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Abstract

In this work we find the capacity of a compound finite-statencie with time-invariant deterministic
feedback. The model we consider involves the use of fixedtehlpck codes. Our achievability result
includes a proof of the existence of a universal decoder Her family of finite-state channels with
feedback. As a consequence of our capacity result, we shaiabdback does not increase the capacity
of the compound Gilbert-Elliot channel. Additionally, wieasv that for a stationary and uniformly ergodic
Markovian channel, if the compound channel capacity is zeitbout feedback then it is zero with
feedback. Finally, we use our result on the finite-state nbhto show that the feedback capacity of the

memoryless compound channel is givenibf maxg, I(X;Y|6).

Index Terms

compound channel, feedback capacity, finite state chadimetted information, causal conditioning
probability, Gilbert-Elliot channel, universal decodeade-trees, types of code-trees, Sanov’s theorem,

Pinsker’s inequality

. INTRODUCTION

The compound channel consists of a set of channels indexéd=by with the same input and output
alphabets but different conditional probabilities. In #ating of the compound channel only one actual
channeld is used in all transmissions. The transmitter and the recdimow the family of channels but
they have no prior knowledge of which channel is actuallydusgnere is no distribution law on the
family of channels and the communication has to be reliabteafl channels in the family.

Blackwell et al. [1] and independently Wolfowitz [2] show#tht the capacity of a compound channel

consisting of memoryless channels only, and without feeklbia given by

max i%fI(Qx; Py x.0); (1)
whereQ x(-) denotes the input distribution to the chanmgl, x 4(-|-,¢) denotes the conditional probabil-
ity of a memoryless channel indexed #yand the notatio(Q x; Py x ¢) denotes the mutual information

of channelPyx 4 for the input distributionQ x, i.e.,

Py x0(ylz,0)
> Qx (@) Pyixo(yla’,0)

Z(Qx; Pyixp) £ ) Qx(z)Pyxe(ylz,0)In (2)
z,y
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The capacity in[{l1) is in general less than the capacity ofyeebannel in the family. Wolfowitz, who
coined the term “compound channel,” showed that if the watier knows the channél in use, then

the capacity is given by [3, chapter 4]
i%f %aXI(Qx; Pyx9) = i%f Ch, 3

where Cy is the capacity of the channel indexed byThis shows that knowledge at the transmitter of
the channeb in use helps in that the infimum of the capacities of the chisninethe family can now
be achieved. In the case thatis a finite set, then it follows from Wolfowitz's result thating Cy is
the feedback capacity of the memoryless compound chaninek she transmitter can use a training
sequence together with the feedback to estinfatgith high probability. In this paper we show that
when© is not limited to finite cardinality, the feedback capacifytile memoryless compound channel
is given byinfy Cy. One might be tempted to think that for a compound channdl miémory, feedback
provides a means to achieve the infimum of the capacitieseothiannels in the family. However this
is not necessarily true, as we show in Exanigle 1, which isntdé@m [4] and applied to the compound
Gilbert-Elliot channel with feedback. That example is fdun Sectior[ V.

A comprehensive review of the compound channel and its mEmmunication is given by Lapidoth
and Narayan [5]. Of specific interest in this paper are comgathannels with memory which are often
used to model wireless communication in the presence ofi§gi@]—[8]. Lapidoth and Telatar [4] derived
the following formula for the compound channel capacitytd tlass of finite state channels (FSC) when

there is no feedback available at the transmitter.

1
lim max inf —Z(Qx»; Pyn|xn 50.6)5 (4)

n—00 Qxn S0,0 M
where sy denotes the initial state of the FSC, a@k~(-) and Py x4, 4(:|-, 50,6) denote the input
distribution and channel conditional probability for bkolength». Lapidoth and Telatar’s achievability
result makes use of a universal decoder for the family ofdistate channels. The existence of the
universal decoder is proved by Feder and Lapidoth in [9] byging a finite number of maximum-
likelihood decoders, each tuned to a channel in the farily

Throughout this paper we use the concepts of causal coniij@and directed information which were
introduced by Massey in [10]. Kramer extended those coscapd used them in [11] to characterize the
capacity of discrete memoryless networks. Subsequehtigetdifferent proofs — Tatikonda and Mitter
[12], [13], Permuter, Weissman and Goldsmith [14] and KirB][Z have shown that directed information

and causal conditioning are useful in characterizing thellb@ck capacity of a point-to-point channel
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with memory. In particular, this work uses results from [1Hqt show that Gallager’s [6, ch. 4,5] upper
and lower bound on capacity of a FSC can be generalized to abe that there is a time-invariant
deterministic feedback;;_1 = f(y;—1), available at the encoder at tinie

In this paper we extend Lapidoth and Telatar’s work for theedhat there is deterministic time-invariant
feedback available at the encoder by replacing the regoladitoning with the causal conditioning. Then
we use the feedback capacity theorem to study the compouhdrGElliot channel and the memoryless
compound channel and to specify a class of compound chafumeléich the capacity is zero if and only
if the feedback capacity is zero. The proof of the feedbagachy of the FSC is found in Secti¢nllll,
which describes the converse result, and Seéfidn 1V, wher@nove achievability. As a consequence of
the capacity result, we show in Sectioh V that feedback do¢snerease the capacity of the compound
Gilbert-Elliot channel. We next show in Sectibn] VI that fofaanily of stationary and uniformly ergodic
Markovian channels, the capacity of the compound chanrmsgive if and only if the feedback capacity
of the compound channel is positive. Finally, we return te tiemoryless compound channel in Section
VIlland make use of our capacity result to provide a proof & fbedback capacity.

The notation we use throughout is as follows. A capital teffe denotes a random variable and a
lower-case letterz, denotes a realization of the random variable. Vectors areotd using subscripts
and superscriptsy” = (z1,...,2z,) andz} = (x;,...,z,). We deal with discrete random variables
where a probability mass function on the channel input isotehQ x-(z") = Pr(X"™ = z") and
Py xno(y"]a",0) = Pr(Y™ = y"| X" = 2",0) denotes a mass function on the channel output. When
no confusion can result, we will omit subscripts from the ability functions, i.e.,Q(z;|z" =, y*~!)

will denote Q x,xi-1 yi-1 (zgz' 1,y 1).

Il. PROBLEM STATEMENT AND MAIN RESULT

The problem we consider is depicted in Figlite 1. A mess&giom the set{1,2,..., "} is to be
transmitted over a compound finite state channel with tinvesiant deterministic feedback. The family
O of finite state channels has a common state sgaead common finite input and output alphabets
given by & and ). For a given channel € © the channel output at timé is characterized by the

conditional probability

P(y;, si|zi, si-1,0), vyi € Y,x; € X,8;,8-1€S. (5)

1Although Wolfowitz mentions the feedback problem in dising the memoryless compound channel [3, ch. 4], to the best

of our knowledge, this result has not been proved in any ptevivork.
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Encoder pecoder Estimated
Message O | M
—{ 2 (w, 2 ) > Py, silzi, 8i-1,0) Sl
w T; Yi 2i(yi) w
yy Feedback Generator
P Unit Delay [ %

Fig. 1. Compound finite state channel with feedback that isna-tnvariant deterministic function of the channel outpu

which satisfies the conditio®(y;, s;|%, s* "1, 4*=1,0) = P(y;, s;|xi, s;1,0). The channeb is in use
over the sequence of channel inputs. The familyp of channels is known to both the encoder and
decoder, however, they do not have knowledge of the chahireuse before transmission begins.
The messagél” is encoded such that at timethe codeword symbak; is a function ofiW and the
feedback sequencg’—!. For notational convenience, we will refer to the input saqee X*(W, Zi~1)
as simply X*. The feedback sequence is a time-invariant deterministictfon of the outpu; and is
available at the encoder with a single time unit delay. Thecfion performed on the channel outdgt
to form the feedback; is known to both the transmitter and receiver before compatian begins. The
decoder operates over the sequence of channel outputs form the message estimat&.
For a given initial statesy € S and channeb € ©, the channel causal conditioning distribution is
given by .
P(y"||2", s0,0) = HP(y,—\xi,yi_l,so,H). (6)
=1

Additionally we will make use of Massey'’s directed infornaet [10]. When conditioned on the initial

state and channel, the directed information is given by

n
I(X™ = Y"|s0,60) =Y _I(Yi; X[V, 50,0). 7
1=1
Our capacity result will involve a maximization of the dited information over the input distribution

Q(2™||z"~1) which is defined as
(@"]]=" ) HQ il 2. 8)

We make use of some of the properties prowded in [10], [14unwork, including the following three

which we restate for our problem setting.

