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Discrimination of two channels by adaptive
methods and its application to qguantum system

Masahito Hayashi

Abstract

The optimal exponential error rate for adaptive discririoraof two channels is discussed. In this problem, adapthaice
of input signal is allowed. This problem is discussed in masi settings. It is proved that adaptive choice does notawgpthe
exponential error rate in these settings. These resulta@pked to quantum state discrimination.
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I. INTRODUCTION

ISCRIMINATING two distributions is treated as a fundamémeoblem in the field of statistical inference. This problem

can be regarded as simple hypothesis testing because humtthbges consist of a single distribution. Many reseassher
Stein, Chernoff[3], Hoeffding[16], and Han-Kobayashi[ltave studied the asymptotic behavior when the numbesf
identical and independent observations is sufficientlgdarThey formulated a simple hypothesis testing/discréatm of
two distributions as an optimization problem and derivee thspective optimum value, e.g., the optimal exponentialre
rate. We call these optimum values the Stein bound, the ©Fdraund, the Hoeffding bound, and the Han-Kobayashi bound
respectively. Han [8], [9] later extended these resultdhtodiscrimination of two general sequences of distribujamcluding
the Markovian case. Nagaoka-Hayashi [21] simplified Harmssuksion and generalized Han’s extension of the Han-Kadlay
bound.

In the present paper, we consider another extension of tbgeatesults. That is, we extend the above results to the
discrimination of two (classical) channels, in which twabpabilistic transition matrices are given. Such a problas éppeared
in Blahut[2]. In this problem, the number of applicationstbfs channel is fixed to a given constantand we can choose
appropriate inputs for this purpose. In this case, we asghatehe given channel is memoryless. If we use the same toput
all applications of the given channel, theoutput data obeys an identical and independent distribufitiis property holds
even if we choose the input randomly based on the same distribon input signals. This strategy is called them-adaptive
method. In particular, when the same input is applied to ladinnels, it is called theeterministic non-adaptive method. If
the input is determined stochastically, it is called shachastic non-adaptive method, which was treated by Blahut[2]. In the
non-adaptive method, our task is choosing the optimal ifiputistinguishing two channels most efficiently. In the gaet
paper, we assume that we can choosekttie input signal based on the preceding 1 output data. This strategy is called the
adaptive method, which is the main focus of the present paper. In the paramestamation, such an adaptive method improves
estimation performance. That is, in the one-parametemasitin, the asymptotic estimation error is bounded by tiverse
of the optimum Fisher information. However, if we do not apfihe adaptive method, it is generally impossible to realize
the optimum Fisher information in all points at the same tithds known that the adaptive method realizes the optimum
Fisher information in all points[13], [7]. Therefore, oneaynexpect that the adaptive method improves the performahce
discriminating two channels.

As our main result, we succeeded in proving that the adaptieéhod cannot improve the non-adaptive method in the
sense of all of the above mentioned bounds, i.e., the Staimdyahe Chernoff bound, the Hoeffding bound, and the Han-
Kobayashi bound. That is, there is no difference betweemdmeadaptive method and the adaptive method in these astimpt
formulations. Indeed, as is proven herein, the deterniinigin-adaptive method gives the optimum performance vatipect
to the Stein bound, the Chernoff bound, and the HoeffdinghbdotHowever, in order to attain the Han-Kobayashi bound, in
general, we need the stochastic non-adaptive method.

On the other hand, the research field in quantum informatas treated the discrimination of two quantum states. Hiai-
Petz[15] and Ogawa-Nagaoka[18] proved the quantum versid®tein’s lemma. Audenaert et al. [1] and Nussbaum-Szkota
[23], [24] obtained the quantum version of the Chernoff bahun

Ogawa-Hayashi [17] derived a lower bound of the quantumieersf the Hoeffding bound. Later, Hayashi [12] and
Nagaoka [20] obtained its tight bound based on the resultdunenaert et al. [1] and Nussbaum-Szkota [23], [24]. Hayash
[11] (in p.90) obtained the quantum version of the Han-Kasy bound based on Nagaoka[19]'s discussion. These disass
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assume that any measurement on theensor product system is allowed for testing the givenestdience, the next goal is
the derivation of these bounds under some locality regiriston ann-partite system for possible measurements. One easy
setting is restricting the present measurement to be ichdntib that in the respective system. In this case, our tagkds
choice of the optimal measurement on the single system. Bgidering the measurement and the quantum state as the input
and the channel, respectively, we can treat this problemheynbn-adaptive method of the classical channel. Anothénge
is restricting our measurement to one-way local operatamd classical communications (one-way LOCC). In the above-
mentioned correspondence, the one-way LOCC setting caedagded as the adaptive method of the classical channetetHen
applying the above argument to discrimination of two quamsiates, we can conclude that one-way communication ddes no
improve discrimination of two quantum states in the respeasymptotic formulations.

Furthermore, the same problem appears in adaptive expahdesign and active learning. In learning theory, we fifgn
the given system by using the obtained sequence of input atpliopairs. In particular, in active learning, we can cleos
the inputs using the preceding data. Hence, the preserit iedicates that active learning does not improve the perémce
of learning when the candidates of the unknown system amnddy only two classical channels. In experimental design, w
choose suitable design of our experiment for inferring thenown parameter. Adaptive improvement for the designlosad
in adaptive experimental design. When the candidates ofittkeown parameter are only two values, the obtained resanlt ¢
be applied. That is, adaptive improvement for design doé¢svook.

