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Discrimination of two channels by adaptive
methods and its application to quantum system

Masahito Hayashi

Abstract

The optimal exponential error rate for adaptive discrimination of two channels is discussed. In this problem, adaptivechoice
of input signal is allowed. This problem is discussed in various settings. It is proved that adaptive choice does not improve the
exponential error rate in these settings. These results areapplied to quantum state discrimination.
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I. I NTRODUCTION

D ISCRIMINATING two distributions is treated as a fundamental problem in the field of statistical inference. This problem
can be regarded as simple hypothesis testing because both hypotheses consist of a single distribution. Many researchers,

Stein, Chernoff[3], Hoeffding[16], and Han-Kobayashi[10] have studied the asymptotic behavior when the numbern of
identical and independent observations is sufficiently large. They formulated a simple hypothesis testing/discrimination of
two distributions as an optimization problem and derived the respective optimum value, e.g., the optimal exponential error
rate. We call these optimum values the Stein bound, the Chernoff bound, the Hoeffding bound, and the Han-Kobayashi bound,
respectively. Han [8], [9] later extended these results to the discrimination of two general sequences of distributions, including
the Markovian case. Nagaoka-Hayashi [21] simplified Han’s discussion and generalized Han’s extension of the Han-Kobayashi
bound.

In the present paper, we consider another extension of the above results. That is, we extend the above results to the
discrimination of two (classical) channels, in which two probabilistic transition matrices are given. Such a problem has appeared
in Blahut[2]. In this problem, the number of applications ofthis channel is fixed to a given constantn, and we can choose
appropriate inputs for this purpose. In this case, we assumethat the given channel is memoryless. If we use the same inputto
all applications of the given channel, then output data obeys an identical and independent distribution. This property holds
even if we choose the input randomly based on the same distribution on input signals. This strategy is called thenon-adaptive
method. In particular, when the same input is applied to all channels, it is called thedeterministic non-adaptive method. If
the input is determined stochastically, it is called thestochastic non-adaptive method, which was treated by Blahut[2]. In the
non-adaptive method, our task is choosing the optimal inputfor distinguishing two channels most efficiently. In the present
paper, we assume that we can choose thek-th input signal based on the precedingk−1 output data. This strategy is called the
adaptive method, which is the main focus of the present paper. In the parameter estimation, such an adaptive method improves
estimation performance. That is, in the one-parameter estimation, the asymptotic estimation error is bounded by the inverse
of the optimum Fisher information. However, if we do not apply the adaptive method, it is generally impossible to realize
the optimum Fisher information in all points at the same time. It is known that the adaptive method realizes the optimum
Fisher information in all points[13], [7]. Therefore, one may expect that the adaptive method improves the performanceof
discriminating two channels.

As our main result, we succeeded in proving that the adaptivemethod cannot improve the non-adaptive method in the
sense of all of the above mentioned bounds, i.e., the Stein bound, the Chernoff bound, the Hoeffding bound, and the Han-
Kobayashi bound. That is, there is no difference between thenon-adaptive method and the adaptive method in these asymptotic
formulations. Indeed, as is proven herein, the deterministic non-adaptive method gives the optimum performance with respect
to the Stein bound, the Chernoff bound, and the Hoeffding bound. However, in order to attain the Han-Kobayashi bound, in
general, we need the stochastic non-adaptive method.

On the other hand, the research field in quantum information has treated the discrimination of two quantum states. Hiai-
Petz[15] and Ogawa-Nagaoka[18] proved the quantum versionof Stein’s lemma. Audenaert et al. [1] and Nussbaum-Szkoła
[23], [24] obtained the quantum version of the Chernoff bound.

Ogawa-Hayashi [17] derived a lower bound of the quantum version of the Hoeffding bound. Later, Hayashi [12] and
Nagaoka [20] obtained its tight bound based on the results byAudenaert et al. [1] and Nussbaum-Szkoła [23], [24]. Hayashi
[11] (in p.90) obtained the quantum version of the Han-Kobayashi bound based on Nagaoka[19]’s discussion. These discussions
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assume that any measurement on then-tensor product system is allowed for testing the given state. Hence, the next goal is
the derivation of these bounds under some locality restrictions on ann-partite system for possible measurements. One easy
setting is restricting the present measurement to be identical to that in the respective system. In this case, our task isthe
choice of the optimal measurement on the single system. By considering the measurement and the quantum state as the input
and the channel, respectively, we can treat this problem by the non-adaptive method of the classical channel. Another setting
is restricting our measurement to one-way local operationsand classical communications (one-way LOCC). In the above-
mentioned correspondence, the one-way LOCC setting can be regarded as the adaptive method of the classical channel. Hence,
applying the above argument to discrimination of two quantum states, we can conclude that one-way communication does not
improve discrimination of two quantum states in the respective asymptotic formulations.

Furthermore, the same problem appears in adaptive experimental design and active learning. In learning theory, we identify
the given system by using the obtained sequence of input and output pairs. In particular, in active learning, we can choose
the inputs using the preceding data. Hence, the present result indicates that active learning does not improve the performance
of learning when the candidates of the unknown system are given by only two classical channels. In experimental design, we
choose suitable design of our experiment for inferring the unknown parameter. Adaptive improvement for the design is allowed
in adaptive experimental design. When the candidates of theunknown parameter are only two values, the obtained result can
be applied. That is, adaptive improvement for design does not work.

The remainder of the present paper is organized as follows. Section II reviews the Stein bound, the Chernoff bound, the
Hoeffding bound, and the Han-Kobayashi bound in discrimination of two probability distributions. In Section III, we present
our formulation and notations of the adaptive method in the discrimination of two (classical) channels, and discuss theadaptive-
method versions of the Stein bound, the Chernoff bound, the Hoeffding bound, and the Han-Kobayashi bound, respectively.
In Section IV, we consider a simple example, in which the stochastic non-adaptive method is required for attaining the Han-
Kobayashi bound. In Section V, we apply the present result todiscrimination of two quantum states by one-way LOCC. In
Sections VI, VII, and VIII, we prove the adaptive-method versions of Stein bound, the Chernoff bound, the Hoeffding bound,
and the Han-Kobayashi bound, respectively.

