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On the Monotonicity of the Generalized Marcum
and NuttallQ-Functions
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Abstract—Monotonicity criteria are established for the gener-
alized Marcum Q-function, Q,,(a, 8), the standard Nuttall Q-
function, Q,, (e, 3), and the normalized Nuttall Q-function,
O nm,~ (e, 3), with respect to their real order indices M, N.
Besides, closed-form expressions are derived for the comgation
of the standard and normalized Nuttall Q-functions for the case
when M, N are odd multiples of 0.5 and M > N. By exploiting
these results, novel upper and lower bounds forQM’N(a,/B)
and 9w, ~n(o, 3) are proposed. Furthermore, specific tight
upper and lower bounds for Q,, (e, 3), previously reported in
the literature, are extended for real values of M. The offered
theoretical results can be efficiently applied in the study b
digital communications over fading channels, in the information-
theoretic analysis of multiple-input multiple-output systems and
in the description of stochastic processes in probability Heory,
among others.

Index Terms—Closed-form expressions, generalized Marcum
Q-function, lower and upper bounds, monotonicity, normalizd
Nuttall Q-function, standard Nuttall Q-function.

. INTRODUCTION
A. The Nuttall Q-Functions
N extended version of the (stc;;mdard) Marcu@

function, Q(a, 8) = [5° xe*zz%lo(a:c)d:c, where

relation of this function to the more common generalized
Marcum Q-function, as will be shown in the sequel. An
alternative version o), y(a, ) is the normalized Nuttall
Q-function, Qs n (e, 8), which constitutes a normalization of
the former with respect to the parameterdefined simply by
the relation

s QM,N(avﬂ)

Owm,n(a,B) Y (2)

[

Typical applications involving the standard and normalize
Nuttall Q-functions include: (a) the error probability per-
formance of noncoherent digital communication over Nak-
agami fading channels with interference [4], (b) the outage
probability of wireless communication systems where the
Nakagami/Rician faded desired signals are subject to imep
dent and identically distributed (i.i.d.) Rician/Nakagdaded
interferers, respectively, under the assumptions of muinmm
interference and signal power constraints [4]-[7], (c) plee-
formance analysis and capacity statistics of uncoded phedti
input multiple-output (MIMO) systems operating over Ritia
fading channels |8][10], and (d) the extraction of the riezql
log-likelihood ratio for the decoding of differential preshift

o, 8 > 0, originally appeared in[]1, Appendix, eq. (16)]keying (DPSK) signals employing turbo or low-density parit

defines the standardNuttall Q-function [2, eq. (86)], given
by the integral representation

QM,N(C%B) = /

B
where the order indices are generally reals with values 0

0 22 402
eMe== In(ax)dz

1)

check (LDPC) codes [11].

Since both types of the Nuttaf-function are not consid-
ered to be tabulated functions, their computation involired
the aforementioned applications was handled considehag t
two distinct cases of\/ + N being either odd or even, in
order to express them in terms of more common functions. The

and N > —1, Iy is the Nth order modified Bessel function possibility of doing such whed/ + N is odd was suggested
of the first kind [3, eq. (9.6.3)] and., 5 are real parametersin [2], requiring particular combination of the two recwesi
with a > 0, 8 > 0. It is worth mentioning here, that therelations [2, eqgs. (87), (88)]. However, the explicit sant
negative values o, defined above, have not been of interestas derived only in[[4, eq. (13)] entirely in terms of the
in any practical applications so far. However, the extemsidMarcum Q-function and a finite weighted sum of modified
of the Nuttall Q-function to negative values oV has been Bessel functions of the first kind. Having all the above in

introduced here in order to facilitate more effectively thenind, along with the fact that the calculation 6J(a, )
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itself requires numerical integration, the issue of theciffit
computation of[(Il) and{2) still remains open.

B. The Generalized Marcum Q-Function

The generalized Marcur@-function [12] of positive real
order M, is defined by the integral [13, eq. (1)]

2

1 > M z24a
/ Ve 2z Iy—1(ax)dx
B

Qur(e, B) £ oM—1 3)
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where «, 8 are non-negative real parameﬁerEor M =1, utilization of novel Gaussia®-function inequalities. Finally,
it reduces to the popular standard (or first-order) Maré&dm in [48], an equivalent expression {0 |46, eq. (11)] was dstjv
function, Q,(«, 8) (or Q(«, 8)), while for generalM it is adopting a completely different (analytical) approachmfrihe

related to the normalized Nuttal-function according to [14, latter.

