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Capacity Region of the Finite-State Multiple

Access Channel with and without Feedback

Haim Permuter and Tsachy Weissman

Abstract

The capacity region of the Finite-State Multiple Access @& (FS-MAC) with feedback that may be an
arbitrary time-invariant function of the channel outputngédes is considered. We characterize both an inner and an
outer bound for this region, using Masseys’s directed mfation. These bounds are shown to coincide, and hence
yield the capacity region, of FS-MACs where the state predesstationary and ergodic and not affected by the
inputs. Though ‘multi-letter’ in general, our results ylebxplicit conclusions when applied to specific scenarios of
interest. E.g., our results allow us to:

« ldentify a large class of FS-MACs, that includes the additimod-2 noise MAC where the noise may have
memory, for which feedback does not enlarge the capacitypmeg

Deduce that, for a general FS-MAC with states that are netadtl by the input, if the capacity (region) without
feedback is zero, then so is the capacity (region) with faeklb

« Deduce that the capacity region of a MAC that can be decontpioge a ‘multiplexer’ concatenated by a point-
to-point channel (with, without, or with partial feedback)e capacity region is given by" = R,, < C, where

C is the capacity of the point to point channel amdindexes the encoders. Moreover, we show that for this
family of channels source-channel coding separation holds

Index Terms

Feedback capacity, multiple access channel, capacitgredirected information, causal conditioning, code-tree
source-channel coding separation, sup-additivity of.sets
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I. INTRODUCTION

The Multiple Access Channel (MAC) has received much atbentn the literature. To put our contributions
in context, we begin by briefly describing some of the key ltesin the area. The capacity region for the
memoryless MAC was derived by Ahlswede in [1]. Cover and Igedearived an achievable region for a memoryless
MAC with feedback in [2]. Using block Markov encoding, supesition and list codes, they showed that the
region By < I(X1;Y|X2,U), Ry < I(X2;Y|X1,U) and Ry + Ry < I(X3,X2;Y) where P(u,x1,22,y) =
p(u)p(xy|u)p(z2|u)p(y|z1, 22) is achievable for a memoryless MAC with feedback. Willemsveld in [3] that
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the achievable region given by Cover and Leung for a memssytdiannel with feedback is optimal for a class of
channels where one of the inputs is a deterministic funabiothe output and the other input. More recently Bross
and Lapidoth [4] improved Cover and Leung’s region, and Wuakt[5] have extended Cover and Leung’s region
for the case that non-causal state information is availableoth encoders.

Ozarow derived the capacity of a memoryless Gaussian MAB fe&dback in [6], and showed it to be achievable
via a modification of the Schalkwijk-Kailath scheme [7]. largral, the capacity in the presence of noisy feedback
is an open question for the point-to-point channel and adiaoffor the MAC. Lapidoth and Wigger [8] presented an
achievable region for the case of the Gaussian MAC with nf@iegback and showed that it converges to Ozarow’s
noiseless-feedback sum-rate capacity as the feedbask-mariance tends to zero. Other recent variations on the
Schalkwijk-Kailath scheme of relevance to the themes ofwark include the case of quantization noise in the
feedback link [9] and the case of interference known norsaliyi at the transmitter [10].

Verd( characterized the capacity region of a Multi-Accessannel of the formP(y;|zt, 2%, y"t) =
P(y|zt ;. x5, ,,) without feedback in [11]. Verdu further showed in that wdhlat in the absence of frame
synchronism between the two users, i.e., there is a randitibetween the users, only stationary input distributions
need be considered. Cheng and Verd( built on the capadtytrgom [11] in [12] to show that for a Gaussian
MAC there exists a water-filling solution that generalizks point-to-point Gaussian channel.

In [13] [14], Kramer derived several capacity results fosalete memoryless networks with feedback. By using
the idea of code-trees instead of code-words, Kramer der@vémulit-letter’ expression for the capacity of the
discrete memoryless MAC. One of the main results we devetofhé present paper extends Kramer’'s capacity
result to the case of a stationary and ergodic Markov Figtege MAC (FS-MAC), to be formally defined below.

In [15] [16], Han used the information-spectrum method imlesrto derive the capacity of a general MAC
without feedback, when the channel transition probaeditre arbitrary for every symbols. Han also considered
the additive mody MAC, which we shall use here to illustrate the way in which general results characterize
special cases of interest. In particular, our results wilply that feedback does not increase the capacity region of
the additive mody MAC.

In this work, we consider the capacity region of the Finitat& Multiple Access Channel (FS-MAC), with
feedback that may be an arbitrary time-invariant functiéthe channel output samples. We characterize both an
inner and an outer bound for this region. We further show thease bounds coincide, and hence yield the capacity
region, for the important subfamily of FS-MACs with statésit evolve independently of the channel inputs. Our
derivation of the capacity region is rooted in the derivataf the capacity of finite-state channels in Gallager’s
book [17, ch 4,5]. More recently, Lapidoth and Telatar [1&\vé used it in order to derive the capacity of a
compound channel without feedback, where the compoundneh@onsists of a family of finite-state channels. In
particular, they have introduced into Gallager’s proof ithea of concatenating codewords, which we extend here
to concatenating code-trees.

Though ‘multi-letter’ in general, our results yield expliconclusions when applied to more specific families

of MACs. For example, we find that feedback does not increlsecapacity of the mod-additive noise MAC
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(whereq is the size of the common alphabet of the input, output ande)piregardless of the memory in the
noise. This result is in sharp contrast with the finding of @aaand Wolf in [19] that feedback can increase the
capacity even of anemoryles$MAC due to cooperation between senders that it can createre3ult should also

be considered in light of Alajaji's work [20], where it wasashn that feedback does not increase the capacity of
discrete point-to-point channels with mgdadditive noise. Thus, this part of our contribution can basidered

a multi-terminal extension of Alajaji's result. Our resulwvill in fact allow us to identify a class of MACs larger
than that of the mod-additive noise MAC for which feedback does not enlarge thgaciy region.

Further specialization of the results will allow us to deelubat, for a general FS-MAC with states that are
not affected by the input, if the capacity (region) withoaeéiback is zero, then so is the capacity (region) with
feedback. It will also allow us to identify a large class of-M&Cs for which source-channel coding separation
holds.

The remainder of this paper is organized as follows. We aietyr describe our channel model and assumptions
in Sectiorl. In Sectio1ll we introduce some notation,Isand results pertaining to directed information and the
notion of causal conditioning that will be key in later seas. We state our main results in Secfion 1V. In Sediidn V
we apply the general results of Sectlod IV to obtain the ciypaegion for several interesting classes of channels,
as well as establish a source-channel separation reswdtvalidity of our inner and outer bounds is established,
respectively, in Sectioh VI and Sectién VII. In Section Ville show that our inner and outer bounds coincide,
and hence yield the capacity region, when applied to the R&Mithout feedback. This result can be thought
of as the natural extension of Gallager’s results [17, Chtodhe MAC or, alternatively, as the natural extension
of Gallager's derivation of the MAC capacity region in [2D] thannels with states. In Sectibn] IX we characterize
the capacity region for the case of arbitrary (time-invatideedback and FS-MAC channels with states that evolve
independently of the input, as well as the FS-MAC with lirdit&] (which is the natural MAC-analogue of Kim’'s
point-to-point channel [22]), by showing that our inner amater bounds coincide for this case. We conclude in

Section X with a summary of our contribution and a relatedifeitresearch direction.

II. CHANNEL MODEL

In this paper, we consider an FS-MAC (Finite state MAC) wittinae invariant feedback as illustrated in Hig. 1.
The MAC setting consists of two senders and one receiveh Bander € {1,2} chooses an index,; uniformly
from the set{1,...,2"%} and independently of the other sender. The input to the aHainom encoderl is
denoted by{ X1, X2, X3, ...}, and the output of the channel is denoted {}, Y2, Y3, ...}. The state at time,
ie., S; € S, takes values in a finite set of possible states. The chasngfationary and is characterized by a

conditional probabilityP(y;, s;|x14, x2;, s;i—1) that satisfies

-1

P(yi, silai, ab, s y" ") = Plyi, sil@1s, 221, 8i1), 1)

where the superscripts denote sequences in the following m{a: (z11, 212, -y 211), 1 € {1,2}. We assume a

communication with feedback;' where the element;; is a time-invariant function of the outpyt. For example,
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Fig. 1. Channel with feedback that is a time invariant detmistic function of the output.

z1; could equaly; (perfect feedback), or a quantized versiornygfor null (no feedback). The encoders receive the
feedback samples with one unit delay.
A code with feedback consists of two encoding functigns {1, ..., 2"%1} x Zl"‘l — A, 1 =1,2, where the

kth coordinate ofz} € A" is given by the function
xlk:glk(ml,szl), k:1,2,...,n, 121,2 (2)
and a decoding function,
g: Y = {1,...,2" ) x {1, ..., 2" B, 3)

The average probability of erroffor ((27f1, 2772 ) code is defined as

PM = m Z Pr{g(Y"™) # (w1, w2)|(w1, w2) sent. (4)

w1, w2
A rate (R, Ry) is said to beachievablefor the MAC if there exists a sequence @2"1, 2"%2) n) codes with

Pe(”) — 0. The capacity regionof MAC is the closure of the set of achievebdl®,, R,) rates.

