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Abstract— This work considers the problem of quickest detec- Zt } {Zt } &J

tion with N distributed sensors that receive continuous sequen-
tial observations from the environment. These sensors empy

cumulative sum (CUSUM) strategies and communicate to a
central fusion center by one shot schemes. One shot scheme:
are schemes in which the sensors communicate with the fusion

center only once, after which they must signal a detection. Ae \

communication is clearly asynchronous and the case is condgred

in which the fusion center employs a minimal strategy, which T1 T2 T
means that it declares an alarm when the first communication N

takes place. It is assumed that the observations received #te
sensors are independent and that the time points at which the
appearance of a signal can take place are different. It is shen

that there is no loss of performance of one shot schemes as !

compared to the centralized case in an extended Lorden min- |V|In{T1,T2, ---TN}
max sense, since the minimum ofV CUSUMs is asymptotically ’

optimal as the mean time between false alarms increases wiht Fusion center
bound.

Keywords: One shot schemes, CUSUM, quickest detectidn Fig. 1: One shot communication in a decentralized system of
N sensors.

. INTRODUCTION . . . -
case in which the central fusion center employs a minimal

The problem of decentralized sequential detection wita dalyateqy, that is, it reacts when the first communicatiomfro
fusion dates back to the 1980s with the works of [1] anghe sensors takes place. We demonstrate that, in the situati
[2]. We are interested in the problem of quickest detectiqfugcrined above, at least asymptotically, there is no Iéss o
in an N-sensor network in which the information available i$tormation at the fusion center by employing the minimakon
distributed and decentralized, a problem introduced inl.[1&,4t scheme. That is, we demonstrate that the minimufi of
We consider the situation in which the onset of a sign@lysywms is asymptotically optimal in detecting the minimum
can occur at different times in thé/ sensors, that is the ot e v gifferent change points, as the mean time between
change points can be different for each of mesensors. We faise alarms tends too. with respect to an appropriately
assume that each sénsor runs a cumulative sum (CL_JSUM}ended Lorden criterion [5] that incorporates the paltsib
algorithm as suggested in [7], [11]-{14] and communicales v gifferent change points. As an observation model we
with a central fusion center only when it is ready to signalynsider a continuous time Brownian motion model, which is
an alarm. I.n other words, each sensor communicates with ﬁ‘%ood approximation to reality for measurements taken at a
central fusion center through a one shot scheme. We ass rate. Moreover, given a high rate of observations from

that the V' sensors receive independent observations, whiglly gistribution, the central limit theorem asserts thahsu
constitutes an assumption consistent with the fact thatthe o¢ gch observations are normally distributed and theeefor

change points can be different. So far in the literature (S§& Brownian motion model is a plausible model for such
[7], [11]-[14]) it has been assumed that the change poin{§ tions.

are the same across sensors. In this paper we consider t L . . . .
pap hFhe communication structure considered in this paper is

1This research was supported in part by the U.S. NationalnBei€oun- summarized _'n Fl_guréjl, n _Wh|C}Ti_ fori = 1,...,N
dation under Grants ANI-03-38807, CNS-06-25637 and CCR&Z08 denote stopping times associated with alarms at sensors
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i=1,..., N, respectively. delays in reacting, should be counted towards the detection
In the next section we formulate the problem and demodelay.

strate asymptotic optimality (as the mean time betweerefals The criterion presented ifl(2) results in the corresponding
alarms tends tax), in an extended min-max Lorden sensestochastic optimization problem of the form:

of the minimum of N CUSUM stopping times in the case of g 7
centralized detection. We then argue that this result sstgge  (3) M (T)

loss in performance of the one shot minimal strategy employe subject t0 E,.. 00 {T} > 7.

by the fusion center in the case of decentralized deteciin. We notice that the expectation in the above constraint is

finally discuss an extension of these results to the case 9f ..\ nder the measufe, ... This is the measure gener-
correlated sensors. e

ated on the space in the case that none of th¥€ processes
( t(l),..., t(N)) changes regime. Therefor&,, . . {T} is

Il. THE CENTRALIZED PROBLEM )
the mean time between false alarms.