eq. (4.105)] Close inspection of the issues mentioned above, render the
existence of upper and lower bounds a matter of essential
Qul(a, 8) = Qum-1(a, ), a>0. (4) importance in the computation dfl(3). Several types of bsund

for the standard| [49]=[51] and generalized |[37],|[46],1[48]
[52]-[54] Marcum Q-functions have been suggested so far.
However, all the aforementioned works consider just intege
values of M, which is generally true when this parameter
represents the number of independent samples of a square-
law detector output. Nevertheless, in many applicatiohis, t
requirement does not hold. According o [14, Sec. 4.4.2], it
would be desirable to obtain alternative representatiams f
fbM(a,B) regardless of whetheM is integer or not. For
instance, in [[20], the fading parameter of the Nakagami-
m distribution is restricted to integer values in the lack of
a closed-form expression for the generalized Marc@m
function of real order. Additionally, in[[25],[ [55]=[57],he
order M of the generalized Marcur@-function, involved in

An identical function to the generalized Marcughis the
probability of detectidﬁu[l, eq. (49)], which has a long history
in radar communications and particularly in the study ofjédr
detection by pulsed radar with single or multiple obseprai
[1], [16]-[18]. Additionally, Q,,(«, ) is strongly associated
with: (a) the error probability performance of honcoheramd
differentially coherent modulations over generalizedirigd
channels[[14], [[19]+[23], (b) the signal energy detectidn
a primary user over a multipath chanriell[24],1[25], and final
(c) the information-theoretic study of MIMO systenis [26]
Aside from these applications, the generalized MaroQm
function presents a variety of interesting probabilistierpre-
tations. Most indicatively, for intege¥/, it is the complemen-

tary cumulative distribution function (CCDF) of a noncehtr S . . o
; 5 : . the energy detection in various radiometer and cognitidéra
chi-square {*) random variable witt2M degrees of freedom S : . _
applications, is expressed as the product of the integratio

(DOF) [27, eq. (2.45)]. This relationship was extended 'ime and the receiver bandwidth, thus implying that in gaher
[28] to work for the case of odd DOF as well, through . ) . S
is a non-integer quantity. Furthermore, a probabilistic

generalization of the noncentrgf CCDF. Similar relations . -
can be found in the literature involving the generalizedd®ic !nter-preta.uon OfQI"f*#(O".B)’. where )/ € N gndu o 05 :
is given in [58], where it is related to main probabilistic

[29, (2.1-145)], the generalized Rayleigh [[30, pp. 1] (for

- B . N————
a = 0) and the bivariate Rayleigh [31, Appendix Al, Bz]?gﬁrarf;igztrﬁfafﬁ(gnd(ﬁ% (/Zr:?aobrlne;/?/c:;wblffjét\ilgwﬁ Iglo[;g;re
(for M = 1) CCDF's. Finally, in a recent work [33], a new”_ "

association has been derived between the generalized Mar sjudied. Finally, in[[62], the integrand dfl(3) has been pxbv

U . \ :
Q-function and a probabilistic comparison of two indepertde%[ beoa probal?ltlgytd?nsnﬁ/ fUSCtIOI’I t(.ll:.)D';) .for4§ 0 and
Poisson random variables. > 0, a result that also has been utilized [in][48].
More than thirty algorithms have been proposed in the
Iiteraturg for the numerical_computation of the standard_ar@_ Contribution
generalized Marcun@-functions, among them power series
expansions [34]5[36], approximations and asymptotic expr As described in Subsectidn TFA, a closed-form expression
sions [37]-[40], and Neumann series expansions [41]_[4;§9)_r the computation of the standard and normalized Nuttall
However, the above representations may not a|Ways prov@éunctions is available in the literature Only for the cade o
sufficient information about the relative position of the- apPdd M + N, with the additional restriction of integer/, N.
proximated value with respect to the exact one, which in sortiz Subsectiof T-A, we derive a novel closed-form expressio
applications is highly desired. In[44], the generalizedrdtan for the computation 0fQ,, x(a, 3) and Qu,n(a,3) when
Q-function of integer orde! has been expressed as a singté/, V' are odd multiples 00.5 and M > N, being valid for
integral with finite limits, which is computationally moreall ranges of the parametess j.
desirable relatively to other methods suggested prewousl Besides, in Subsection II}B, we proceed with the estab-
Nevertheless, the integral cannot be computed analyticaishment of appropriate monotonicity criteria, revealitige
and appropriate numerical integration techniques haveeto pehavior of both functions with the sud + N. Specifically,
app”ed, thereby introducing an approximation error in itwe demonstrate that the standard Nut@ﬂunction is Strictly
computation. In[[45], an exact representation @y, (a,3), increasing with respect td/ + N whenM > N +1, under the
when M is an odd multiple of).5, was given as a finite sum constraints otv > 1 andj > 0. For the normalized NuttafD-
of tabulated functions, assuming that > a2 + 2M. This function, a similar monotonicity statement is proved witho
result was recently enhanced in [46] to a single expressitii¢ necessity of reducing the rangecaf
that remains accurate over all ranges of the parametgss An alternative approach, sufficient enough to facilitate th
while in [47] the same expression was bounded by particulgroblem of evaluating the Nutta@®-functions, is the derivation
of tight bounds. Nevertheless, to the best of the authors
2For a = 0 the right hand side of3) can be easily shown to satisfy the