1) P(a",y"[s0,0) = Q(a"|ly"~") P(y"|2", 50,0) [10, eq. (3] [14, Lemma 1]
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2) [I(X™ —=Y™"0)—I(X™ —Y"|S,0)| <log|S|, where random variabl§ denotes the state of the

finite-state channel [14, Lemma 5]

3) From [14, Lemma 6] ,
I(X" = Y"[s0,0) = Z(Qxnjjyn-1; Pynjxn,s0,6)

3 - Ply"||=", s0,6)
n|,n—1 n||,.n ) 20

= x P ", 50,0)1In

xn’ynQ( ||y ) (y || 0 ) zxm Q(;U’”)P(y”IIxm,so,H)

Note that propertie§l 1) arid 3) hold sin€&z"||y" !, s0,0) = Q(2"|[y"~ 1) for our feedback setting,

where it is assumed that the stateis not available at the encoder.

For a given initial states; and channeb the average probability of error in decoding messages
given by

Pew(s0,0) = Y P"[l2",50,0),
Yy EY bFEw

wherez" is a function of the message and of the feedback™ '. The average (over messages) error
probability is denotedP.(so, ), where P.(s,0) = 1/e"®>"  P..(s0,0). We say that a rater is
achievable for the compound channel with feedback as shovdigure[1, if for anye > 0 there exists a
code of fixed blocklengtm and rateR, i.e. (n, "), such thatP,(sg,6) < e for all # € © andsg € S.

Equivalently, rateR is achievable if there exists a sequence of fateedes such that

lim sup P.(so,0) = 0. 9)
n—o0 80,9

This definition of achievable rate is identical to that givanprevious work on the compound channel
without feedback. A different definition for the compoundaohel with feedback could also be consid-
ered; for instance, in [16], the authors consider codes ahbke blocklength and define achievability
accordingly.

The capacity is defined as the supremum over all achievatele aad is given in the following theorem.

Theorem 1:The feedback capacity of the compound finite state chanrgiVen by

C= lim max inf lI(X" — Y"|s0,0). (10)

=00 Q xn||zn—1 80,0 T

Theorenil is proved in Sectiénllll, which shows the existesfo€ and proves the converse, and Section

V] where achievability is established.

I1l. EXISTENCE OFC AND THE CONVERSE

We first state the following proposition, which shows tha¢ ttapacityC as defined in Theorein 1
exists. The proof is found in Appendix I.
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Proposition 1: Let
1
Cp,= max inf —I(X" — Y"|sg,0). (11)

anuznfl 80,6 n

ThenC,, is well defined and converges far— oo. In addition, let

C,=0C,— ——. (12)
n
Then
lim C, =supC, (13)
n—00 n

To prove the converse in Theoré 1, we assume a uniformhiison on the message set, for which
H(W) = nR. Since the message is independent of the channel parantétérs = H (1V|s¢, ) and
we apply Fano’s inequality as follows.

nR = H(W]|sp,0)

= I(Yn7W|8079) +H(W|Yn78070)
< I(Y"™;W|so,0) + Pe(s0,0)nR + 1
= H(Y"|s0,0) — H(Y"|W, s0,0) + P.(s0,0)nR+ 1

= Y HY|Y" ! 50,0) = > H(Y;[Y"™", W,50,0) + Pe(s0,0)nR + 1
=1 =1

= Y HEY ™ s0.0) = Y HYIY LW, X (W, 271 (YY), 50,6) + Pe(so,O)nR +1
i=1 1=1

= Y HY|Y" ' 50,0) = > HY;[Y"™ ', X% 50,0) + Pe(s0,0)nR + 1
=1 =1

= Z I(Y;a Xi|Yi_17 8079) + Pe(S(), 9)TLR +1

i=1
= I(X" = Y"|s0,0) + Pu(s0,0)nR + 1

For any code we have

I(X™ = Y"s0,0) >nR(1 — P.(s0,0)) — 1 (14)
and therefore
ingl(X" — Y"|s0,0) > nR(1 — sup P.(sg,0)) — 1. (15)
S0, S0,0

By combining the above statement with Proposifion 1 we have

C> G > R —sup Py(so, 0)) — ~ — 128151

50,0 n n

(16)
Then for a sequence of codes of rdtewith lim,, . supy, g Pe(s0,6) = 0, this impliesRk < C.
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IV. ACHIEVABILITY

Before proving achievability, we mention a simple case Wwhiallows from previous results. If the
set® has finite cardinality, then achievability follows immetily from the results in [14, Theorem 14],
which are true for any finite state channel with feedback.ddemve can construct a finite state channel
where the augmented state(is #) and by assuming that the initial distribution is positive &l (so, 6)

then we get that for an§ € O, |0| < co and anysy € S the rateR is achievable if

1
R < lim max min—I(X" —Y"|so,6). a7

N—00 Q xn|; zn—1 S0.0 N
More work is needed in the achievability proof when the ®eis not restricted to finite cardinality.
This is outlined in the following subsections in three stdpsthe first step, we assume that the decoder
knows the channdl in use and we show in Theorem 2 thatAf < C' and if the decoder consists of
a maximum-likelihood decoder, then there exist codes foickvkhe error probability decays uniformly
over the family® and exponentially in the blocklength. The codes used in shgthis result are codes
of blocklengthN'm where each sub-block of length is generated i.i.d. according to some distribution.
In the second step, we show in Lempia 3 that if instead the ca@eshosen uniformly and independently

from a set of possible blocklengiN+n codes, then the error probability still decays uniformlyeo®
and exponentially in the blocklength. In the third and fintgps we show in Theorein 4 and Lemia 5
that for codes chosen uniformly and independently from ao$dilocklengthNm codes, there exists
a decoder that for every channgle © achieves the same error exponent as the maximum-likelihood
decoder tuned td.

In the sections that followP(X™||Z"~!) denotes the set of probability distributions &if* causally

conditioned onz" 1.

A. Achievability for a decoder tuned tb

We begin by proving that if the decoder is tuned to the chafinel © in use, i.e., if the decoder
knows the channdél in use, and ifR < C then the average error probability approaches zero. This is
proved through the use of random coding and maximum likelih(ML) decoding.

The encoding scheme consists of randomly generatingde-treefor each message, as shown in
Figure[2(b) for the case of binary feedback. A code-tree lepsidh corresponding to the blocklength and
level i designates a set ¢£|*~! possible codeword symbols. One of ti#‘~! symbols is chosen as the
input X; according to the feedback sequente'. The first codeword symbol is generatedas~ Q(z1).