The remainder of the present paper is organized as folloestid®[I] reviews the Stein bound, the Chernoff bound, the
Hoeffding bound, and the Han-Kobayashi bound in discrimimaof two probability distributions. In Sectidn1ll, we @sent
our formulation and notations of the adaptive method in tiserdnination of two (classical) channels, and discussatieptive-
method versions of the Stein bound, the Chernoff bound, theffding bound, and the Han-Kobayashi bound, respectively
In Section IV, we consider a simple example, in which the Is&stic non-adaptive method is required for attaining the-Ha
Kobayashi bound. In Sectidn] V, we apply the present resuttisorimination of two quantum states by one-way LOCC. In
Sectiong VI VT], and"VTIl, we prove the adaptive-methodsiens of Stein bound, the Chernoff bound, the Hoeffding lopun
and the Han-Kobayashi bound, respectively.

1. DISCRIMINATION/SIMPLE HYPOTHESIS TESTING BETWEEN TWO PROBABILITY DISTRIBTIONS

In preparation for the main topic, we review the simple hyaesis testing problem for the null hypothesis : P™ versus the
alternative hypothesi&;: P", whereP™ andP" are then-th identical and independent distributions®fand P, respectively
on the probability spac®. The problem is to decide which hypothesis is true based ontputsy, ..., y,. In the following,
randomized tests are allowed as our decision. Hence, ousioleanethod is described by 8, 1]-valued functionf on )".
When we observe: outputsy,, ..., y,, we accept the alternative hypothegiswith the probability f (y1,...,y,). We have
two types of errors. In the first type, the null hypotheRBiss rejected despite being correct. In the second type, teenative
P is rejected despite being correct. Hence, the first type mir garobability is given byE p» f, and the second type of error
probability is byE5- (1 — f). Note thatEp describes the expectation under the distributfan

In the following, we assume that

B(|PIP) = [ (S50 Play) < 0
4(5IPI[P) := 05 2(s|P|[P)

and ¢(s| P||P) is C?-continuous. In the present paper, we choose the base obgiagithm to bee. In the discrimination of
two distributions, we treat two types of probabilities elfjualhen, we simply minimize the equal suBip» f 4+ E5» (1 — f).
Its optimal rate of exponential decrease is characterizeth® Chernoff bound[3]:

C(P,P) := lim —! log(min Epn f + Ep (1= fn) = =

n—o0 n

Ogsugllcé(SIPHP)-

In order to treat these two error probabilities asymmeltsicave often restrict the first type of error probabilip. f to below
a particular threshold, and minimize the second type of error probability. (1 — f):

Brle) = min{Ep-(1 = ) | Epof <},
Then, the Stein’s lemma holds. For< Ve < 1, the equation

lim ~ log f5(c) = ~D(P|[P) )

n—oo N

holds, where the relative entrogy(P||P) is defined by

i) = [

oP
L log a—P(y)P(dy)



Indeed, this lemma has the following variant form. Define

B(PHﬁ) = Sup { lim —logEﬁn(l _ fn)

{fn} Un—oo n

11m Epnfn = O}
n—oo

{jn} n—oo n

Then, these two quantities satisfy the following relations

B(P|[P) = B*(P||P) = D(P||P).

B (PIP) o= ot { 1o —ER2 0T

H_m EP"fn < 1} .
n—00

As a further analysis, we focus on the decreasing exponettieorror probability of the first type under an exponential
constraint for the error probability of the second type. Witee decreasing exponent of for the error probability ofsaeond
type is greater than the relative entropyP| P) , the error probability of the second type converged .tdn this case, we
focus on the decreasing exponent of the probability of ablisreaccepting the null hypothesB. For this purpose, we define

_ . —logE=n(1— f,
{h_m logEpnfn| .~ —log 7 ( f)>7,}

B.(r|P|[P) = sup

{fn} Un—oo n n— oo n
_ — n(l— —logEs~ (1 — f,
B1PIP) = jut { i TP gy ZoEEp OS] 5
{fn} Lnooo n n— o0 n
Then, the two quantities are calculated as
— . —sr — ¢(s|P||P
B.IPIP) =  min  D@|P) = sup —L—CUILIR) @
Q:D(Q|IP)<r 0<s<1 1-s
” = . — —sr — ¢(s|P|| P
B:0PIP)=  min  D@Q|P) +r - D(QIP) = sup L —IPIT) ©)
Q:D(Q||P)<r s<0 - S
The first expressions ofl(2) and] (3) are illustrated by Higjand[2.
DQ|P)=r
D(Q||P)
o |

Fig. 1. Figure ofB.(r|P| P)

Fig. 2. Figure of B} (r| P||P) whenr0 > r > D(P|/P)



Now, we define the new functioB(r):

= (.. | Be(r|P|[P)  r<D(P|P)
Bov={ Zgonp) 15 D)
Then, its graph is shown in Fif] 3.
Graph of Be(r)
Be(r)
1o(PlP

r
Fig. 3. Graph ofBe(r)
In order to give other characterizations Df (2), we introglacone-parameter family
1 oP,
P, pp(dy) == W(a—lg@)) P(dy),

which is abbreviated ag;. Then, sincep(s) is C* continuous,

D(Py|[P1) = (s = 1)¢/(s) — ¢(s) s € (—00,1] (4)

D(Py||Ps) = ¢(s) — s¢'(0) s €[0,00). (5)