Iin13iting value of 14, eq. (4.71)], reproduced i {30). ) 4Throughout the manuscript, we adof¥ and INy notations for the
For M incoherently g\teggated signals, the two functions arepjimelated  representation of the positive and the non-negative intege respectively.
by Qs (e, 8) = Pr (g %), as induced byl [15, eq. (7)]. In the same wayR ™ includes the positive anm;{ the non-negative reals.
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knowledge, such bounds have not been reported in the liteexpression:

ture so far. Subsectidn 1lIB is completed with the explodtat (—1)"(20)"+}

of the previous results in order to derive novel upper ancefow Qu (v, B) =

bounds forQ,, (o, 8) and Qn v (a, 5) when M > N + 1 1ﬁ

andg > 0, with the extra requirement @f > 1 for the former. — (n— l<:)n,1(204)’“1,C
Additionally, in Subsectiofi I-B, the need for computing the . ];) k! m.n (@ )

generalized Marcun@-function, Q,,(«, ), of real orderM N o
was highlighted, since it is a case of frequent occurrence \ihere the terndy, . (a, 8) is given by

various applications. However, a thorough literature cear m—n+k &

for studies concerning arbitrary values df, revealed only 7* (a,f) = (—1)F*! Z ( —nt ) 5 gmonth-l

[46] for the closed-form computation d®,,(«, 8) of half- 7 =0 t

odd integer order, and the accepted paper [63], where bounds 11+ 1 (B+a)?

for Q,;(a, B) were introduced for the case wheéd is not X [(_1) F(T?T)

necessarily an integer. These considerations motivateh us - [+1 (B—a)?

generalize the scope @ff in [46, eq. (16)] — (sgn(B—a)) Ty (T’ T)
Qur—0.5(08) < Qurl,8) < Qursos(@B), MEN (5) T <l el 1)] . (©)

as described in SectioE]III by providing a monotonicity Proof: Given thatn = N +0.5 € IN, the modified Bessel

that Q) (., ) is strictly increasing with respect to its ordelsym [64, eq. (8.467)], which after some manipulations can be
M >0 for « > 0 and 8 > 0. This interesting statement wasyitten as

also recently presented in [62], using a different approash gl n—1
a consequence, novel upper and lower boundXpn«, ) In(z) = (=1 2 Z (n —k)n—1(22)"
of positive real order are derived. We finalize the paper with —

some concluding remarks, given in Sectiod IV. 1
( ) n=N + 5 eN,zeR.
[I. MONOTONICITY O N FUNCTIONS )
' NOTONICITY OF THENUTTALL Q-FUNCTION Therefore, using[{1) and(7), the standard Nut€@dfunction
A. Novel Closed-Form Representations satisfies
n —n41 n—1
So far, closed-form expression for either type of the Nuttal Qu (@, B) = (=1)"(2a)~"Fz Z (n = k)p—1(20)"
Q-function is not available in the literature. In this seatio ’ ’ NS P k!
we derive such a representation for the case wherV are oo (ot
odd multiples of0.5 and M > N, through the theorem and X {/ "R e g
B

corollary established below. Before proceeding furtheéhwhe - ,
corresponding proofs, some definitions of essential fonsti _(_1)k/ Imn%e%dx] . (8)
and notations used, would be very convenient. B