IIl. DIRECTEDINFORMATION

Throughout this paper we use ti&ausal Conditioningnotation(-||-). We denote the probability mass function

(pmf) of YV causally conditioned otX V¥ —¢, for some integetl > 0, as P(y"V ||z =) which is defined as
N . .
PyM||e™=) & T Plyily'™, 2=, (5)
i=1
(if i —d <0 thenz'~? is set to null). In particular, we extensively use the cashsrad = 0, 1:

N
PyN|l2™) £ ] Plyily' ™", o) (6)
=1
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N

QMg & [[ Q=" '), 7

=1
where the letterg) and P are both used for denoting pmfs.

Directed information/ (X~ — Y¥) was defined by Massey in [23] as

N
IXN 5y N) &£ I(XS YY), (8)

=1
It has been widely used in the characterization of capadityaint-to-point channels [22], [24]-[29], compound
channels [30], network capacity [14], [31], rate distont{32]—[34] and computational biology [35], [36]. Directed

information can also be expressed in terms of causal condii as
N . .
IXN 5 yN) =3 I(XLY[Y'™) =E {1og 9)

=1

PN XY)
PYN) }

whereE denotes expectation. The directed information fr&Y to YV, conditioned onS, is denoted ag(X " —

Y™N|S) and is defined as:
N

I(XN = YNS) £ 1(XL YY), (10)
i=1

Directed information betweeX{¥ to YV causally conditioned oX' is defined as

N
HE o YY) 2 Y I VY ) = B o
i=1

PYNIXY, X5T)
PYN||IX3)

(11)

where P(y" ||z}, 23) = [y Plyily' ™" ai. 25).

Throughout this paper we are using several properties (fataonditioning and directed information that follow
from the definitions and simple algebra. Many of the key proge that hold for mutual information and regular
conditioning carry over to directed information and causaiditioning, whereP(z) is replaced byP(z™V||yN 1)
and P(y") is replaced byP(y"||z"). Specifically,

Lemma 1:(Analogue toP(z,y™) = P(z¥)P(yN|z).) For arbitrary random vectorsX{, X3V, Y V),
P(ay,y™) = P |ly™ ) PyN2]) (12)

Py yN|zd) = P |[yV 1 2y ) PyN|a), 23 ). (13)

Lemma 2:(Analogue to|I(X{¥; YVN) — I(X{¥; YN|S)| < H(S).) For arbitrary random vectors and variables,
I(XY = YN) = I1(X{ = YN[9)| < H(S) < log|S| (14)

(X = YNIX) - 1(X7 = YNX5', )| < H(S) < log|S]. (15)
The proofs of Lemma]1 and Lemrh 2 can be found in [27, Sec. lghgwith some additional properties of causal
conditioning and directed information. The next lemma, akhis proven in Appendikl |, shows that by replacing
regular pmf with causal conditioning pmf we get the directefbrmation. Let us denote the mutual informa-

tion I(X7;Y"|Xy) as a functional ofQ(zY,2)) and P(yN |z, zlY), i.e., Z(Q(z, 25); P(yN |z, z))) £
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I(X7; Y™ X%). Consider the case that the random variahlef, X2 are independent, i.eQ(zV,z) =

Q(zM)Q(xY), then by definition

TQENQEY): PN ) 2 Y Q)@@ PN o) LW a1 2))
P Py o e ) T PN [ o)

N ..N
Yy ,xTy Ty

. (16)

Lemma 3:1f the random vectorsX{¥ and X} are causal-conditionally independent givei¥—!, i.e.,

Qat, zy|lyN 1) = Qa7 [lyV 1) Q (=3 ||y ) then

Z(Qy Iy M@ |ly™ 1) P(y™ [t 23")) = I(X{ — YN[ XJ). a7
The next lemma, which is proven in AppendiX Il, shows that lie absence of feedback, mutual information
becomes directed information.
Lemma 4:1f Q(z, 2Y ||yN 1) = Q(2)Q(x)) then

IX{YNXS) = I(XT = YV]IX5). (18)

IV. MAIN THEOREMS

We dedicate this section to a statement of our main resutisf®of which will appear in the subsequent sections.

Let R, denote the following region ifk? (2D set of nonnegative real numbers):

Ry < ming, L1(X7 — Y| X5, W, s0) — 28181
R, = U Ry < ming, LI(XE — Y7|| X7, W, 50) — 18lS], (19)

QW)Qz |27 w)Q (|25~ w) .
o o Ry + Ry < ming, 21((Xy, Xo)" — Y7 W, 59) — 28151

Having the auxiliary random variabld” is equivalent to taking the convex hull of the region. It isowsf in
the Appendix that the inclusion (or omission) Bf in the definition of the regiorR,, has vanishing effect with
increasingn.

Theorem 5:(Inner bound) For any FS-MAC with time invariant feedback as shown in BElgand for any integer
n > 1, the regionRk,, is achievable.

Let R,, denote the following region ifR?.

Ry < JI(X7 = Y™M|X3),
Ry = U Ry < LI(Xp - Y"||XD), (20)

Q127" HQzg |23 ™) .
Ri+ Ry < EI((Xl,XQ)” —=Y").

In the following theorem we use the standard notion of cageece of sets. Confer Appendix]lV for the details of
the definition.

Theorem 6:(Outer bound. Let (R;, R2) be an achievable pair for a FS-MAC with time invariant feezba

as shown in FigJ1. Then, for any there exists a distributio®(z7}||2"~1)Q(«%||25 ") such that the following
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inequalities hold:

1
R < EI(X?—)Y”HXS)'FEn
1
Ry, < EI(X;—)Y”HX{I)'FEn
1
Ri+Ry < EI((Xth)"—*Yn)‘FEm (21)

wheree,, goes to zero as goes to infinity. Moreover, the outer bound can be writtediasinf R.,,.

For the case where there is no feedback, ke.is null, R,, and R, can be expressed in terms of mutual
information and regular conditioning due to Lemfia 4.

Theorem 7:(Capacity of FS-MAC without feedbaglEor any indecomposable FS-MAC without feedback, the
achievable region i&m,,_,., R, and the limit exists.

Theorem 8:(Capacity of FS-MAC with feedbagkror any FS-MAC of the form

P(yi, silz1i, 24, 8i—1) = P(silsi—1)P(yilz1i, x2,4, Si—1), (22)

where the state proces is stationary and ergodic, the achievable regiotitis, ., R,, and the limit exists.
The next theorems will be seen to be consequences of theigaff@orems given above.
Theorem 9:For the channel described in{22), where the state progdssstationary and ergodic, if the capacity
without feedback is zero, then it is also zero in the casettiere is feedback.
Corollary 10: For a memoryless MAC, the capacity with feedback is zero il anly if it is zero without
feedback.
Corollary 11: Feedback does not enlarge the capacity region of a discdeliéve (mod}X|) noise MAC.
In fact, among other results, we will see in the next sectiat the (mod-Y|) noise MAC is only a subset of a

larger family of MACs for which feedback does not enlarge tapacity region.

V. APPLICATIONS

The capacity formula of a FS-MAC given in Theorefds 7 ahd 8 isudtirtetter characterization. In general, it
is very hard to evaluate it but, for the finite state point tinpahannel, there are several cases where the capacity
with and without feedback was found numerically [37] [3&6], [25] and analytically [22&

The multi-letter capacity expression is also valuable ferivdng useful concepts in communication. For instance,
in order to show that feedback does not increase the capatity memoryless channel (cf. [43]), we can use
the multi-letter upper bound of a channel with memory. Ferthin [27] it was shown that for the cases where
the capacity is given by the multi-letter expression= limy % MAXQ(N||2N 1) I(XN — Y), the source-
channel coding separation holds. It was also shown thatisthte of the channel is known at both the encoder and
decoder and the channel is connected (i.e., every state eaealshed with some positive probability from every

other state under some input distribution), then feedbaasdot increase the capacity of the channel.

1For the Gaussian case without feedback there exists the fititg solution [39], and recently the feedback capacitgsifound analytically,
for the case that the noise is an ARMA(1)-Gaussian procds$4@—[42]).
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In this section we use the capacity formula in order to dettivee conclusions:

1) For a stationary ergodic Markovian channels, the capasitzero if and only if the capacity with feedback
is zero.

2) Identify FS-MACs that feedback does not enlarge the dgpamd show that for a MAC that can be
decomposed into a ‘multiplexer’ concatenated by a poiftdmt channel (with, without, or with partial
feedback), the capacity region is given by, R,, < C, whereC is the capacity of the point to point
channel.

3) Source-channel coding separation holds for a MAC thatbeadecomposed into a ‘multiplexer’ concatenated
by a point-to-point channel (with, without, or with parti@edback).

As a special case of the second concept we show that the taphai Binary Gilbert-Ellliot MAC iSR; + Ry <

1— H(V) whereV is the entropy rate of the hidden Markov noise that specifiesBinary Gilbert-Ellliot MAC.

