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On the Entropy of Compound Distributions on
Nonnegative Integers

Yaming Yu, Member, IEEE

Abstract—Some entropy comparison results are presented
concerning compound distributions on nonnegative integers. The
main result shows that, under a log-concavity assumption, two
compound distributions are ordered in terms of Shannon entropy
if both the “numbers of claims” and the “claim sizes” are ordered
accordingly in the convex order. Several maximum/minimum
entropy theorems follow as a consequence. Most importantly,
two recent results of Johnson et al. (2008) on maximum entropy
characterizations of compound Poisson and compound binomial
distributions are proved under fewer assumptions and with
simpler arguments.

Index Terms—compound binomial, compound Poisson, convex
order, infinite divisibility, log-concavity, maximum entropy, min-
imum entropy, random sum, stochastic orders

I. INTRODUCTION AND MAIN RESULT

This paper delivers some entropy comparison results con-
cerning compound random variables taking nonnegative inte-
ger values, i.e., variables of the form

M
∑

i=1

Xi (1)

where M,X1, X2, . . . , are independent random variables on
Z+ = {0, 1, . . .}, and Xi, i = 1, 2, . . . , are also identically
distributed. Letting M have a Poisson distribution in (1) yields
the special case of the compound Poisson, which plays an
important role in limit theorems and approximation bounds for
discrete random variables; see, for example, [2], [3]. Recently,
Kontoyiannis and Madiman [18], Madiman et al. [20], and
Johnson et al. [13] have explored compound Poisson approx-
imation and limit theorems using information theoretic ideas,
extending the results of [17] and [12] for the Poisson (see also
[8], [9], [32]). As a first step toward a compound Poisson limit
theorem with the same appealing “entropy increasing to the
maximum” interpretation as the central limit theorem ([4], [1],
[19], [27]), we need to identify a suitable class of distributions
among which the compound Poisson has maximum entropy
([13]). This partly motivates our investigation.

On the other hand, compound distributions are extensively
used in applied settings. In insurance risk theory [22], for
example, the random sum (1) can be used to model the total
claim amount, M being the number of claims and Xi’s being
the claim sizes. Results here therefore yield qualitative com-
parisons between distributions of the total claim amount with
respect to Shannon’s entropy, regarded purely as a measure
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of variability or dispersion. (Note, however, that we focus on
integer-valued variables only.)

Our results are closely related to those of Johnson et al.
[13], who extend the semigroup argument of [12] to maximum
entropy characterizations of compound Poisson and compound
binomial distributions. We take a different approach based on
convex ordering; as in [13], log-concavity also plays a critical
role. Convex ordering and log-concavity together yield a rather
general entropy comparison result (Theorem 1; see [30] for
related work).

As usual, the Shannon entropy of a random variable X on
Z+ with probability mass function (pmf) f = {fi, i ≥ 0} is
defined as

H(X) = H(f) =

∞
∑

i=0

−fi log fi

where 0 log 0 = 0 and we use the natural logarithm. We also
recall the following definitions.

Definition 1: A nonnegative sequence f = {fi, i ≥ 0} on
Z+ is log-concave, if supp(f) = {i : fi > 0} is an interval
of consecutive integers, and

f2
i+1 ≥ fifi+2, i ≥ 0. (2)

A positive sequence f on Z+ is log-convex if it satisfies (2)
with the inequality reversed. We call a random variable on
Z+ log-concave (log-convex), if its pmf is log-concave (log-
convex).

Definition 2: For random variables X and Y on Z+, X is
smaller than Y in the convex order (written as X ≤cx Y ), if
Eφ(X) ≤ Eφ(Y ) for every convex function φ on Z+ (i.e.,
2φ(i+ 1) ≤ φ(i) + φ(i+ 2), i ∈ Z+).

We focus on integer-valued random variables, although Def-
inition 2 extends readily to the real-valued case. Also, we use
≤cx with the pmfs as well as the random variables. Informally,
the convex order compares the “spread” or variability of two
distributions. In particular, if X ≤cx Y and bothX and Y have
finite means, then EX = EY . In such a case, by choosing
φ(x) = (x− EX)2 in Definition 2, we obtain that X ≤cx Y
implies V ar(X) ≤ V ar(Y ). Further basic properties of the
convex order can be found in Shaked and Shanthikumar ([24],
Chapter 3).