Hereafter,I', v and I (-,-) will denote the Euler gamma The calculation of the integral difference i (8) can be effe
[3, eq. (6.1.1)], the lower incomplete gamma [3, eq. (615.20ively facilitated by the following definition

and the upper incomplete gamma [3, eq. (6.5.3)] functions, oo wtar? oo
s~ [t
B B

_(@—a)?
respectively, defined by the integrals zle™ 2 dx

I'(z) = t*~te tdt = / US4 . .
=) /0 ¢ dt, v(z2) 0 N where L = m — n + k. Since we examine the case when
[(z,2) =T(2) —v(z,7), z€R", zecR, M > N or equivalentlym > n, it follows that in the above

expression the exponehtis a non-negative integer. Therefore,
Notationsn!, (m),, and (") imply the factorial[3, eq. (6.1.6)], using [65, eq. (1.3.3.18)]L9) obtains the form

the rising factorial (Pochhammer’'s symbdl) [3, eq. (6.)]122 L o/r . )
and the binomial coefficient [3, eq. (24.1.1 C)], respetyive 7% (q, 3) = Z ( )aL—l [(_1)L—l/ e~ T dx
defined byn! =];_, k forn e N; =1 for n =0, (m),, = o \! B+a
(m+4n—1)! _ m! S 2

Gy for m € ]N n € No and (7) = sy for Iy P (10)
m,n € Ng, m > n. Finally, sgn(z) = z/|z| for 2 £ 0; = 0 W

for z = 0, stands for the signum function.

Theorem 1 (Closed-form for the standard Nuttall Q):
The standard Nuttall Q-function, Q,; y(a, ), when -
m=M+05€N,n=N+05¢cNandM > N, can I},:/ deFdr. beR
be evaluated forx > 0, 8 > 0 by the following closed-form b

The two integrals involved if(10) can be considered as speci
cases of the more general one
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which for the case of non-negative valuesbofan be calcu- where from [IB) one can observe that the t&fq(r, z) is the

lated from [64, eq. (3.381.3)] as complement of the regularized lower incomplete gamma func-
z i (141 b2 tion P(r, z) with respect to unity, defined in|[3, eq. (6.5.1)] by
I, = 22F(Ta 5), b>0 (1) P(ra) = VF(’(”S) for all » > 0 andz € R. Fortunately,P(r, z)

. ) for r,x > 0 is equal to the cumulative distribution function
while for negative values o, [64, egs. (3.381.1), (3.381.4)](cpF) of the standard gamma distributieamma r, 1), which
can be combined to yield is strictly decreasing with respect to the shape parameter

7l = e [F(H—l) N (_1)17<l+_17 ﬁ)] C b<o. Ad_dition_ally, this important rgsult has also been. proyed—an
2 2 72 lytically in [66] eq. (59)], thus implying thaf, (r, z) is strictly
(12) increasing with respect te > 0 for all z > 0. Furthermore,

Therefore, a single expression for the integfaffor any real in [67], it has been demonstrated that the function

value ofb can be derived, by merging([11) aid(12) with the _ [T(p,x)] 7
help of [64, eq. (8.356.3)], in order to satisfy R(p,q,x) = T0.2) , p>q>0,z>0 (14)
7l _ o | I+1\ fsgn (b)) I+1 f is increasing with respect t@ By substitutingp = r + s and
b 2 sen 22| g = r into (I4), we realize that the ratib(r + s, z)/T'(r, z)

Thus, [9) is equivalent to is increasing with respect te for s > 0, while it remains
' . constant for the trivial case of = 0. Therefore, it increases
L _ _ with » > 0 for all z > 0,s > 0, and the proof is completem
k _ Ll _\L=l7l  _ (_q1\k7l S8 2 Uy
Ip(a, ) = Z <z)a (D" Zho = (-1)"Z5 ] The outcome of Lemmhbl 1 will be utilized for the estab-

=0 lishment of the next theorem, concerning the monotonicity

L
= (—1)k+1 Z L ot oLt T I+1 property of the norma]izgd Nutta@-func_tion.
— l 2 Theorem 2 (Monotonicity of the normalized Nuttall Q):
The normalized Nuttall Q-function, Qs n(«, 5), where

2
+ (—I)L_l_’“_lf(“_—l, M) M >0, N> —1anda,$ > 0, is strictly increasing with
2 2 ) respect to the sunM + N, under the requirement of constant
—[sgn(B — )]y (H_l’ (8- a) )] differenceM — N > 1. _ _

2 2 Proof: Combining [[1), [(2) and using the series represen-
which, after the substitutiod = m — n + k, yields [8), thus tation of the modified Bessel function of the first kind in term
completing the proof. m of the gamma functior [64, eq. (8.445)], we obtain