Since
d(s —1)¢'(s) — ¢(s)
ds

D(P||Py) is monotonically decreasing with respectsto _
As is mentioned in Theorem 4 of Blahut [2], when< D(P||P), there exists, € [0, 1] such that

min _ D(Q|P) = D(Ps, || Fo)-
Q@:D(QIIP)<r

=—¢"(s) <0,

Then, [4) and[{5) imply that
r=D(Ps,[|[P1) = (sr — 1)¢(sr) — ¢(sr).
Thus, we obtain another expression.

min ~ D(QP)=  min _ D(PJP). (6)
Q:D(Q|P)<r s€[0,1]:D(P, || P)<r

On the other hand,
d —sr = ¢(s|P|P) _ —r+(s=1)¢/(s) —¢(s) _ D(P.||Pr)

= — . 7
ds 1—s (1—s)2 (1—s)? (7)
Since D(Ps||P;) is monotonically decreasing with respectio%%‘jpm =0 if and only if s = s,.. The equation
—sr — ¢(s|P||P
min  D(Q|P) = sup ——2GIPIP) @©
Q:D(Q|P)<r 0<s<1 1—s

can be checked.



In the following, we present some explanations concernf@lg As is mentioned by Han-Kobayashi[10] and Ogawa-
Nagaoka[18], whem, := D(P_..||P) > r > D(P|P), the relation

B;(r|P||P) = D(Ps, || o)
holds, wheres, € (-0, 0] is defined as
7= D(Ps, ||P1) = (sr — )@(sr) — &(sr).
Thus, similar to[(B) and{8), the relation
—sr — ¢(s| P||P)

min _ D(Q|P) +r — D(Q|[P) = D(P, || P) = sup —— (©)
Q:D(Q||P)<r 5<0 -S
holds, wheres, < 0 is defined byD(P;, || P) = r[18].
As mentioned by Nakagawa-Kanaya[22], whel rq, the relation
min  D(Q||P)+7—D(Q|P) = D(P-||P) + 7~ D(P-||P) = min  (D(Q|P)+ro—D(Q|P)) +r—ro

Q:D(Q|P)<r Q:D(Q|P)<ro

holds. This bound is attained by the following randomizest.t&he hypothesi® is accepted with the probability only when
the logarithmic likelihood ratio takes the maximum valye Since D(Ps||P1) < r, ({) implies that

S OGIPIP) L e = GGIPIP) s —o(lPIP)
<0 1—s s<—o0 1—s s<—o0 1—s
= min  (D(Q|P)+ro— D(Q|P)) + 7 —ro. (10)

Q:D(Q|IP)<ro

Remark 1: The classical Hoeffding bound in information theory is do®tahut[2] and Csiszar-Longo[4]. The corresponding
ideas in statistics were first put forward by Hoeffding[18hm whom the bound received its name. Some authors prefer to
refer this bound as the Hoeffding-Blahut-Csiszar- Longaoind.

On the other hand, Han-Kobayashi[10] gave the first equatfaf8), and proved that this equation among non-randomized
tests whenr, > > D(P||P). They pointed out that the minimuming, p, o5 <, D(QP) + 7 — D(Q||P) can be attained
by Q satisfying D(Q| P) = r. Ogawa-Nagaoka[18]showed the second equatioh]of (3) ferctse.

Nakagawa-Kanaya[22] proved the first equation when ry. Indeed, as pointed by Nakagawa-Kanaya[22], when r,
any non-randomized test cannot attain the minimuin, , o, <, D(Q[P) + r — D(Q||P). In this case, the minimum

ming. p 7)< P(QIIP) +7 — D(Q[P) cannot be attained b satisfying D(Q||P) = r.

IIl. M AIN RESULT: ADAPTIVE METHOD

Let us focus on two spaces, the set of input sigdéland the set of outpu¥. In this case, the channel froAi and) is
described by the map from the s&tto the set of probability distributions oyi. That is, given a channél” W, represents
the output distribution when the input is € X. When X and ) have finite elements, the channel is given by transition
matrix. The main topic is the discrimination of two classicaannelsiV andW. In particular, we treat its asymptotic analysis
when we can use the unknown channel onlyimes. That is, we discriminate two hypotheses, the nullotiyesisH, : W™
versus the alternative hypothedig: W', whereW™ and W' are then uses of the channdV’ and W Then, our problem
is to decide which hypothesis is true basedromputszy,...,x, andn outputsyy,...,y,. In this setting, it is allowed to
choose thé:-th input based on the previods— 1 output adaptively. We choose theth input 2, subject to the distribution
Pl ) @y (@r) ON X, That is, thek-th input z;, depends ork conditional distributionsP* = (P!, P2,..., P).

Hence, our decision method is describedsbgonditional distributionsP™ = (P, P% ..., P") and a0, 1]-valued function
frnOn (X x ). In this case, when we choosenputsz, ..., z, and observe: outputsy, ..., y,, we accept the alternative
hypothesisiW with the probability f,,(x1,y1, . . ., Tn, y»). That is, our scheme is illustrated by Fig. 4.

In order to treat this problem mathematically, we introdtive following notation. For a chann&/ from X to ) and a
distribution P on X, we define two notations, the distributidfi? on X x ) and the distributiod? - P on ) as

WP(z,y) = Wa(y)P(z)
W - P(z,y) := / W, (y)P(dx).
X
Using the distribution? P, we define two quantities:

D(W|W|P) := D(WP|WP)
¢(s|W|W|P) := ¢(s|W P|WP).