II. D ISCRIMINATION /SIMPLE HYPOTHESIS TESTING BETWEEN TWO PROBABILITY DISTRIBUTIONS

In preparation for the main topic, we review the simple hypothesis testing problem for the null hypothesisH0 : Pn versus the
alternative hypothesisH1: P

n
, wherePn andP

n
are then-th identical and independent distributions ofP andP , respectively

on the probability spaceY. The problem is to decide which hypothesis is true based onn outputsy1, . . . , yn. In the following,
randomized tests are allowed as our decision. Hence, our decision method is described by a[0, 1]-valued functionf on Yn.
When we observen outputsy1, . . . , yn, we accept the alternative hypothesisP with the probabilityf(y1, . . . , yn). We have
two types of errors. In the first type, the null hypothesisP is rejected despite being correct. In the second type, the alternative
P is rejected despite being correct. Hence, the first type of error probability is given byEPnf , and the second type of error
probability is byEP

n(1− f). Note thatEP describes the expectation under the distributionP .
In the following, we assume that

Φ(s|P‖P ) :=

∫

Y

(
∂P

∂P
(y))sP (dy) < ∞

φ(s|P‖P ) := logΦ(s|P‖P )

andφ(s|P‖P ) is C2-continuous. In the present paper, we choose the base of the logarithm to bee. In the discrimination of
two distributions, we treat two types of probabilities equally. Then, we simply minimize the equal sumEPnf + EP

n(1− f).
Its optimal rate of exponential decrease is characterized by the Chernoff bound[3]:

C(P, P ) := lim
n→∞

−1

n
log(min

fn
EPnfn + EP

n(1− fn)) = − min
0≤s≤1

φ(s|P‖P ).

In order to treat these two error probabilities asymmetrically, we often restrict the first type of error probabilityEPnf to below
a particular thresholdǫ, and minimize the second type of error probabilityEP

n(1− f):

β∗
n(ǫ) := min

f

{

EP
n(1− f)

∣

∣ EPnf ≤ ǫ
}

.

Then, the Stein’s lemma holds. For0 < ∀ǫ < 1, the equation

lim
n→∞

1

n
log β∗

n(ǫ) = −D(P‖P ) (1)

holds, where the relative entropyD(P‖P ) is defined by

D(P‖P ) =

∫

Y

− log
∂P

∂P
(y)P (dy).
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Indeed, this lemma has the following variant form. Define

B(P‖P ) := sup
{fn}

{

lim
n→∞

− logEP
n(1− fn)

n

∣

∣

∣

∣

lim
n→∞

EPnfn = 0

}

B∗(P‖P ) := inf
{fn}

{

lim
n→∞

− logEP
n(1− fn)

n

∣

∣

∣

∣

lim
n→∞

EPnfn < 1

}

.

Then, these two quantities satisfy the following relations:

B(P‖P ) = B∗(P‖P ) = D(P‖P ).

As a further analysis, we focus on the decreasing exponent ofthe error probability of the first type under an exponential
constraint for the error probability of the second type. When the decreasing exponent of for the error probability of thesecond
type is greater than the relative entropyD(P‖P ) , the error probability of the second type converges to1. In this case, we
focus on the decreasing exponent of the probability of correctly accepting the null hypothesisP . For this purpose, we define

Be(r|P‖P ) := sup
{fn}

{

lim
n→∞

− logEPnfn

n

∣

∣

∣

∣

lim
n→∞

− log EP
n(1 − fn)

n
≥ r

}

B∗
e (r|P‖P ) := inf

{fn}

{

lim
n→∞

− logEPn(1− fn)

n

∣

∣

∣

∣

lim
n→∞

− logEP
n(1− fn)

n
≥ r

}

.

Then, the two quantities are calculated as

Be(r|P‖P ) = min
Q:D(Q‖P )≤r

D(Q‖P ) = sup
0≤s≤1

−sr − φ(s|P‖P )

1− s
(2)

B∗
e (r|P‖P ) = min

Q:D(Q‖P )≤r

D(Q‖P ) + r −D(Q‖P ) = sup
s≤0

−sr − φ(s|P‖P )

1− s
. (3)

The first expressions of (2) and (3) are illustrated by Figs. 1and 2.

P PQ

( )D Q P r=
( )D Q P

Fig. 1. Figure ofBe(r|P‖P )

P
P

Q
( )D Q P r=

Fig. 2. Figure ofB∗

e
(r|P‖P ) whenr0 ≥ r ≥ D(P‖P )
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Now, we define the new functionB(r):

Be(r) :=

{

Be(r|P‖P ) r ≤ D(P‖P )
−B∗

e (r|P‖P ) r > D(P‖P ).

Then, its graph is shown in Fig. 3.

( )D P P

( )eB r

( )D P P

r

Graph of    ( )eB r

( ),C P P 0r

Fig. 3. Graph ofBe(r)

In order to give other characterizations of (2), we introduce a one-parameter family

Ps,P,P (dy) :=
1

Φ(s|P‖P )
(
∂P

∂P
(y))sP (dy),

which is abbreviated asPs. Then, sinceφ(s) is C1 continuous,

D(Ps‖P1) = (s− 1)φ′(s)− φ(s) s ∈ (−∞, 1] (4)

D(P0‖Ps) = φ(s)− sφ′(0) s ∈ [0,∞). (5)

Since

d(s− 1)φ′(s)− φ(s)

ds
= −φ′′(s) < 0,

D(Ps‖P1) is monotonically decreasing with respect tos.
As is mentioned in Theorem 4 of Blahut [2], whenr ≤ D(P‖P ), there existssr ∈ [0, 1] such that

min
Q:D(Q‖P )≤r

D(Q‖P ) = D(Psr‖P0).

Then, (4) and (5) imply that

r = D(Psr‖P1) = (sr − 1)φ(sr)− φ(sr).

Thus, we obtain another expression.

min
Q:D(Q‖P )≤r

D(Q‖P ) = min
s∈[0,1]:D(Ps‖P )≤r

D(Ps‖P ). (6)

On the other hand,

d

ds

−sr − φ(s|P‖P )

1− s
=

−r + (s− 1)φ′(s)− φ(s)

(1 − s)2
=

D(Ps‖P1)

(1− s)2
. (7)

SinceD(Ps‖P1) is monotonically decreasing with respect tos, d
ds

−sr−φ(s|P‖P )
1−s

= 0 if and only if s = sr. The equation

min
Q:D(Q‖P )≤r

D(Q‖P ) = sup
0≤s≤1

−sr − φ(s|P‖P )

1− s
(8)

can be checked.
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In the following, we present some explanations concerning (3). As is mentioned by Han-Kobayashi[10] and Ogawa-
Nagaoka[18], whenr0 := D(P−∞‖P1) ≥ r ≥ D(P‖P ), the relation

B∗
e (r|P‖P ) = D(Psr‖P0)

holds, wheresr ∈ (−∞, 0] is defined as

r = D(Psr‖P1) = (sr − 1)φ(sr)− φ(sr).