Corollary 1 (Closed-form for the normalized Nuttall Q): 2 o2k
The normalized Nuttall Q-function, Qus n(a,3), when Qu.n(a,B) =e = Z FTh T N+ 1) 22N
m=M+05€ N,n=N+05¢cNandM > N, can k=0 "
be evall_Jated fory > 0, 5 > 0 by the following closed-form % /OO x2k+1\{+N€7§dI (15)
expression: 3
(_1)n2—n+% where we have interchanged the order of integration and sum-
Qu,n(a, f) = W mation, since all integrand quantities of the normalizedt&u
1l . Q-function are Riemann integrable dfi, co). Additionally,
% Z (n — k)zlfl(zo‘) ¢ (a, ) the integral in[(Ib) is the case ¢f{11), thus yielding
where the termZ,’jw(a, B) is given by [®). 8

Proof: The proof follows immediately from[{2) and M+N+1 2
Theorentl. | xT <k + 9 7) :

B. Lower and Upper Bounds Therefore, [(15) reads

In this section, novel lower and upper bounds for the 2 & a2k r (k: + w, %)
normalized and standard Nutt&)-functions are proposed. Qu.n(a, ) =e 7 Z N_M71
. : okt ="k T(k+N+1)
Lemma 1: The functionG,(r, «), defined by k=0 (16)
Gs(r,z) & 1“(7}—%75,:5)7 r,x € RY (13) Introducing the variables = M + N andc = M — N and
(r) taking the partial derivative of both sides 6f{16) with resp
is strictly increasing with respect tofor all s € Ry to v, we can easily obtain
Proof: By multiplying both the numerator and denomina- P , 00 o2k
tor of (I3) by the upper incomplete gamma functiiy, z), —Quie vre(a, ) = e Z _
we obtain Qv T 250k
k=0
I'(r+s,x) 9 B
= c—1 - 17
G.(r.a) = 206000 < gasGen (w0 ) @)
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v—C

where the functionu(v) = k + 1 + 3¢ has been employed
for notational convenience. We note here that, applying tl
Weierstrass M-tes{ [68], the series [n17) can be proved
converge uniformly, thus enabling one to interchange tleior
of differentiation and summation. Hence, recalling Lenitha
and the requirement af > 0, that follows from the definition
of the normalized NuttalQ-function, the proof is complete.
[ |
In Figs.[q(@) and]I{h), the normalized Nuttg#function has

QM,N(av 6)

been plotted versus the su + N for several values of 0.47 e |
a, B, consideringM — N =1 and M — N = 2, respectively. 0.3F e :
However, we note here that Theoréin 2 implies non-integ 7
differencesM — N as well. 02 7 a=7.5, 6.5 |
For the interpretation of the next proposition we define tt 0.1 7 -~ —as5.5,p55.5

pair of half-integer rounding operators |z |5 and[z]o.5 that | s - ‘ ‘ ‘ _— o705 585
map a realr to its nearest left and right half-odd integer 4 6 8 10 12 14 16 18
respectively, according to the relatifins M+ N

L$J0.5 _ LI—O-5J 105 8 (@) Qm,~ (o, B) versusM + N for M — N = 1.

|—I‘|0v5 = |—I + 05-| — 05 ( ) 6.0 ; ; . . . .

where |z| and [z] denote the integer floor and ceiling
functions. Additionally, we recall that i6, € [0,1) is the
fractional part ofz, then |z| =z — §,.

Corollary 2 (Bounds on the normalized Nuttall Q): The
following inequalities can serve as lower and upper boun
on the normalized NuttalQ-function, Qs ~(«, 5), where
a,8 > 0and M,N > 0.5, for the case whed/ > N + 1
anddy = oy (i.e. M — N € IN):

QI\I,N(avﬁ) Z QLMJ()_E,,LNJO.S(O[’B)

19
QI\I,N(avﬁ) < Q(M]o_s,"N]o.s(OZ?B)' ( )

Oum,n (e, B)

1.0} - - ma—_
with the equalities above being valid only for the case of-hal T - z;g:g: g;;:g
odd integer values oM, N. - - — a=1.5,$=3.5
Proof: The proof follows immediately from Theore 2. 0y 6 8 10 12 14 16 18
. M+ N

For the calculation of the bounds ifi {19), the guantities

QLMJ0.57LNJO.5(Q’/B) and Qfl\ﬂo.s,f]\ﬂo.s (Oé,ﬂ) can be evalu-

(b) Qs ,n (e, B) versusM + N for M — N = 2.

ated exactly by utilizing the results of Corolldry 1. Moreoy Fig. 1. Monotonicity of Qs n(, 8) with respect to the surdf + N for
for the case ofM, N € N, the proposed bounds obtain theeveral real values af, 5.

simplified form

Om,n(a, 8) > Qm—o.5,N-05(c, )

20
Om,n(a, 8) < Omto.5,N+0.5(c, B). (20)

next theorem will be particularly useful for the fulfillmeot
such a derivation.