The second codeword symbol is generated by conditionindnermptevious codeword symbol and on the
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feedback,Xs ~ Q(z2|z1, 21) for all possible values of;. For instance, in the binary cagé&| = 2, two
possible values (branches) &% will be generated and the transmitted codeword symbol weilsblected
from among these two values according to the value of thebfead”;. Subsequent codeword symbols
are generated similarlys; ~ Q(z;|z*~t, 2*~1) for all possiblez‘~!. For a given feedback sequenge !,

the input distribution, corresponding to the distributiom a path through the tree of depthis

nHzn 1 HQ xz‘xz 1722‘— ) (18)
(a) codeword (no feedback) (b) code-tree (c) concatenated code-tree
‘ ‘ ‘ ‘ ‘ _9 ° ‘ ‘ ‘ ‘

R

@21 =0
.<:.Zi71 =1

o—o(no feedback)

Fig. 2. lllustration of coding scheme for (a) setting withdeedback, (b) setting with binary feedback as used in [ a
(c) a code-tree that was created by concatenating smaltks-trtees. In the case of no feedback each message is mapped to
a codeword, and in the case of feedback each message is mappecbde-tree. The third scheme is a code-tree of depth 4

created by concatenating two trees of depth 2.
A code-tree of depthn is a vector ofD(n) symbols, where

O
D) 23" |27 = o (19)
=1

and each element in the vector takes value from the alph¥befe denote a random code-tree 4 (™)
and a realization of the random code-treedf™). The probability of a tre@”) ¢ xP™) is uniquely
determined byQ x| z.-:(-||-) € P(X"||Z"1). For instance, consider the case of binary feedback,
Z =1{0,1}, and a tree of depth = 2, for which D(n) = 3. A code-tree is a vectar® = (z1, 21, 722)
wherex; is the symbol sent at timé= 1, x4 is the symbol sent at timé= 2 for feedbackz; = 0,

and o, is the symbol sent at time= 2 for feedbackz; = 1. Then
Pr(A® = a®) = Q(z1)Q(x21|71, 21 = 0)Q(w22|x1, 21 = 1) (20)
which is uniquely determined b§ x|z, (-||-). In general, for a code-tree of depththe following holds.

> PrAPM =Py =1 (21)

aPn) eXD(n)
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A code-tree for each messages randomly generated, and for each messaged feedback sequence
2"~ the codeword:™ (w, 2" ~1) is unique. The decoder is made aware of the code-trees foresibages.

Assuming that the ML decoder knows the chanhéh use, it estimates the message as follows.
w = arg max P(y"|w, 0) (22)
w

As shown in [14], since:’ is uniquely determined by andz*~! and sincez’ is a deterministic function

of y¢, we have the equivalence

P(y"|w,8) = P(y"||z" (w,2"""),0) (23)
so the ML decoder can be described as

W = arg max P(y"|z"(w, 2" 1), 0). (24)

Let P (so,0) denote the average (over messages) error probabilityreduwhen a code of blocklength
is used over channé@lwith initial statesy. The following theorem bounds the error probability urifidy
in (so,#) when the decoder knows the chanfiet © in use. The theorem is proved in Appendik II.
Theorem 2:For a compound FSC with initial statg € S, input alphabett, and output alphabey,
assuming that the decoder knows the cha#frigluse, then there exists a code of ratend blocklength
Nm, whereN > 1 andm is chosen such tha[ﬁ*m > R + ¢, for which the error probabilit;PeNm(so,H)

of the ML decoder satisfies
PeNm(307 9) < ’8‘ exp(—NmB(e, m, ’y‘)) (25)
for any 6 € ©, where

me2/(21og(e|Y|™)2 e < L(log(e|lY|™))?
Besm. [V]) /(2log(e|Y[™)%) € < 5 (log(elY|™)) 26)

¢ — 5 (log(e|Y|™))* otherwise
The result in Theoremm 2 is shown by the use of a randomly-geeéicode-tree of deptN'm for each

messagev. For every feedback sequene€™~!, the corresponding path in the code-tree is generated
by the input distribution® y~.m(zxm-1(-||-) € P(XN™[|ZN™~1) given by

Q™™ |2V 1) = Q12 1) X Qi (B 12571 X o X Qi oy | )
vam c XNm’ZNm—l e ZNm—l (27)

where Q*, is the distribution that achieves the supremum(ip. The random codebook used in
proving Theoreni]2 consists ef'? code-trees. Each code-tree in the codebook is a concatenade-

tree with depthNm consisting of N code-trees, each of depth. For a given feedback sequence
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zNm=1 (corresponding to a certain path in the concatenated ceeég-the codeword is generated by

Qxnm|zvm-1(-]]-). An example of a concatenated code-tree is found in Figlok 2(

B. Achievability for codewords chosen uniformly over a set

In this subsection we show that the resultin Thedrém 2 irsgghiat the error probability can be similarly
bounded when codewords are chosen uniformly over a sethbr etords, we convert the random coding
exponent given in Theoref 2, where it is assumed that thebomdeconsists of concatenated code-trees
of depth Nm in which each sub-tree of depih is generated i.i.d. according @;,, to a new random
coding exponent for which the concatenated code-treesarctiilebook are chosen uniformly from a
set of concatenated code-trees. This alternate type obrmarbding, where the concatenated code-trees
are chosen uniformly from a set, is the coding approach sutesdly used to prove the existence of a
universal decoder.

We first introduce the notion of types on code-trees.d’&P(™) denote the concatenation &f depth-

m code-trees:”(™), where D(m) is defined in [(IB) and/NP(™) ¢ xNP(™) The type (or empirical
probability distribution) of a concatenated code-tré€” (™) is the relative proportion of occurrences of
each code-tree”(™ ¢ xP(m) Equivalently, N multiplied by the type o&:V”(™) indicates the number
of times each depth: code-tree from the set”("™) occurs in the concatenated code-trée” (™). Let
Pn(XPM) denote the set of types of concatenated code-trees of dépih

Let P.(n, R,Q, P) denote the average probability of error incurred when a ¢oske of depthn and
rate R drawn according to a distributio € P(x"||Z"~!) is used over the channél. We now prove
the following result.

Lemma 3:Given Q,, € P(X™||Z™1), let Qny € P(XN™]|ZNm=1) denote the distribution given
by the N-fold product of@,,, i.e.,

N
Qum (@27 = [] @y 1), V™ € XN Nl g Zhm=t - (28)
i=1

For a given typeQny,, € Pn(XPM), let Qy,, € P(XN™||ZNm=1) denote the distribution that is
uniform over the set of concatenated code-trees of Ypg,. For every distribution,,, € P(x™||2™ 1)

there exists a typé)Nm € PN(XD(m)) whose choice depends @p,, and N but not onP such that
P.(Nm, R, Qs P) < exp(2NmS(N,m, | Z]))P.(Nm, R+ md(N,m, |Z|), Qnm, P)  (29)

for all P, whered(N,m,|Z|) = |X|P™) log(N +1)/Nm tends to 0 asV — oo,
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Proof: The proof follows the approach of [4, Lemma 3] except that@natebook consists of code-
trees rather than codewords; we include this proof for cetepless in describing the notion of types on
code-trees. Given a codebo@lof rate R+md (N, m,|Z|) chosen according tQ x,,,, we can construct a
sub-code’’ of rate R in the following way. LetQ’ denote the type with the highest occurrenc€ifhe
number of types i is upper bounded byN +1)I¥1”" = exp(Nmd(N,m, | Z|)), so the number of con-
catenated code-trees of ty@eéis lower bounded byxp(N (R+md(N, m,|Z|)))/ exp(Nmd(N, m,|Z|)) =
exp(NR). We construct the cod@ by picking the firste™# concatenated code-trees of ty@é Since
C' is a sub-code o, its average probability of error is upper bounded by theraye probability of
error of C times|C|/|C'| = exp(Nmd (N, m, |Z])).