Thus, similar to (6) and (8), the relation

min
Q:D(Q‖P )≤r

D(Q‖P ) + r −D(Q‖P ) = D(Psr‖P ) = sup
s≤0

−sr − φ(s|P‖P )

1− s
(9)

holds, wheresr ≤ 0 is defined byD(Psr‖P ) = r[18].
As mentioned by Nakagawa-Kanaya[22], whenr ≥ r0, the relation

min
Q:D(Q‖P )≤r

D(Q‖P ) + r −D(Q‖P ) = D(P−∞‖P ) + r −D(P−∞‖P ) = min
Q:D(Q‖P )≤r0

(D(Q‖P ) + r0 −D(Q‖P )) + r − r0

holds. This bound is attained by the following randomized test. The hypothesisP is accepted with the probability only when
the logarithmic likelihood ratio takes the maximum valuer0. SinceD(Ps‖P1) < r, (7) implies that

sup
s≤0

−sr − φ(s|P‖P )

1− s
= lim

s≤−∞

−sr − φ(s|P‖P )

1− s
= lim

s≤−∞

−sr0 − φ(s|P‖P )

1− s
+ r − r0

= min
Q:D(Q‖P )≤r0

(D(Q‖P ) + r0 −D(Q‖P )) + r − r0. (10)

Remark 1: The classical Hoeffding bound in information theory is due to Blahut[2] and Csiszár-Longo[4]. The corresponding
ideas in statistics were first put forward by Hoeffding[16],from whom the bound received its name. Some authors prefer to
refer this bound as the Hoeffding-Blahut-Csiszár- Longo bound.

On the other hand, Han-Kobayashi[10] gave the first equationof (3), and proved that this equation among non-randomized
tests whenr0 ≥ r ≥ D(P‖P ). They pointed out that the minimumminQ:D(Q‖P )≤r D(Q‖P ) + r −D(Q‖P ) can be attained
by Q satisfyingD(Q‖P ) = r. Ogawa-Nagaoka[18]showed the second equation of (3) for this case.

Nakagawa-Kanaya[22] proved the first equation whenr > r0. Indeed, as pointed by Nakagawa-Kanaya[22], whenr > r0,
any non-randomized test cannot attain the minimumminQ:D(Q‖P )≤r D(Q‖P ) + r − D(Q‖P ). In this case, the minimum
minQ:D(Q‖P )≤r D(Q‖P ) + r −D(Q‖P ) cannot be attained byQ satisfyingD(Q‖P ) = r.

III. M AIN RESULT: ADAPTIVE METHOD

Let us focus on two spaces, the set of input signalsX and the set of outputsY. In this case, the channel fromX andY is
described by the map from the setX to the set of probability distributions onY. That is, given a channelW Wx represents
the output distribution when the input isx ∈ X . WhenX and Y have finite elements, the channel is given by transition
matrix. The main topic is the discrimination of two classical channelsW andW . In particular, we treat its asymptotic analysis
when we can use the unknown channel onlyn times. That is, we discriminate two hypotheses, the null hypothesisH0 : Wn

versus the alternative hypothesisH1: W
n
, whereWn andW

n
are then uses of the channelW andW Then, our problem

is to decide which hypothesis is true based onn inputsx1, . . . , xn andn outputsy1, . . . , yn. In this setting, it is allowed to
choose thek-th input based on the previousk − 1 output adaptively. We choose thek-th input xk subject to the distribution
P k
(x1,y1),...,(xk−1,yk−1)

(xk) on X . That is, thek-th input xk depends onk conditional distributions~P k = (P 1, P 2, . . . , P k).

Hence, our decision method is described byn conditional distributions~Pn = (P 1, P 2, . . . , Pn) and a[0, 1]-valued function
fn on (X ×Y)n. In this case, when we choosen inputsx1, . . . , xn and observen outputsy1, . . . , yn, we accept the alternative
hypothesisW with the probabilityfn(x1, y1, . . . , xn, yn). That is, our scheme is illustrated by Fig. 4.

In order to treat this problem mathematically, we introducethe following notation. For a channelW from X to Y and a
distributionP on X , we define two notations, the distributionWP on X × Y and the distributionW · P on Y as

WP (x, y) := Wx(y)P (x)

W · P (x, y) :=

∫

X

Wx(y)P (dx).

Using the distributionWP , we define two quantities:

D(W‖W |P ) := D(WP‖WP )

φ(s|W‖W |P ) := φ(s|WP‖WP ).
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Channel discrimination with  
adaptive improvement

1x 1y

2y

ny

2x

nx

Adaptive improvement 
is allowed

or     WW

or     WW

or     WW

Fig. 4. The adaptive method

Based onk conditional distributions~P k = (P 1, P 2, . . . , P k), we define the following distributions:

Q
W,~Pn := WPnWPn−1 · · ·WP 1

P
W,~Pn := Pn ·Q

W,~Pn−1

Q
s,W |W,~Pn := Ps,Q

W,~Pn ,Q
W,~Pn

P
s,W |W,~Pn := Pn ·Q

s,W |W,~Pn−1 .

Then, the first type of error probability is given byEQ
W,~Pn

fn, and the second type of error probability is byEQ
W,~Pn

(1− fn).
In order to treat this problem, we introduce the following quantities:

C(W,W ) := lim
n→∞

−1

n
log( min

~Pn,fn

EQ
W,~Pn

fn + EQ
W,~Pn

(1− fn))

β∗
n(ǫ) := min

~Pn,fn

{

EQ
W,~Pn

(1− fn)
∣

∣ EQ
W,~Pn

fn ≤ ǫ
}

,

and

B(W‖W ) := sup
{(~Pn,fn)}

{

lim
n→∞

− logEQ
W,~Pn

(1− fn)

n

∣

∣

∣

∣

∣

lim
n→∞

EQ
W,~Pn

fn = 0

}

B∗(W‖W ) := inf
{(~Pn,fn)}

{

lim
n→∞

− logEQ
W,~Pn

(1− fn)

n

∣

∣

∣

∣

∣

lim
n→∞

EQ
W,~Pn

fn < 1

}

Be(r|W‖W ) := sup
{(~Pn,fn)}

{

lim
n→∞

− logEQ
W,~Pn

fn

n

∣

∣

∣

∣

lim
n→∞

− logEQ
W,~Pn

(1− fn)

n
≥ r

}

B∗
e (r|W‖W ) := inf

{(~Pn,fn)}

{

lim
n→∞

− logEQ
W,~Pn

(1 − fn)

n

∣

∣

∣

∣

∣

lim
n→∞

− log EQ
W,~Pn

(1− fn)

n
≥ r

}

.