Theorem 3 (Monotonicity of the standard Nuttall Q): The
In Figs.[2(@ and2(b), the normalized Nuttgfunction standard NuttallQ-function, Q,; y(a,3), where M > 0,

along with its lower and upper bounds are depicted versys ~ _1 anda > 1, 3 > 0, is strictly increasing with
p for several values ofv and M, respectively, while the respect to the sum/ + N, under the requirement of constant
parameterV is restricted according to the relatio= M —c  (ifferenced — N > 1.
with ¢ € IN taking values: = 2 in Fig.[d(a) and: = 1,2,3 in Proof: In Theoren{®,
Fig.[3(0). It is evident, that the bounds proposed[inl (19) are
very tight, especially the upper one fég; (= dn) < 0.5 and
the lower one fori,, (= dx) > 0.5, the latter being the case
illustrated in Fig[P(@). where we have substituted = M + N andc = M — N.

In order to obtain lower and upper bounds for the standaFdom [2), [21) and after using the quotient rule for partial
Nuttall Q-function, a similar procedure can be carried out. Thdifferentiation, we obtain

it has been proved that

(21)

0
= Qupe e (@,5) > 0

2 02

In o

,%C(avﬂ) > TQUTH’%(O[7B)

5The defining equations of {IL8) can be easily verified to bedvili any
arbitrary segmenfn,n + 1), wheren € Z.

0
%Qu+c

2
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8.0 : : : : : Proof: The proof follows immediately from Theorem 3.
a=6.5 M=5.0, N=3.0 ]
oY — — — M=4.5, N=2.5 o . h

[CY il - — M=5.5 N=35|] Similarly to the case of the normalized Nuttal), in

the calculation of the bounds fron_(22), the quantities

QLMJ0.57LNJ0.5(Q’B) and Q"M]O_57"N‘|0_5(OC,B) can be eVaIU'
ated exactly from Theorefd 1. Finally, fav/, N € IN, the
standard NuttalQ-function can be simply bounded by

QM,N(%ﬁ) > QM—O.S,N—O.S(avﬂ)
1 Qur,n (@ B) < Quryo.5,n40.5(c B)

1 which constitutes the counterpart df {20) for the standard
Nuttall Q-function.

Q5,3(a7 ﬁ)

(23)

Ill. M ONOTONICITY AND BOUNDS FOR THE
12 GENERALIZED MARCUM Q-FUNCTION

Recently, Li and Kam in[[46, eq. (11)], following a geo-
metric approach, presented a novel closed-form formula for
the evaluation 0fQ,,(«, ), for the case whed/ is an odd

10? ' ' ' ' multiple of 0.5 anda > 0, 3 > 0, given by
M =57
1 b+« 1 b —«
SR a,B) = —erfc[ ——— | + =erfc (—)
o \‘\\\‘:,\ ] Q]W( ﬂ) 2 < \/§ ) 2 \/§
o NS LS R ()
S S N avar & 2 (k- g)ld!
o o M =37 AN QS ) =
K100 e RN AN E Kl 1 C_(B-)? (Bta)?
& S~ N N X ——— |(—1)e” 2 —e " 2 }
5 IS N N ; (aB)2a4! [( )
h \\\\ \\\ N \\'\ (24)
107 tF \\\\, \\\\ \\\ 3 2
\\\\ NS\ where erf¢z) = (2/y/) ["e " dt is the complementary
N\ AN error function [3, eq. (7.1.2)]. This representation imed
) ‘ ‘ NN only elementary functions and is convenient for evaluation
10754 1 5 6 7 s both numerically and analytically. For the trivial case whe
8 a = 0, exact values of the generalized Marcupafunction
(b) Qur,2.7(3.5, B) versusg for several values of\f. can be obtained from [46, eq. (12)]
2 —
Fig. 2. Bounds ofQus, n(c, ) for M — N € IN and several values of Q (0 5) _ erfe (ﬁ) N e—% M-1.5 ﬁ2k+1
a, B. MY V2 Vor — ok—1
k
- onis strictly posit PPk (25)
Since the NuttalQ-function is strictly positive, then fot > 1 X E— a)\lal(2 0
) — (k—q)lq!(2¢ + 1)
it follows that 4
B Following an algebraic approach, an alternative more catpa
%Q”;H%ﬂ(aaﬂ) >0 closed-form expression, equivalent {o1(24), can be derived