Channel discrimination with
adaptive improvement

X Wor Y1

44”/—\/ Y,

Adaptive improvement
is allowed

X —p Wor\y —mY,

Fig. 4. The adaptive method

Based onk conditional distributionsP* = (P, P2,..., P*), we define the following distributions:
Q. pn = wprwprt. wpt

Py po =P Quy pus

QS,W\W,IS" = 5,Quy pn Qup pn
o— n . .
PS,WIW,P" =P QS,W|W,P"*1'

Then, the first type of error probability is given B, . f», and the second type of error probability is By__ . (1 f»).
In order to treat this problem, we introduce the followingaqtities: '

C(W,W) := lim -1 log( min Eq ., fn+Eq 5, (1= fa))

n—roo N P, fn

Bi(e) = min {Bqp, 1, (1= fa) | By, fn < },

wJIn

and
W - logE W,Pn 1 - fn
B(W”W) = sup { h_m QW,P ( ) lim EQW . fn _ ()}
{(ﬁn-,fn)} n—oo n n—oo s
—logEqg_ . (1 — fn
B W([W):= inf lim L ) lim Eq ,.fo <1
{(Pr.fa)} | n—oo n o HQw,
—logEq,, 5. [n —logEqg_ . (1— fu
B.(r|W(TF) = sup { el ) T DB
{(Pn,f)y | o0 n n—o0 n

Bi(r|W|W):= inf
{(Pm,fn)}

We obtain the following channel version of Stein’s lemma.
Theorem 1: Assume thatp(s|W,||[W) is C* continuous, and

e—+0 € reX

where(s|WI|W) := sup,c v ¢(s|We[Wa) = suppep ) ¢(s|W|W|P), andP(X) is the set of distributions of’.
Then,

n— 00 n n—00 n

{ . —logEq, .. (1= fn)
lim :

—logEo_ . (1—f,
tim 8EQw s ( f)ZT}-

B(W|W) = B*(W|W) =D := sugD(WIHWZ). (12)
xe
The following is another expression of Stein’s lemma.



Corollary 1: Under the same assumption,

lim —1og[3 (€) = sup D(W,||[Wy).
reX

n—r oo

Condition [11) can be replaced by another cond|t|on
Lemma 1: When any element € X satisfies

¢/(O|WwHWaﬂ) = D(WwHWﬂc)
and there exists a real number- 0 such that
d2¢(S|WwHWw)

C} :=sup sup 5 , (13)
TEX s€[—e¢,0] ds
then condition[(711) holds.
In addition, we obtain a channel version of the Hoeffding fehu
Theorem 2: When
A2 (s|W, |W,
sup sup M < 00 (14)
zeX s€]0,1] ds
and
sup D(W,|W,) < oo
zeX
then
974 - - Ww Wm .
B(r|W(T7) = sup sup - —OCWallWa) _ S iy D). (15)
zeX 0<s<1 1-s TE€EX Q:D(Q|[W4)<r
Corollary 2: Under the same assumption,
CW,W) = bup— IIllIl (b( W ||[W ). (16)

These arguments imply that adaptive |mprovement does nptowe the performance in the above senses. For example,
when we apply the best inputy; := argmax, D(W,||W,) to all of n channels, we can achieve the optimal performance in
the sense of the Stein bound. The same fact is true concetmnigoeffding bound and the Chernoff bound.

Proof: The relation

C(W, W) = sup{r|Be(r|W|W) > r}

holds. Since
Sup{T sup sup —-— HAWelWe) r}
TEX 0<s<1 1-s5
= sup sup{r sup ST ¢(S|Wz||wz) > T}
TEX 0<s<1 1-s5
=sup — min, P(s|Wal[Wa),
the relation [(I6) holds. [ |
The channel version of the Han-Kobayashi bound is given Bsws.
Theorem 3: When ¢(s|W, ||[W,) is C! continuous, then
— —sr — w —sr — W|P . W|P
B:(r|W||W) = sup il ¢(_S|WHW) = inf sup o ¢(51WHW| ) = inf sup il ¢('S_|W”W| ), a7
s<0 1—s PEP(X) s<0 1—s PEP2(X) 5<0 1—s

whereP?(X) is the distribution ont” that takes positive probability only on at most two elements
As shown in Sectiofi 1V, the equality

_37”_¢(5|WHW — inf _ST_¢(S|WJE”W$)
sup inf sup

$<0 1—s T zex s<0 1—s

(18)

does not necessarily hold in general. In order to underdtamdheaning of this fact, we assume that the equafion (18) doe
hold. When we apply the same inputo all channels, the best performance cannot be achievedevés, the best performance
can be achieved by the following method. Assume that the inpsit d|str|but|onargmaxpep2(X) SUPs<q —re ¢(5‘WHW‘P)

has the supporfz,z’}, and the probabilitiess and1 — \. Then, applyingz or 2’ to all channels with the probab|llty and

1— A, we can achieve the best performance in the sense of the Haaykishi bound. That is, the structure of optimal strategy
of the Han-Kobayashi bound is more complex than those of tioweacases.