In the case of the presence of only one stochastic process
(say {gt(l)}), the problem becomes one of detecting a one-
) dw® f< sided change in a sequence of Brownian observations, or a
1) dét(l) = { ¢ D, ’ vector of observationsggl), e ,;;EN)) with the same change
pdt +dw; "t >, points, whose optimal solution was found in [3] and [15].
dThe optimal solution is the continuous time version of Page’
CUSUM stopping rule, namely the first passage time of the

We sequentially observe the proces$eg);t > 0} for all
i1 =1,..., N with the following dynamics:

where ;1 > 0 is knownf3, {wt(i)} are independent standar
Brownian motions, and the;’s are unknown constants.

An appropriate measurable space {5 = C[0,00) X process
C[0,0) X ... x C[0,00) and F = UysoF:, Where {F;} wn dPr | 1) ()
is the filtration of the observations wittF; = o{s < @ v = Ogsipgtlog dPw | 7, =u —mq ", where
t; (gg”, . ,ggN))}. Notice that in the case of centralized de- 1) ) 5
tection the filtration consists of the totality of the obsaions () = p& - bl t,

that have been received up until the specific point in time
On this space, we have the following family of probability

measures{P,, . ..}, where P, .. corresponds to the (6) m{t inf ull.

measure generated dn by the processe$§f1),...,§§m) ) _O‘S‘t

when the change in th&¥-tuple process occurs at time poipt  1he CUSUM stopping rule is thus

i =1,...,N. Notice that the measgré?OO ,,,,, o correspon_ds @) T, = inf{t> O;ygn > ),

to the measure generated Gnby N independent Brownian

motions. wherev is chosen so thab., {T,} = %f(y) = 7, with

Our objective is to find a stopping rul& that balances f(v) =¢e” — v — 1 (see for example [4]) and
the trade-off between a small detection delay subject to a

2

lower bound on the mean-time between false alarms and vf) J](\}) (Ty) = Eo {1, } = Ff(—V)-
ultimately detectnin{r,...,7n} B. ) ]

As a performance measure we consider The fact_that the qust d_etectlon delay is t_he.same as that

incurred in the case in which the change point is exattly

) J](\;V) (T) = a consequence of the non-negativity of the. CUSUM process,

sup  essufE (T—nn..  Ax))HF ! from which it follows that the worst detection delay occurs
ﬁ,_l_l_PTN Ly N LA AT TLAATN when the CUSUM process at the time of the change i8 at

. [4].

yvherg the §upremum Oveti, ..., T |s_taken over.the S \We remark here that if theV change points were the same
in which min{r,...,7v} < oo. That is, we consider the

t detection del I ol lizati f tthen the problem[{3) is equivalent to observing only one
\(,)\Il‘otrrS]e ]\?—tic Ilgnof ;Z‘Zh(;\gz aror:()asszl(a@g)rea 'Z?( ]lé))r;suo tsa stochastic process which is noW—dimgnsional. Thus, in this
. P pre v St up case, the detection delay and mean time between false alarms
min{ry, ... ,TJ_V} and then consider the worst dete_ct|0n _delagre given by the formulas in the above paragraph.
over all possibleN-tuples{r,,...,7x} over a setin which  ~ poy;ining to problem{3), it is easily seen that in seeking
at least one of them is forced to take a finite valgg. This $)utions to this problem, we can restrict our attention to
becausdl’ is a St‘?pp'”g rule meant t.o detect the minimum Qgtopping times that achieve the false alarm constraint with
the N change p0|.nts and therefore if one of.th@processes equality [8]. The optimality of the CUSUM stopping rule in
undergoes a regime change, any unit of time by WHICh o hresence of only one observation process suggests that a
2Due to the symmetry of Brownian motion, without loss of getigy, we CUSUM type of stopping rule m.lght display Sl.mllar optimglit
can assume that > 0. properties in the case of multiple observation processes. |
3In what follows we will user; A ... A 7y to denotemin{ry,...,7v}. particular, an intuitively appealing rule, when the ddtatof



min{r,..., 7y} is of interest, isT}, = T} A... AT}, where density function of the random variableip, <, ygi) for
T} is the CUSUM stopping rule for the proce{:@&);t >0} arbitrary fixedt which appears in [6].

for i =1,...,N. That is, we use what is known as a multi- In order to demonstrate asymptotic optimality &f (9) we
chart CUSUM stopping time [10], which can be written as bound the detection delay](\jv of the unknown optimal
stopping ruleT™ by

9) T, = inf{tZO;max (1),...,((N) Zh}, N
( ) h {yt yt } (12) EO,oo,...,oo {Th} > JA](\ZIV)(T )’
where whereh is chosen so that

