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Random-Coding Lower Bounds for the Error
Exponent of Joint Quantization and Watermarking

Systems
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Abstract—We establish random-coding lower bounds to the
error exponent of discrete and Gaussian joint quantization and
private watermarking systems. In the discrete system, both the
covertext and the attack channel are memoryless and have finite
alphabets. In the Gaussian system, the covertext is memory-
less Gaussian and the attack channel has additive memoryless
Gaussian noise. In both cases, our bounds on the error exponent
are positive in the interior of the achievable quantization and
watermarking rate region.

Index Terms—Capacity region, error exponent, Gaussian-type
class, information hiding, joint quantization and watermarking,
private watermarking, random-coding lower bound.

I. INTRODUCTION

W ATERMARKING (or information hiding) is the
process of embedding a secret source message (water-

mark) into a host-data message (covertext). In general, a good
embedding system should produce a watermarked message that
is perceptually indistinguishable from the original covertext.
On the other hand, it is assumed that the watermarked message
is subjected to manipulation by an attacker who attempts to
render the hidden information undetectable, so the embedding
process should also be resilient to such attacks. A large body of
literature including theoretical studies as well as various prac-
tical applications has recently been devoted to this area (see,
e.g., [2], [6], [13]–[19], [22] and the references therein). One of
the most common applications is copyright protection, where
the author embeds the copyright into the original multimedia
data in order to preserve the ownership of intellectual property.

In the information-theoretical literature, watermarking is usu-
ally modeled as a constrained channel coding problem. The wa-
termark, usually assumed to be uniformly selected from a given
message set, is embedded into the covertext, resulting in a mes-
sage called the stegotext. Since the hidden messages should not
interfere perceptually with the covertext, a distortion constraint
is placed between the stegotext and the original covertext. From
an information-theoretic point of view, one important problem
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is to find the watermarking (embedding) capacity defined as the
largest embedding rate for which, at the encoder, the distortion
between the covertext and the stegotext does not exceed a preset
threshold, and at the decoder, the watermark can be reproduced
with an arbitrarily small probability of error. A watermarking
scenario is called private if the covertext is available to both the
encoder and the decoder [2], [13], [14], [18], and public if the
covertext is available to the encoder only [2], [19].

In order to save storage or bandwidth resources, it is often de-
sirable that the embedder produces a compressed version of the
watermarked message. Systems that integrate watermarking and
lossy compression into one common encoding procedure are
called joint quantization–watermarking (JQW) systems. Several
works have investigated the problem of joint quantization and
watermarking under various assumptions; see, e.g., [10], [11],
[20], and [22]. In this paper, we concentrate on the private wa-
termarking model studied in [8] and [9] which is depicted in
Fig. 1.

Here the information hider embeds a watermark chosen
from a set of messages into a covertext , and outputs
a quantized stegotext , which is selected from a codebook of

codewords. The quantities and are called the
watermarking rate and the quantization rate, respectively. The
stegotext is passed through a memoryless channel (the attack
channel) that models the attacker’s action to make the water-
mark undetectable. It is assumed that both the encoder and the
decoder knows the statistics of the attack channel.

The achievable rate region, defined as the set of water-
marking–quantization rate pairs such that the average distortion
(with respect to some single-letter distortion measure) between
the covertext and the compressed stegotext does not exceed a
threshold , and such that the watermark can asymptotically
be decoded with high probability has been determined for the
following two private embedding systems.

1. A discrete memoryless system consisting of a discrete
memoryless host source (covertext) and a discrete memo-
ryless attack channel [8];

2. A Gaussian system consisting of a memoryless Gaussian
host source (covertext) and an additive memoryless
Gaussian attack channel [8], [9].

In this work, we refine the above results by investigating
the error exponent (reliability function) of these JQW systems.
Roughly speaking, the error exponent is the positive number
with the property that the probability of decoding error of a
good JQW code is approximately for codes of large
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Fig. 1. A joint watermarking and quantization system.

block length . Thus, the error exponent can be used to esti-
mate the tradeoff between the probability of decoding error and
the coding block length. Furthermore, one may use the error
exponent or its bound as an information-theoretic criterion to
design watermarking and quantization systems.