IV. SIMPLE EXAMPLE

In this section, we treat a simple example that does notfgdfi§). For four given parametegsq,a > 1,b > 1, we define
the channel$?V andW:

WO(O) = aq, WO(l) =1- aq,
WO(O) =q, WO(I) =1- q,
Wi(0) :=bg, Wi(l):=1-bg,

Wi(0):=¢q, Wi(l):=1-gq.
Then, we obtain

i 2EMWolWo) _
§——0Q S
i 26w _
§——00 S
In this case,
— 1—
D(Wo|[Wo) =aploga + (1 - ap) log — _‘Z)
— 1—bq
D(W1||W1) =bqlogb + (1 — bq) log e

Whena > b and D(Wy||Wo) < D(W;||[W31), the magnitude relation betweeirts|W,||[Wo) and ¢(s|W1|[W1) on (—co,0)
depends ors € (—o0,0). For example, the case af= 100,b = 1.5,p = 0.0001, ¢ = 0.65 is shown in Fig[b. In this case,
B (r|[Wo||[Wo), B (r|W1||W1), and B (r|W||W) are calculated by Fid] 6. Then, the inequallfyl(18) does mdd.h

0
-1 -0.8 -0.6 -0.4 -0.2 0
S

Fig. 5. Magnitude relation betweep(s|Ws||Wo) and ¢(s|W1|[W1) on (—1,0). The upper solid line indicates(s|Ws|Wo), the dotted line indicates
P(s|Wi[[W1).

Fig. 6. Magnitude relation betweeR (r|Wo||Wo), B (r|W1||[W1), and B (r|W|[W) on (-1, 0). The upper solid line indicateB} (r|Wo||Wo), the
dotted line indicatesB} (r|W1||W1), and the lower solid line indicateB} (r|W ||V).



V. APPLICATION TO ADAPTIVE QUANTUM STATE DISCRIMINATION

Quantum state discrimination between two statesido on ad-dimensional systerfi{ with n copies by one-way LOCC is
formulated as follows. We choose the first POV} and obtain the datg, through the measurement;. In the k-th step, we
choose thé:-th POVM M, (M1, y1), .-, (Mk—1,yk—1)) depending of{M1, 1), ..., (Mk—1,ykx—1). Then, we obtain thé-th
datay throughMy((M1,y1), ..., (Mk—1,yk—1)). Therefore, this problem can be regarded as classical ehdistrimination
with the correspondend® ) (y) = Tr M (y)p andW 5, (y) = Tr M (y)o. Thatis, in this case, the set of input signal corresponds
to the set of extremal points of the set of POVMs on the givesiesy?#. The proposed scheme is illustrated in K. 7.

One-way adaptive improvement

P Or e \casurement V] L

Yi

Yz

P or O = Measurement M2

Adaptive improvement
is allowed

p O (—-| Measurement V] —— yn

Fig. 7. Adaptive quantum state discrimination

Now, we assume that > 0 ando > 0. In this caseX is compact, and the mafs, M) — W is continuous.
Then, the condition (13) holds. Therefore, one-way impnosst does not improve the performance in the sense of the Stei

bound, the Chernoff bound, the Hoeffding bound, or the Haibdyashi bound. That is, we obtain
TI7\ _ D* T\ M M
BWI|W) =B*(W|W) = max D(PM|PY)

— —sr — ¢(s| P || P}Y)
B.(r|[W|W) = max_ sup
M:POVM g<g<1 1—s

T —STr — max)s-: SPM PM
B} (r|W|[W) =sup arpovm @157 5,7)

s<0 1—s

Therefore, there exists a difference between one-way LOQLCcallective measurement.

VI. PROOF OF THESTEIN BOUND: (12)
Now, we prove the Stein bound_{12). For anyc X, by choosing the input in n times, we obtain

B(W[[W) > D(W,[[Wy).
Taking the supremum, we have

reX

Furthermore, from the definition, it is trivial that
B(W[[W) < B*(W|[[W).
Therefore, it is sufficient to show the strong converse part:
B*(W|W) < D. (19)
However, in preparation for the proof df {15), we present @opof the weak converse part:

B(W|W) <D (20)
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which is weaker argument thah {19), and is valid without agstion [11). In the following proof, it is essential to evata
the KL-divergence concerning the obtained data.
In order to prove[(20), we prove that

n—00

— 1 -
lim - log By 5, (1-f)<D (21)
when

Eq,, pnfn — 0. (22)
It follows from the definitions ofQ,,, 5. andQy 5. that

D(Quy 5| Qs ) = > DWW Py, 1)
k=1

Since—EQWﬁn fnlog EQy sn fn >0, information processing inequality concerning the KL dig@nce yields the following:
— h(Eqy, 5 (1= fa) = (Bo,, (1= fa))l0gEqy, ,, (1— fa)
SEQW,ﬁTL (1 - fn)(log Ewaﬁn (1 - fn) - log EQWyﬁn (1 - fn)) + Ewaﬁn fn(log EQW,ﬁTL fn - log EQWJS’H fn)

<D(Qy, pull @y ) = D DIWIIW|Py, i) < nD. (23)
k=1
That is,
1 D+ ;hEq,, 5, (1= fa))
—= = s (L — fn) < ’
108 Eqy 5, (1= fr) Fo. (=70 (24)
Therefore, [[2R) yieldd (21).
Next, we prove the strong converse part, i.e., we show that
Equ pn(1=fn) =0 (25)
when
—logEg— . (1— f, _
r e tim w0 5 (26)
n—00 n
Since
®(s|Qy pn | Qv n)
ow,, s
—~0(61Qu o Qo o) ([ ([ Gy ) W (o)) P () )
X Yy Tn
we obtain
O(51Quy, o |Qy pn) = S(81Quy, pu1 1@ 1) + S(SIWIWIP, 1377 n)- (27)
Applying (27) inductively, we obtain the relation
3(s|Quy 5o |Qp ) = Y S(SIWIWIP, 57 ) < nob(s|W|[W). (28)

k=1
Since the information quantity(s| P||P) satisfies the information processing inequality, we have
(EQW’p’n (1 - fﬂ))lis(EQw)ﬁn (1 - fn))s