: considering the next steps. Particularly, in1[58, eq. (10)]
and the proof is complete. ®  has been proved that the generalized Mard@+function of
Corollary 3 (Bounds on the standard Nuttall Q): The fol-  J 4ar,,, — 11, with m positive integer and) < u < 1 can
lowing inequalities can serve as lower and upper bounds g \yritten in terms of the generalized Marc@sfunction of
the standard NuttalQ-function, Q,; y(«, ), wherea > 1, qarq — 1 as
8 >0andM,N > 0.5, for the case whed/ > N + 1 and

oy =0y (e. M — N € IN): o252 m—1 n—p
o Qs ®) =3 (2] (an)
Qui,n (0, 8) 2 Qarfos, (N ]os (@ B) =1 ¢

22
Qun (@, 8) < Qrarjos, (N7 (5 B)- (2) +Qi (e, B), a#0.

with the equalities above being valid only for the case of-halBy substitutingu = 0.5 in the above equation and noting that
odd integer values oM, N. for this case the modified Bessel function of the first kind can
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be replaced by[{7), we obtain Marcum Q-function of integer order. It seems apparent, that
S in order to derive bounds foQ,,(«, 8) of real orderM, a
Q. _os(a, B) = a\/§e—<“§‘”2 Z (—202)"" strict inequality, involving the whole range df/, has to be
’ ™ ot established. Such a generalization concept can be foradaliz

n—1 (n— k) through the following theorem.
Xy A7Vt (90,5)k [1— (=1)ke*P] Theorem 4 (Monotonicity of the generalized Marcum Q):
k! - ; : :
k=0 The generalized Marcun@-function, Q,,(«, 3), is strictly
+Qus(a, ), meN (26) increasing with respect to its real ordéd > 0 for all

. , a>0,8>0.
where once agairtm),, denotes the Pochhammer’s symbol — p.q Concemning the case when= 0, we notice that
and the termQ, 5(«, 8) can be derived from the definition (30) can be rewritten as

of the generalized Marcun®-function in [3), by using[[3, )
eq. (10.2.14)] as follows Qu(0,8)=1—-P (M, %) _

2 o0 22402
Qys(a, ) = \/j/ e~ * = cosh (az)dz. However, in [66, eq. (59)] the regularized lower incomplete
™ .
B gamma functionP(r, z) has been proved to decrease mono-
The above integral can be computed in closed-form as  tonically with respect to- > 0 for all z > 0. Additionally, for
1 B+a 1 B—a a > 0, @) implies that the normalized Nuttad-function
Qus(a, 8) = 5erfc (7> + §erfc<7> with N = M — 1 falls into the generalized Marcur-
2 2 function of orderM. Nevertheless, according to Theoréin 2,
=Q(B+a)+Q(f— ) (27) Qurv—1(a, B) is strictly increasing with respect @M — 1
where Q denotes the Gaussia@-function (or Gaussian for M >0, and the proof is complete. .
probability integral) [3, eq. (26.2.3)], defined bQ(z) = The result of Theoreril4 has also recently demonstrated

(1/v/27) foo o=t /24¢. Using [26) and[(27), the generalizeoby Sun and Baricz in_[62], where two totally different proofs

z

MarcumQ-function of half-odd integer order can be computetyere given. The first one combines the series form of the gen-

for all o > 0, 8 > 0 from the expression eralized MarcumQ-function presented i {29)_(B0) together
with the fact that the regularized upper incomplete gamma
2 _(arp? ? oNm function Q(r,z) = 1 — P(r,z) is strictly increasing with
Que(a, f) =y —em = > (=207 respect tor > 0 for eachz > 0, originally stated by Tricomi