We note that error exponents for the watermarking problem
without quantization have been studied, for example, in [13],
[18], and [16] under various rather general assumptions on the
strategies available to the embedder and the attacker. In [13], a
Gallager-type lower bound on the error exponent was studied
for private discrete watermarking systems. Regarding the lower
bound as a target function of a game between the embedder
and the attacker, a single-letter expression for the maximum
lower bound was provided for certain distortion constraints.
The study of the error exponent game was extended in [18] to
the private system under large deviations distortion constraints.
The authors established a random-coding lower bound and
a sphere-packing upper bound for the error exponent, and a
single-letter expression for the maximum error exponent was
provided. In [16], the authors generalized the setup of the
watermarking problem and derived a random-coding exponent
for channel coding with side information at the encoder and
the decoder. However, to our knowledge, the problem of error
exponents for JQW systems has not yet been addressed in the
literature, with the only exception of the recent work [21],
where a Gallager-type random-coding lower bound on the
error exponent is derived for the memoryless Gaussian system.
However, this bound is somewhat loose in the sense that the
resulting exponent is not positive over the entire region of
achievable rate pairs.

In this work, we establish lower bounds to the coding error
exponent (i.e., exponential upper bounds on the decoding error
probability) for both the discrete system and the Gaussian
system described above. To obtain the exponential bound for
the discrete system, we employ a rate–distortion encoder that
assigns a subcodebook to each watermark and encodes it by
searching for the first codeword which is jointly typical with
the covertext. At the decoder, a standard maximum-likelihood
decoder is used. Here we point out that in the joint quantiza-
tion–watermarking problem we consider one cannot simply
apply Gallager’s approach to the channel coding error expo-
nent [5] since the encoder also incorporates a rate–distortion
encoder. This makes the problem technically challenging, and
in fact in deriving the lower bound on the error exponent we
combine Gallager’s random-coding bounding technique with
a type-counting argument which is inspired by the proof of
the type covering lemma [4]. To prove the error exponent
bound for the Gaussian system, we borrow the notion of the
Gaussian-type class introduced in [1] which facilitates the
extension of the method of types to memoryless Gaussian

sources. In both cases, the bounds will prove to be positive for
all rate pairs in the interior of the achievable region.

The rest of the paper is organized as follows. In Section II, we
formally describe the JQW problem and in Theorem 1 present
the lower bound for the error exponent for discrete systems.
The proof of the bound, which is the main result of this paper,
is deferred to Section III. As a nontrivial extension, Theorem
2 in Section IV establishes an analogous lower bound to the
coding error exponent of Gaussian quantization–watermarking
systems. The proof of the bound for the Gaussian system is
given in Section V. Section VI contains some concluding re-
marks and discussion.

II. PROBLEM FORMULATION AND DISCRETE MEMORYLESS

SYSTEMS

We first introduce some notational conventions used
throughout the paper. Random variables (RVs) are denoted
by capital letters, e.g., , their specific values are denoted by
lower case letters, e.g., , and their alphabets are denoted by
calligraphic letters, e.g., . Similarly, random vectors are de-
noted by capital letters superscripted by their lengths, e.g., ,
their alphabets are denoted by calligraphic letters superscripted
by their lengths, e.g., , and their realizations are denoted by
boldface lower case letters, e.g., .

For any finite alphabet , the set of all probability distribu-
tions on is denoted by , and for finite alphabets , the
set of all conditional distributions is denoted by .
Given distributions and , let

and denote their -fold product; i.e.,

and

where , , and
. Note that (resp., ) is different from (resp.,

), where the latter denotes a generic probability dis-
tribution on (resp., conditional distribution on ).
For any finite set , the size of is denoted by . If is a
function, is the size of its range, provided that it is finite. We
denote the expectation of the RV with respect to the distri-
bution by ; we also simply write
if is clear from the context. The joint entropy of RVs
and and the mutual information between RVs and with
respect to are denoted by
and , respectively; we also simply write
and whenever is clear from the context. All log-
arithms and exponentials are in the natural base.
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We assume that the watermark is uniformly drawn from
the message set . The covertext is a
length- sequence generated from a discrete memoryless source
(DMS) with finite alphabet and distribution . The attack
channel is a discrete memoryless channel (DMC) with finite
input alphabet , finite output alphabet , and a transition dis-
tribution .