Conditioned on@’, the codewords irC’ are mutually independent and uniformly distributed over
a set of concatenated code-trees of typle SinceC is a random code, the typ@’ is also random,
and letr denote the distribution of)’. Pick a realization of the typ€)’, denotedQ ., that satisfies
T(Qnm) > exp(—Nmd(N,m,|Z])). (This is possible since the number of types is upper boutyed
exp(Nmd(N,m,|Z])).) Then

W(QNm)Pe(Nma Ra@va P)

IN

> w(Q)P.(Nm,R,Q', P) (30)
Q/
< exp(Nmd(N,m, |2]))P.(Nm, R +md(N,m, | Z|), Qum, P)(31)

and

exp(Nmd(N,m,|Z]|))

7T(C?Nm)
exp(2Nmdo(N, m,|Z|))P.(Nm, R+ mdé(N,m,|Z|), Qnm, P) (33)

P.(Nm, R,Qnym, P)

P.(Nm,R+mdé(N,m,|Z|),Qnm,P) (32)

IN

[ |
Combining this result with Theoref 2, we have that theretexistypeQ ., € Py (XP0)) such that
when the codewords are chosen uniformly from the type cl&s3,0., given by the distributiorQ y,,,.,

the average probability of error is bounded as
PE(Nma Ra ava P) < eXp(2Nm5(N7 m, |Z|))|S| exp(—Nmﬁ(e—mé(N, m, |Z|)/27 m, |y|))(34)
= |S|exp {—Nm [5 (e—%mé(N,m, |Z]), m, D)]) — 25(N, m, ]Z])} }(35)

It is then possible to choos¥, such that for allN > Ny,

%’X‘D(m) IOg(N+ 1) <

- (36)

DO
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and

my1og(N + 1 1, /€
2P B < 3 (G ) 37)

which implies that the probability of error is bounded as

Pe(Nm>R>@Nm>P) < |S| eXp <—N’I’)’L%ﬂ <§7m7 |y|>> (38)

C. Existence of a universal decoder

We next show that when a codebook is constructed by choositg-tees uniformly from a set, there
exists a universal decoder for the family of finite-stateroteds with feedback. This result is shown in

the following four steps.

« We define the notion of a strongly separable fan@yof channels given by the causal conditioning
distribution. The notion of strong separability means thatfamily is well-approximated by a finite
subset of the channels ia.

« We prove that for strongly separabfe and code-trees chosen uniformly from a set, there exists a
universal decoder.

« We describe the universal decoder which “merges” the ML det®tuned to a finite subset of the
channels ino.

« We show that the family of finite-state channels given by thasal conditioning distribution is a

strongly separable family.

Our approach follows precisely the approach of Feder anddio#p[9] except that our codebook consists
of concatenated code-trees (rather than codewords) andhamnel is given by the causal conditioning
distribution.

Leta™P(™) denote a concatenated code-tree of dépth, VP (™) ¢ xNP(m) whereD(m) = (|Z|™—
1)/(|Z|-1), and letBy,, denote a set of such code-treésy,, € XVP) As described in Lemnid 3,
Bpy, Will be the set of code-trees of ty@Nm € PN(XD(m)) and the code-tree for each message will be
chosen uniformly from this set, i.€) y,,(aV ™)) = 1/|Bnn| for any a™P(™) ¢ By,,. As described
below, for a given output sequengé’™, ML decoding will correspond to comparing the functions
Py(yNmaNPm)), oNPm) ¢ By Note that comparing the function (yN™|aV ™)) is equivalent

to comparing the channel causal conditioning distribugismcePy (yN™ |aNP™)) = Py(yN™||zN™) as
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shown below.

Nm
Py(yN™aPy =TT Patwily'™", a™P™) (39)

i=1
Nm ‘ '

DT Py~ a0, 1) (40)
i=1

(b) Nm . .

= T Potwily'™, ") (41)
i=1

= Pyy™m[]aN™) (42)

In the above,(a) holds sincezi~! is a known, deterministic function af*~! and (b) holds since the
code-treeu’NP(™) together with the feedback sequenée! uniquely determines the channel inptit

For notational convenience, the results below on the usaledecoder are stated for blocklength
whereAP(") denotes a code-tree of depttand B,, denotes a set of such code-trees. These results extend
to the set of concatenated code-trdesg,, and any exceptions are described in the text. Furthermore,
we introduce the following notationpy denotes the ML decoder tuned to chanéglP. (0, ¢) denotes
the average (over messages and codebooks chosen unifeomlyafset) error probability when decoder
¢ is used over channdl; and P.(, ¢|C) denotes the average (over messages) error probability when
codebookC and decodep is used over channél

Definition 1: A family of channels{ Py x~ ¢(:||-,¢),6 € ©} defined over common input and output
alphabetst, ) is said to bestrongly separabléor the input code-tree se{s3,,}, B,, € xX(ZI"-D/(21-1)

if there exists some > 0 that upper bounds the error exponents in the family, i.at datisfies

1
lim sup sup — - log P.(0,¢9) < (43)

n—o00 0
such that for every > 0 and blocklengthn, there exists a subexponential numt€(n) (that may

depend oru and one) of channels{@,g")}f:(’f) co

1
lim —log K(n) =0 (44)

n—oo N

that well approximate ang < O in the following sense: For an§y € O there exists?,i’f) €0,1<k* <

K(n), so that

P(y"Hx”,Q) < 2”EP(y”Hw",9,(;f)), v(wn7yn) . P(y"Hx”,Q) > 2—n(u+log\y|) (45)
and
P(y"la",0) > 27" P(y"||lz",0), V(2" y") 1 Py"||a",6,7) > 27nGetles ) (46
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The notion of strong separability means that the fantilyis well-approximated by a finite subset
{9,2")}52(?) C © of the channels in the family. In order to prove that the fgnaif finite-state channels
with feedback is separable, we will need a valuéhat satisfies (43). The error probabiliff (6, ¢g) is
lower bounded by the probability that the output sequerté® corresponding to two different messages
is the same for a given realization of the channel and cage-ffor a random code-tree this is lower
bounded by a uniform memoryless distribution on the chaongbut. ThenP, (6, ¢g) > |V|~V™ and
a suitable candidate for is 1 + log|)|. The following theorem shows the existence of a universal
decoder for a strongly separable family and input codegeteB,,. The proof follows from the proof of
Theorem 2 in [9] except that we replace the channel conditidistribution P(y™|z™, 6) with the causal
conditioning distributionP (y"||z™, 9).

Theorem 4:1f a family of channels defined over common finite input andpotitalphabetst’, ) is
strongly separable for the input code-tree 4d8s }, then there exists a sequence of r&telocklengths

codesC,, and a sequence of decodérs,} such that

. 1 Pe(H,un]Cn)>
Iim sup—log | ————2% | =0 47
P g< P.(0. b5) 47

The universal decodet,, in Theorem# is given by “merging” the ML decoders tuned torsteds
0x, 1 < k < K(n), that are used to approximate the fam@ly In order to describe the merging of the
ML decoders, we first present the ranking functibfy. A ML decoder tuned to the channélcan be

described by a ranking functioi/, defined as the mapping
My : Bym x YN™ = {1,2,...,|Byml|} (48)

where a rank of 1 denotes the code-tré€”(™) that is most likely given outpug’¥™, rank 2 denotes
the second most likely code-tree, and so on. For a givenwedeiequencg’¥™, every code-tree in the

a;YD(m)

set By, is assigned a rank. For code—trez%D(m), € Bym,

Py(y™™al ™) > Py(yNma) Py = My(a) P gV ) < Mp(a) PN (49)

7
By (@2), comparing the functio® (yV™|aV (™) is equivalent to comparing the channel causal condi-
tioning distribution Py (yV™||x™). Letting ¢» denote the ML decoder tuned & we can describe the
decoder as

o(y™™) = w iff Mp(a™PU™ (w),y™™) < My(a™P ('), y™N), V! # w (50)

where aVP(™) () represents the code-tree chosen for messagé < w < eV%. In the case that

multiple code-trees maximize the likelihodg(yV™|aNP(™) for a giveny™N™, the ranking function
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My determines which code-tree (and correspondingly message)osen by the decoder. In the case
that the same code-tree froMy., is chosen for more than one message, the ranks will be idéntic
and a decoding error will occur. Note that for a given outpduence,N™, the decodery (y™V™) will

not always return the code-treé'”(™ ¢ By, for which M, (aNP™) 4N™) = 1, since the code-tree
a™P(m) may or may not be in the codebook.