A. Zero capacity

The first concept is given in Theordm 9 and is proved here. Theff Theoreni P is based on the following
lemma which is proven in Appendix]Il.
Lemma 12:For a MAC described by an arbitrary causal conditionirtg™ ||z}, %) the following holds:
max IXM XN 5y =0 = max (XM XY 5Yy") =0, 23
TR SN A ) QG T X2 ) (23)
and each condition also implies thB(y"||«}, z5) = P(y™) for all =}, 2%.

Proof of Theoremh]9Since the channel is a Markovian channel, i.e.,
P(yi, silw1,i,T2,4, 85i—1) = p(Si]8i—1)P(yilT1,6, 2,6, Si—1) (24)

and stationary and ergodic, its capacity region is given liedfem 8 a<’ = lim,,_,., R,. Furthermore, since
the sequencgR,} is sup-additive (Lemma_22), then according to Lenimé& 23 thagiven in Appendix{V
lim,, 00 Ry, = Cl (Un21 Rn) implying that if the capacity without feedback is zero,ntHer all n > 1

o (X7 XY Y™ =0. (25)
According to Lemmal[2, the maximization of the objective im. e(23) over the distribution
Q(x7 ||y~ HQ(2%||y"~1) is still zero, hence, the capacity region is zero even if ghir perfect feedback.
[

Corollary[10, which states that the capacity of a memoryMa< without feedback is zero if and only if the
capacity with feedback is zero, follows immediately fromebheni® because a memoryless MAC can be considered
a FS-MAC with one state.

Clearly, Theorerf]9 also holds for the case of a stationaryeagddic FS-Markov point-to-point channel because
a MAC is an extension of a point-to-point channel. Howevieddes not hold for the case of a broadcast channel.

For instance, consider the binary broadcast channel giyen b= =& n; andy, ; = t$n;_1, wheren; is an i.i.d
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Bernoulli(%) and @ denotes addition mod-2. The capacity without feedbackesarty zero, but if the transmitter

has feedback, namely if it knows ;,_; andys ;1 at time4, then it can compute the noisg_; = y1.,—1 ® ;1

and therefore it can transmit 1 bit per channel use to therskaeer.

B. Examples of channels for which feedback does not enlapgacity

V ~ Bernoulipg) V ~ Bernoulipp)
Xl X1 l

IS N,
XZ Xz/

Fig. 2. Gilbert-Elliot Mac. It has two states,"Good” and ‘@Bawhere the transition between them is according to a firdeloMarkov process.
Given that the channel is in a “Good” (or a “Bad”) state, it @ebs as binary additive noise where the noise is Berngtli(or Bernoulip z))

1) Gilbert-Elliot MAC: The Gilbert-Elliot channel is a widely used example of a @rstate channel. It is often
used to model wireless communication in the presence ohdaf87], [38], [44]. The Gilbert-Elliot is a Markov
channel with two states, denoted as “good” and “bad”. Eaate 36 a binary symmetric channel and the probability
of flipping the bit is lower in the “good” state. In the case bktGillber-Elliot MAC (Fig.[2), each state is an
additive MAC with i.i.d noise, where in the “good” channektlprobability that the noise is "1’ is lower than in
the bad channel. This channel can be represented as arvaddi#iC as in Fig[®, where the noise is a hidden

Markov process.

Since the Gilbert-Elliot MAC is an ergodic FS-MAC, its cafigavith feedback when the initial state distribution
over the states “good” and “bad” is the stationary distiilmuis given bylim,, ., R, (Theoreni8). For the Gilbert

Elliot MAC, the regionlim,,_,., R, reduces to the simple region,

Ri+ Ry <1—-H(V), (26)

where H(V) denotes the entropy rate of the hidden Markov noise. Thewidtlg equalities and inequalities upper
bound the regioriR,, and this upper bound can be achieved for any determinisédbiack by an i.i.d input
distribution X ; ~ Bernoulli(%) and Xo ; ~ Bernoulli(%), i=1,2,..,nand X]* and X7 are independent of each

other.
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(X1, Xo)" = Y™) = > HY|Y™H - HY; Y™, Xi, Xi)
=1
= S CHWYT) - H(V|Y'T XG, X))
1=1
= Y HWY'"™h)-HWVI|VL Y™ X, X3)
1=1
= Y HY[YTH - HWV|VT
1=1

< > log2-H(V;[Vi™)
=1

= n(l- %)- (27)

Equality (a) is due to the facts that is a function of (v;, 21, 22,;) and v; is a deterministic function of
(Yis @14, T2), 1.€.Yy; = X1 D w2y Dv; andwv; = y; & x1,; ® x2,. Equality (b) follows from the fact that;
is independent of the messages. Inequality (c) is due toabethat the size of the alphabgtis 2. Similarly
Lixp — yrxy) <1 - 2 and L1(X5 — v7||X7) < 1 — Z7) and equality is achieved with an
i.i.d input distribution Bernoulﬁ%).FinaIIy, by dividing both sides by:. and using the definition of entropy rate
H(V) = limp o +H (V™) we conclude the proof.

2) Multiplexer followed by a point-to-point channetere we extend the Gilber-Elliot MAC to the case where
the discrete MAC can be decomposed into two components agnshoFig.[3. The first component is a MAC
that can behave as a multiplexer and the second componenpamito-point channel. The definitions of those

components are the following:

l @‘

Wy —=X1;(Wy, Y1) —»

. . . | Multiplexer| v = [ point-to-point . )
. . . MAC channel HK"(WM...,WM)

Wy—X (Wi, YTy

\

T Delay |«

Fig. 3. Discrete MAC that can be decomposed into two parte fifst part is a MAC that behaves as a multiplexer and the skpart is a

point-to-point channel

Definition 1: A MAC behaves as multiplexerif the inputs and the output have common alphabets and for all
m € 1,..., M there exists a choice of input symbols for all senders exseptlerm, such that the output is the

mth input, i.e.Y = X,,,.
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An example of a multiplexer-MAC for the Binary case is a MAC agle output is one of and/or/xor of the inputs.

For a general alphabetthose operations could be max/min/addition-ngodror instance, if the channel is binary

with two users and it is addition-madl-i.e., y = 1 @ =2, then we can ensure that= z; by choosingzs = 0.
Theorem 13:The capacity region of a multiplexer MAC followed by a pototpoint channel with a time invariant

feedback to all encoders, as shown in [EQ. 3, is

M
S R, <C (28)
m=1

whereC' is the capacity of the point-to-point channel with the timeariant feedback; 1 (y;—1).

Proof: The achievability is proved simply by time sharing. At eadind, only one selected user sends
information and the other users send a constant input tkateés that the output is the input of the selected user.
The converse is based on the fact that the maximum rate tmabeatransmitted through the point-to-point
channel isC and it is an upper bound sum-rate of multiplexer-MAC. If itdn& been an upper bound for the
multiplexer-MAC, we could build a fictitious Multiplexer-KC before the point-to-point channel and achieve by

that a higher rate than its upper bound which would be coittiad. [ ]

3) Discrete additive MAC:An immediate consequence of Theorem 13 is an extension ¢éj&laesult [20] to
the additive MAC which is given in Corollafy_11. Corollary]ktates that feedback does not enlarge the capacity
region of a discrete additive (mdd¢|) noise MAC.

The proof of the corollary is based on the following obsdpratlf feedback does not increase the capacity of
a particular point-to-point channel then feedback alsosdua increase the capacity of the MUX followed by the
same particular channel. Specifically, feedback does rwwease the achievable region of an additive MAC (Fig.

[4) and the achievable region is given by

M
m=1

where H(V) is the entropy rate of the additive noise.

‘ delay

Vi Va

Wy —= X1, (W) \‘ Wi — X1,(Wy, Y™ 1) \ ‘

. . G_)_» Y, _>(W1,...,W1\4) . . . — Y, _>(ﬁ/1~7ﬁ/]u)

W]\/[—>X1\,jn(VV]\,j)/ WJ\I—»XA{,L(WA{, Y"il)/
f delay

Fig. 4. Additive noise MAC with and without feedback. The dam variablesX1,,, ..., Xarn, Yn, Vi, n € 1,2,3, ..., are from a common
alphabet of size;, and they denote the input from sender 1,...,M, the outpdtthe noise at time:, respectively. The relation between the

random variables is given by, = z1, ® z2n... B Trrm D ve, Whered denotes addition mog- The noiseV;,, possibly with memory, is
independent of the messag#$,, ..., Wj,.




SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, AUG2007. 12

4) Multiplexer followed by erasure channeConsider the case of the multiplexer-erasure MAC which is a
multiplexer followed by an erasure channel, possibly witbnnory.

Definition 2: A point-to-point channel is calledrasurechannel if the output at time can be written ay;, =
f(X,, Z,), and the following properties hold:

1) The alphabet of is binary and the alphabet a&f is the same as( plus one additional symbol called the

erasure.

2) The proces¥, is stationary and ergodic and is independent of the message.