We obtain the following channel version of Stein’s lemma.
Theorem 1: Assume thatφ(s|Wx‖Wx) is C1 continuous, and

lim
ǫ→+0

φ(−ǫ|W‖W )

ǫ
= sup

x∈X
D(Wx‖W x), (11)

whereφ(s|W‖W ) := supx∈X φ(s|Wx|W x) = supP∈P(X ) φ(s|W‖W |P ), andP(X ) is the set of distributions onX .
Then,

B(W‖W ) = B∗(W‖W ) = D := sup
x∈X

D(Wx‖Wx). (12)

The following is another expression of Stein’s lemma.
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Corollary 1: Under the same assumption,

lim
n→∞

−1

n
log β∗

n(ǫ) = sup
x∈X

D(Wx‖W x).

Condition (11) can be replaced by another condition.
Lemma 1: When any elementx ∈ X satisfies

φ′(0|Wx‖W x) = D(Wx‖Wx)

and there exists a real numberǫ > 0 such that

C1 := sup
x∈X

sup
s∈[−ǫ,0]

d2φ(s|Wx‖W x)

ds2
< ∞, (13)

then condition (11) holds.
In addition, we obtain a channel version of the Hoeffding bound.
Theorem 2: When

sup
x∈X

sup
s∈[0,1]

d2φ(s|Wx‖W x)

ds2
< ∞ (14)

and

sup
x∈X

D(W x‖Wx) < ∞,

then

Be(r|W‖W ) = sup
x∈X

sup
0≤s≤1

−sr − φ(s|Wx‖Wx)

1− s
= sup

x∈X
min

Q:D(Q‖Wx)≤r
D(Q‖Wx). (15)

Corollary 2: Under the same assumption,

C(W,W ) = sup
x∈X

− min
0≤s≤1

φ(s|Wx‖W x). (16)

These arguments imply that adaptive improvement does not improve the performance in the above senses. For example,
when we apply the best inputxM := argmaxx D(Wx‖Wx) to all of n channels, we can achieve the optimal performance in
the sense of the Stein bound. The same fact is true concerningthe Hoeffding bound and the Chernoff bound.

Proof: The relation

C(W,W ) = sup{r|Be(r|W‖W ) ≥ r}

holds. Since

sup
{

r
∣

∣

∣
sup
x∈X

sup
0≤s≤1

−sr − φ(s|Wx‖W x)

1− s
≥ r

}

= sup
x∈X

sup
{

r
∣

∣

∣
sup

0≤s≤1

−sr − φ(s|Wx‖W x)

1− s
≥ r

}

= sup
x∈X

− min
0≤s≤1

φ(s|Wx‖W x),

the relation (16) holds.
The channel version of the Han-Kobayashi bound is given as follows.
Theorem 3: Whenφ(s|Wx‖W x) is C1 continuous, then

B∗
e (r|W‖W ) = sup

s≤0

−sr − φ(s|W‖W )

1− s
= inf

P∈P(X )
sup
s≤0

−sr − φ(s|W‖W |P )

1− s
= inf

P∈P2(X )
sup
s≤0

−sr − φ(s|W‖W |P )

1− s
, (17)

whereP2(X ) is the distribution onX that takes positive probability only on at most two elements.
As shown in Section IV, the equality

sup
s≤0

−sr − φ(s|W‖W )

1− s
= inf

x∈X
sup
s≤0

−sr − φ(s|Wx‖Wx)

1− s
(18)

does not necessarily hold in general. In order to understandthe meaning of this fact, we assume that the equation (18) does not
hold. When we apply the same inputx to all channels, the best performance cannot be achieved. However, the best performance
can be achieved by the following method. Assume that the bestinput distributionargmaxP∈P2(X ) sups≤0

−sr−φ(s|W‖W |P )
1−s

has the support{x, x′}, and the probabilitiesλ and1 − λ. Then, applyingx or x′ to all channels with the probabilityλ and
1−λ, we can achieve the best performance in the sense of the Han-Kobayashi bound. That is, the structure of optimal strategy
of the Han-Kobayashi bound is more complex than those of the above cases.
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IV. SIMPLE EXAMPLE

In this section, we treat a simple example that does not satisfy (18). For four given parametersp, q, a > 1, b > 1, we define
the channelsW andW :

W0(0) := aq, W0(1) := 1− aq,

W 0(0) := q, W 0(1) := 1− q,

W1(0) := bq, W1(1) := 1− bq,

W 1(0) := q, W 1(1) := 1− q.

Then, we obtain

lim
s→−∞

φ(s|W0‖W 0)

s
= a,

lim
s→−∞

φ(s|W1‖W 1)

s
= b.

In this case,

D(W0‖W 0) =ap log a+ (1 − ap) log
1− ap

1− p

D(W1‖W 1) =bq log b+ (1− bq) log
1− bq

1− q
.

Whena > b andD(W0‖W 0) < D(W1‖W 1), the magnitude relation betweenφ(s|W0‖W 0) andφ(s|W1‖W 1) on (−∞, 0)
depends ons ∈ (−∞, 0). For example, the case ofa = 100, b = 1.5, p = 0.0001, q = 0.65 is shown in Fig. 5. In this case,
B∗

e (r|W0‖W 0), B∗
e (r|W1‖W 1), andB∗

e (r|W‖W ) are calculated by Fig. 6. Then, the inequality (18) does not hold.

-1 -0.8 -0.6 -0.4 -0.2 0
s

0

0.2

0.4

0.6

0.8

1

Φ
H
s
L

Fig. 5. Magnitude relation betweenφ(s|W0‖W 0) andφ(s|W1‖W 1) on (−1, 0). The upper solid line indicatesφ(s|W0‖W 0), the dotted line indicates
φ(s|W1‖W 1).