Now consider a set of¢ channels from the family, given byé, € ©,1 < k < K. The codebooks
for theseK channels will be drawn randomly from the sBl,,. (Note that the same séty.,, is used
for all channelsd;, since, as shown in Lemnid 3, the typkv., € Py (XPm)) is chosen independent
of the channelP.) The K ML decoders matched to these channels, denetedpy,, ..., ¢g,, can be
merged as shown in [9]. The merged decodgris described by its ranking functiof/,,,. which is a
mapping

My, : Bym x YV™ = {1,2,...,|Bnm|} (51)

that ranks all of the code-trees By, for each output sequengé’™. The ranking),,,. is established
for a giveny™™ by assigning rank 1 to the code-tree for whidfy, = 1, rank 2 to the code-tree for
which My, = 1, rank 3 to the code-tree for whickly, = 1, and so on. After considering the code-trees
with rank 1 for all Mpy,, the code-trees with rank 2 iy, , 1 < k < K are considered in order and
added into the rankind/,,. . The process continues until the code-trees with rgBi,,| for all M,
have been assigned a rank i, ,.. Throughout this process, if a code-tree has already bedwmda it

is simply skipped over, and its original (higher) rankingnsintained. The rank of a code-tree iitf, .

can be upper bounded according to its rankifp, as shown in [9] and stated as follows.

My, (aVPU gV = j = My, (aVPU gV < (j-1)K+k, Va"PU" € By, VE,1 < k<K
(52)

This bound on the rank id/,, implies another (looser) upper bound.

M.

UK

(@D yNmy < K My, (aVP) yNmy oy (@NP) g Nmy € B x YN VE L < k< K

(53)
Equation [(58) can be used to upper bound the error probahilien sequences output from the channel
# € © are decoded by the merged decodgr. This is a key element of the proof of Theoréim 4. Finally,
we state the lemma below, which shows that the family of fiettge channels defined by the causal
conditioning distribution is strongly separable. Togethith Theoreni 4, this establishes existence of a

universal decoder for the problem we consider, and conplete proof of achievability.
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Lemma 5: The family of all causal-conditioning finite-state charsm@éfined over common finite input,
output, and state alphabet§ ), S is strongly separable in the sense of Definifion 1 for any trqmde-
tree sets{ B, }.

Proof: See AppendixTll. [

V. COMPOUND GILBERT-ELLIOT CHANNEL

The Gilbert-Elliot channel is a widely used example of a éndtate channel. It has a state space
consisting of ‘good’ and ‘bad’ states§ = {G, B} and in either of these two states, the channel is
a binary symmetric channel (BSC). The Gilbert-Elliot chahis a stationary and ergodic Markovian
channel, i.e..P(y;, s;|x;, si—1,0) = P(s;|si—1,0)P(y;|x;, si—1,0) is satisfied and the Markov process
described byP(s;|s;—1,0) is a stationary and ergodic process. For a given chahrtéke BSC crossover
probability is given byPg(0) for s; = B and Pz (0) for s; = G. The channel stat§; forms a stationary

Markov process with transition probabilities
9(0) = P(Si=G|Si-1=B)=1-P(S; = B|S;-1 = B) (54)
b)) = P(S;=B|Si-1=G)=1-P(5; = G|Si-1 = G) (55)
For a givend, the Gilbert-Elliot channel is equivalent to the followirglditive noise channel
Y, =X;dV; (56)

where® denotes modulo-2 addition and € {0, 1}. Conditioned on the state proceiss; } 722, the noise

V; forms a Bernoulli process given by

P — 1S,y — 2 B (57)

Ps(0), Si=G.
For a given channd!, the capacity of the Gilbert-Elliot channel is found in [8}dais achieved by a
uniform Bernoulli input distribution.
The following example illustrates that the feedback capyaai a channel with memory is in general
not given by
Cpp = i%f Cy, (58)

as in the memoryless case.
Example 1: [4] Consider the example of a Gilbert-Elliot channel whé¥g6) = 0, Pg(0) = 0.5,b(0) =
g(#) = 279 for @ = 1,2,3.... with feedback. The compound feedback capacity of this cakisnzero
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because assuming that we start in the bad state, for anylétagtkn, the channel that corresponds to
6 = n, will remain in the bad state for the duration of the transiois with probability(1 —27")" >
1—n27" > % While the channel is in the bad state the probability of efoo decoding the message
is positive with or without feedback, hence no reliable camination is possible.

However if we fix, then the capacity’y is at leastl — hb(%), because we can use a deep enough
interleaver to make the channel look like memoryless BS® wibssover probability}.

A Gilbert-Elliot channel is described by the four parametef?), b(9), P;(6), and P (6) that lie
between 0 and 1 and for any fixed P(y"||z", s¢) is continuous in those parameters. The continuity of
P(y"||z™, so) follows from the fact thatP(y;, s;|z;, s;—1) iS continuous in the four parameters for any
i > 1, and also because (as shown in Appendix Il in Edns.](111)(a0&)) we can expresB(y"||z"™, so)

as

P(y"|[a",s0) = Y Py",s"[lz", 50)

= ZHP(yi73i|$i73i—1)- (59)

s g=1
Let us denote byo the closure of the family of channels. Hence insteadndfco we can write
min,_g since® is compact and sinc&(Q; P) is continuous inP. Now, letQ,(z") denote the uniform

distribution overX™. We have

—~
S
N

mgxmigI(Q;P) < minmaxZ(Q; P)
S0, So,0
Y min1(Qu; P)
80,9

(60)

where (a) follows from the fact thatnax min < minmax and (b) follows from the fact that for any
channel a uniform distribution maximizes its capacity. ifgfiere we can restrict the maximization to the
uniform distribution@,, instead ofQ(z"||y"~!). Hence feedback does not increase the capacity of the
compound Gilbert-Elliot channel. This result holds for daynily of FSCs for which the uniform input
distribution achieves the capacity of each channel in thaljaand is closely related to Alajaji’s result

[17] that feedback does not increase the capacity of dis@dtlitive noise channels.

VI. FEEDBACK CAPACITY IS POSITIVE IF AND ONLY IF CAPACITY WITHOUT FEEDBACK IS POSITIVE

In this section we show that the capacity of a compound cHattma consists of stationary and

uniformly ergodic Markovian channels is positive if and yiifl it is positive for the case that feedback
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is allowed. The intuition of this result comes mainly fromrhmal9 that states that

max I(X" —-Y")=0 < maxI(X" - Y")=0. (61)

xn|yn-1 Qxn
The reason our proof is restricted to the family of channk#t fare stationary and uniformly ergodic
Markovian is because for this family of channels we can shHwat the capacity is zero only if for every
finite n,
max inf I(X" — Y"|0) = 0. (62)

XnHyn—‘l
A stationary and ergodic Markovian channel is a FSC wheresthte of the channel is a stationary

and ergodic Markov process that is not influenced by the adlanput and output. In other words, the

conditional probability of the channel output and statesgithe input and previous state is given by
P(ys, silwi, si-1,0) = P(si|si—1,0)P(yi|xi, 8i-1,0) (63)

where the Markov process, described by the transition fititya P (s;|s;—1, 6), is stationary and ergodic.
We say that the family of channels imiformly ergodicif all channels in the family are ergodic and for

all e > 0 there exists af/(¢) such that for alln > M
| Pr(S, = s|s0,0) — P(s]0)| <€, VspeS,s€S,0€0© (64)

whereP(s|0) is the stationary (equilibrium) distribution of the state Ehanneb. We define the sequence

Cr]L\/[ark:ovian as

) 1
Cé%arkoman — max inf EI(XH N Y"’Q) (65)

xn|zn-1

Theorem 6:The channel capacity of a family of stationary and uniformitgodic Markovian channels
is positive if and only if the feedback capacity of the sanmifa is positive.