3) If z, =0, theny,, = z,, and if z,, = 1, then the output is an erasure regardless of the input.
For the mutltiplexr-erasure channel we have the followingorem.

Corollary 14: The capacity region of the multiplexer-erasure MAC with dthout feedback is
M
Z Rm S (1 _pe) log q, (30)

m=1

where p. is the marginal probability of having an erasure. Moreowsen if the encoder has non causal side
information, i.e. the encoders know where the erasuresaappcausally, the capacity is still given hy1(30).

Proof: According to Theorerh 13 the capacity region is

M
> Rn<C, (31)
m=1

whereC' is the capacity of the erasure point-to-point channel. Biggnd Grossglauser [45, Thm. 3.1] showed
that the capacity of a point-to-point erasure channel, witd without feedback, is given byt — p.) log g. Since
the probability of having an erasure does not depend on et ito the channel, we deduce that even in the the
case where the encoder knows the sequéfitenon-causally, which is better than feedback, the tranemdaan
transmit only fractionl — p. of the time, hence the capacity cannot excéeéd p.)log g. [ ]

5) Multiplexer followed by the trapdoor channdh this example feedback increases the capacity. Basedeon th
fact that the capacity of the trapdoor channel with feedda8kis the logarithm of the golden ratio, i.kag @

the achievable region of a Multiplexer followed by the trapdchannel is

M
Znglog\/g+1. (32)
m=1

2

C. Source-channel coding separation

Cover, El-Gamal and Salehi [46] showed that, in generalsthece channel separation does not hold for MACs
even for a memoryless channel without feedback. Howevelth® case where the MAC is a discrete Multiplexer
followed by a channel we now show that it does hold.

We want to send the sequence of symbolg, U3 over the MAC, so that the receiver can reconstruct the
sequence. To do this we can use a joint source-channel cedimgme where we send through the channel the
symbolszy ;(uf, 2°~1) andzs ;i (uf, 2i~1). The receiver looks at his received sequeki¢eand makes an estimate
Ur,Uz. The receiver makes an errorlif? # U or if U # UZ, i.e., the probability of erro™ is P\ =

Pr((U7, U) # (UP,UL)).



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, AUG2007. 13

Theorem 15:(Source-channel coding theorem for a Multiplexer followgdabchanne). Let (U, Uz),>1 be a
finite alphabet, jointly stationary and ergodic pair of preses and let the MAC channel be a multiplexer followed
by a point-to-point channel with time invariant feedbackl mapacityC' = limy % maxq(zn|jzn-1y (X" Y™)
(e.g., a memoryless channel, an indecomposable FSC withedback, stationary and ergodic Markovian channel).
For the source and the MAC described above:

(direct part.) There exists a source-channel code V\Eth”) — 0, if H(U;,Us) < C, where H(Uy,Us) is the
entropy rate of the sources aaddis the capacity of the point-to-point channel with a timearant feedback.

(converse part). I (U1,U2) > C, then the probability of error is bounded away from zero éipehdent of the
blocklength).

Proof: The achievability is a straightforward consequence of flepi&n-Wolf result for Ergodic and stationary
processes [47] and the achievability of the multiplexeloiwed by a point-to-point channel. First, we encode the
sources by using the Sepian-Wolf achievability scheme e/lex assign every} to one of2"f bins according
to a uniform distribution or{1, ..., 2"} and independently we assign ever§ to one of2"2 bins according to
a uniform distribution on{1, ..., 2"%2}. Second, we encode the bins as if they were messages, as sh&wgn[5.

In the converse, we assume that there exists a sequence es mﬂtﬂlPe(”) — 0, and we show that it implies

that H (U;,U>) < C. Fix a given coding scheme and consider the following:

HUUS) < IU7, U35 U, U3 + nen

()

< I(UMNULY™) + ne,

= H(Y") - HY™U,UD) + ney

= > HY'™') - HY;|UP, U, Y'™") + ne,
=1

9 SNTHEY Y - HY|UP, URL Y X XD 4 ney
=1

@

Y HEY'TH) - HEY'TL X X) + e,
i=1

= Y HEY'TH) - HYIYT X XS) + ne,
=1

= DI XYY 4 ney
i=1

e & , -

< D IXEYY'TY) 4 ney

=1
= I(X}>Y") +ne,

IN

max I(X) —=Y")+ne, 33
Q") (X ) (33)

Inequality (a) is due to Fano’s inequality whene, = 1 + Pé")n|u1||u2|. Inequality (b) follows from the data
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processing inequality becaugg™N , UY) — YN — (UN,UL) form a Markov chain. Equality (c) is due to the fact
that, for a given codeX? is a deterministic function of/*, Y*~! and, similarly, X} is a deterministic function of
Uz, Y=L Equality (d) is due to the Markov chai}¥, UY) — (X{, X4, Y1) — Y;. The notationX,,; denotes
the output of the multiplexer which is also the input to thénpoo-point channel at timeé. The inequality in(e) is
due to the data processing inequality which can be invokadkto the fact that give*~! we have the Markov
chain X{, X§ — X} —Y;.

By dividing both sides of [[33) byn, taking the limit n — oo, and recalling thatC =

limy, o0 % maxqg(zn||zn-1) I(Xn; Yn) we have

1
H(Uy,Uy) = lim —H(UP,UP) < C. (34)

n—,oo M

| o -

Up—= W(U7) —= Xy (W, Y"!) —= .
Lo MU&'X'SXG’ Xo | point-to-point | _ o v _07(i, i)
channel ‘ Wa(Y™) Uy (Wr, Wa)

Uf—w  Wa(UJ) — Xoi(Wo,Yit)—>
€ {1,.., 207 T

Delay

Fig. 5. Source-channel coding separation in a discreteipleser followed by a point-to-point channel.

VI. PROOF OFACHIEVABILITY (THEOREM[G)

The proof of achievability for the FS-MAC with feedback isndliar to the proof of achievability for the point-
to-point FSC given in [27, Sec. V], but there are two mainetifinces:

1) In the case of FSC, only one message is sent, and in the €&5®-MAC, two independent messages are
sent, which requires that we analyze three different tygesrmors: the first type occurs when only the first
message is decoded with error, the second type occurs whgthensecond message is decoded with error,
and the third type occurs when both messages are decodeenngth

2) In both cases, we generate the encoding scheme (codg-teeelomly but the distribution that is used is
different. In the case of FSC we generate, for each messade.in 2" %], a code-tree of lengtiV by using
the causal conditioning distributio* (2V||zN 1) = arg maxq(,~||.~v-1) ming, I(XY — YN|sq), and here
we generate for each messagein..., 2V, 1 = 1,2 a code-tree of lengttv = Kn by concatenatings

independent code-trees where each one is created with al caaslitioning distributior® (z7'|| 2"~ '), 1 = 1, 2.

Encoding scheme: Randomly generate for encoddf € 1,2}, 2V code-trees of lengttv = Kn by drawing

it with the fixed distributions) (7 ||z~ !). In other words, given a feedback sequenfe® the causal conditioning
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probability that the sequence’ will be mapped to a given message is

N

Q|| H (@ e Dyt 12— 1) (35)

k=1

kn
where L1 1 ynt1

of trees graphically. In order to shorten the notation wel wibmetimes use the notatio@y to denote
QNN "HQ(x)]|2Y¥ 1) and we will express the concatenation of pmfs[inl (35y%as = [[1—; Qn.

denotes the vecto(zy,(x—1)n+1, Z1,(k—1)n+2 - T1,kn). Fig. [@ illustrates the concatenation

codeword (case of no feedback) code-tree (used in [27]) concatenated code-tree (used here)
: : _% 0

@21 = 0
.<:.Zi,1 =1

o—¢(no feedback)

Fig. 6. lllustration of coding scheme for setting withoued®dack, setting with feedback as used for point-to-poianalel [27] and a code-tree
that was created by concatenating smaller code-trees.elcdbe of no feedback each message is mapped to a codeworith, thedcase of
feedback each message is mapped to a code-tree. The thethedh a code-tree of depth 4 created by concatenating tws tedepth 2.

Decoding Errors: For each code in the ensemble, the decoder uses maximuihditdldecoding and we want

to upper bound the expected vallB¢P,] for this ensemble. LeP.;, P.2, P.3 be defined as follows.

P.; (type1 error): probability that the decoded pdin, mo) satisfiesing # mq, ma = ma,
P., (type?2 error): probability that the decoded pdin, m2) satisfiesing = mq, ma # ma,

P.3 (type 3 error): probability that the decoded pdin;, ms) satisfiesing # mq, s # mo.

Because the error events are disjoint we have

P6:P€1+P€2+P63 (36)

In the next sequence of theorems and lemmas, we upper boerkpiected value of each error type and show that
if (R1, R2) satisfies the three inequalities that defiRe then the corresponding[F.;],i = 1,2,3 goes to zero

and henceE[P,] goes to zero.