0.4 0.6 0.8 1 1.2 1.4
r

0

0.1

0.2

0.3

0.4

0.5

B
*

Fig. 6. Magnitude relation betweenB∗

e
(r|W0‖W 0), B∗

e
(r|W1‖W 1), andB∗

e
(r|W‖W ) on (−1, 0). The upper solid line indicatesB∗

e
(r|W0‖W 0), the

dotted line indicatesB∗

e
(r|W1‖W 1), and the lower solid line indicatesB∗

e
(r|W‖W ).
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V. A PPLICATION TO ADAPTIVE QUANTUM STATE DISCRIMINATION

Quantum state discrimination between two statesρ andσ on ad-dimensional systemH with n copies by one-way LOCC is
formulated as follows. We choose the first POVMM1 and obtain the datay1 through the measurementM1. In thek-th step, we
choose thek-th POVMMk((M1, y1), . . . , (Mk−1, yk−1)) depending on(M1, y1), . . . , (Mk−1, yk−1). Then, we obtain thek-th
datayk throughMk((M1, y1), . . . , (Mk−1, yk−1)). Therefore, this problem can be regarded as classical channel discrimination
with the correspondenceWM (y) = TrM(y)ρ andWM (y) = TrM(y)σ. That is, in this case, the set of input signal corresponds
to the set of extremal points of the set of POVMs on the given systemH. The proposed scheme is illustrated in Fig. 7.

One-way adaptive improvement

ρ σor

ρ σor

ρ σor

Measurement      1y
1M

Measurement      
2M

Measurement      
nM

2y

ny

Adaptive improvement 
is allowed

Fig. 7. Adaptive quantum state discrimination

Now, we assume thatρ > 0 andσ > 0. In this case,X is compact, and the map(s,M) → d2φ(s|WM‖WM )
ds2

is continuous.
Then, the condition (13) holds. Therefore, one-way improvement does not improve the performance in the sense of the Stein
bound, the Chernoff bound, the Hoeffding bound, or the Han-Kobayashi bound. That is, we obtain

B(W‖W ) =B∗(W‖W ) = max
M :POVM

D(PM
ρ ‖PM

σ )

Be(r|W‖W ) = max
M :POVM

sup
0≤s≤1

−sr − φ(s|PM
ρ ‖PM

σ )

1− s

B∗
e (r|W‖W ) = sup

s≤0

−sr −maxM :POVM φ(s|PM
ρ ‖PM

σ )

1− s
.

Therefore, there exists a difference between one-way LOCC and collective measurement.

VI. PROOF OF THESTEIN BOUND: (12)

Now, we prove the Stein bound: (12). For anyx ∈ X , by choosing the inputx in n times, we obtain

B(W‖W ) ≥ D(Wx‖W x).

Taking the supremum, we have

B(W‖W ) ≥ sup
x∈X

D(Wx‖W x).

Furthermore, from the definition, it is trivial that

B(W‖W ) ≤ B∗(W‖W ).

Therefore, it is sufficient to show the strong converse part:

B∗(W‖W ) ≤ D. (19)

However, in preparation for the proof of (15), we present a proof of the weak converse part:

B(W‖W ) ≤ D (20)
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which is weaker argument than (19), and is valid without assumption (11). In the following proof, it is essential to evaluate
the KL-divergence concerning the obtained data.

In order to prove (20), we prove that

lim
n→∞

−
1

n
log EQ

W,~Pn
(1− fn) ≤ D (21)

when

EQ
W,~Pn

fn → 0. (22)

It follows from the definitions ofQ
W,~Pn andQ

W,~Pn that

D(Q
W,~Pn‖QW,~Pn) =

n
∑

k=1

D(W‖W |P
W,~Pk).

Since−EQ
W,~Pn

fn log EQ
W,~Pn

fn ≥ 0, information processing inequality concerning the KL divergence yields the following:

− h(EQ
W,~Pn

(1 − fn))− (EQ
W,~Pn

(1− fn)) log EQ
W,~Pn

(1− fn)

≤EQ
W,~Pn

(1− fn)(log EQ
W,~Pn

(1− fn)− log EQ
W,~Pn

(1− fn)) + EQ
W,~Pn

fn(log EQ
W,~Pn

fn − log EQ
W,~Pn

fn)

≤D(Q
W,~Pn‖QW,~Pn) =

n
∑

k=1

D(W‖W |P
W,~Pk) ≤ nD. (23)

That is,

−
1

n
log EQ

W,~Pn
(1− fn) ≤

D + 1
n
h(EQ

W,~Pn
(1 − fn))

EQ
W,~Pn

(1− fn)
. (24)

Therefore, (22) yields (21).
Next, we prove the strong converse part, i.e., we show that

EQ
W,~Pn

(1− fn) → 0 (25)

when

r := lim
n→∞

− log EQ
W,~Pn

(1 − fn)

n
> D. (26)

Since

Φ(s|Q
W,~Pn‖QW,~Pn)

=Φ(s|Q
W,~Pn−1‖QW,~Pn−1)

(
∫

X

(
∫

Y

(
∂W ′

xn

∂Wxn

(yn))
sWxn

(dyn)

)

P
s,W |W,~Pn(dxn)

)

,

we obtain

φ(s|Q
W,~Pn‖QW,~Pn) = φ(s|Q

W,~Pn−1‖QW,~Pn−1) + φ(s|W‖W |P
s,W |W,~Pn). (27)

Applying (27) inductively, we obtain the relation

φ(s|Q
W,~Pn‖QW,~Pn) =

n
∑

k=1

φ(s|W‖W |P
s,W |W,~Pk) ≤ nφ(s|W‖W ). (28)

Since the information quantityφ(s|P‖P ) satisfies the information processing inequality, we have

(EQ
W,~Pn

(1− fn))
1−s(EQ

W,~Pn
(1− fn))

s

≤(EQ
W,~Pn

(1− fn))
1−s(EQ

W,~Pn
(1− fn))

s + (EQ
W,~Pn

fn)
1−s(EQ

W,~Pn
fn)

s

≤eφ(s|QW,~Pn‖Q
W,~Pn)

≤enφ(s|W‖W ),

for s ≤ 0. Taking the logarithm, we obtain

(1− s) log EQ
W,~Pn

(1− fn) ≤ −s logEQ
W,~Pn

(1− fn) + nφ(s|W‖W ). (29)
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That is,

−1

n
log EQ

W,~Pn
(1− fn) ≥

−s−1
n

log EQ
W,~Pn

(1− fn)− φ(s|W‖W )

1− s
.

When limn→∞
− log EPn(1−fn)

n
≥ r, the inequality

B∗
e (r|W‖W ) ≥ lim

n→∞

−1

n
log EQ

W,~Pn
(1 − fn) ≥

−sr − φ(s|W‖W )

1− s

holds. Taking the supremum, we obtain

B∗
e (r|W‖W ) ≥ sup

s≤0

−sr − φ(s|W‖W )

1− s
.

From conditions (11) and (26), there exists a small real number ǫ > 0 such thatr >
φ(−ǫ|W‖W )

−ǫ
. Thus,

sup
s≤0

−sr − φ(s|W‖W )

1− s
≥

ǫr − φ(−ǫ|W‖W )

1 + ǫ
> 0.