Since a memoryless channel is a FSC with only one state, doedin implies that the feedback capacity
of a memoryless compound channel is positive if and onlyi jpositive without feedback. The theorem
also implies that for a stationary and ergodic point-toapahannel (not compound), feedback does not
increase the capacity for cases that the capacity withealtfack is zero. The stationarity of the channels
in Theoren{ 6 is not necessary since according to our achlagyadefinition, if a rate is less than the
capacity, it is achievable regardless of the initial st&le. assume stationarity here in order to simplify
the proofs. The uniform ergodicity is essential to the priwat is provided here but there are also other
family of channels that have this property. For instance thie regular point-to-point Gaussian channel

this result can be concluded from factor two result thatnotathat feedback at most doubles capacity
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(c.f., [18]-[20]). The proof of Theorernl 6 is based on the daling lemmas. We refer the reader to
Appendix[1M for the proofs of these lemmas.

Lemma 7:For any channel with feedback, if the input to the channelissriduted according to
Qa"12"71) = Q|2 Qe 250,

then
I(X" = Y™ > I(XF = Y9+ I(X], — V). (66)
Lemma 8: The feedback capacity of a family of stationary and unifgreigodic Markovian channels
is

lim C;:/[arkovian. (67)
n—00

The limit of CMarkovian exists and is equal teup,, CMaerkovian,

Lemma 9:Let the input distribution to an arbitrary channel be unifiaver the inputt™, i.e.,Q(z™)

|Xl|n. If under this input distributiod (X™ — Y™)=0, then the channel has the property tiay"||z") =

P(y™) for all 2™ € X™ y™ € Y™ and this implies that

max [(X" —Y")=0. (68)
xn|yn=1
Proof of Theorenii6Let Cyrp denote the capacity without feedback afigz denote the capacity
with feedback.Cnyrg = 0 « Crp = 0 is trivial. To show thatCyrpg = 0 = Crp = 0, we use

Lemmal8 to conclude that sin€&y 5 = 0 thensup,, C’,]l‘/[“’“’w“i“" = 0 and therefore for any > 1,

maxinf I(X" — Y"|0) = 0. (69)

an 0

In order to conclude the proof, we show that[if](69) holdsntlitealso holds when we replac@x- by
Qxn||y=—1- Sincel(X"™ — Y™) is continuous inP(y"||z") and since the seb is a subset of the unit
simplex which is bounded, then the infimum over the @etan be replaced by the minimum over the
closure of the seé®. Since[(69) holds also for the case that- is restricted to be the uniform distribution,
then Lemmald implies that the channel that satisi?¢g”||«") = P(y") for all 2™ € X", y™ € Y™ is in

the closure of® and therefore
max iI;fI(X" — Y"0) = 0. (70)
xn|jyn—1
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VIl. FEEDBACK CAPACITY OF THE MEMORYLESS COMPOUND CHANNEL
Recall that the capacity of the memoryless compound chgmrittlout feedback) is [1], [2]
max inf Z(Qx; Py|x,6)- (71)
Qx 0 ’

Wolfowitz also showed [3] that whethis known to the encoder, the capacity of the memoryless comgbo

channel is given by switching thiaf and themax, i.e.,
ifelf %aXI(Qx; Py|x)- (72)

In this section we make use of Theoréin 1 to show thak (72) isleiguthe feedback capacity of the

memoryless compound channel.

A. Finite family of memoryless channels

Based on Wolfowitz’s result it is straightforward to shovathf the family of memoryless channels

is finite,

©| < oo, then the feedback capacity of the compound channel is diyeswitching themax
and themin,

nbin%axl'(Qx;PY\Xﬂ)- (73)

This result can be achieved in two steps. Given a probalafitgrror P, > 0, first, the encoder will use
M uses of the channels in order to estimate the channel withapitity of error less thar%. Since the
number of channels is finite such an exists. In the second step the encoder will use a coding sehem
with blocklength N adapted for the estimated channel to obtain an error priiyathiat is smaller than

%. Hence we get that the total error of the code of lenbfh+ N is smaller thanP..

B. Arbitrary family of memoryless channels

For the case that the number of channels is infinite, the aegtimbove does not hold, since there is
no guarantee that for ang. > 0 there exists a blocklength(P.) such that &e™#,n) code achieves an
error less tharP, for all channels in the famiI)H However, we are able to establish the feedback capacity

using our capacity theorem for the compound FSC, and thdtriesstated in the following theorem.

2In a private communication with A. Tchamkerten [21], it wasggested that the feedback capacity of the memoryless
compound channel with an infinite family can also be esthblisusing the results in [9] (which show that the family of all
discrete memoryless channels is strongly separable). 8édyfis finitely quantized, a training scheme is used tonestée the
appropriate quantization cell, the coding is performecoediag to the representative channel of that cell and thedlag is
done universally as in [9].
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Theorem 10:The feedback capacity of the memoryless compound channel is

ifelf %aXI(QXQ Py x)- (74)
Theoren 1D is a direct result of Theoré€m 1 and the followingne.

Lemma 11:For a family ® of memoryless channels we have

lim % g, max if Z(Qxn|jyn-15 Pynj|xn p) = inf %iXI(Qx; Py x,0) (75)
The proof of Lemma_11 requires two lemmas, which we statevib€ltie proofs of Lemmals 12 and]13
are found in AppendikV.

Lemma 12:Let Q% = argmaxg, I(Qx, Py|x,,) and Q% = argmaxg, I(Qx, Py|x,,)- For two
conditional distributionsPy| x g, and Py |x g, with

A =|[Pyx, — Prixe.lh = Z |Py|x,0, (|7, 01) — Py|x.6,(y|T,02)] (76)
zeX YyeY

there exists an upper bound

IZ(Q% Pyix.0,) — Z(QX, Prix,0,)| < n(A) (77)
wheren(A) - 0 asA — 0.

Lemma 13:For anyé > 0, anye > 0 and any channePy |y, there exists an\/ such that we can

choose a channeﬂ’y‘xﬁ as a function ofM inputs and outputs such that
Pr{A > ¢} <9, (78)

where A denotes thel; distance between the estimated chanﬁ)e‘lxé and the actual channéh x,

i.e.,
A= Z |Py‘X7é(y|5L’vé) _PY|X(y|$)|- (79)
reX yey
Proof of Lemma_11We prove the eyquality by showing the following two inequasthold:
1 . .
— , max 11(}fI(QXn||yn71;PynHXn,g) < 1r(}f %&XI(Q)(; Py x), (80)
xn||lyn—1 X
1 . .
E max lan(QXnHYnfl;PYnHXn’G) > 1r91f %aXI(QX, PY|X,€) — €p, (81)
XnHynfl X

wheree, — 0 asn — oo. Inequality [80) is proved by the fact thataxinf is less than or equal to

inf max and by the fact that for a memoryless channel an i.i.d inputimizes the directed information.

1 .
- max lan(QX"HYn7];PY"HX",G)
n xn||lyn—1

1.
< ;lnf max  Z(Qxn||yn-1; Pyn||xn0)

xn||yn—1

— ir(}f %&XI(Q)(; Pyx.,0) (82)
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In order to prove inequality (81) we consider the followimgput distribution. The firsf\/ inputs are

used to estimate the channel and we denote the estimatedethas?. After the first M inputs, the

input distribution is the i.i.d distribution that maximgéhe mutual information between the input and

the output for the channdl. According to Lemmd_13, we can estimate the channel to witmir.,

distance smaller than> 0 with probability greater than — ¢, whereé > 0. According to Lemma_ 12,

by adjusting the input distribution to a channel that id.atdistance less thanfrom the actual channel

in use, we lose an amount that goes to zere as 0. Under the input distribution described above we

have the following sequence of inequalities.