Theorem 16:Suppose that an arbitrary message, mq,1 < m; < M;,1 < mo < M>, enters the encoder with

feedback and that ML decoding is employed. ., |m1, m2] denote the probability of decoding error averaged
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over the ensemble of codes when the messagesn, were sent. Then for any choice pf0 < p <1,

'1+p
1
E[P.,[m1,mo] < (Mi—1)" Y Qf[|z""") ZQ Yzt PN ey, zy ) T : (37)
yN ¥ i
-1+p
E[P,|mi,mo] < (My—1) Y Qi |=N Y ZQ NN YPEN Y )T | (38)
yN oV i
1+p
E[P.,Jmy,ms] < (Mz—1)Mz— 1)) Y| Y QG |lNHQ@ )N ) PuN||le, ) ) mn
yN m{V,zg
(39)

The proof is given in Appendik VI and is similar to [27, Theoré] only that here we take into account the fact
that there are two encoders rather than one.

Let P.;(so),i = 1,2,3 be the probability of error of typé given that the initial state of the channelsg. Also
let Ry = + log My and Ry = 3 log M; be the rate of the code anfé be the sum rate, i.ek; = Ry + R,. The
following theorem establishes exponential bounddR,; (s¢)]-

Theorem 17:The average probability of error over the ensemble, forrdflal statessy, and allp, 0 < p <1,

is bounded as

ei\S0) |1, M2 S T A 3 1=1,2,
E[P.;(s0)] ] |5|2{ N[=pRi+Fn.i(p,Qn)]} i —=1.2.3 (40)
where
log |S . .
Pl @) =~ o g Qs . 1= 12 (@1)
_ 1+p
1
Eni(p,Qn,50) = ——log Z Q12NN D Q@ PN |2, 2d s0) T (42)
awg _w{\l
- 1 14p
1
Ena(p,Qn,s0) = ——10g Z a1z D Q@ (12N PN ey, 2d .so) T (43)
@1 _mév _
- 1+p
1
Ens(p,Qn,s0) = ——logz > Q@A R 1PN PN |2, 25 s0) T | L (44)
IN IN

The proof is based on algebraic manlpu ation of the boundsngin [37)39). It is similar to the proof of Theorem
9 in [27] and therefore omitted. There are two differencesvben the proofs (and both are straightforward to
accommodate): Here the input distributigy = Q(2||2)Q(x)||23") is arbitrary while in [27] we chose the
one that maximizes the error exponent. Second, here we kberaleraged error over the ensemble and in [27] we
have an additional step where we claim that there exists a tiwat has an error that is bounded by the expression
in (40). Because of this difference the bound on the protiglaif error in [27] has an additional factor df

The following theorem presents a few properties of the flonstEy ;(p, @n, so0), @ = 1,2, 3, such as positivity
of the function and its derivative, convexity with respegts and an upper bound on the derivative which is

achieved forp = 0.
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Lemma 18:The termEy ;(p, @n, so) has the following properties:

EN,i(Pv QNvSO) Z 07 1Y Z 037' = 17 2737 (45)

1 OEN1(p, QN S0)

NI(XfV%YNHXéV,So) > 9 >0; p>0
1 8EN72(pa QNvSO)
NJ(ng S YN|XN,s0) > 9 >0; p>0
1 OF
LN XY Sy Njsy) > 2EwsleOniso) o0 o (46)
N Jp

2

E \Ms ) .

O Bnilp: @nis) 502193, (47)

0p>
Furthermore, equality holds in_(45) when= 0, and equality holds on the left sides of €lq.1(46) whes 0 for
i=1,2,3.

The proof of the theorem is the same proof as [21, eq. (2.PDj],Theorem 5.6.3]. In [21] the argumerdpsy of
En1(p,Qn,so) are regular conditioning i.eQ(z)Q (%), and the channel is given by [z, 2}, s0), hence
the derivative of En 1(p, Qn, s0) With respect top is upper-bounded by (X{; YN | XY sq). Here we replace
QM)Q(d) with QN[N QY |10 ") and P(yN |« 2Y', s0) with P(y™ ||z}, 2, s0) and, according to
Lemmal3, the upper-bound becomisX{¥ — Y V|| XL, s0). The next lemma establishes the sup-additivity of
Fni(p,Qn),i=1,2,3.

Lemma 19: Sup-additivity of'x ;(p, Q). For any finite-state channeEw ;(p, Qn), as given by eq.[(41),

satisfies

n l
Fn+l,z(p7Qn+l) - n+an71(p7Qn)+n_|_l‘Fl71(p7Ql)a 1 11273 (48)
The proof steps are identical to the proof of the sub-adtitior the point-to-point channel [27, Lemma 11].

Invoking this lemma on the pm®y = Hszl Q. where N = nK we get

Fi(p, Qn) 2 K5 Fui(p. Qn) = Pai(p Qu): (49)
Let us define

Cna(@x) = pmin (XY = YN, s0) (50

Cra@y) = min (XY = YN|IX],s0) 1)

Cral@y) = 3 minI(XY, X5 = ¥V]so) 52

where the joint distribution of X3V, X&' Y™ conditioned on s, is given by P(z¥ 20 yN|sg) =

Qe ll= TR |l25 PN 2, 23, s0).
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Theorenth (inner bound) given in Séc] IV states that for evegnd0 < R; < C,, ;(Qn) — “’%“S‘, 1=1,2,3
(recall, R3 & Ry + Ry) and everyn > 0 there exists anV and an(N, [2VF1], [2VF1]) code with a probability
of error P.(so) (averaged over the messages) that is less theor all initial statess.

Proof of Theorenmi]5The proof consists of the following three steps:

« Showing that for a fixech if R; < C,, ;(Qn) — I"%IS‘, i =1,2,3 then there existg* such that,
Foi(p*,Qn)—p"R; >0,1=1,2,3. (53)
o We choose < min;e i 2.3y Fn,i(p*, @n) — p* R; and show that for sufficiently largdy
E[P.i(s0)|my, mg] < 9~ N([Fns(p™,@n)=p  Ril =€) yg, (54)
« From the last step we deduce the existence aVa[2V 1], [2VF1]) code s.t.
P.(sg) <, Vso. (55)

First step: for any pai(R;, R2), we can rewrite eq[{40) for i=1,2,3 as

E[P.i(50)|m1,ma] < 2~ NFxilpQn)—pRi— 2520 (56)
By using [49), which states thdty ;(p, Qn) > Fi(p, Qn), We get
E[P.i(50)|m1, mo] < 27N Fni(pQu)=pRim 252, (57)

Note thatF,, ;(p, Q,) and thereforeF,, ;(p,Q,) — pR is continuous inp € [0, 1], so there exists a maximizing

p- Let us show that ifR, < C,, ;(Qn) — logT‘S', thenmaxo<,<1[Fn1(p, @n) — pR1] > 0 (the cases = 2,3 are

identical toi = 1). Let us defines = C,1— R . From Lemmd18, we have that, ;(p, Qn,so) is zero when
= 0, is a continuous function gf, and its derivative at zero with respectds equal or greater t¢’,, ;, which

satlsﬂest1 >Ry + lognﬁ + 5. Thus, for each state, there is a range > 0 such that

log |S|
n

Ena1(p,@n,s0) — p(R1 + ——) > 0. (58)

Moreover, because the number of states is finite, thereseatigt > 0 for which the inequality[(38) is true for all

so. Thus, from the definition of}, 1 (p*, @,) given in [41) and from[(38),

Fn,l(p*v Qn) = —P

!
Ogﬂ' | +mm En1(p*, Qn,y s0) > p* Ry, Vso. (59)

Second step: We choose a positive numbsuch thate < min;eq 23y Fo.i(p*,Qn) — p*R;. It follows from
(57) that for everyN that satisfiesV > 2£151,

E[P.i(50)[m1,ma] < 27 NFni(pQu)=p " Rize) (60)

and according to the first step of the proof the exporfent(p*, Qn, so) — p*R; — € is strictly positive.
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Third step: According to the previous step, for g@m > 0 there exists arV such thatE[P,;(so)|m1, ma] <

3‘5“' foralli € 1,2,3 all so € S and all messages. Sinde (sy) = Zi,lPei(so), then E[P.(so)|m1, ma] <

; furthermoreE [P, (sq)] <

for all s € S. By using the Markov inequality, we have

SES SE3!

1
Pr(P. >n) < , 61
r( (80)_77)_|S|+1 (61)
and by using the union bound we have
Pr(P.(sg) > n,for somesy € S) Z Pr(P.(so) > n) = |S||S—||— 1 (62)

SoES
Because the probability over the ensemble of codes of haaimgde with error probability (averaged over all

messages) that is less tharfor all initial states is positive, there must exist at lease code that has an error

probability (averaged over all messages) that is less thfor all initial states. [ ]

VIl. PROOF OF THEOUTER BOUND (THEOREMIG))

In this section we prove Theorem] 6, which states that for ar8tMAC there exists a distribution

Qx| H Q2|25 ") such that the following inequalities hold:

1

Ry < —I(X]=Y"|X)) +en
n
1

Ry < —I(X} = Y"|X])+en
n
1

Ri+ Ry < EI((Xl,Xg)n — Yn) + €n, (63)

wheree,, goes to zero as goes to infinity.