(M) _ 3| IO P @ _ L2\ (13) FoooofTh} = 7.
Yoo = sup log aP. |, pr =g Ht g (ufs FHS ( oo

o It is also obvious that]](\jv) (T™) is bounded from below by
and theP;, are the restrictions of the measufg, . -, 10 the detection delay of the one CUSUM when there is only one

C[0,00). observation process, in view of the fact that
It is easily seen that

JNNTY) = Eoso...o0{Th} = Esop.c0...00 {Th}

+
SUp,, ., €SSUE:, oy {(T -7 A...ATN) |.7:T]A,,,ATN} >

_ > sup,, essupiy, {(T - n)*|fﬁ} -

= P00 {Th}. The stopping time that minimizes
o _ sup,, essupb,, {(T—n)ﬂ}‘ﬁ} is the CUSUM stopping
This is because the worst detection delay occurs when gfe T, of (), with » chosen so as to satisfy
least one of theNV processes does not change regime. The
reason for this lies in the fact that the CUSUM process (34) E AT} = 1.

a monotone function of:, resulting in a longer on averagewe will demonstrate that the difference between the upper an
passage time if: = 0 [9]. That is, the worst detection delay|ower bounds

will occur when none of the other processes changes regime (N) s
and due to the non-negativity of the CUSUM process the wor[@ts) Eooo,oo {Th}y > Ty (T7) > Eo{Tu},
detection delay will occur when the remaining one processasbounded by a constant as— oo, with 4 and v satisfying

is exactly ato. (@I3) and [(14), respectively.
Notice that the threshold: is used for the multi-chart Lemma 1: We have
CUSUM stopping rule[{9) in order to distinguish it from 2 Nu?
the threshold used for the one sided CUSUM stopping ruld0.00..00 {Th} = — {IOgv—i-log 5~ 1 —i—o(l)} ,
@ (16)
In what follows we will demonstrate asymptotic optimality

of @) asvy — oo. In view of the discussion in the previous®S7 =

paragraph, in order to assess the optimality propertieb®f {Proof. P'eas?‘ r_efer to the Appendix for a sketch of the proof.
multi-chart CUSUM rule[(B) we will thus need to begin by Moreover, it is easily seen frorE](83 that
eval_uatlngEo,oo,___m {Th% a.ndEoo,___,oo {T,}. | AN BT} — 2 {log"y—l—logu— . +0(1)] '

Since the processeél .1 =1,...,N, are independent it G 2
is possible to obtain a closed form expression through tif@us we have the following result.
formula Theorem 1: The difference in detection delay."’ of the
unknown optimal stopping rulé&* and the detection delay of

(10) T, of @) with h satisfying [IB) is bounded above by
> % (log N),
EO,oo,...,oo {Th} = / PO,oo,...,oo(Th > t) H

0 asy — oo.

[~ 1 N Proof: The proof follows from Lemmall and (IL7).

_/0 Posooroe (T > 810 OIS > )t The upper and lower bounds on detection delay for the
o0 N—1 optimal stopping rule, whep is 1, 1 and2, in the case that

= /O Po(Tyy > 1) [Poo(Ty, > 1)] dt. N =2 are shown in Figurgl2. ’

The consequence of Theoréin 1 is the asymptotic optimality
of @) in the case in which all of the information becomes
oo L N directly available through the filtratioq 7} at the fusion
(11)  Pw..wo{Th} = /o [Poo(Th >t)] dt, center. We notice however that this asymptotic optimality
. holds for any finite number of sensopé.
where{T} >t} = {sup0<s<ty§” < h}. In other words, the ~ We now discuss the implications of the above result in
evaluation of [(ID) and{11) is possible through the prolitgbil decentralized detection in the case of one shot schemes.

Similarly,



The upper and lower bounds on the detection delay (DD) for theoptimal stopping rule
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Fig. 2: (Left) Case ofu = % (Middle) Case ofus = 1. (Right) Case ofu = 2. (Note that the differences between upper and
lowers bounds are all bounded asncreases.)