Since entropy ordering also compares the variability of
distributions, although in a difference sense, it is reasonable to
expect some connection with convex ordering. For compound
distributions, our main result (Theorem 1) clarifies such a
connection while highlighting the role of log-concavity. Let
us first specify a convenient notation.
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Definition 3: The compound pmf cg(f) is the pmf of
∑M

i=1Xi where M,X1, X2, . . . , are independent random vari-
ables on Z+, M has pmf g, and each Xi has pmf f .

Our main result is as follows.
Theorem 1: Let f, f∗, g, g∗ be pmfs on Z+ such that

f ≤cx f
∗, g ≤cx g

∗, and cg∗(f∗) is log-concave. Then

H(cg(f)) ≤ H(cg∗(f∗)).

Theorem 1 need not hold without the log-concavity as-
sumption ([13]; see also Remark 3 in Section II). Theorem
1 is useful because directly proving an entropy inequality is
often more difficult than establishing a convex ordering and
verifying a log-concavity condition ([32]).

The proof of Theorem 1 is facilitated by a key lemma, the
basic idea of which dates back to Karlin and Rinott [14]; see
[31] for a continuous version, and see [32] for an application
analyzing the monotonicity of entropy in a special Poisson
limit theorem.

Lemma 1: Let g and g∗ be pmfs on Z+ such that g ≤cx g
∗

and g∗ is log-concave. Then H(g) ≤ H(g∗).
Proof: We have

H(g∗) = −
∑

i≥0

g∗i log g∗i

≥ −
∑

i≥0

gi log g∗i (3)

≥ −
∑

i≥0

gi log gi (4)

= H(g)

where (3) follows from g ≤cx g∗ and (4) follows from the
fact that D(g||g∗) =

∑

i≥0 gi log(gi/g
∗
i ) ≥ 0. All sums are

effectively over supp(g∗) as g ≤cx g
∗ implies that g assigns

zero mass outside of supp(g∗) when supp(g∗) is an interval
on Z+.

Another key result is the following property of the convex
order. A proof of Lemma 2 is included in the Appendix; see
Shaked and Shanthikumar ([24], Theorem 3.A.13) and Jean-
Marie and Liu [11] for other versions.

Lemma 2: Let f, f∗, g, g∗ be pmfs on Z+ such that
f ≤cx f

∗ and g ≤cx g
∗, then

cg(f) ≤cx cg∗(f∗).

Theorem 1 follows directly from Lemmas 1 and 2.
In Section II, we use Theorem 1 to derive several maximum

(minimum) entropy characterizations, including two maximum
entropy results of Johnson et al. [13] on compound binomial
and compound Poisson distributions. In view of the crucial
role of the log-concavity assumption, in Section III we discuss
conditions for a compound Poisson pmf to be log-concave.
Specifically, a conjecture in [13] is confirmed using a result
of Hansen [6]. Some implications of the log-concavity require-
ment are also mentioned.

II. MAXIMUM AND MINIMUM ENTROPY
CHARACTERIZATIONS

Let Bi, i = 1, . . . , n, be independent Bernoulli random
variables, Bi ∼ Bern(pi), pi ∈ (0, 1). A theorem of

Shepp and Olkin [25] states that, subject to a fixed mean
∑n

i=1 pi, the entropy of S =
∑n

i=1Bi is maximized when
all pi’s are equal, i.e., when S has a binomial distribution.
(The pmf of the binomial distribution Bi(n, p) is denoted by
bi(n, p) = {

(

n

i

)

pi(1 − p)n−i, i = 0, . . . , n}.) We show that
this maximum entropy property generalizes naturally to the
compound binomial, provided that the compound binomial
pmf is log-concave (Theorem 2). A similar result (Theorem
3) holds for the compound Poisson.

Theorems 2 and 3 strengthen Theorems 1.4 and 1.5, re-
spectively, of Johnson et al. [13] in that we impose fewer
assumptions. Specifically, in both Theorems 2 and 3 we relax
their assumption that f itself is log-concave. (As in [13], we
assume that the compound pmf, e.g., cg∗(f) in Theorem 2,
is log-concave.) Our derivation, based on Theorem 1, is also
simpler.

Theorem 2 ([13], Theorem 1.4): Let g be the pmf of
∑n

i=1 Bi where Bi ∼ Bern(pi) independently, with pi ∈
(0, 1). Let g∗ ≡ bi(n, p̄) with p̄ = (1/n)

∑n

i=1 pi. Then, for
any pmf f on Z+ such that cg∗(f) is log-concave, we have

H(cg(f)) ≤ H(cg∗(f)).