<(Eqy (1= Fu) ™ (B o (1= £2))° + (Eqy o fu) = By o fu)®
<e#(51Qu 50 Qe 5n)

< oW W),

for s < 0. Taking the logarithm, we obtain

(1-5)10gEq,, 5. (1~ fa) < —slogEqy, 5. (1= fa) + no(s|W[TF). (29)
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That is,

-1 T
-1 —s—=logEq_ ., (1— fn) — o(s|W|W
B (1> Qo (1= ) = W)
n ’

1—s5
Whenlim,, ., %’M > r, the inequality
| —sr — ¢(s|W|[W)
BX(r[W|W) > lim —logEq . (1—f,) >
(Wl )2 lim —=log Qupn (1= fn) = -
holds. Taking the supremum, we obtain
— —sr — ¢(s|W||W
B (r|W||W) > sup sr = SV )
<0 1—s

From conditions[{111) and(26), there exists a small real remab> 0 such thatr > @. Thus,

i SEWIW) _ er — $(—e[W[W)

> 0.
<0 1—s - 1+¢

Therefore, we obtairl (25).

Remark 2: The technique of the strong converse part exceptfdr (28)deasloped by Nagaoka [19]. Hence, derivihgl (28)
can be regarded as the main contribution in this section @ptiesent paper.

Proof of Lemmd1L: .

It is sufficient for a proof of[(1l1) to show that the uniformitythe convergenc@% —D(W,|[W,) — 0 concerning
z € X. Now, we choose > 0 satisfying condition[(T1I3). Then, there exist& [—¢, 0] such thatm —D(W,||W,) =
Leg(s|W,|[W,) < Ste. Therefore, the conditioi (11) holds.

VIl. PROOF OF THEHOEFFDING BOUND (15)
In this section, we prove the Hoeffding bound:](15). Since itrequality

Tr7 - - W;E Wm .
Bo(r (W) > sup sup —L—0CIWelWe) _ i piquws)
TEX 0<s<1 1-s 2€X Q:D(Q|[W,)<r

is trivial, we prove the opposite inequality. In the follawgi proof, the geometric characterization Hiy. 1 and the vaeakthe
strong converse parts are essential. Equafibn (6) guasittat

sup min D(Q||W,) = sup min D(P, w. . [[Wz).
z€EX Q:D(QIW,)<r z€X s€[0,1]:D(P, v w, IWa)<r e

For this purpose, for arbitrary > 0, we choose a channél : Vo, = P, . 3w, by

s(x) == argmin D(P, v w7, 1W2).
S€0,1):D(P, vy, 1, [TWa)<r

Assume that a sequenééP™, f,,)} satisfies
n@o %1 log Eqr 5, (1= fn) =1
By substitutingV” into TV, the strong converse part of the Stein bound:(25) implias th
limEq, . (1 - fa) = 0.
The condition[(IB) can be checked by the following relations
do(t Py w, ww, W)

e = (1= s(@)¢/ (s() (1 = 1) + (W [W) (30)
o(t|P w. W —
APt 0 TT) (1 )20 (sa) (1 1)+ AT, (31)

Thus, by substituting” and W into W and W, the relation[(24) implies that

(1 - fn) < sup D(VIHWI)

— 1
lim ——logE
n E5Q reEX

n—00

Similar to [30) and[(31), we can check the conditibnl (13).

W, pn
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From the construction of’, we obtain

Tim ——10 E — fn) < max min D We).
Jn - LloxEay (- f) Smax  win - DQIWL)

The uniform continuity guarantees that

lim ——10 E (1 —f,) <max min D W).
Ji ol Bop (1= fu) Smax min - D(QIW.)

_ST_¢(S‘WI _m
1

Now, we show the uniformity of the function — supg<.<; — W) concerningz. As mentioned in p. 82 of

Hayashi[11], the relation

d —8r — ¢(S|WIHWI) Sy
— sup =
dr o<s<1 1—s s — 1
holds, where

—Ssr — ¢(S|WCE ”Ww) _

Sy = argmax

0<s<1 1—s
Since
d s S|
dr 1—s s, ’
we have

r= (s — 1)¢I(ST|WCE”W:E) - ¢(3r|WmHW:E)
Since —¢(s, W, |[W,) >0, (s, — 1) <0, and¢” (s|W,[|[W,) >0,
T > (s — 1)¢/(ST|WIHWI) > (sr — 1)¢/(1|Wm”Wz) =(1- ST)D(WIHWI)

Thus,
> (1-s).
D(W,||Ws)
Hence,
| S < 1 < D(W . ||Wy) < sup, D(W||Wy)
s.—1 7 1—35, r - r '
Therefore, the functiom — supg<,<; %VSV’”W’) is uniform continuous with respect ta

VIIl. PROOF OF THEHAN-KOBAYASHI BOUND: (17)
The inequality

— —sr — ¢(s|W||[W
B (r|W[[T) > sup —T —CEIWIW) (32)
$<0 1-s
has been shown in Sectifn]VI, and the inequality
— —sr — ¢(s|W||W|P
B.(rlW|W) < inf sup 57 = ¢(WIWIP)
PEP2(X) 5<0 1—s
can be easily check by considering the ingutTherefore, it is sufficient to show the inequality
—s7 — W|P —sr — W —sr — W|P
inf sup =" SGIWIWIP) sup = PsWIW) _ sup inf SsIWW|P) (33)
PEP2(X) 5<0 1-s s<0 1-s5 s<0 PEP2(X) 1-s