[1l. DECENTRALIZED DETECTION thresholds{h;} should be chosen so that

Let us now suppose that each of the observation procesggs, {7} = Ex0.00,...00lTd} = .. = B 00 0lTE},
{gt”} become sequentially available at its corresponding sen-

N _ g1 N
sor S; which then devises an asynchronous communicatiéﬂ\ﬁ‘ereTC —_Tin A - ATy )
scheme to the central fusion center. In particular, serssor A further interesting extension corresponds to the case of

communicates to the central fusion center only when it war@'related Eensors. Tthemonstrate this gase let us beg'ﬂ by
to signal an alarm, which is elicited according to a CUSUNISSUMING thatV = 2. This case corresponds @ (1), but wit

ruIeT,EZ) of QZ]) Once again the observations receivgd atNhg 18) E {wt(l)wg)} = pmin{s,t} Vs,t>0.
sensors are independent and can change dynamics at distinct

unknown pointsr;. The fusion center, whose objective is toThis case becomes significantly more difficult because of
detect the first time when there is a change, devises a minirtfe¢ presence of local time in the dynamics of the process
strategy; that is, it declares that a change has occurrdtkat ﬂnax{yt(l),yt@)}. Nevertheless, it is possible to derive a for-
first instance when one of the sensors communicates an alammla for the expected delay @f, under the measur,, .

The implication of Theorernl 1 is that in fact this strategyhis t This expression is given by

best that the fusion center can devise and that there is 80 los 9

in performance between the case in which the fusion cenfs.co {Th} = —5(e" —h—1)

receives the raw dat{a@fl), . .§§N)} directly and the case in a T

which the c_omr_nunication that tqkes place is_ limited to the 2(1 - p)E {/ (eyin —1)a(y - yf))ds} ,
one shown in Figurel1. To see this, the detection delay of the 0

stopping rulel}, = T,El)/\. . .AT,EN) is equal toF ... 0o {Th} (19)

mggi}z I?irgﬁes?gn:afga;gi?%r;ag|anTvéﬂi?ﬁg}'é”ogéfgl} dug/her.eé denotgs the Dirac delta function z_md the fina_l term
to the assumed symmetry in the signal strengtreceived at in this expres%?n corzg)spor_lds to the collision Io(g:)al tinfie o
each of the sensoi$; when a change occurs. The mean tim§€ Processeg, ~ andy,” weighted by the factofe?: ~ —1).

between false alarms for the fusion center that deviseauie r1he difficulty in the use of expression (19) is the fact that as
T, = T,gl) AN T;EN) is thus Ewe... oo {T}}. But Theorem P changes, the expected value of the collision local time term

asserts that this rule, namely,, is asymptotically optimal Which is the last term in[(19), also changes. Moreover, the
as the mean time between false alarms tendsctdn the €xpression for the first moment @, becomes significantly
centralized case for any finit¥. In other words, the CUSUM More complicated under the measuig...

stopping ruIeéF,El), T,Eg), T,EN) are sufficient statistics (at

least asymptotically) for the problem of quickest detactid

Q.

IV. POSSIBLE EXTENSIONS

An interesting extension corresponds to the case in which
the signal strengthg are different in each sensor after the
change. That is, after the change the signabjnis u; with
w1 # pe2 # ... # un. In this case, it is not clear what
the optimal choice of thresholds is, but it is possible tinet t
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V. APPENDIX 1
. _ = = [ehe4n—2h + (877 _ 4)e2n—h + o(e_")} )
As an illustration for general case, let us prove the result H

for N = 2. by (20) the first term is

We begin by deriving expressions faF, - {7} and
Ew.co {Tn} by using the results in [6]. For alt > 2, we ¢le12h = (b (82’741)2 — el [1 —dpe” 2 4 0(6*3”)}2
have = ¢! [1 — 8ne 21 + 0(67377)]

EO,oo {Th} = = eZ - 877€h_277 j_ O(e_n)
32 sin® ¢; sin® 0; cos? ¢; cos® 0 = e —=8n+o(e™"),
p? =) (i —singi cos ¢;)(0; — sinb; cos ;) cos? ¢i + cos® Ujang the second term is

: 3 3 2 4. 2 4.

_3_3 . sinh” n Z sin ?Z cos” ¢; cos” ¢; _ (8 — 4)62n_h — (8n—4) [1 i o(e‘”)}

w? sinhncoshn —n = i — sin @; cos ¢; cos? ¢; + cosh” n — 8n—dtole),

32 sinh® n Z sin® oy cos? i
w? sinhncoshn — 7 = ¢i — sing; cos p;

— Sy(h) + Sa(h) + Sa(h),  (21) Sg(h) = [eh—4+o(e*%)], ash — .