Let be a single-letter distortion mea-
sure and define . We make the standard
assumption that for all . For and

, let

An JQW code for the watermark set , host source
, and attack channel consists of an encoding function

which maps a watermark and a cover-
text to a representation sequence , and a decoding
function . The quantities
and are , respectively, referred to as the water-
marking and quantization rates.

The system operates under a private watermarking scenario
since the decoder has also access to the host source. The (av-
erage) probability of erroneously decoding the watermarks is
defined by

where , and
the distortion between the covertext and the stegotext is given
by

where is the covertext, and is the output of the attack
channel.

Definition 1: The rate pair is said to be achiev-
able with respect to the distortion level if there
exists a sequence of encoder–decoder pairs with

and
which satisfy

and

Definition 2: The achievable region is the closure of
the set of achievable rate pairs .

It has been shown in [8] that for a DMS , a DMC ,
and distortion level , the private quantization/water-
marking achievable region is given by (1) shown at the bottom

of the page,1 where the mutual informations are taken under the
joint distribution .

Remark 1: Define

Then since , we have for
all

(2)

This means that for , the maximum watermarking rate
is a constant and is equal to . Obviously, one always has

, and in fact all rates are equivalent
to , the largest rate the quantizer can take if the
stegotext alphabet is finite. The fact that we still formally allow

(the definition of achievability does not exclude
such rates) should cause no confusion.

In many cases, . For example, if is noise-
less ( almost surely), then

If we furthermore assume that iff ,
and , then and since is
continuous, we have for sufficiently
small. Similar arguments can be used to show that
under quite general conditions if is small enough. In such
cases, lossy compression of the covertext to rates between
and does not result in a loss of optimality in terms of the
embedding capacity with respect to the uncompressed system
(i.e., ).

Definition 3: Given and , the JQW error
exponent for a DMS and a DMC
is defined as the supremum of the set of all numbers for
which there exists a sequence of JQW codes such that

and

We next define some quantities that are needed for stating our
lower bound on the JQW error exponent. Given the DMS ,

1We remark that in [8] and [9] the achievable region is defined with respect
to the maximum error probability��� � �� � � �. However, the converse
theorems in [8] and [9] guarantee that the regions ���� and ����� given in (1)
and (38) remain the same if we define the achievable region with the average
error probability � �� � � �.

(1)
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and a conditional distribution , for any
and , define

where

is the Kullback–Leibler divergence between and ([3],
[4]), and

and

Note that the function and Marton’s lossy
source coding error exponent [12] are related, but not equal.
In the definition of , we use the conven-
tion that the infimum of the empty set is . By definition,

is positive if and it is nonde-
creasing in . If , then we clearly have

if

and

if

Note that

where

If the set is not empty, then
is finite for all .

Proposition 1: is a continuous function
of in the interval .

Proof: The proof is given in Appendix A.

Given the DMS , the DMC , and a conditional dis-
tribution , for any define

(3)

where

We note that is analogous to Gal-
lager’s random-coding lower bound for the DMC error expo-
nent ([5, Theorem 5.6.1]). Also, it was shown in [13] that

(4)

is a lower bound for the error exponent for watermarking
without quantization.

The following is one of the two main results of the paper.

Theorem 1: For a DMS covertext and an attack
DMC , the JWQ error exponent is
lower-bounded for all and as

(5)

where .

Remark 2: Although we only consider memoryless attack
channels, it is relatively straightforward to extend the lower
bound to an arbitrary discrete attack channel defined by
the finite input and output alphabets and , and a sequence
of transition distributions . In this general case
(of attack channels with memory),
in (5) is replaced by

(6)

where

Remark 3: Note that for quantization rates the
problem reduces to the watermarking problem without quanti-
zation. For this case, Merhav in [13] derived the lower bound

given in (4). Clearly

for all . We have not been able to show that our
bound reduces to for .
However, our numerical results (see Example 1 below) indicate
that this is the case. Furthermore, the numerical results demon-
strate that there exists a rate which is less than

such that for all
.