Proof: In view of Theorem 1, we only need to show that
g ≤cx g

∗, which is a classical inequality of Hoeffding ([10],
Theorem 3).

Remark 1: By setting f as a point mass at 1 in Theorem 2,
we recover the theorem of Shepp and Olkin [25] and Mateev
[21], i.e.,

H

(

n
∑

i=1

Bi

)

≤ H(bi(n, p̄)). (5)

See [14] [7] [12] [29] and [30] for ramifications.
To prepare for an analogous result for the compound Pois-

son, let us recall the notion of ultra log-concavity, which
was introduced by Pemantle [23] in the study of negative
dependence.

Definition 4: A random variable Y on Z+ is ultra log-
concave, or ULC, if the support of Y is an interval on Z+,
and the pmf of Y , fi = Pr(Y = i), satisfies

(i+ 1)f2
i+1 ≥ (i+ 2)fifi+2, i ≥ 0.

Equivalently, Y is ULC if the sequence {i!fi, i ≥ 0} is
log-concave. Ultra log-concavity can be conveniently defined
in terms of the relative log-concavity order [28].

Definition 5: Let g and g∗ be pmfs on Z+. Then g is log-
concave relative to g∗, written as g ≤lc g

∗, if
1) supp(g) and supp(g∗) are both intervals on Z+;
2) supp(g) ⊂ supp(g∗); and
3) log(gi/g

∗
i ) is concave on i ∈ supp(g).

We use ≤lc with the random variables as well as their pmfs.
Evidently, a random variable Y being ULC is equivalent to
Y ≤lc Z for any Z ∼ Po(λ), λ > 0. (The pmf of the Poisson
distribution Po(λ) is denoted by po(λ) = {λie−λ/i!, i =
0, 1, . . .}.)

A result of [12], closely related to (5), states that among
all ULC distributions with a fixed mean, the Poisson achieves
maximum entropy. An extension to the compound Poisson is
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considered in [13]. Henceforth we use CP(λ, f ) to denote a
compound Poisson distribution, i.e., the pmf is

cp(λ, f) ≡ cpo(λ)(f).

Theorem 3 ([13], Theorem 1.5): Let g be a ULC pmf on
Z+ with mean λ ∈ (0,∞). Then for any pmf f on Z+ such
that cp(λ, f) is log-concave, we have

H(cg(f)) ≤ H(cp(λ, f)).

In other words, if a compound Poisson pmf cp(λ, f) is
log-concave, then it achieves maximum entropy among all
compound distributions with the same “claim size” pmf f , but
with a ULC distribution (mean λ) for the “number of claims.”
The maximum entropy result of [12] corresponds to f being
a point mass at 1.

The main step in our proof of Theorem 3 is Lemma 3,
which connects the relative log-concavity order ≤lc with the
convex order ≤cx; the basic idea is due to Whitt [28] (see
[30], Theorem 12). A proof of Lemma 3 is sketched.

Lemma 3: Suppose g and g∗ are pmfs on Z+ such that

g ≤lc g
∗ and

∑

i≥0

igi =
∑

i≥0

ig∗i <∞. (6)

Then g ≤cx g
∗.

Proof: The assumption (6) implies that, unless g = g∗,
the sign pattern of log(gi/g

∗
i ), or that of gi − g∗i , is −, +, −

as i traverses the support of g. A classical inequality (Karlin
and Studden [15], Lemma XI. 7.2) then yields

∑

i≥0

giφ(i) ≤
∑

i≥0

g∗i φ(i)

for any convex function φ on Z+.
Proof of Theorem 3: We have g ≤cx po(λ) by Lemma

3. The claim then follows from Theorem 1.
Remark 2: Building on the works of [12], [8] and [20],

Yu [32] has recently obtained an “entropy increasing to the
maximum” result in a version of the law of small numbers.
Theorem 3 may be seen as a first step toward extending such
a result to the compound Poisson case.

So far we have compared compound distributions with
the same “claim size” distribution. We also present some
minimum entropy characterizations (Propositions 1 and 2) to
illustrate Theorem 1 when the “claim size” distributions may
differ. (Of course, we may also allow this in Theorems 2 and
3.)