Therefore, we obtain (25).
Remark 2: The technique of the strong converse part except for (28) wasdeveloped by Nagaoka [19]. Hence, deriving (28)

can be regarded as the main contribution in this section of the present paper.
Proof of Lemma 1:
It is sufficient for a proof of (11) to show that the uniformityof the convergenceφ(−ǫ|Wx‖Wx)

ǫ
−D(Wx‖W x) → 0 concerning

x ∈ X . Now, we chooseǫ > 0 satisfying condition (13). Then, there existss ∈ [−ǫ, 0] such thatφ(−ǫ|Wx‖Wx)
ǫ

−D(Wx‖Wx) =
1
2ǫφ(s|Wx‖Wx) ≤

C1

2 ǫ. Therefore, the condition (11) holds.

VII. PROOF OF THEHOEFFDING BOUND: (15)

In this section, we prove the Hoeffding bound: (15). Since the inequality

Be(r|W‖W ) ≥ sup
x∈X

sup
0≤s≤1

−sr − φ(s|Wx‖W x)

1− s
= sup

x∈X
min

Q:D(Q‖Wx)≤r
D(Q‖Wx)

is trivial, we prove the opposite inequality. In the following proof, the geometric characterization Fig. 1 and the weakand the
strong converse parts are essential. Equation (6) guarantees that

sup
x∈X

min
Q:D(Q‖Wx)≤r

D(Q‖Wx) = sup
x∈X

min
s∈[0,1]:D(Ps,Wx,Wx

‖Wx)≤r

D(Ps,Wx,Wx
‖Wx).

For this purpose, for arbitraryǫ > 0, we choose a channelV : Vx = Ps(x),Wx,Wx
by

s(x) := argmin
s∈[0,1]:D(Ps,Wx,Wx

‖Wx)≤r

D(Ps,Wx ,Wx
‖Wx).

Assume that a sequence{(~Pn, fn)} satisfies

lim
n→∞

−1

n
log EQ

W,~Pn
(1− fn) = r.

By substitutingV into W , the strong converse part of the Stein bound:(25) implies that

limEQ
V,~Pn

(1− fn) = 0.

The condition (13) can be checked by the following relations:

dφ(t|Ps(x),Wx,Wx
‖W x)

dt
= (1− s(x))φ′(s(x)(1 − t) + t|Wx‖W x) (30)

d2φ(t|Ps(x),Wx,Wx
‖W x)

dt2
= (1− s(x))2φ′′(s(x)(1 − t) + t|Wx‖Wx). (31)

Thus, by substitutingV andW into W andW , the relation (24) implies that

lim
n→∞

−
1

n
log EQ

W,~Pn
(1− fn) ≤ sup

x∈X
D(Vx‖Wx).

Similar to (30) and (31), we can check the condition (13).
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From the construction ofV , we obtain

lim
n→∞

−
1

n
log EQ

W,~Pn
(1 − fn) ≤ max

x
min

Q:D(Q‖Wx)≤r−ǫ

D(Q‖Wx).

The uniform continuity guarantees that

lim
n→∞

−
1

n
log EQ

W,~Pn
(1 − fn) ≤ max

x
min

Q:D(Q‖Wx)≤r
D(Q‖Wx).

Now, we show the uniformity of the functionr 7→ sup0≤s≤1
−sr−φ(s|Wx‖Wx)

1−s
concerningx. As mentioned in p. 82 of

Hayashi[11], the relation

d

dr
sup

0≤s≤1

−sr − φ(s|Wx‖Wx)

1− s
=

sr

sr − 1

holds, where

sr := argmax
0≤s≤1

−sr − φ(s|Wx‖Wx)

1− s
.

Since

d

dr

−sr − φ(s|Wx‖Wx)

1− s

∣

∣

∣

∣

s=sr

= 0,

we have

r = (sr − 1)φ′(sr|Wx‖Wx)− φ(sr|Wx‖W x).

Since−φ(sr|Wx‖Wx) ≥ 0, (sr − 1) ≤ 0, andφ′′(s|Wx‖Wx) ≥ 0,

r ≥ (sr − 1)φ′(sr|Wx‖W x) ≥ (sr − 1)φ′(1|Wx‖Wx) = (1− sr)D(W x‖Wx).

Thus,
r

D(W x‖Wx)
≥ (1− sr).

Hence,

|
sr

sr − 1
| ≤

1

1− sr
≤

D(W x‖Wx)

r
≤

supxD(W x‖Wx)

r
.

Therefore, the functionr 7→ sup0≤s≤1
−sr−φ(s|Wx‖Wx)

1−s
is uniform continuous with respect tox.

VIII. P ROOF OF THEHAN-KOBAYASHI BOUND: (17)

The inequality

Be(r|W‖W ) ≥ sup
s≤0

−sr − φ(s|W‖W )

1− s
. (32)

has been shown in Section VI, and the inequality

Be(r|W‖W ) ≤ inf
P∈P2(X )

sup
s≤0

−sr − φ(s|W‖W |P )

1− s

can be easily check by considering the inputP . Therefore, it is sufficient to show the inequality

inf
P∈P2(X )

sup
s≤0

−sr − φ(s|W‖W |P )

1− s
≤ sup

s≤0

−sr − φ(s|W‖W )

1− s
= sup

s≤0
inf

P∈P2(X )

−sr − φ(s|W‖W |P )

1− s
. (33)

This relation seems to be guaranteed by the mini-max theorem(Chap. VI Prop. 2.3 of [5]). However, the function−sr−φ(s|W‖W |P )
1−s

is not necessarily concave concernings while it is convex concerningP . Hence, this relation cannot be guaranteed by the
mini-max theorem.
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Now, we prove this inequality when the maximummaxs≤0
−sr−φ(s|W‖W )

1−s
exists. Sinceφ(s|Wx‖Wx) is convex concerning

s, φ(s|W‖W ) is also convex concernings. Then, we can define

∂+φ(s|W‖W ) := lim
ǫ→+0

φ(s+ ǫ|W‖W )− φ(s|W‖W )

ǫ

∂−φ(s|W‖W ) := lim
ǫ→+0

φ(s|W‖W )− φ(s − ǫ|W‖W )

ǫ
.

Hence, the real numbersr := argmaxs≤0
−sr−φ(s|W‖W )

1−s
satisfies that

(1− sr)∂
−φ(sr |W‖W ) + φ(sr|W‖W ) ≤ −r ≤ (1− sr)∂

+φ(sr|W‖W ) + φ(sr |W‖W ).