The following property of is straightfor-
ward.

Lemma 1: is nondecreasing in and non-
increasing in .

It is easy to verify that
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Fig. 2. The random-coding lower bound � �� �� � versus � for the JQW system of Example 1.

(7)

These properties of imply that
is positive if and only if

. We obtain the following corollary.

Corollary 1: for any
, where denotes the interior of the rate

region given in (1).
Proof: By definition

for any , so we have to show that
for such that .
Note that by the definition of , if

and , then there exists a such that

(8)

Assume (Case 1) that the first inequality is strict in (8). Then we
clearly have since

for ; on the other hand,
implies

If (Case 2) the first inequality in (8) holds with equality, then
because the quantities , and

are continuous functions of , we
can find a such that

and . (Finding
such a is possible because the condition
implies that for all is
the closure of .) According to
Case 1, we must have .

Example 1: Let the covertext be a DMS with alphabet
and distribution . Let the attack channel be
a binary-symmetric channel with alphabets
and crossover probability and consider the Hamming
distortion measure.

Set . In Fig. 2, we plot the random-coding
lower bound against for different
values of , both measured in nats. It is seen that

for all , and
coincides with for small

. The plots also show that does not depend
on if is sufficiently large and it numerically coincides
with . For example, if we fix , then

for
all . Note that nats.

In Fig. 3, we plot the quantization–watermarking rate re-
gion. In regions and our lower bound
is positive, and it is zero in . The region coin-
cides with given in (1). Note that for
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Fig. 3. The quantization–watermarking rate region of Example 1: � �� �� � � � in� and��� �� �� � � � in� (including its boundary). Note
that ��� �� � � 0.69 nats.

0.42 nats the maximum watermarking rate is a constant
and is equal to 0.2 nats (see also Remark
1). The boundary between and determines the rate

such that
for all ; i.e., for rates larger than , our lower
bound is constant in and only depends on . For example,
when 0.02 nats, 0.4 nats, which means that

for all 0.4 nats,
and when 0.16 nats, 0.41 nats, which means that

for all 0.41 nats.

III. PROOF OF THEOREM 1

Note that if , then the lower bound is trivially equal
to . Thus we will assume throughout the proof that

.

A. Preliminaries

The following notation and conventions are adopted from [4].
The type of an -length sequence is the empirical prob-
ability distribution defined by

where is the number of occurrences of in . Let
be the collection of all types of sequences in

. For any , the set of all with type is

called the -type class and is denoted by , or simply by

if is clear from the context.
For any distribution , a sequence

is called -typical with respect to if for all with
, we have

and for all with . The set of
such sequences will be denoted by or simply by

if is clear from the context. Note that if

. The typical set with respect to a joint distribution
is defined similarly (see [4]).

For a conditional distribution defined on , a
sequence is called -typical with respect to
conditional on if for all and with

, we have

and for all and with
, where is the number of oc-

currences of the pair in . The set of such sequences
will be denoted by or simply by if

is clear from the context. The following facts will be
used in the proof of Theorem 1.
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Lemma 2: [4] In what follows is a generic posi-
tive term such that .

a) .
b) for all

.
c)

for all .

d) If and , then

and, consequently, .

e) If and , then
.

f) If , then if
sufficiently large, where as .

Remark: We note that Property d) is meant in the following
sense: For any and , if and

, then , and consequently

for . For the sake of convenience, and

with a slight abuse of notation, instead of

and , we write and (cf. the delta
convention in [4, p. 34]).

B. Proof Outline

We shall prove that for any , there exists a sequence
of JQW codes with watermarking rate converging to

and quantization rate converging to such that for suf-
ficiently large, the distortion satisfies

and the probability of error is bounded as

where satisfies . The existence of such
code sequences for all then implies the bound of The-
orem 1 through a standard subsequence diagonalization proce-
dure.

We next outline our proof. In Section III-C, we construct the
code in a random manner. In particular, the en-
coder is randomly chosen from an ensemble of encoders,
and the decoder is a maximum-likelihood decoder. In Sec-
tion III-D, we show that the probability of error, when aver-
aged over the random choice of the encoder, is upper-bounded
by . In Section III-E, we show that the
distortion, when averaged over the random encoder, is upper-
bounded by for sufficiently large and any . Fi-
nally, in Section III-F, we complete the proof by showing that
there exists at least one sequence of codes
which simultaneously satisfies the distortion constraint
and achieves the exponent .