Proof of Theorenil6Let W; and W, be two independent messages, chosen independently andliagcto a
uniform distributionPr(W; = w;) = 27" | = 1,2. The input to the channel from encodeat timei is x;;, and

is a function of the messad®’; and the arbitrary deterministic feedback outpjﬁl(yi‘l).

The following sequence of equalities and inequalities psothat if a code that achieves rdtg exists then the
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first inequality holds, i.e.R; < 2I(X7 — Y"|[X1) + €y

nRi Y H(W)

= H(W1|Wy)

= I(Wy Y™ |[Wa) + HWA Y™, Wa)
I(Y"; W1 [Ws) + 1+ P{"nR

= H(Y"|Wy) — H(Y"|Wy, W) + 1+ P™nR

ST HWY L Wo) = S HY W, Wa, Y 414 POInR
1=1 1=1

© STHYY " W, X5) = Y H(Y; W, Wa, Y XY, X5) + 1+ P{nR
i=1 =1

H & . o

< Y HWMWIYTLXY) =Y HY|Y'TLX{, X)) + 1+ PMnR
i=1 i=1

= > IVsXiY©L X)) +1+ PMnR
=1

< (X} = Y"|X3) +1+ P™nR 64
( 1 || 2) e )

where,

(&) and (b) follow from the fact that the messad€s andW, are independent and chosen according to a uniform
distribution,
(c) follows from Fano’s inequality,
(d) follows from the chain rule,
(e) follows from the fact that; is a deterministic function given the messdge and the feedback!™*, where
the feedback! ™' is a deterministic function of the outpyt~?,
(f) follows from the fact that the random variablég;, Ws, X{, Xi Y form the Markov chain(Wy, W) —
(X7, X5, Y71 = Vi
Dividing (©4) by n, we conclude that if there exists a code for which the errabability of decoding the
messages$l;, W is P™ then the distributionQ (27|27~ 1)Q(2} |25~ ") induced by the code satisfies the first
inequality of the outer bound theorem whete = % + P R. The proofs of the other two inequalities I 163)
follow by a completely analogous sequence of steps ak_in {8#9 proof of the second inequality of the outer
bound starts with the equalitig®, = H(W2) = H(W>|W;) and the third withR, + Ry = H(W1, Wa). [ ]
Corollary 20: The outer bound given in Theordrh 6 implies thai inf R,, is an outer bound for the achievable
region.
Proof: Recall the definition ofR,, in eq. [20). Let(R;, R2) be an achievable rate pair. We will create a
sequence of rate paifRR; ,, R2.n) € R, that converges t§R;, R2) and therefore, by the definition &fin inf of
a sequence of sets (given in AppendiX IVR:, R2) € liminf R,,.
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If (R1,R2) € R, then we chooséR; ,, R2,) = (R1, Rz). Otherwise we choose the closest pointin, to
Ry, R,. Because of inequality (63) the distangéR, ., R2,n) — (R1, R2)|| < 2¢, and, therefore, the sequence
(R n, Ra2.n) converges tq Ry, Ra). [ ]

VIIl. CAPACITY REGION OF THEFS-MAC WITHOUT FEEDBACK

The inner and outer bounds given in Theoréins 5and 6 spextalihe case where there is no feedback, 4;€ 32
are null. Hence, we can use it in order to extend Gallagesslte [17, Ch. 4] on the capacity of indecomposable
FSCs to indecomposable FS-MACs. An indecomposable FS-MALC] is a FS-MAC (FSC) for which the effect
of the initial state vanishes with time. More precisely:

Definition 3: A FS-MAC (FSC) isindecomposabld, for every e > 0, there exists am, such that form > n,
|P(sn|z, 2, s0) — P(snlal, 25, s0)| < e for all s,,,z7, x5 , so ands.

Since there is no feedback, according to Lenitha 4 directentrivdtion becomes mutual information and causal
conditioning becomes regular conditioning in all the esgsiens in the inner bound (Theoréi 5) and outer bound
(Theoreni®).

The proof of the capacity region of FS-MAC is based on theofeihg two lemmas. The first lemma is used for
showing that the difference between the lower bound and pipembound goes to zero as— oo and the second
lemma, which is proved in Appendix]V, is used for showing tthe limits exist.

Lemma 21:Let {Q(27)Q(z%)}n>1 be an arbitrary sequence of input distribution. If the chanis an

indecomposable FS-MAC then the following holds for &l s{:

1
Jim S |I(XT3YXS, s0) — T(XT VX5, )| = 0
1
Jim ST YTXT s) - I(X5 Y XT, )| = 0
1
Jim —[T(XT, X55Y " s0) — I(XT, X35V "|s6)| = 0. (65)
Proof: The proof is identical to the proof of Theorem 4.6.4 in [17]. [ ]

The following lemma, which is proved in AppendiX V, estabbs the sup-additivity of R, }.
Lemma 22:(sup-additivity ofR,,. ) For any FS-MAC, the sequendgr,,}, which is defined in[(19), is sup-

additive, i.e.,

n+1)R,. 2 nR, + IR, (66)
n-41 n 1

and therefordim,, o R

A

lim,, o R, WhereR,, is defined[(2D).

exists. Moreover, for an indecomposable FS-MAC withoutdfeseklim,, oo R,, =

Proof of Theoren(]7:Theorem[b implies thafim, .., R, is achievable, and Corollary_ R0 implies that

n

lim inf, . R, is an outer bound. Finally, since according to Lenimh 22 the limits are equal tdim,, o Rx,

the capacity region is given by the last limit. ]
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IX. SUFFICIENT CONDITIONS FOR THEINNER AND OUTER BOUNDS TOCOINCIDE FORGENERAL FEEDBACK

A. Stationary Finite state Markovian MAC with feedback

A stationary finite state Markovian MAC satisfies

P(y;, silz1i, x2i, si—1) = P(si|8i—1)P(yi|si—1, x1i, 2:), (67)

where the initial state distribution is the stationary ulisttion P(sg). In words, the states are not affected by the

channel inputs.

For the stationary Markovian-MAC, the sequentR,} is sup-additive. It follows from the fact that if we
concatenate two input distribution®,,,» = Q.Qx, then I(XTF — Ytk X0Hr) = (X7 — Y™||XZ) +
I(XPHE = V|| X2tk ), hence(n + k)Ruqr 2 nRy, + kRy.. According to Lemma23, the limit exists and is

equal to

lim R, =cl||JRn]. (68)

n—00

Next, we prove Theorei 8 that states that for a Markovian F&Mith a stationary ergodic state process, the
inner bound (Theorein 5) and the outer bound (Thedrem 6) iderand therefore the capacity region is given by

limy,, oo R

Proof of Theorenfil8Recall that the inner bound is given in TheorEm 57/as and the outer bound given in
Theoren{6 and in Corollafy 20 dsn inf R . Next we show that the distance betweRr andR goes to zero
which implies by Lemm& 25 that both limits equal and therefthre capacity region can be written las R .

Let us consider a specific input distribution denoted@:) |2V ~1)Q(z3 ||V ~1) corresponding to the region
of the outer boundR y. Let us now consider an input distributiép for n + N inputs corresponding to the inner

boundR ,, such that it is arbitrary for the first inputs and then it i€ (% ||V 1) Q (2 ||V ~1).

Now let us show that the term of the inner bound, EQ(X{V — YN XN, 50) and the term of the outer
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bound 75(X7¥ — YV||XJ") are arbitrarily close to each other.

Ig(X{ = YA IXT, s0)

(a)

> Ig(XN T o YN xS, s0) — log S

o R 1 P

> > Ho(YVi[Y'™',X3,8,,50) — Ho(Yi[Y"™!, X3, X1, S, 50) — log |S|
1=n+1

© & i-1 i i-1 i i

2 Z HQ(Yi|Yn+1aX2,n+1a Sn, 50) — HQ(K|Yn+17X2,n+17X1,n+17Sﬂa s0) — log S|
1=n+1

(d)

> Ig(X Y = YN XN, S0 (1 - 6) — log S|

> Io(XN = YN IX L Sh) — 6(N +n)log |V — log S|

(e)

> Io(X\ = VNTHIXH) = 6(N +n)log [V] — 21og S|

)

> I5(X) — YNX]) = (N +n)log|Y| - 21og S|, (69)

where

(a) follows from Lemmad[P that states that conditioning$incan differ at most byog |S]|,

(b) follows from omitting the firstn elements in the sum that defines directed information,

(c) follows from the fact that conditioning decreases eojro

(d) follows from the fact that the Markov chain is ergodicnhe for anyé > 0, there exists am such that
|P(sn|s0) — P(sn)| <6 foranysy € S ands,, € S, whereP(s,,) is the stationary distribution of,,,

(e) follows from Lemmd[R that states that conditioning $incan differ by at mostog |S]|,

() follows from the stationarity of the channel.