SO



For S3(h), also note that fronT{8) and [6] we can write Consequently,

2 oo
2 f(=h) = / Po(Th > t)dt (28) S1(h)] = o(1), ash — oo.
0
16 & sin® ¢; cos? ¢; Similarly,
@2) — ey e
I et ¢; — sin ¢; cos ¢; 1 h
= (29) |Sa(h)| = —o(e™"), ash — cc.
from which we obtain H
So(h) = 32 sinh® 7 Z sin® ¢; cos? ¢; Finally, from (21), [23),[(25),[(26)[(28) anB (29) we obtain
3 ~ puZsinhncoshn —n o~ i — Sin ¢; cos ¢; 9
5 = (80)  Eooo(Th) = —5[h—1+0(1)], ash — oo,
= S [l4+oeM](h+e™-1) H
2
“2 and
(23) - —5%—1+ow%ﬂ,ayp+m. 1
Iz B1) Exoo(Th) = —[e"—4+0(1)], ash — oo.
W

To boundSs (k) and Ss(h) we need the following,
Result 1. Supposé < p < 1. Then, for all positive solutions And for » and ~ satisfying [18), we have asymptotic results
{ai}i>1 to the equationan z = px (tanxz = —pz, resp.), we  (18) with N = 2.

have Now let us prove the two results we used in the above.
. | sin® a;| cos? o 1 Result 1:
(24) plif%ﬂ Z Q; — sin oy cos a; it Proof: For anya; € ((i — 1), (i + 3)m) such thatan a; =

i>1
This suggests that, asymptotically, /as—+ oo,

+pa;, (0 < p < 1), we have

- 2 3.2
sinh® sin® ;] cos? é; cos? &, | sin” ;| cos® y; _ pPa;
__sinh’y | sin ¢> | cos® ¢ s~ ¢ _ i —sinajcosa;  (1+ p2a2)32[(1F p) + pPad]
sinhncoshn —n = ¢; — sin ¢; cos ¢; cos? ¢; + cosh” n D ’ 4 ’
- < < .
< {1 N 0(1)] sinh® 7 (1 + p2a2)3/2 {1 e l)27T2]3/2
<= 2
T cosh? n(sinh 7 cosh ) — n)
1 inh? _ Thus
= {— + 0(1)] S 377 (1- nsinh™* ncosh™* n) '
T cosh® n ) Z | sin® o;| cos? a < Z D
= O(e_f), = o; — Sino; cosay 1 {1 +p2 (2 _ 1)27T2]3/2
from which we obtain - . - o
2 <L / _opdr 1 / _du
(25) [Sa(h)| = FO(S z), ash — oo. “n)Q T2 g oz (1 T u2)32
. i d 1
Similarly, _>/ 712 > =—, asp—07.
“h o3 .3 2 2 o (L+wu?)¥2 7
e hsinh’n | sin® ;| cos® 6; cosh”n
- — Ty . _ —3 ]
sinhncoshn —n = 0; — sin; cos 0; cos? §; + cosh” 7 Result 2:

Proof: For simplicity let us denote thg, j)-term in the sum

1 inh” -
< {— + 0(1)} e~ 1 (1 — nsinhncoshn) ™"
T

coshn by a; ;(p). As in the last proof, a little computation would
_ O(e_%), give us
so lai;j(p)] = IL(pai,pB;) - p°,
1 g3
(26) |S5(h)] = FO(e*’f), ash — oo. wherel,(z,y) (0 < p < 1) is the function
To handle the double sum ifi; (k) and S4(h), we need L(z,y) =
Result 2: Suppose0 < p < 1, {a;};>1 are all positive P 1
solutions to the equationanz = pz, and {3;};>1 are all = T
positive solutions to equatioranz = pzr (tanz = —pz, (1 +2?) (1 +y?)(2+a? +y2)(1+ ) (1 + 757
resp.), then Clearly, I, (-, -) is (uniformly in p, 0 < p < 1) bounded above
> sin® o; sin® B3; cos? a; cos® B; by the L'(RR?) function B(-, ), which is defined as
S5 (o — sinay cos o) (B — sin B cos B;) cos? oy + cos? f; 1

B(zx, = .
(27) — 0, asp — 0. (@,y) T+ 22) (1 + ) (2 4 22 + 32)



We have two steps to finish our proof: Thus (b) is proven because both the tail integral and the tail

sum are negligible due the way to choake [ ]