(@)

A
V=

—
Ve

—~
=

A
Ve

—~
~
-

—~
Ve

—

)

max
N Qxnjjyn-1

naeQ

1

naeQ

1

max
xn||yn—1

max
xn||yn—1

xn||yn—1

max

N Qxnjjyn—1

iIelfI(QXnHYn'7] N Pyn,HXnﬂ)

inf /(X" — Y"|6)

inf Y I(XLYY
i=M(5,e)+1

1 n , .
— inf > I(Xj ViYL XY
nao max 11 ( M+1> 2| ) )

[%
i=M+1

n
inf Y I(Xjp s YiYrh, XYY e Y )
i=M+1

1 maxinf(n — M)I(X;Y|0,0)
n Qx\é 0

n Qx\é 0

1 max inf(n — M) Z P(é)I(QXV;; Py|x.0)
0.

L e inf(n — M)(1 - 0)Z(Qx/e; Pyix,0) — n(e€))

n Qxpe 0

n

~infmax(n — M)(1 - HZ(Qx: Pyjxa) — 1(e) 3

(a) and (f) follow from a change of notation.

(b) follows the fact that we sum fewer elements. The paramkfeis a function ofe > 0 andé > 0

and is determined according to Lemma 13. For brevity of mmtave denoteV/ (e, d) simply asM.
(c) follows from the fact that (Y;|Y~1) > H(Y;|Yi~!, X M),

(d) follows from the fact that the estimated channel is a camdsariable denoted a® and it is a

deterministic function ofX™, Y™ as described in Lemniall3.

(e) follows by restricting the input distributio@ x|y~ to one that uses first/ uses of the chan-

nel to estimate as described in Lemind 13, and then uses @mdisiribution, i.e., fori > M,
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Qai|z =1y ™) = Qe y' =1, 8(xM, y™M))) = Q(wilh).

(g) follows from the fact that with probability—é we have that thd.; distancd]PY‘Xﬂ—PY'X’éHl <e
and by applying Lemm@a_12, which states that for this case wer() wheren(¢) — 0 ase — 0 .

(h) follows from the fact thainfy maxq, is identical tomaxg, , infy.

Finally, sinceM is fixed for anye > 0, 6 > 0 then we can achieve any value belowy maxq, Z(Qx; Py|x,0)

for large n. Therefore inequality((81) holds. [ |

VIIl. CONCLUSION

The compound channel is a simple model for communicatioreuntannel uncertainty. The original
work on the memoryless compound channel without feedbaekacherizes the capacity [1], [2], which
is less than the capacity of each channel in the family, betréfiability function remains unknown.
An adaptive approach to using feedback on an unknown mesgswylhannel is proposed in [16], where
coding schemes that universally achieve the reliabilityction (the Burnashev error exponent) for certain
families of channels (e.qg., for a family of binary symmetltannels) are provided. By using the variable-
length coding approach in [16], the capacity of the channalse can be achieved. In our work, we
consider the use of fixed length block codes and aim to ensliability for every channel in the family;
as a result, our capacity is limited by the infimum of the c#ijcof the channels in the family. For the
compound channel with memory that we consider, we have ctaized an achievable random coding
exponent, but the reliability function remains unknown.

The encoding and decoding schemes used in proving oursdgue a number of practical limitations,
including the memory requirements for storing codebookssting of concatenated code-trees at both the
transmitter and receiver as well as the complexity involwvetherging the maximum-likelihood decoders
tuned to a number of channels that is polynomial in the bkrgth. As such, our work motivates a search

for more practical schemes for feedback communication tvercompound channel with memory.

APPENDIX |
PROOF OFPROPOSITIONI]

The proposition is nearly identical to [4, Proposition 1jcegt that we replacé(X™;Y"|so,6) by
I(X™ — Y"|sq,6) and Q(2™) by Q(z"]|z"~1) using results from [14] on directed mutual information
and causal conditioning. We first prove the following lemnvhjch is needed in the proof of Proposition
(. The lemma shows that directed information is uniformhntoaious in @ x~y~-. For our time-
invariant deterministic feedback mod€)(z"||y" 1) = Q(z"||z"~!), and the lemma holds for any such
feedback.
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Lemma 14: (Uniform continuity of directed im‘ormatioﬂi)Qﬁ(nHy,H and ngnw—l are two causal
conditioning distributions such that

Yo RNE YY) - @%@y <A<

T eXn 7yn eyn
then for a fixedPyn || x»

(84)

N |

A
IZ(Qxnjjyn—5 Projixn) = Z(Q%n|jyn-1; Projix)| < —Alog R (85)
Proof: Directed information can be expressed as a difference leetweo terms/ (X" — Y") =
H(Y™) — H(Y™||X™). Let us consider the total variation &%, (-) — PZ.(-),

SIPY M - PAyM = DD Pyt - PRy

y" y"

= Z Yo QN lly" Py ") — Q%" |ly" ) P(y"||=")

xn

ZZPwa Q" (2" [y" ) — Q2" ||y™ )|

IN

La™ly™™) — Q2 (="|ly™ ™)

< A (86)

i
97
Q

By invoking the continuity lemma of entropy [22, Theorem ,2033] we get,

|HY(Y™) — H*(Y"™)| < —Alog IJ?"I (87)

where H1(Y™) and H?(Y™) are the entropies induced b%. () and P2.(-), respectively. Now let us
consider the differencél* (Y"||X™) — H2(Y™||X™).

[H (Y| X") = HA(Y||X™)]

= [ —PYa"y")log P(y"||z") + P*(z",y")log P(y"[|x")

xn7yn

= [ —P"l2"Q" " |ly" ") log P(y"||z") + P(y"||z™)Q* (=" ||[y"~") log P(y"||z")

T yn

= | X2 P2 log Py |+") (Q (" [y ) —Q2(x"||y"_1))‘

xn7yn

< | >0 =Pz log P(y"|l2™) |Q (2" Iy ") — Q% (x"|ly" )]
™,y

< <Z —P(y"|]z") log P(y"||2" ) (Z Q' (" |ly"") Qz(:ﬂ"lly"‘l)l>
x",ym
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< log YA (88)

By combining inequalitied (87) an@ (B8) we conclude the pafahe lemma. [ |
By Lemmal1l4,/ (X" — Y"[sq,0) is uniformly continuous irQ x| z»-1. SINCEQ x| z»-1 IS @ member
of a compact set, the maximum ov@r 2z~ is attained and’;, is well-defined.
Next, we invoke a result similar to [4, Lemma 5]. Given integle andm such thatk + m = n, input
sequences? = (z1,...,z;) and P = (Tkg1,...,7n) With corresponding output sequencgsand

Ypr1 181 Qxn) 201 e defined as

Qa"||2"1) = Q(ak]1F Qe 127 1).
Then

inf I(X™ — Y"|sg,0) > inf I(XF — YF¥|s,0) + inf I(Xy = Y[k, 0) = log|S].
So,

5079 5079

This result follows from [4, Lemma 5] and [14, Lemma 5].
Finally, if we let Q(z%||2¥~!) and Q(:::Z+1||z2:11) achieve the maximizations 6, andC,,, respec-

tively, then we have

nC,,

v

inf I(X"™ — Y"|sg,0)