n=1

o § in [66]. A slightly different analytical proof to this cansal be
% Z (n k')nfl (2a3)F [1 _ (_1)k€2a[5] foun_d in j_SO, Th. 1]. The second proof exploits the_lntelmgstl
= ! rﬁlanolnsl?:_p; bfetwet_en t(he ?:E(};ngé?}lzlzefd Mz;\rc(}rgunctlon _ag:ﬂ
. the reliability function (or of a x* random variable
+QB+a)+Q(F—a), M+05¢€ ]N('28) with 24 DOF and noncentrality parameter namely the fact
that if 8 ~ x2,, ., thenR(3) = Q,;(v/a, v/B). The interested
We note here that a similar result {0 (28) has been recentader is referred td [62, Th. 3.1] for more information.
reported in the literature [48, eq. (16)]. In order to exagntite  Recalling the relation between the normalized Nuttall and
special case whem = 0, we first notice that fron{4) ané{l16) the generalized Marcun®-functions, that is [4), FiglTZ(R)
an alternative expression—equivalenttd [3, eq. (26.428)r verifies graphically the results of Theorém 4, since it dtfua
the generalized Marcur®@-function can be derived, written asdepictsQ,, (a, 3) versus the tern2M — 1.
52 Corollary 4 (Bounds on the generalized Marcum Q): The
a2k T (k + M, 7) following inequalities can serve as lower and upper bounds
2kkl T(k+ M) on the generalized Marcun®-function Q;,;(a, 8) of real
(29) orderM > 0.5 for all o > 0,5 > 0.

QulaB)=c™ 7Y 0>0,80
k=0

which for integer M falls into the series expansiof |35, Qo (@ B) < Qurle, B) < Qpary s (@ ). (31)
eq. (4)]. SinceQ,,(«, 3) is a continuous function ofx for
all 3> 0andM > 0, the above equation can be extended
be asymptotically valid for the case when= 0 as well, with
the corresponding limiting value given by

with the equalities above being valid only for the case of-hal
Ydd integer values ol/.
Proof: The proof follows immediately from Theoren 4.
|
r (M, /5_2) In Corollary{4, the quantitie® ;, . (a, 3) andQyy, . (a, B)
N2y (30) can be evaluated exactly either from(24).1(25) [or (27)] (30)
L'(M) while for M € IN (@1) reduces to
This last result also appears in_[14, eq. (4.71)], where
Q,,(0, 8) has been derived directly frorh] (3) by applying the Qur-o.5( 8) < Qui(e B) < Qurros(e )
small argument form of the modified Bessel function. which comes as a complement to the inequalities[ol (20)
It has been proved in_[46] thaf_(R4], {25) along wilB (5and [23). This last result was originally demonstrated_i6, [4
can define tight upper and lower bounds for the generalized. (16)], where the authors following a geometric approach

QI\{(Oa ﬁ) =



1.0

0.81

0.6

Q4(O{, B)

0.4

0.31

0.1f

1.0

0.81

0.61

Qn(2:5,8)

0.4

0.21

(b) Q,r(2.5, 8) versusp for several values of\f.

Fig. 3. Bounds ofQ,,(a, 8) for several real values af, 3 and M. (In[(@)
bounds proposed by Li and Kam, [46]).

proposed tight lower and upper bounds for the generalized
Marcum Q-function of integer orderM, which have been (10
proved to outperform other existing ones. This can be easily
verified from Fig[B(d), wher€,(«, 8) has been plotted versus

[ for several values ofv. Therefore, for the case of redl,

one can expect even further enhancement in the strictness

of either the lower bound (fody; > 0.5) or the upper one

(for 65 < 0.5). This is clearly depicted in Fig]3(b), where

the curvesQ, 5(2.5, 5) and Qg 5(2.5, 8) constitute very tight
lower and upper bounds o®, ,(2.5,5) and Qg 3(2.5, 3),
respectively, for all range of.

IV. CONCLUSION

Applicable monotonicity criteria were established for thElS]

PUBLISHED IN IEEE TRANSACTIONS ON INFORMATION THEORY, VOL55, NO. 8, AUGUST 2009

Q-functions. Specifically, it was proved that the two Nut@il
functions are strictly increasing with respect to the raahs
M + N for the case whed/ > N + 1, while the generalized
Marcum Q-function increases monotonically with respect to
its real orderM . Additionally, novel closed-form expressions
for both types of the NuttalQ-function were given for the case
when M, N are odd multiples 00.5 and M > N. Regarding
the generalized Marcu®-function of half-odd integer order,
an alternative more compact closed-form expression, equiv
alent to the already existing one, was derived. By explgitin
these results, novel lower and upper bounds were proposed fo
the NuttallQ-functions whenM > N + 1, while the recently
proposed bounds for the generalized Marc@afunction of
integer M, were appropriately utilized in order to extend their
validity over real values of\/.
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