Proposition 1: Let λ ∈ (0,∞) and let f be a pmf on Z+

with mean µ <∞. Suppose cp(λ, f) is log-concave. Then

H(po(λµ)) ≤ H(cp(λ, f)).

In other words, subject to a fixed mean, the Poisson achieves
minimum entropy among compound Poisson distributions that
are log-concave. Proposition 1 should be compared with the
maximum entropy characterization of Johnson ([12], Theorem
2.5).

Proof of Proposition 1: Fix α > max{1, µ}. A Poisson
with mean λµ is equivalently a compound variable where the
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Fig. 1. Entropy of nb(m, m/(m +µ)) as a function of log(m) for µ = 5.

claim number is Po(αλ) and the the claim size is Bern(α−1µ),
i.e.,

po(λµ) = cp(αλ, bi(1, α−1µ)).

More generally, we have cp(λ, f) = cp(αλ, f ∗), where f∗ is
the mixture

f∗ = α−1f + (1 − α−1)δ0

and δ0 denotes a point mass at zero. To see this, note that
a random variable X with pmf cp(λ, f) can be obtained by
drawing Y ∼ Po(αλ), Z|Y ∼ Bin(Y, α−1), and, given
(Y, Z), setting X as the sum of Z i.i.d. random variables,
each with pmf f . Equivalently, X is a sum of Y i.i.d. random
variables, each with pmf f∗.

It is easy to show that bi(1, α−1µ) ≤cx f∗. (Intuitively
bi(1, α−1µ) is the least “spread out” distribution on Z+ with
mean α−1µ.) The claim follows from Theorem 1.

Remark 3: Proposition 1 need not hold without assuming
that cp(λ, f) is log-concave. Consider a negative binomial
pmf nb(m, p) = {

(

m+i−1
i

)

pm(1 − p)i, i = 0, 1, . . .}, with
m > 0 and p = m/(m + µ). It is a compound Poisson
([5], p. 271) with mean µ; it is log-convex when m ∈ (0, 1)
and log-concave when m > 1. However, there are values
of m ∈ (0, 1) such that H(nb(m, p)) < H(po(µ)), as is
evident from Fig. 1, which displays H(nb(m, p)) as a function
of log(m) for µ = 5. Note that as m increases from 1 to
∞, H(nb(m, p)) monotonically decreases to H(po(µ)). (By
a separate calculation H(po(5)) ≈ 2.20.)

We mention an analogue of Proposition 1 for the binomial,
which also follows from Theorem 1.

Proposition 2: Let f be a pmf on Z+ with mean µ <
∞. Suppose p ∈ (0, 1) satisfies pµ < 1, and the compound
binomial cbi(n,p)(f) is log-concave. Then

H(bi(n, pµ)) ≤ H(cbi(n,p)(f)).

In other words, subject to a fixed mean and a fixed n (“the
number of trials”), the binomial achieves minimum entropy
among compound binomial distributions that are log-concave.

Proof of Proposition 2: Trivially, bi(n, pµ) is a com-
pound pmf with the “claim number” fixed at n, and the
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“claim size” as bi(1, pµ). On the other hand, cbi(n,p)(f)
is equivalently the pmf of

∑n

i=1XiBi where Xi, Bi are
independent, Xi’s have pmf f , and Bi ∼ Bern(p). That is,
cbi(n,p)(f) is a compound pmf with the “claim number” fixed
at n, and the “claim size” as a mixture f ∗ = pf + (1 − p)δ0

where δ0 is a point mass at zero. Similar to the Poisson case,
the claim follows from bi(1, pµ) ≤cx f

∗ and Theorem 1.

III. THE LOG-CONCAVITY ASSUMPTION

Since log-concavity is a crucial assumption in Theorem 1,
it is natural to ask for conditions that ensure the log-concavity
of a compound variable

∑M

i=1Xi, e.g., in terms of the log-
concavity properties of Xi. In general this appears to be
a difficult combinatorial problem; in the compound Poisson
case, a sufficient condition is summarized as Theorem 4, which
was stated as a conjecture in [13].