C. Code Construction

Fix and a conditional distribution such that

For each type , we generate a codebook and define
the encoding and decoding function as follows.

Random Code Generation: Let and
, where and denote

the floor and ceiling functions, respectively. For type satis-
fying

and (9)

where and
is arbitrary, generate a codebook consisting of
“subcodebooks”
where each subcodebook consists of
codewords for each ; i.e.,

such that each codeword is independently and uni-
formly drawn from the typical set with respect to the
distribution . If the type
does not satisfy (9), then generate codebook
for all , where is an arbitrary sequence in .
Since there are at most types in , we have

and .
Watermark Embedding: Given a watermark and a cover-

text (so that ), the encoder chooses
the first codeword in the codebook such
that lies in the conditional typical set
with respect to the conditional distribution . The output of
the encoder is denoted by . If none of the codewords
are in the set , then the encoder outputs the first code-
word .

Decoding: The decoder has full knowledge of ,
and thus generates all possible watermarked versions of

. Upon receiving , a maximum-likelihood
decoder is employed; i.e., the output of the decoder satisfies

D. Average Probability of Error Analysis

Denote

and (10)

For a given randomly generated codebook
with rate parameters and ,

we write

where is the prob-
ability of error given that is transmitted and can be expressed
as
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(11)

where is the indicator of the event . It immediately follows
from Lemma 2 that

(12)

Taking expectation on both sides of (11) with respect to the
random choice of the codebooks we have

(13)

where and
is the set of all possible codes for type . For

, each code is generated according to the
distribution

(14)

We recall that each subcode is generated according to
distribution , where

and .

Define

for . Using the union bound on the indicator func-
tion

(15)
and substituting (14) for , we can upper-bound the
sum over in (13) as

(16)

(17)

where in (16) we used the inequality in (15) and where (17)
holds since the random codebooks
are independent and identically distributed (i.i.d.) and

(18)

Bounding the Conditional Probability in (17): Fix
. Let and be the encoder inputs and

be the received sequence. Assume that the subcodebook as-
sociated with is , and satisfies

. Define the event for a by

and

Since the subcode is generated according to the
distribution where

, we have, given and
, that

Thus, since the decoder uses maximum-likelihood decoding
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(19)

Applying the bounding technique due to Gallager ([5, p. 136]),
we can upper-bound the above probability for any

(20)

It then follows from (17) that for

(21)

(22)

where (22) follows from (20) and the random vector
denotes the output of the encoder.

Bounding the Probability in (21): Since each codeword
in is selected i.i.d. according to the

uniform distribution on , by Lemma 2
d), we have

and thus by Lemma 2

for sufficiently small and sufficiently large. Applying the
inequality for and recalling that

for we have

(23)

which vanishes double-exponentially.
Bounding (22): Note that

(24)

(25)

(26)

where in (24) we use the fact that the codewords
are generated i.i.d. according to

in (25) denotes an RV drawn i.i.d. according to
on , and the inequality follows from

for all

Also, (26) follows from the inequality
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which holds since by Lemma 2. Also from

Lemma 2 we know that and imply
that for any

(27)

if is sufficiently small and is sufficiently large. It then follows
from (26) and (27) that

for sufficiently small and sufficiently large. Since
we can bound the term in (22), which we now denote by , as

(28)

for sufficiently small and sufficiently large. Therefore, on
account of (10), (11), and (22), the probability of error (averaged
over all codes) is upper-bounded by

for sufficiently small and sufficiently large. Recall that
is chosen arbitrarily from
and is arbitrarily chosen. It is easy to show that

converges to
as , since for any distribution , for large
enough we can find an appropriate type to
approximate it. Thus, by taking the minimum of the averaged
probability of error over all possible ’s, and by letting

, on account of Proposition 1, we obtain that

(29)

E. Average Distortion Analysis

Define

(30)

By Lemma 2, for and ,
the distortion is upper-bounded by

(31)

for sufficiently large. The distortion for a fixed code with
rate parameters and is given by

(32)

where in (32) we used the bound of (31), the definition of the
set in (30), and the bound (12). Now taking the
expectation of with respect to the random choice of ,
we have

From the continuity of in (see Propo-
sition 1) we have that is arbitrarily
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close to if is sufficiently large and suf-
ficiently small. By (23)

(33)

for sufficiently large and sufficiently small.