This relation seems to be guaranteed by the mini-max the@@&@p. VI Prop. 2.3 of [5]). However, the functicr 'W”W|P
is not necessarily concave concerningvhile it is convex concerning®. Hence, this relation cannot be guaranteed by the
mini-max theorem.
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Now, we prove this inequality when the maximunax< w

s, ¢(s|W||[W) is also convex concerning Then, we can define
¢(s + e WIW) — ¢(s|W[W)

exists. Sinces(s|W,||W ) is convex concerning

Ot p(s|W W) := lim

—+0 c
8~ (s|W|W) := lim, P(s|W|W) — Zb(s — (W)

Hence, the real numbey,. := argmax, %‘SW”W) satisfies that
(1= 5:)07 ¢(s, [ W[W) + ¢(s,[W[W) < =1 < (1 = 5,)0 ¢(5,[WW) + (s, [W|W).
That is, there exists € [0, 1] such that
—r = (1= 5,) (AT $(s, [WI[W) + (1 = N)O~ ¢(s,|W[[W)) + ¢(s,[W|[WV). (34)
For an arbitrary real numbdr> ¢ > 0, there existsl > 6 > 0 such that
¢(s + S|W[W) — ¢(s|W|[W)

; < 9" G(s|W[W) + ¢ (35)

Then, we choose™, 2~ € X such that
B(sr + AW |[W) — Se < (s + AWt [[W ot ) < (s + AS|W||W) (37)
G(sr — (1= X)W W) — e < (s, — (1 = N)3|Wy [W,-) < (s — (1= X)W |[W). (38)

Thus, [37) implies that
d’(sr + )\5|W1+HW90+) - (b(sr - (1 - )‘)5|Wz+ ||Wz+)

5 O + AW W) — de — <§(3r — (1= M)W (W)

5 O + N[W[W) — ¢(Sf+ (WIW) + é(sr + [WIW) — d(sr — (1 = NS|W|[W) — de
A0 S(se [WIW) + (1 = N30~ p(sr + IWiHW) —€) — e

;/\3+¢(STIWHW) +(1- /\)5§¢(8r +[W|[W) —e. (39)

Similarly, (38) implies that

¢(ST‘ + )‘5|sz ”Wz*) - ¢(ST‘ - (1 - /\)6|fo ”Wm*)
1)
<A (s, [W[TW) + (L= MO~ b(s, + [W[TW) +e. (40)

Therefore, there exists a real numbére [0, 1] such that
o(sr + ASIN) — @(sr — (1 = X))

§
<e. (42)

— (AT (s [W[W) + (1 = X0~ ¢(sr + [W[W))

where
P(s|N) = No(s|Wor [Wor) + (1 = XN ) (s| W, [W-).
Thus, there exists, € [s, — (1 — A)d, s, + Ad] such that
|0 (32 X) = (AT (s, [WI[W) + (1 = N0~ (s, |[W|[W))| <. (42)
The relation[(411) also implies that
0 <p(sr — (L =A)3N) = o X) < sy — (1= A)N) — @(s; + Ad|X)
<le = (AT (s, [WI[W) + (1 = N0~ p(s, [W[W))]o
<(e =97 (s, |W[W))a. (43)
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Since
d(sr — (1 = N)0|Wp+ ||Wx+) > (s + AW+ ||Wx+),
relations [[36) and(37) guarantee that
0 §¢(Sr - (1 - )‘)5|W”W) - ¢(Sr - (1 - /\)6|WLE+ HWer)
<@(sr — (L= NS[WI[W) = d(s; + M|[W[[W) + d(s; + M|WI[W) — d(sy + AS[ Wt [ W+ )
<(e — 0~ (5. |W|W))(sr + Ad —5,.) + de
<(e = 07 ¢(s,|W[W))3 + de = (2¢ — 9~ p(s.[W|[W))s.
Therefore,
0 <¢(s; — (1= N)SIWI[W) — (s — (1= A)3|N)
S/\/(¢(Sr - (1 - )‘)6|WHW) - ¢(Sr - (1 - )‘)(SWVJC+ ”WJE+)) + (1 - /\/)((b(sr - (1 - /\)6|WHW) - ¢(Sr - (1 - )‘)5|Wm* ”Ww*))
<N (e =0 @(s:[W|[W))6 + (1 — XN)de < (e — O™ ¢(s,.|WIW))S. (44)
Since [[36) implies that
G(sr — (L= X)W [W) = ¢(s:[W[[W) < (€ — 07 d(s,[W|W))é,
relations [[4B8) and (44) guarantee that
(G N) — (s [W (W) - _ _
<JpEr|N) = @(sr = (L = NN+ |@(sr — (1= N)SIN) = ¢(sr — (1 = MW [W)[ + |¢(sr — (L = N)S|W([[W) — (s, [W[W)]
<(4e — 307 ¢(s,.|[W||W))s < Oy, (45)
where
Co =4 — 30" ¢(s,|W||[W)) > 4e — 30~ ¢(s,.|W|W).
Note that the constan; does not depend onor 6.
We choose a real number.= (1 —5,)¢(5.|\) + ¢'(5-|\). Then, [45),[(4R), and the inequality. — 5,.| < § imply that
o
<UL =505 N) = (L= )05, W) + [/ (5,IX) = (A0 (s, [WTF) + (1 = N~ (s, + [W[T7)| B
< =350 N) = @ WIW))| + (s [WIW) (57 = 50) + |9/ (5, [X) — (AT ¢(s [WIIW) + (1 = X)O™ (s + [WI[W))]
<(1—=35,)C268 + |¢(sr [W]W)[6 + € < C36 + €, (46)

where

Cs :=(2 = 5,)Ca + | $ (s, [W|[W)]
(1= sr + (1= N)3)Ca + |(s|W[W)]

(1 —75,)Ca + |p(s,.|W||[W)].