Theorem 4 ([13], Conjecture 4.5): Suppose a pmf f =
{fi, i ∈ Z+} is log-concave. Then the compound Poisson
cp(λ, f), λ > 0, is log-concave if and only if λf 2

1 ≥ 2f2.
We point out that Theorem 4 can be deduced from Hansen

([6], Theorem 1), where the results are phrased in terms of
infinite divisibility. A random variable X is infinitely divisible,
if for each n ≥ 2 there exist i.i.d. random variables Yi, i =
1, . . . , n, such that X has the same distribution as

∑n

i=1 Yi.
A well-known connection between infinite divisibility and
compound Poisson distributions is stated in Theorem 5; further
results can be found in Steutel and Van Harn [26].

Theorem 5 ([5] [16] [26]): Let X be a random variable on
Z+ with pmf g = {gi, i ≥ 0} such that g0 > 0. Then the
following statements are equivalent.

a X ∼ CP(λ, f) for some λ > 0 and pmf f on Z+.
b X is infinitely divisible.
c There exist ri ≥ 0, i = 0, 1, . . . , such that

(n+ 1)gn+1 =

n
∑

i=0

rign−i, n ≥ 0. (7)

Proof: For a ⇔ b, see Feller ([5], Chapter XII); for b ⇔
c, see Katti [16].

Note that in Theorem 5, the f = {fi, i ≥ 0} in (a) and the
r = {ri, i ≥ 0} in (c) obey the relation

ri = λ(i+ 1)fi+1, i ≥ 0. (8)

Relation (7) (together with (8)) is known as Panjer’s recursion
[22] in actuarial literature.

Proof of Theorem 4: Write g ≡ cp(λ, f), and let r =
{ri, i ≥ 0} be specified through (8), so that r and g are
related by (7). Hansen ([6], Theorem 1) showed that, if r is
log-concave, then g is log-concave if and only if r20 ≥ r1. In
view of (8), however, we know that (i) f being log-concave
implies that r is log-concave, and (ii) λf 2

1 ≥ 2f2 is equivalent
to r20 ≥ r1. Thus λf2

1 ≥ 2f2 is necessary and sufficient.
Hansen’s argument for the sufficiency is short but nontrivial,

and will not be presented here. The necessity of λf 2
1 ≥ 2f2,

however, is easy to prove, as noted in [13]. If g is log-concave
then g2

1 ≥ g0g2, and, using (7), we may express g1, g2 in terms
of g0 and r to obtain

(r0g0)
2 ≥ g0

r20g0 + r1g0
2

which simplifies to r20 ≥ r1, or equivalently λf2
1 ≥ 2f2.

Theorem 4 leads to the following result, which was also
mentioned in [13] as a conjecture.

Corollary 1: If a pmf f on Z+ is log-concave and cp(λ, f)
is log-concave for some λ > 0, then cp(µ, f) is log-concave
for all µ > λ.

Of course, it would be interesting to see if Theorem 4 can
be adapted to other compound distributions, e.g., compound
binomial distributions.

We also explore the implications of requiring a compound
pmf to be log-concave. In the compound Poisson case, an
interesting observation (Proposition 3) is that such a pmf g
must be “less log-concave” than the Poisson itself, i.e., the
Poisson must be log-concave relative to g. This result, though
elementary, does not seem well known, and hence a proof is
provided.

Proposition 3: Let λ > 0 and let f be a pmf on Z+. If
the compound Poisson g ≡ cp(λ, f) is non-degenerate and
log-concave, then po(λ) ≤lc g.

Proof: The assumptions imply gi > 0 for all i ∈ Z+.
From log-concavity, i.e., gi/gi−1 ≥ gi+1/gi, we deduce
gn−i/gn−i−1 ≥ gn/gn−1, 0 ≤ i < n. Putting this in (7),
we get

(n+ 1)gn+1 =

n
∑

i=0

rign−i

≥
n−1
∑

i=0

ri
gngn−i−1

gn−1

=
ng2

n

gn−1

where the last step uses (7) again with n−1 in place of n. Thus
the sequence n!gn, n = 0, 1, . . . , is log-convex, as required.

Proposition 3 shows that the log-concavity assumption
places further nontrivial constraints on g = cp(λ, f):

gi+1

gi

≤
gi

gi−1
≤

(i+ 1)gi+1

igi

, i > 0.

Although these may seem stringent, they are not enough to
ensure that g is a compound Poisson. A counter-example is
a zero-inflated Poisson with a suitable probability at zero, as
can be verified using (7).

Proposition 3 is also closely related to Proposition 1, our
minimum entropy characterization of the Poisson. In fact,
Proposition 3 can be used to give another derivation of
Proposition 1.