F. The Existence of Good Codes

The last step of the proof is to show that there exists a se-
quence of codes such that the probability of
error is bounded by
and simultaneously the distortion satisfies

for sufficiently small and sufficiently large. In the
proof, we follow a method in [20] and [22]. Without loss of
generality, assume that . Let be
the collection of all codes satisfying

Since each code is randomly generated according to the dis-
tribution , it follows from Markov’s
inequality that

for sufficiently small sufficiently large. This implies that

Since

as , it is seen that there exists a sequence of codes simul-
taneously satisfying

and for sufficiently small
and sufficiently large. By the definition of error exponent, we
obtain the desired lower bound .

IV. MEMORYLESS GAUSSIAN SYSTEMS

We next extend our results to systems which consist of memo-
ryless Gaussian host sources and attack channels with memory-
less Gaussian additive noise. Let the host source be a mem-
oryless Gaussian source (MGS) with alphabet , mean
zero, variance , and probability density function (pdf)

denoted by . Let the attack channel be
a memoryless channel with additive Gaussian noise (referred
to as a MGC) with common input, output, and noise alphabets

and described by , where
and are the channel’s output, input, and noise sym-

bols at time . We assume that is an i.i.d. sequence and
and are independent. The noise admits a zero-mean

-variance Gaussian pdf, denoted by , and
thus the transition pdf of the channel is given by

We consider the squared-error (quadratic) distortion measure so
that and

for any .
We next extend the concept of an -typical class for DMSs

to MGSs. In [1, Sec. VI. A] and [23], a continuous-alphabet
analog to the -typical class was studied for the MGS (referred
to as Gaussian type classes in [1] and [23]). Given and

, define the Gaussian -typical set by

where is viewed as a column vector and denotes transposi-
tion. For and , define

(34)
We point out that is the larger of the two roots of
the equation

(35)

For any , consider a “test channel”

where is independent of . In other
words, is an auxiliary scaled MGC. Following the notion
of the Gaussian -typical set, define the conditional -typical set
given with respect to the test channel by

Similarly to the discrete -typical set and conditional -typical
set, the Gaussian -typical set and conditional -typical set have
the following properties.

Lemma 3: Let denote the volume
(Lebesgue measure) of a Borel set . Let be an MGS
such that . Let .

a) .
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b)

where

c) For any and

Properties a)–c) can be found in [1] (note that in [1] the test
channel as well as the conditional Gaussian -typical set are
defined slightly differently). For the sake of completeness, we
provide a proof for Lemma 3 in Appendix B.

For any and an MGS , define

which is a continuous strictly increasing function of for
and is zero if and only if . Given any

, an MGS , and an MGC with
noise , for any , define

(36)

where

where is defined in (34)
and is defined by

After some algebraic simplifications, we see that
actually does not depend on

and can be expressed as

which is concave in . It is easy to see that
and that (see also

(7))

which implies that if

Defining the JQW error exponent for the
MGS-MGC system as in Definition 3 (with DMS and DMC
replaced by MGS and MGC, respectively), we obtain the
following.

Theorem 2: Given and , for the MGS cover-
text and the attack MGC

(37)

where

It was shown in [9] that for an MGS with the quadratic
distortion measure, an MGC with noise variance ,
and a distortion level , the private quantization/water-
marking achievable region is given by (38) shown at the bottom
of the following page.

Corollary 2: For the Gaussian JQW system,
for any .