Dividing both sides byN + n we get that for anyo,

1
N+n

n n n 1 n
To(X{VHm = YNFR( XV 50) — N—MIQ(XfV S YNXM) > 51+ N)log|y| -2

log |S]|
N+n

(70)

Inequality [Z0) shows that the difference between the uppend region and the lower bound is arbitrarily small

for NV large enough and, hence, in the limit the regions coincide. [ ]

B. Finite State Markovian MAC with limited ISl

In this subsection we consider a MAC inspired by Kim’s pdisMpoint channel [22]. The conditional probability
of the MAC is given by

P(yi, zilz5, 5, zi-1) = Plzilzio1) P(yil 21, 23 i s Thin)s 0= 1,2,3, .0 (71)

where the distribution ofZ, is the stationary distributionP(z;), and there is also some initial distribution

P(z_pt1, ..., To).
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This channel is a FS-MAC where the state at timis (z;_1,z{,,,,5,.,,) and therefore the inner bound
(Theoreni®) and the outer bound (Theofdm 6) apply to thismdlamheorenhI8 also holds for this kind of channels,
namely, the capacity region is given biyn,,_,.. R,. The proof is very similar, the only difference being that the
input @ for n + N inputs is constructed slightly differently: it is arbityafor the firstn — m inputs, then it is as
the initial distributionP(z_,, 41, ..., o), and then it isQ(x ||zN 1) Q(x) ||zV 1),

It is also possible to represent the channel with an altexa&w, identical to the law of the channel given in eq.
(71) fori > m+1 but fori < m the outputy; is not influenced by the input and is, with probability 1, atjgadar
outputy € V. Let us defineR¢ similarly asR,, but with the alternative law for the channel. On one hands it i
clear thatR? C R,, for all n, and on the other hand the difference betw&handR,, is at mostmn log ) because
it is possible to use the distribution of the first inputs, Q(z}"), to create a desired initial distribution and then
use the same input as R,,. Hence,

lim R? = lim R,. (72)

n—oo n—oo
The advantage of analyzirg? rather than analyzin®,, is that the sequenceR¢ is sup-additive, i.e(n+l)Rfi+l B)
nR¢ +IR?, and according to Lemnf@aR8m,, o, R = cl (Un21 R;‘;). Hence, we can conclude that Theorem
holds for this channel too, namely, if the capacity of theitei state Markovian MAC with limited ISI is zero

without feedback then it is zero also in the presence of faeklb

X. CONCLUSIONS ANDFUTURE DIRECTIONS

In this paper we have shown that directed information anda&laconditioning emerge naturally in characterizing
the capacity region of FS-MACs in the presence of a timeriamh feedback. The capacity region is given as a
‘multi-letter’ expression and it is a first step toward deriy useful concepts in communication. For instance, we
use this characterization in order to show that for a statipand ergodic Markovian channel, the capacity is zero if
and only if the capacity with feedback is zero. Further, wentify FS-MACs for which feedback does not enlarge
the capacity region and for which source-channel separdiidds.

For the point-to-point channel with feedback, recent woeik Bhown that, for some families of channels such as
unifilar channels [28] or the additive Gaussian where theend ARMA [22], the directed information formula can
be computed and, further, can lead to the development ofcitgpchieving coding schemes. One future direction
is to use the characterizations developed in this paperphicéky compute the capacity regions of classes of MACs

with memory and feedback (other than the multiplexer fobdwby a point-to-point channel), and to find optimal
coding schemes.
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APPENDIX |

PROOF OFLEMMA [3

Recall that Lemma&]3 states that if

Q23 |ly™ 1) = QG [ly™ Q3 lly™~

then

25

b, (73)

T(Q(ay  ap [[y™ 1) P(y™ ot 23)) = 1(X7 — YV X3"). (74)

Proof: The following sequence of equalities proves the lemma.

I(Q(‘Tl ) L2 ||y )7P(yN||${v7xév))

@ QG Iy H)QEN [y 1) PN |2, 20))

® Ny, N—1 N, N—1 N{.N N P(yN |21, z3)
= Qzy |ly™ )@y |ly™ )Py [|=y,23)
Z Sy Q@ IyN PVl o)
c P N N N
QY P ) R
Sy Qg™ 1PN o)
- Py ||, 25)
ey Q@ |yt 2l ) P(yN| |27, 2h)
. Qy |ly™ ") PyN|[x}, =) ]
QU [[yN=1) Y Q'Y lyN L e ) P(yN |27, zh)
_ g | Q@Y PN Jar, 23)
Yuw PN Y 2d)
_ g Q@ lly" )Py |21 ,:vév)}
I Py, yN)
MR
P(yNzd')
9 - v VIxg)
(75)
(a) follows from the assumption given in ef._173).
(b) follows from the definition of the functiondl(Q; P) given in eq. [(AB).
(c) follows from Lemmal[ll that states tha®(z,zd,y") = QV,2)||yV ") PN ||z),2)) and the

assumption given i (73).

(d) follows from the definition of directed information.
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APPENDIXII

PROOF OFLEMMA [

Lemmal4 states that if
Qzy ) Iy 1) = Q) Q(xd),

then
IXY YN X)) = 1(XY — YN|IX).

Proof: The following sequence of equalities proves the lemma.

[ PYN, XN XY
(XYM yNxd¥)y = E|log (7, X)X ) }

PYNIX)QX|X3)
PN, XY X3
P(YN,XéV)Q(X{VIXéV)]

= E |log

o o Q(X{V,XévllYN1)P(YN||X{V,X5V)}
PN XN QXYY DQXNXD)
O o QEIQENI POV XY ,ng>]
8 T P YN XN QX)QIXT)
L PNy XD
= Floe Xy }

= I(X7 = YV|IX9).

(@) follows from multiplying the numerator and denominalyr P(z2’).

26

(76)

(77)

(78)

(b) follows from decomposing the joint distributio®(yY, =V, 2) and P(YV, XZ¥) into causal conditioning
1 2 2

distribution by using Lemmal 1.

(c) follows from the fact that the assumption of the lemmaegivin [76) implies thatQ(X¥V, X)) =

QXM Q(XN). This can be obtained by multiplying both sides [ofl (76) Bfy" ||z}, «%) and then summing

over ally™ € Y.

APPENDIXIII

PrROOF OFLEMMA [12

LemmalI2 states that

max I(X, X —=>Y") =0 < max I[(X],X}—=Y") =0,

a.
QG ly"~1Q(zz [y ~1) Q(21)Q(z3)
and each condition also implies thB{(y"||z}, z%) = P(y™) for all 27, 2%.
Proof: Proving the direction— is trivial since

max I(XM XY Y™ > max I(XPXy—=Y™).
Q7 ly=H)Q(eg |lym=1) Q1)Q(=3)

(79)

(80)
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For the other directions—, we have the assumption th&tX}, X7 — Y™) = 0 for all input distributions
Q(z1)Q(z%), and in particular for the case that* and X7 are uniformly distributed over their alphabets. Directed

information can be written as a Kullback Leibler divergenice.,

()Q) Pl 23)
POMQENQg) (61)

S QEQE) P 1at, #3) log

o2l yn

and by using the fact that if the Kullback Leibler divergenbéP||Q) = > . P(z)log ggg is zero, then

P(z) = Q(z) for all x € X, we conclude tha{(81) implies th&(y" ||z}, z%) = P(y™) for all 27 € X]* and all

x5 € X3 . It follows that
POYXT, X5)
P(Yn)
E[0] = 0. (82)

(XD, XP—=Y") = log

max max
Qtly»~HQ(zylly™—1) Qtly»~hHQ(zylly™~1)

max
Qztllym~HQ(=3 [ly™~1)

APPENDIX IV

SUP-ADDITIVITY AND CONVERGENCE OF2D REGIONS

Let A, B be sets inR2, i.e., A and B are sets of 2D vectors. The sum of two regions is denoted asB and
defined as

A+B={a+b: ac Abec B}, (83)
and multiplication of a sefl with a scalarc is defined as
cA={ca: ae A}. (84)

A sequenced A, }, n=1,2,3,..., of 2D regions is said t@onvergeto a regionA, written A = lim 4,, if

limsup 4, = liminf 4, = A (85)
where
liminf A, = {a:a=lima,,a, € A4,},
limsup A, = {a:a=limayg,a; € 4,,}, (86)

and n, denotes an arbitrary increasing subsequence of the isteger alternative and equivalent definition of
limsup andliminf is given bylimsup A, =, cl (UmZn Am) andliminf A, =, ¢l (ﬂmz” Am). For
more details on convergence of sets in finite dimensions 4&le [

Let A denote

A=c| A4 |- (87)

n>1

We say that a sequende,, },,>1 is boundedf sup{||a|| : a € A} < co where|| - || denotes a norm ifR?2.
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Lemma 23:Let A,,, n = 1,2,..., be a bounded sequence of setsRif that includes the origin, i.6(0,0). If

nA, is sup-additive, i.e., forath > 1 and allN > n

NAN 2 nAn + (N - n)AN,n (88)
then
lim A, = 4. (89)
n—oo

Proof: From the definitions we have D limsup A, D liminf A,. Hence it is enough to show that C
liminf A,,.
Let a be a pointinA. Then for every > 0 there exists am and a point, such thata, € 4, and||a — a.|| < e.
By induction we prove that for any integet > 2, A,, C A,,,, and this implies that, € A,,,. Form = 2 we
chooseN = 2n and we get that

A, A

jp i DA,

Now assume that it holds fon — 1 and let us show that it holds for.