Vv Vv

Note that the constartt’; does not depend onor §. The function_ﬁ%ﬁsm takes the maximum at = 5,.. Using [4%) and

i i i i BSrr— (s, |[W[W)
(48), we can check that this maximum is approximated by theeva T

as

—5,7 — (5, \) TS — ¢(ST|WHW)

1-—73, 1—s,
25T = oG N) s = O WIW) =8 = G [WIIW) - =50 — ¢(sr [W][W)
<| — - —— |+ — - — |
1-3, 1-75, 1—-75, 1-—s,
5T =5 PEAN) — o WIW) | =ser — d(s [WIIW) (s, — 50)
< BT S Bt |+ e
1-3, 1-75, (1-35)(1-s)

NG T =)+ 1rGr = so)l |<p(§r|X) - Gb(serllW)| 25 = (s, [W|[W)
1-3, 1-3, (I—s-+1)(1—s;)
(=5, +0)(Cs38 +€)+18  Coe | —s,7— ¢(s,|W|W)
< + |6
2— 5, 2 — s, (2—5:)(1—sp)
<Che + Cs3, (47)

|

|+



where we choos€’y, andCs as follows.

'7—Sr—|—1 Cy
Cy = 5 s, +|2_37‘|
-8+ 0 Co
>
- 2—ST +|2_Sr|
(=8 F D)+ 18 | =5, = $lse|[W[W)
G e s |
(=8r +0)Cs +716  —s,7 — p(s,|W|W)
> + | |
2—s, 2—s)(1—s,)

Note that the constants, and C5 do not depend o or €. Since

— — )\/ e /\/ _
TN TN s
1—s 1—s 1—s

(48) implies that
I = !
st —p(slN) ST — p(sX)
s<0 1—s s<0 1—s
Sincep(s|\) < ¢(s|W||W), @8) and [4Fr) guarantee that

— — / J— J— T
0 < max —57—PGIX) _ Zser = s [ WIW) (Ca+1)e + (Cs + C5)0.
<0 1—s 1—s,
We define the distributiod,, € P?(X) by

P>\/($+) = /\/7 P>\/(.”L'_) =1-\.

| <|r—7| < C30 +e

Since the functiont — logx is concave, the inequality
e(sIX) < o(s|W[W[Py)
holds. Hence [(49) and(b0) imply that
—sr — @(s|W[WIP)  —s1 — §(s:[W|[[W)

0< inf max —

T PeP2(X) s<0 1—s 1—s,
—sr — W ||W | Py — 8,7 — WIW
Sméié( i ¢(18| [IWIPx) _ Zsir 1¢(S W) < (Cy+ e+ (Cs5 + Cs)d.
s< — S — Sr

We take the limitd — +0. After this limit, we take the limitt — +0. Then, we obtain[(33).

Next, we prove the inequality (B3) when the maximumax,<g —sr—¢(
- o(s|W W)
S

1—s
limg_,_ satisfiesr > —R. Thus,

G114 LU
s<0 1—s

For anye > 0, there existsy < 0 such that any < s( satisfies that
P(so|WI[W) — ¢(s|W[W)

Sg— S

R< < R+e.

We chooser, such that
$(so — LW[W) — € < ¢(s0 — 1|Wa,[[Wa,) < d(so — LW |[W).
Thus,
G(30|Wao[[Wa) = ¢(s0 = L[Wag [Way) < d(s0|W[W) = ¢(s0 — LW |[W) + € < R + 2.
Hence, for anys < s,
B30 W [[Wzy) — &(5[Woay | Wy )

So— S
§¢(SO|WI0HW$0) - (b(SO - 1|WI0HWI0)
<o(s0|WI[TV) — b0 — 1[W[[TF) + € < R + 2.
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(48)

(49)

(50)

—sr—¢(s|W|W) does not exist. The real numbé&t :=
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Thus,
—r<R< lim MSR_FQE.
S$——00 S
Therefore,
- - rWz Wz
sup = P(sr | W |l O)SHRH&
s<0 1—s

Taking e — 0, we obtain [3B).

IX. CONCLUDING REMARKS AND FUTURE STUDY

We have obtained a general asymptotic formula for the digogtion of two classical channels with adaptive improvame
concerning the several asymptotic formulations. We haewqat that any adaptive method does not improve the asyraptoti
performance. That is, the non-adaptive method attainsgtismam performance in these asymptotic formulations. Aoyl the
obtained result to the discrimination of two quantum stdtg®ne-way LOCC, we have shown that one-way communication
does not improve the asymptotic performance in these senses

On the other hand, as shown in Section 3.5 of Hayashi[11], avat improve the asymptotic performance of the Stein
bound even if we extend the class of our measurement to tlegatdp POVM in thex-partite system. Hence, two-way LOCC
does not improve the Stein bound. However, other asymppetitormances in two-way LOCC and separable POVM have not
been solved. Therefore, it is an interesting problem toeoWhether two-way LOCC improves the asymptotic performance
for other than the Stein’s bound.

Furthermore, the discrimination of two quantum channeB-(P maps) is an interesting related topic. An open problem
remains as to whether choosing input quantum states adpptmproves the discrimination performance in an asyniptot
framework. The solution to this problem will be sought in @ufie study.
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