That is, there existsλ ∈ [0, 1] such that

−r = (1− sr)(λ∂
+φ(sr|W‖W ) + (1− λ)∂−φ(sr|W‖W )) + φ(sr|W‖W ). (34)

For an arbitrary real number1 > ǫ > 0, there exists1 > δ > 0 such that

φ(s+ δ|W‖W )− φ(s|W‖W )

δ
≤ ∂+φ(s|W‖W ) + ǫ (35)

φ(s|W‖W )− φ(s − δ|W‖W )

δ
≥ ∂−φ(s|W‖W )− ǫ. (36)

Then, we choosex+, x− ∈ X such that

φ(sr + λδ|W‖W )− δǫ ≤ φ(sr + λδ|Wx+‖W x+) ≤ φ(sr + λδ|W‖W ) (37)

φ(sr − (1 − λ)δ|W‖W )− δǫ ≤ φ(sr − (1− λ)δ|Wx−‖W x−) ≤ φ(sr − (1− λ)δ|W‖W ). (38)

Thus, (37) implies that

φ(sr + λδ|Wx+‖W x+)− φ(sr − (1− λ)δ|Wx+‖W x+)

δ

≥
φ(sr + λδ|W‖W )− δǫ − φ(sr − (1− λ)δ|W‖W )

δ

≥
φ(sr + λδ|W‖W )− φ(sr + |W‖W ) + φ(sr + |W‖W )− φ(sr − (1− λ)δ|W‖W )− δǫ

δ

≥
λδ∂+φ(sr |W‖W ) + (1− λ)δ(∂−φ(sr + |W‖W )− ǫ)− δǫ

δ

=λ∂+φ(sr |W‖W ) + (1− λ)∂−φ(sr + |W‖W )− ǫ. (39)

Similarly, (38) implies that

φ(sr + λδ|Wx−‖W x−)− φ(sr − (1− λ)δ|Wx−‖Wx−)

δ

≤λ∂+φ(sr|W‖W ) + (1− λ)∂−φ(sr + |W‖W ) + ǫ. (40)

Therefore, there exists a real numberλ′ ∈ [0, 1] such that
∣

∣

∣

∣

ϕ(sr + λδ|λ′)− ϕ(sr − (1− λ)δ|λ′)

δ
− (λ∂+φ(sr|W‖W ) + (1 − λ)∂−φ(sr + |W‖W ))

∣

∣

∣

∣

≤ǫ. (41)

where

ϕ(s|λ′) := λ′φ(s|Wx+‖W x+) + (1 − λ′)φ(s|Wx−‖Wx−).

Thus, there existssr ∈ [sr − (1− λ)δ, sr + λδ] such that
∣

∣ϕ′(sr|λ
′)− (λ∂+φ(sr |W‖W ) + (1− λ)∂−φ(sr|W‖W ))

∣

∣ ≤ ǫ. (42)

The relation (41) also implies that

0 ≤ϕ(sr − (1 − λ)δ|λ′)− ϕ(sr|λ
′) ≤ ϕ(sr − (1− λ)δ|λ′)− ϕ(sr + λδ|λ′)

≤[ǫ− ((λ∂+φ(sr|W‖W ) + (1− λ)∂−φ(sr|W‖W ))]δ

≤(ǫ− ∂−φ(sr|W‖W ))δ. (43)
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Since

φ(sr − (1 − λ)δ|Wx+‖Wx+) ≥ φ(sr + λδ|Wx+‖Wx+),

relations (36) and (37) guarantee that

0 ≤φ(sr − (1 − λ)δ|W‖W )− φ(sr − (1− λ)δ|Wx+‖Wx+)

≤φ(sr − (1 − λ)δ|W‖W )− φ(sr + λδ|W‖W ) + φ(sr + λδ|W‖W )− φ(sr + λδ|Wx+‖W x+)

≤(ǫ − ∂−φ(sr|W‖W ))(sr + λδ − sr) + δǫ

≤(ǫ − ∂−φ(sr|W‖W ))δ + δǫ = (2ǫ− ∂−φ(sr|W‖W ))δ.

Therefore,

0 ≤φ(sr − (1− λ)δ|W‖W )− ϕ(sr − (1− λ)δ|λ′)

≤λ′(φ(sr − (1− λ)δ|W‖W )− φ(sr − (1− λ)δ|Wx+‖W x+)) + (1 − λ′)(φ(sr − (1− λ)δ|W‖W )− φ(sr − (1− λ)δ|Wx−‖W x−))

≤λ′(ǫ− ∂−φ(sr|W‖W ))δ + (1− λ′)δǫ ≤ (ǫ− ∂−φ(sr|W‖W ))δ. (44)

Since (36) implies that

φ(sr − (1 − λ)δ|W‖W )− φ(sr|W‖W ) ≤ (ǫ − ∂−φ(sr|W‖W ))δ,

relations (43) and (44) guarantee that

|ϕ(sr|λ
′)− φ(sr |W‖W )|

≤|ϕ(sr|λ
′)− ϕ(sr − (1− λ)δ|λ′)|+ |ϕ(sr − (1− λ)δ|λ′)− φ(sr − (1− λ)δ|W‖W )|+ |φ(sr − (1 − λ)δ|W‖W )− φ(sr|W‖W )|

≤(4ǫ− 3∂−φ(sr|W‖W ))δ ≤ C2δ, (45)

where

C2 := 4− 3∂−φ(sr |W‖W )) ≥ 4ǫ− 3∂−φ(sr |W‖W ).

Note that the constantC2 does not depend onǫ or δ.
We choose a real numberr := (1− sr)ϕ(sr|λ

′) + ϕ′(sr|λ
′). Then, (45), (42), and the inequality|sr − sr| ≤ δ imply that

|r − r|

≤|(1− sr)ϕ(sr|λ
′)− (1− sr)φ(sr|W‖W ))|+ |ϕ′(sr|λ

′)− (λ∂+φ(sr|W‖W ) + (1 − λ)∂−φ(sr + |W‖W ))|

≤|(1− sr)(ϕ(sr|λ
′)− φ(sr|W‖W ))|+ |φ(sr|W‖W )(sr − sr)|+ |ϕ′(sr|λ

′)− (λ∂+φ(sr|W‖W ) + (1 − λ)∂−φ(sr + |W‖W ))|

≤(1− sr)C2δ + |φ(sr|W‖W )|δ + ǫ ≤ C3δ + ǫ, (46)

where

C3 :=(2− sr)C2 + |φ(sr |W‖W )|

≥(1− sr + (1 − λ)δ)C2 + |φ(sr|W‖W )|

≥(1− sr)C2 + |φ(sr |W‖W )|.