Proof: It suffices to show that if there exists a
such that

and

(38)
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Fig. 4. The random-coding lower bound �� �� �� � versus � for the Gaussian JQW system of Example 2.

then . First, implies
that . Noting that

is a continuous function of
, there exists a for small enough such that

. Second, since , we
have . Therefore, for such , by choosing

, we have

Example 2: Consider the Gaussian JQW system with
, and . We plot the lower bound

against for different values of in Fig. 4.
As expected, is nonincreasing in and non-
decreasing in . Fig. 4 shows that just as in the discrete case,
our lower bound does not depend on if is large enough.
In Fig. 5, we plot the quantization–watermarking rate region.
In and , our lower bound is positive, and
in (including the boundary), is zero. The
region is equal to the achievable rate region given
in (38). The boundary between and determines the rate

such that
for all ; i.e., for rates larger than , our lower
bound is constant with respect to and only depends on

. For example, when 0.3 nats, 1.789 nats,
which means that for

1.789 nats, and for 0.7 nats, 1.933 nats,
which means that
for 1.933 nats. It has been shown in [9] that when

, the maximum water-
marking rate is a constant and equal to .
For comparison, in our example, 2.003 nats and
0.804 nats.

V. PROOF OF THEOREM 2

The essential idea of the proof follows that of Theorem 1;
i.e., it is based on the method of types and a random-coding
argument.

Setup: Let and . Let
the maximum in the definition of be achieved
by ; i.e.,

Fix , where
is arbitrary, and let

We will show that is asymptotically achievable for all
.

Fix small enough such that is an integer. We
construct a sequence of Gaussian -typical sets
with ; i.e.,
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Fig. 5. The quantization–watermarking rate region of Example 2: � �� �� � � � in� and ��� �� �� � � � in� (including its boundary).

(39)

Note that for all .
Also, we define . Thus,

is a partition of the whole space . We
next define the channel by

where and

(40)

Lemma 4: For and , we have

, where

and .

Lemma 5: For any and ,
we have

for sufficiently small and sufficiently large.

The proofs of Lemmas 4 and 5 are given in Appendix B.

Random Code Generation: Let for
. For each we calculate

where

(41)

since for . For each ,
generate a codebook consisting of “subcodebooks”

, where each subcode-
book consists of

codewords for each ; i.e.,

such that each codeword is inde-
pendently and uniformly drawn from the typical set

with respect to the distribution , where .
It then follows that for all

(42)

Authorized licensed use limited to: Fady Alajaji. Downloaded on June 18, 2009 at 16:12 from IEEE Xplore.  Restrictions apply.



3278 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 7, JULY 2009

For the sets and for , the codebooks consist of
“subcodebooks”

such that for all . Clearly,
and .

Watermark Embedding: Given a watermark and a cover-
text , the encoder chooses the first codeword in
the codebook such that lies in the conditional
-typical set with respect to the test channel

. The output of the encoder is denoted by .

If none of the codewords is in the set , then the
encoder outputs the first codeword. Note that is
always if for .

Decoding: The decoder has full knowledge of , and
can thus generate all possible watermarked versions of

. Upon receiving , a maximum-like-
lihood decoder is employed; i.e., the output of the decoder
satisfies

Probability of Error Analysis: Let

It can be shown in a similar manner as in (11) and (22) that the
probability of error, given that is transmitted, averaged over
the random code choice, is upper-bounded by

(43)
where

and . We next bound
the three terms in (43). Applying Lemma 3 to , and noting that

(defined in Lemma 3) is increasing in , we can upper-bound the
first term of (43) as

(44)

where

is independent of . Similar to (23), by applying Lemmas 3 and
4 and (42), we can bound the second term of (43) as

which vanishes double-exponentially. Just as in (28), by ap-
plying Lemmas 4 and 5, we can bound the third term of (43)
by

(45)

for sufficiently small and sufficiently large. By the large de-
viation property for the i.i.d. Gaussian sequences ([7]) we have

(46)
which can be arbitrarily large by choosing sufficiently small.
On the other hand, we recall the following fact [1]: if and

are positive reals, and is a real constant, then

(47)
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Applying this to the second term of (44), we obtain

(48)

(49)

where (48) follows from the fact that is an increasing
function of for and the minimum is achieved at

. Now taking (46), (49), (45), and (43) into account
and letting first , then and , it is readily
shown that

(50)

or equivalently

for sufficiently large. By minimizing the upper bound in
over we obtain

Distortion Analysis: Define

(51)

Lemma 6: For and
, the distortion is upper-bounded by

for sufficiently large.