An M= DAg-n o An | (m—1DAn

Apn D =2 + D A,. (91)
m

m m m
Now, for any N > n, we can represenV asmn + j where0 < j <n — 1, hence
J mn

mn +J mn +J

Aanrj 2

Becausea, is in A,,, then it implies that it is in4,,,, too. Following [92) and the fact th&0,0) € A, we obtain

mn

ac € Amn-i—j- (93)

mn +j
For anyé > 0 and for anyN > % we conclude the existence of an elementdig for which the distance frona

can be upper-bounded by

c—all =|a.—a—

mn
Ac

-2 < [lac — af[ + dflac|| < e + df|ac]|. (94)
mn +J

mn + j

Because: and¢ are arbitrarily small we can find a sequence of poujis= A, that converges ta and therefore

a € liminf A,,, which implies thatAd C liminf A,,. ]
Corollary 24: For a sup-additive sequence, as defined in Lefma 23, theifiraitnvex.

This corollary follows immediately from the definition of @hsup-additivity property, eq[{B8) where = aN,

where0 < a < 1, and N goes to infinity.

The (Hausdroff) distancdetween two setsl and B, is defined as
d(A, B) = max{supld(a, B : a € A],sup[d(b,A): b € B}, (95)
where the distance between a getand a pointb is given by,

d(b, A) = inf[||la — b|| : a € 4] (96)
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Lemma 25:1f lim,,_,o d(A,, By,) = 0 then

limsup A, = limsup By,

liminf A, = liminf B,. (97)
Proof: The proof is straightforward. Given a sequeneg,} € A,, that converges ta, we construct a
sequencegby} by finding a point inB,, that is at a distance less than+ d(ay, By, ). Since the distance between

the sets goes to zertim b, = lim a; = a and from the definitions of limits of sets, it implies tht {%lds. m

APPENDIXV

PROOF OFLEMMA 22

Recall the definition ofR,, andR,, in (I9) and [(2D) respectively.
Lemmal[2? states that
(n+ l)RnH 2nR, +IR,. (98)

and for an indecomposable FS-MAC without feedb#igk, .. R,, = lim, 0 Ro.

Proof of Lemmad22We notice that if a sequence of sets is sup-additive then @éhj@ence of the convex hull
of the sets is also sup-additive. Hence, it is enough to ptbeesup-additivity of the sequende,, without the
appearance of the random variablé that its role is to convexify the regions.

The setR,, is defined by three expressions that involve directed in&tion. Because each expression is sup-
additive the whole set is sup-additive. We prove that the éxpression, i.emin,, I(X] — Y™|| X, s0) — log|S|

is sup-additive (the proofs of the supper-additivity of ttber expressions are similar and therefore omitted).

min T(X[ ! = Y7 XH, 50)

(a) n o . ntl . .
. . 7 1—1 1 . = J 7—1 J
- II;S)DZI(K’XHY ,X2,80)+II;%)D.Z I(}/J7X1|Y 7X2750)
=1 j=n+1
(b) ntl , , .
> I(XT = Y"|X5,50)+ > IV X{ 0|V, X3, s0)
j=n+1
(e) ntl , _ .
> I(XP =YX, 50)+ Y IV XY, [V X3, 80, 50) — log S|
j=n+1
n+l ) )
= minI(X] = Y"||IX5,s0) + min Y Psalso) S IV XL,V X3, 0, s0) — log|S|
5o so Sn j=n+1 7 7
> minI(X] = Y7 XF,s0) +min Y IV X{ [V XS 00080) — log]S|
S0 Sn J=nt1
D min I(XT = Y"||X2, s0) + min I(X! — Y| XL, s0) — log |S]. (99)
So S0

(a) follows the definition of the directed information thecfahatming|f(s) + g(s)] > min, f(s) + ming g(s),
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(b) follows the fact that (X;Y,Z) > I(X;Y),
(c) follows LemmdR that states that conditioning By can differ by at mostog|S|,

(d) follows from the stationarity of the channel.

According to Lemmd_23, since the sequer@,} is sup-additive the limit exists. In the rest of the proof we
show thatlim,, o R,, = lim,,,~ R,. The terms of the regiofR,, have an auxiliary random variabl& whose
only role is to convexify the region. Let us deng®é the same region @& ,, whereW is restricted to be null. We
show first that restricting?” to being null does not influence the limit, i.&m,, . R,, = lim,_, R.. In the first
half of the proof we showed th&? is sub-additive. Using this fact, we show now, that any carme@mbination
with rational weights(L, £-1) of any two points fromR? is in Ry,,.

RY, 2 (R, + Ry, 2 R+ RS (100)
The left and the right inclusions i (II00) are due to the sdgitivity of R: . The left inclusion is from the definition
of the sup-additivity and the right is due to the fact that-adlitivity of R? also implies that for any two positive
integersm,n, Ro... 2 R2 (This is shown by induction il (90.91)). From {100) we canw=lthat for any > 0
we can find & (e) such thatkR,, C R, +e. This fact, together with the trivial fact th&,, O R, and the fact that
the limits of both sequences exist, allow us to deduce tlelithits are the same, i.dim,,_,oc R,, = lim,,,oc R..

We conclude the proof by showing that, for any input distiitu Q (27)Q(z%), the difference between the terms
in the inequalities of Ry } and{R,,} goes to zero as — oo, hence the distance between the sets of the sequences

goes to zero as — oo and, by Lemma 25, the limits of the sequences are the same.

1
lim = [I(XT — Y"||X2) — min (XD — Y™[| X2, o) + log |S|‘
n—oo N So
@ .1 :
< lim — [[(X] = Y"|| X2, So) — min [(X] — Y"|| XY, s0) + log |S]|| + log |S|
n—o0o N S0
1
= lim — [I(X{I = Y"| X3, So) —min I(X]" = Y| X5, 30))}
n—oo M 50
® 1 )
< lim — [max (X — Y™ X3, s0) — min I (X7 — Y"||XZ, s0))
n—oo N S0 S0
© 9 (101)

(a) follows from LemmaR and the triangle inequality.
(b) follows from the fact thatmax,, I( X7 — Y"|| X7, s0) > [(X}] — Y™||XZ, So).
(c) follows from Lemmd 2l that states this equality for indeposable FS-MAC without feedback (recall also

that directed information equals mutual information in #iesence of feedback).



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, AUG2007. 31

APPENDIX VI

PROOF OFTHEOREM[IG

E[P.,] = Z Z P, 2l y™)Plerrorlimy, my, &, 25 yN]
N N
= > Y QEllE Q@ IZN PN ||ay 2y ) Plerrortjmi, ma, 2™ "], (102)

where Plerrorlimy, mq, 2™, yV] is the error probability of decoding:; given thatms is decoded correctly.
Throughout the remainder of the proof we fix the messagem,. For a given tuple(my, ma, 2, 28 yV)
define the event4,,,, for eachm) # mi, as the event that the messagg is selected in such a way that
P(yN|m}, ma) > P(y™|m, ms) which is the same aB(y™||2'Y , 2)) > P(yN ||z, 2)) wherez'Y is a shorthand
notation forz{' (m}, 2N~ (y¥~1)) andz! is a shorthand notation far}¥ (m;, z¥ "' (yN~1)) for I = 1,2. From

the definition ofA,,, we have

N
P(Am’1|m17m23I{V7'révvyN) = ZQ I ||Z l[P(yNH'r/l ’Ié\/) > P(yNH'r{VaIéV)]
Py, 23) |
< QY| | =L etz M any s > 0 (103)
Z P(yNlay’, z3")
where1(z) denotes the indicator function.
P[err0r1|m1,m2,xiv,xév,y]v] = P( U Am/1|m17m21‘riv7xév7ij)
m’'#m
S min Z P(Am’1|m17m23I{V7'réVayN)al
- p
< Z P(Amg|m17m2,$iv,wév,y]v) ; any0<p<1
_m/ﬁéml
[ AT A L
Ny n-1y | PN 2s)
< |Ma-1)) QENIETT) 5wy | | 2 0<p<Ls>0,
Z 1 Py~ )
(104)
where the last inequality is due to inequalify (1L.03). By ditibsng inequality [10#) in eq[{102) we obtain:
s N
E[Pu] < (M -1 Y Q|- ZQ M= PN (|2, 23)' ] ZQ 2 12N PNl 23)*
yN,zl

By substitutings = 1/(1 + p), and recognizing that’ is a dummy variable of summation, we obtain €ql (37) and
complete the proof of the bound d&[P.,].

The proof for boundingE[P..] is identical to the proof that is given here fl{P.1], up to exchanging the
indices. ForE[P.3] the upper bound is identical to the case of the point-to{pciiannel with an input?¥, 2%, as

proven in [27] where the union bound which appears here ir(E#) consists of M; — 1)(Ms — 1) terms. =
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