Note that the constantC3 does not depend onǫ or δ. The function−sr−ϕ(s|λ′)
1−s

takes the maximum ats = sr. Using (45) and

(46), we can check that this maximum is approximated by the value −srr−φ(sr ||W‖W )
1−sr

as

|
−srr − ϕ(sr|λ

′)

1− sr
−

−srr − φ(sr|W‖W )

1− sr
|

≤|
−srr − ϕ(sr|λ

′)

1− sr
−

−srr − φ(sr|W‖W )

1− sr
|+ |

−srr − φ(sr |W‖W )

1− sr
−

−srr − φ(sr |W‖W )

1− sr
|

≤|
srr − srr

1− sr
|+ |

ϕ(sr|λ
′)− φ(sr|W‖W )

1− sr
|+ |

−srr − φ(sr|W‖W )(sr − sr)

(1− sr)(1− sr)

≤
|(sr(r − r)|+ |r(sr − sr)|

1− sr
+ |

ϕ(sr|λ
′)− φ(sr|W‖W )

1− sr
|+ |

−srr − φ(sr|W‖W )

(1 − sr + 1)(1− sr)
|δ

≤
(−sr + δ)(C3δ + ǫ) + rδ

2− sr
+ |

C2ǫ

2− sr
|+ |

−srr − φ(sr |W‖W )

(2 − sr)(1 − sr)
|δ

≤C4ǫ+ C5δ, (47)
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where we chooseC4 andC5 as follows.

C4 :=
−sr + 1

2− sr
+ |

C2

2− sr
|

≥
−sr + δ

2− sr
+ |

C2

2− sr
|

C5 :=
(−sr + 1)C3 + rδ

2− sr
+ |

−srr − φ(sr|W‖W )

(2− sr)(1 − sr)
|

≥
(−sr + δ)C3 + rδ

2− sr
+ |

−srr − φ(sr|W‖W )

(2− sr)(1− sr)
|.

Note that the constantsC4 andC5 do not depend onδ or ǫ. Since

|
−sr − ϕ(s|λ′)

1− s
−

−sr − ϕ(s|λ′)

1− s
| ≤

−s

1− s
|r − r| ≤ |r − r|,

(46) implies that

|max
s≤0

−sr − ϕ(s|λ′)

1− s
−max

s≤0

−sr − ϕ(s|λ′)

1− s
| ≤ |r − r| ≤ C3δ + ǫ. (48)

Sinceϕ(s|λ′) ≤ φ(s|W‖W ), (48) and (47) guarantee that

0 ≤ max
s≤0

−sr − ϕ(s|λ′)

1− s
−

−srr − φ(sr |W‖W )

1− sr
≤ (C4 + 1)ǫ+ (C3 + C5)δ. (49)

We define the distributionPλ′ ∈ P2(X ) by

Pλ′(x+) = λ′, Pλ′ (x−) = 1− λ′.

Since the functionx → log x is concave, the inequality

ϕ(s|λ′) ≤ φ(s|W‖W |Pλ′) (50)

holds. Hence, (49) and (50) imply that

0 ≤ inf
P∈P2(X )

max
s≤0

−sr − φ(s|W‖W |P )

1− s
−

−srr − φ(sr|W‖W )

1− sr

≤max
s≤0

−sr − φ(s|W‖W |Pλ′)

1− s
−

−srr − φ(sr |W‖W )

1− sr
≤ (C4 + 1)ǫ+ (C3 + C5)δ.

We take the limitδ → +0. After this limit, we take the limitǫ → +0. Then, we obtain (33).
Next, we prove the inequality (33) when the maximummaxs≤0

−sr−φ(s|W‖W )
1−s

does not exist. The real numberR :=

lims→−∞
φ(s|W‖W )

s
satisfiesr ≥ −R. Thus,

sup
s≤0

−sr − φ(sr |W‖W )

1− s
= r +R.

For anyǫ > 0, there existss0 < 0 such that anys < s0 satisfies that

R ≤
φ(s0|W‖W )− φ(s|W‖W )

s0 − s
≤ R+ ǫ.

We choosex0 such that

φ(s0 − 1|W‖W )− ǫ ≤ φ(s0 − 1|Wx0
‖W x0

) ≤ φ(s0 − 1|W‖W ).

Thus,

φ(s0|Wx0
‖Wx0

)− φ(s0 − 1|Wx0
‖Wx0

) ≤ φ(s0|W‖W )− φ(s0 − 1|W‖W ) + ǫ ≤ R+ 2ǫ.

Hence, for anys < s0,

φ(s0|Wx0
‖W x0

)− φ(s|Wx0
‖Wx0

)

s0 − s

≤φ(s0|Wx0
‖W x0

)− φ(s0 − 1|Wx0
‖W x0

)

≤φ(s0|W‖W )− φ(s0 − 1|W‖W ) + ǫ ≤ R+ 2ǫ.
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Thus,

−r ≤ R ≤ lim
s→−∞

φ(s|Wx0
‖Wx0

)

s
≤ R+ 2ǫ.

Therefore,

sup
s≤0

−sr − φ(sr|Wx0
‖Wx0

)

1− s
≤ r +R + 2ǫ.

Taking ǫ → 0, we obtain (33).

IX. CONCLUDING REMARKS AND FUTURE STUDY

We have obtained a general asymptotic formula for the discrimination of two classical channels with adaptive improvement
concerning the several asymptotic formulations. We have proved that any adaptive method does not improve the asymptotic
performance. That is, the non-adaptive method attains the optimum performance in these asymptotic formulations. Applying the
obtained result to the discrimination of two quantum statesby one-way LOCC, we have shown that one-way communication
does not improve the asymptotic performance in these senses.

On the other hand, as shown in Section 3.5 of Hayashi[11], we cannot improve the asymptotic performance of the Stein
bound even if we extend the class of our measurement to the separable POVM in then-partite system. Hence, two-way LOCC
does not improve the Stein bound. However, other asymptoticperformances in two-way LOCC and separable POVM have not
been solved. Therefore, it is an interesting problem to solve whether two-way LOCC improves the asymptotic performance
for other than the Stein’s bound.

Furthermore, the discrimination of two quantum channels (TP-CP maps) is an interesting related topic. An open problem
remains as to whether choosing input quantum states adaptively improves the discrimination performance in an asymptotic
framework. The solution to this problem will be sought in a future study.
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