P (yN |m,m2) which is the same asP (yN ||x′N

1 , xN
2 ) > P (yN ||xN

1 , xN
2 ) wherex′N

1 is a shorthand

notation forxN
1 (m′

1, z
N−1(yN−1)) andxN

i is a shorthand notation forxN
l (ml, z

N−1
l (yN−1)) for l = 1, 2. From

the definition ofAm′
1

we have

P (Am′
1
|m1,m2, x

N
1 , xN

2 , yN) =
∑

x′N

Q(x′N
1 ||zN−1) · 1[P (yN ||x′N

1 , xN
2 ) > P (yN ||xN

1 , xN
2 )]

≤
∑

x′N

Q(x′N
1 ||zN−1)

[

P (yN ||x′N
1 , xN

2 )

P (yN ||xN
1 , xN

2 )

]s

; any s > 0 (103)

where1(x) denotes the indicator function.

P [error1|m1,m2, x
N
1 , xN

2 , yN ] = P (
⋃

m′ 6=m

Am′
1
|m1,m2, x

N
1 , xN

2 , yN)

≤ min







∑

m′
1 6=m

P (Am′
1
|m1,m2, x

N
1 , xN

2 , yN ), 1







≤





∑

m′
1 6=m1

P (Am′
1
|m1,m2, x

N
1 , xN

2 , yN )





ρ

; any 0 ≤ ρ ≤ 1

≤



(M1 − 1)
∑

x′N
1

Q(x′N
1 ||zN−1)

[

P (yN ||x′N
1 , xN

2 )

P (yN ||xN
1 , xN

2 )

]s




ρ

, 0 ≤ ρ ≤ 1, s > 0,

(104)

where the last inequality is due to inequality (103). By substituting inequality (104) in eq. (102) we obtain:

E[Pe1] ≤ (M − 1)ρ
∑

yN ,xN
2

Q(xN
2 ||zN−1)

[

∑

xN

Q(xN
1 ||zN−1

1 )P (yN ||xN
1 , xN

2 )1−sρ

]





∑

x′N
1

Q(x′N
2 ||zN−1)P (yN ||x′N

1 , xN
2 )s





ρ

By substitutings = 1/(1 + ρ), and recognizing thatx′ is a dummy variable of summation, we obtain eq. (37) and

complete the proof of the bound onE[Pe1].

The proof for boundingE[Pe2] is identical to the proof that is given here forE[Pe1], up to exchanging the

indices. ForE[Pe3] the upper bound is identical to the case of the point-to-point channel with an inputxN
1 , xN

2 , as

proven in [27] where the union bound which appears here in eq.(104) consists of(M1 − 1)(M2 − 1) terms.
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