In the N CUSUMs case withN > 2, the calculation

(a) 13& Z la; ;(p // . (z,y)dzxdy, is similar: both of the main terms iy o, . {7x} and
P> (RT) N Eo.co..o {Th} are the terms with highest degree in

[sinh® n/ (sinhn coshny — n)]. With 20) we can get they are

(b) lim aij(P)  La; ;(p)>0 2 _n
o0t ”22:1 ’ frea @20 (36) F[h_ 1+ o0(e™ %)),
1
= / / Io(z, y)dzdy. and
271'2 (R+)2 ,
h _h
Let us start from (a). Given any > 0, we can find a (37)N 2 [e + (N =2)h+(2-3N)+o(e72)|,

constantM > 0 such that, forRy; = {(z,y) : min(z,y) >

respectively.
M} and all0 < p <1, We can prove that all other terms converge to zerchas
{ I, is decreasing in both andy in RM, goes :10 infinity. I f I . I
€ With a generalization of Result 1 to dimensional trigono-
7 J Sy (@ )dady < 27 [ g, Blo,y)dudy < 5. metric su?ns and integrals for alt > 1, we are agle to
Because of thls, for ang < p < 1, the “tail” sum deal with most terms in the expansion of the expectations,
¢ because those bounded trigonometric sums are multiplied by
Z lai;(p)] < —// (z,y)dxdy < 3> expressions of negative exponential ordehin
min(pai,pB;)>M~+pm There is only one term (it ... {1 }) Which cannot
(32) be proven to converge to zero in this manner. We need to

prove the sum involved there, which iE138) at the top of
the following page, converges to zero asgoes to infinity.

converge uniformly in0, M]? to Io. So all the termga_; (p )| We can fo!low the proof (2)f Result 2 to ge_t the result. To be
in the “head” sum are uniformly very close f9(pa;, pf3;)-p?, mor)e precise, depotp ) _J{,)and the tg';m In above sum by
the sum of which, multiplied byr2, is a Riemann sum of the a” (p), then obviously|a; ;*(p)| < |a; ; (p)|, that can help
function Io(z, y) over the regior{0, M]2, and will converges Us to control the “tail” sum
to the Riemann integral of, over|0, M]2 asp turns to zero. (N)

. (40) > lag3 (P)],
In other words, for smalp, there exists

where we define; ;(0) = 0 for all (4, j).
On the other hand, as goes to zero, the functiof}, will

min(pé;,pd;)>M+pm

Z | 1 /M /M 7 died where M is chosen as in the proof of Result 2. On the other
g j - o\T,y)axay hand,
mak(pespby) SMow ! (N) (N) 2
(33) < E (41) |ai,j (p)| = Ip (p(bhpoj) P,
f— 3 .
hereI'") is the function defined i (39). The functidy N)
B and , we have wh " S .
y @) I[3) uniformly converges td, asp goes to infinity in the domain
[0, M]?, sincepn — 1 asp — 0F. As a result, the “head”
lim Z lai,j(p — (z,y)dzdy| < e. sum converges to the same double integral as the orielin (33)
p—0+ s (R+)2
i.J or (33), so we are done!
(34) Finally, by (36) and[(37), we can derive asymptotic formula

Now let e goes to zero we are done with (a). (I8) with h andy satisfying (18).
The proof of (b) is similar. Note that the signs of the

a;,j(p)'s can be represented y-1)"*7 or (—1)*™/*! and in

each rectangl (i — 1)pm, 2ipr| x [(j — 1)pm, jor], (4,5 > 1),

eitherag;_1,;(p) or as; ;(p) is positive. With the same constant

M chosen as above, for the sum of all positivg (p)’s such

thatmax(pa;, pf;) < M +pm, we can use the same argument

as before, to show that for smal

972 Z a;,j (p) - ]I{U«i,j(P)>0}

max(pa;,pB;)<M+pm

M M
(35) ~ / / Iy(z,y)dzdy.
o Jo



sin® ¢; sin® 0; cos? ¢; cos? 6;

531 (0 —sing; cos ¢;)(6; — sinb; cos0;)[(N — 2)(1 — 42—2) cos? ¢; cos? 0 + cos? ¢; + cos? 0]

1
(1421 +2)[(N = 2)(1 = p?) + 2+ 2% + ] (1+ T2) (1 + )

(39) I (2,y) =
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