The proof of this lemma is deferred to Appendix B. Due to
Lemma 6, the distortion for a fixed code is hence bounded by

(52)

(53)

(54)

where in (52) we used Lemma 6, in (53) we used the fact that
and the definition of the set , and in (54) we

used the definition of . For such that

and since all codewords for each , are drawn
from the set with respect to the distribution ,

where , we have (see (41))

(55)

Thus, for such that

(56)

independently of . On the other hand, noting that

we have for any
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(57)

By the weak law of large numbers, the probabilities in (57) con-
verge to zero, and we can make the above bound arbitrarily small
by choosing small enough and large enough. Thus, taking
the expectation of over the random choice of the codes ,
and using (45), we obtain

for sufficiently small and sufficiently large.
The Existence of Good Codes: It can be shown in a similar

manner as in the last step of proof of Theorem 1 (see Sec-
tion III-F) that there exists at least a sequence of codes

that achieves the exponent satisfies
the distortion constraint simultaneously.

VI. CONCLUDING REMARKS

In this paper, we developed lower bounds for the discrete and
Gaussian JQW error exponents. In both cases, we showed that
our lower bounds are positive in the interior of the achievable
quantization and watermarking rate region derived in [8] and
[9]. We have not been able to find matching upper bounds or to
disprove the tightness of our bounds.

Numerical examples reveal an interesting property of the de-
rived bounds. In both the discrete and the Gaussian case, for
a fixed embedding rate, there exists a certain threshold quan-
tization rate, which is strictly less than the maximum possible
rate (the log-cardinality of the stegotext’s alphabet in the dis-
crete case and infinity in the Gaussian case), such that the error
exponent is constant for all quantization rates larger than this
threshold (see Examples 1 and 2). If our bounds were tight,
this would indicate that in designing a JQW system for a given
embedding rate, only quantization rates below this threshold
should be considered since allocating more rate for quantization
would not improve the system’s error probability performance.
This property is analogous to the observation made in [9] that
for the Gaussian JQW problem there exists a quantization rate
threshold above which quantization does not hinder the detec-
tion of the watermark; i.e., the watermarking capacity can be as
high as in the case of no compression.

APPENDIX A
PROOF OF PROPOSITION 1

For and , introduce the nota-
tion

Define

Then whenever , we have

(58)

since and are closed subsets of .
If , then , so (58) gives

Since is a constant independent of ,
to prove the continuity of , it is enough to
show that

is continuous in .
Let and let and

be such that

Letting for some , we have

since is convex in . On the other hand, since
is concave in , we have

since implies for .
Since the last inequality means that ,
we obtain

so that is convex in .
The convexity of implies that it is continuous in

. Since is nondecreasing and convex, it
must also be continuous at zero. Thus, is continuous in

.
To complete the proof, we need to show that is left-

continuous at . Let be an increasing sequence
such that as . For each , let be a
distribution achieving ; i.e.,

Since is compact we can pick a subsequence
such that (say in total variation) for some

. Since and are finite sets, both
and are continuous in . Thus
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so that , implying in turn that

Since is nondecreasing and is an increasing sequence,
the last inequality implies that is left-continuous at .

APPENDIX B
PROOF OF LEMMAS

Proof of Lemma 3:
Proof of Part a): Consider an auxiliary MGS

. Then part a) follows from

Proof of Part b): Part b) follows from

where the last inequality follows from part a).
Proof of Part c): First note that the volume of the conditional

-typical set is independent of ; i.e.,

Consider an auxiliary MGS . It fol-
lows that

(59)

On the other hand, we can bound the probability by using the
union bound and Chebyshev’s inequality

(60)

Thus part c) follows by combining (59) and (60).
Proof of Lemma 4: By definition, for and

, we have

(61)

where the last equality follows from (40) and the identity (35).
Similarly, we can show that

(62)

Now (61) together with (62) implies that .

Proof of Lemma 5: It follows from Lemma 3 c) that

for small enough. Clearly, for any and
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for sufficiently small and sufficiently large.

Proof of Lemma 6: For and ,
we have

(63)

where (63) follows from the fact that for .
Substituting

into the above bound and using the identity (35)

yields
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