Alternative Proof of Proposition 1: Because cp(λ, f) is
log-concave, Proposition 3 gives po(λµ) ≤lc cp(λ, f). Lemma
3 then implies po(λµ) ≤cx cp(λ, f), and the claim follows
from Lemma 1.

Proposition 4 below is the counterpart of Proposition 3 for
the compound binomial; see the Appendix for its proof.

Proposition 4: Let p ∈ (0, 1) and let f = {fi, i ≥ 0} be
a pmf on Z+. If the compound binomial g ≡ cbi(n,p)(f) is
non-degenerate and log-concave, then bi(n, p) ≤lc g.
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Similar to the compound Poisson case, Proposition 4 shows
that the log-concavity assumption places the following con-
straints on g = cbi(n,p)(f):

gi+1

gi

≤
gi

gi−1
≤

(i+ 1)(n− i+ 1)gi+1

i(n− i)gi

, 0 < i < n.

Proposition 4 also leads to an alternative proof of Proposition
2. The argument (omitted) completely parallels the compound
Poisson case.
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APPENDIX

PROOF OF LEMMA 2
We recall that the convex order is closed under convolution

([24], Chapter 3).
Proposition 5: If Xi, i = 1, . . . , n, are independent vari-

ables, Yi, i = 1, . . . , n, are another set of independent
variables, and Xi ≤cx Yi for each i, then

n
∑

i=1

Xi ≤cx

n
∑

i=1

Yi.

Proof of Lemma 2: Let φ(x) be a convex function on Z+.
Then for any a, b, c ∈ Z+, φ(a+ x) − φ(x) is nondecreasing
in x, and

φ(a+ b+ c) − φ(b+ c) ≥ φ(a+ c) − φ(c). (9)

Let M, X1, X2, . . . , N, Y1, Y2, . . . , be independent variables
on Z+ such that M has pmf g, N has pmf g∗, Xi’s have pmf
f , and Yi’s have pmf f∗. The assumption says that Xi ≤cx Yi

and M ≤cx N . Define

Sk =
k
∑

i=1

Yi and ψ(k) = Eφ(Sk).

Note that ψ is well defined because φ is convex on Z+. We
may assume that ψ is finite; the general case follows by a
standard limiting argument. By symmetry and (9), we have

2ψ(k + 1) = E [φ(Sk + Yk+1) + φ(Sk + Yk+2)]

≤ E [φ(Sk) + φ(Sk + Yk+1 +Xk+2)]

= ψ(k) + ψ(k + 2),

i.e., ψ(k) is convex in k. Hence

Eφ

(

M
∑

i=1

Xi

)

= E

[

Eφ

(

M
∑

i=1

Xi

)∣

∣

∣

∣

∣

M

]

≤ E [Eφ (SM )|M ] (10)
= Eψ(M)

≤ Eψ(N) (11)
= Eφ (SN )

where we apply Proposition 5 in (10), and use M ≤cx N and
the convexity of ψ in (11). The claim readily follows.

PROOF OF PROPOSITION 4
The assumptions imply gi > 0 for 0 ≤ i ≤ n. Define

f∗
0 = pf0 + 1 − p and f∗

i = pfi, i = 1, 2, . . .

for convenience. Analogous to the Poisson case, we have the
recursion ([22])

(k + 1)gk+1f
∗
0 =

k
∑

i=0

[(n+ 1)i+ n− k]gk−if
∗
i+1 (12)

for k = 0, 1, . . .. From the log-concavity of g we obtain
gk−i/gk−i−1 ≥ gk/gk−1, 0 ≤ i < k. Hence, for 1 ≤ k ≤ n
we have

(k + 1)gk+1f
∗
0 ≥

k
∑

i=0

[(n+ 1)i+ n− k]
gkgk−i−1

gk−1
f∗

i+1

≥

k−1
∑

i=0

[(n+ 1)i+ n− k + 1]
n− k

n− k + 1

×
gkgk−i−1

gk−1
f∗

i+1

=
n− k

n− k + 1

kg2
kf

∗
0

gk−1

where the last step uses (12) with k − 1 in place of k. After
rearrangement we get

gk+1
(

n

k+1

)

gk−1
(

n

k−1

) ≥
g2

k
(

n

k

)2 , 0 < k < n,

i.e., the sequence log(gk/
(

n
k

)

) is convex on k ∈ {0, . . . , n},
as required.
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