80,6

inf I(X{ = Y[s0,0) + inf I(X}yy = Y] [k, 0) — log ||
507

80,6

= kCx + mC,, —log|S|,

v

or equivalently,

Clearlylim,, .o, Cp, = lim;, o C,, and by the convergence of a super-additive sequénag,, C, =

sup,, Ch.
APPENDIX Il

PROOF OFTHEOREM[Z

The theorem is proved through a collection of results in [A§i 414]. Let P?',(¢) denote the error
probability of the ML decoder when a random code-tree of klieregth» is used at the encoder.
PLO) = Y PW"lla"(w,2""),0) (89)
yreEYmwFw
The following corollary to [14, Theorem 8] bounds the exgectaluer[P?,,(9)], where the expectation

is with respect to the randomness in the code. The resulsHoldany initial statesg.
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Corollary 15: Suppose that an arbitrary messagel < w < "%, enters the encoder with feedback
and that ML decoding tuned t# is employed. Then the average probability of decoding ewx@r the

ensemble of codes is bounded, for any choice,d < p <1, by
1+p

E[PL,(0)] < e 1> Q") <ynuw“,e>$] . (90)
Proof: Identical to [14, Proof of Theofemz%] except thaty™||z") is replaced byP(y"||z",6). ®
Next, we letP!'(sg, ) denote the average (over messages) error probabilityretuvhen a code-tree
of blocklengthn is used over channélwith initial states,. Using Corollanf15, we can boun®’(sy, )
as in the following Corollary to [14, Theorem 9]

Corollary 16: For a compound FSC withS| states where the codewords are drawn independently
according to a given distributio),, € P(x™||2"~!) and ML decoding tuned t® is employed, the

average probability of erroP!*(sg, ) for any initial states, € S, channeld € ©, andp, 0 < p < 1is

bounded as
P(s0,0) < |S|exp (—n(F"(p, @n,0) — pR)) (91)
where
—plog|S .
F(p,Qn,0) = %" +min Eo(p, Qn, s0,9)

1+p

(p7 QmSOa = __logz [Z QnP y Hx » S0, )H”] (92)
Proof: Identical to [14, Proof of Theorem 9] except for: (|) we reg@d’ (y" ||, so) by P(y"||z", so,0),
(ii) we consider the error averaged over all messages (r#éthh@ the error for an arbitrary messagg

and (i) we assume a fixed input distributioy || z»- rather than minimizing the error probability over

a” QXnHanl. .

The two results stated above provide us with a bound on the erobability, however, the bound
depends on the channglin use. Instead, we would like to bound the error probabilibyformly over
the class9. To do so we cite the following two lemmas from previous work.

Lemma 17:Given Q;, € P(X*||Z¥1) andQ,, € P(X™||Z™1), letm = n — k and define

Qn (27127 71) = Qula |12y Qm(ei i ll2p ) (93)

Then F™(p,Qy,,0) as defined in Corollary 16 satisfies

FY(0,Qun0) > 14 (p, Q1. 0) + ™ 0,01, 0) (94)
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Proof: Identical to [14, Proof of Lemma 11] except that we repl&te™||z", so) by P(y"||z"™, so, 0).
[
Lemma 18:

Eo(p, Qn. 50,0) > %pﬂczn; Pyajjxn,s00) = 50" (log(elV])* (95)
Proof: The lemma follows from [4, Lemma 2], which holds for a chanRehnd input distribution

Q satisfyingy™,. Q(a"[|=""1) = 1 and ¥, . Q(a"||=""1) P(y"||a") = 1. .
We now follow the technique in [4] by using Lemmbs] 17 dnd 18 ¢wrid the error probability
independent of botls, and§. For a given ratekR < C, lete = (C' — R)/2 and pickm in such a way

thatC,, > R +¢. Then

log | S|
m

1
max  inf —Z(Qxm||zm-1; Pym||xm s0,6) — > R+e. (96)

QXmHZm—l 80,0 m

Let Q*, € P(x™]|2™1) be the input distribution that achieves the supremur@jp i.e.,

log |S|
m

e 1 «
lng EI(Qm; PY”lHX”l,SQ,G) - 2 R + € (97)

Next, we useQ;, to define a distributior) y,, € P(XN™||ZN¥™=1) for a sequence of lengthvm,

N > 1, as follows.
QN[N E Q@) X Q(amiallzntin ) X - X Q@ (N (N 1) (98)

- HQ (i— m+1||zz:n_l)1m+1) (99)

For this new input dlstnbutlon and sequence of lenfythn, we can bound the error exponent

FN™(p, Qnm, 0) — pR (100)
as shown below.
(a)
: * log |S|
= mn EO(p7 Qm7 50 0) —p|{R+ m (102)
® 1 1 . log |S
> min = pT(Ql; Py se) — o (log(e]Y \))2—p<R+ﬂ) (103)
s m 2m m
1 10g|5| 1 2 m 2
> — m m i - - —
> (0 T (@h o) B = 55 ) = o2 log(ely™) (104)
© 1 2 miy 2
> pe— —p (log(e|Y™])) (105)

2m
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where (a) is due to Lemma_17(b) follows from Lemma&_1B, andc) follows from (97). As in [4], we
can maximize the lower bound on the error exponent by seftingmin(1, me/ (log(e|Y™|))?). With
this choice ofp we have

me?/(2log(elV[™)?) e < 5 (log(elY]™))?

FN™(p,Qnm,0) — pR > (106)
e — 5= (log(e]Y|™))* otherwise

2m

TheorenT2 follows by combinind (106) with the result in Cdmoj [16 (for blocklengthVm).

APPENDIX I

PROOF OFLEMMA
To prove the lemma, we must first establish two equalitieatirel the channel causal conditioning
distribution P(y"||z", s9,0) to the channel probability lawP(y;, s;|zi,s;—1,6). The following set of

equalities hold.

Py"a"ls0.0) =}, Py"a"s"s0,0) (107)
snesn
WS Py s 50, 0)P(y", 8”12, s0,0) (108)
smesn
23 PEly 50, 0)P(y" 5" ", 50,0) (109)
smesSn
= P@"[ly" " s0,0) D P(y"ss" (|2, 50,0) (110)
snesn

where (a) is due to [14, Lemma 2] an¢b) follows from our assumption that the input distributiefi

does not depend on the state sequesice. By the chain rule for causal conditioning [14, Lemma 1],
(110) implies that

P(y"||z", s0,0) = Z P(y", s"||z", s0,0). (111)
smeSn
Also,
P(y",s"||z", s0,0) = HP(yi,si\xi_l,yi_l,si_l,Q) (112)
i=1
(2 HP(yi,8i|l’i,Si_1,9) (113)

i=1
where(c) follows from the definition of the compound finite-state chah Having established equations
(111) and[(1113), Lemmia 5 follows immediately from [9, Lemn#], Where the conditional probability

P(yi, silxi, si—1,0) is quantized and the quantization cells are representediduyrtels{@%"), . 79§?()n)}-
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The proof of our result differs only in that the upper boundtloa error exponents in the family is given
by u=1+log|Y|.

APPENDIX IV

PROOF OFLEMMAS [7],[8 AND

The proof of Lemma]7 is based on an identity that is given by Kinil5, eq. (9)]:

I(X" > Y") = I(Xs Y Xy (114)
=1
Proof of Lemma]7Using Kim's identity we have

I(X"—=Y™) = > (XY Xy
=1

k
= D XY XY 4 Y I(Xp v Xy

=1 i=k+1
> Y IXEYAXTLYTh Y I YXTL YT
=1 i=k+1
n . .
= I(XF Y5+ > IXE Y XY, (115)
i=k+1
Now we bound the sum in the last equality,
n n
S I YXTLYTY = 3D HOGIXTL YY) - B YL Y
i=k+1 i=k+1
= HXX LY - HXGX LY LY
i=k+1
> Y HXGIX YD — HGIXGE YY)
i=k+1
= (X = Vi) (116)
where (a) follows from the assumption tha@(z"||z"~!) = Q(z}[|f ") Q (2}, [127:1). |

Proof of Lemmd18The proof consists of two parts. In the first part we show th@f/@+ovian js
sup-additive and therefortm,, ., CMarkovian — qyp, (CMarkovian |n the second part we prove the

capacity of the family of stationary and uniformly ergodi@aMovian channels by showing that
lim C, = lim ¢Markevian, (117)

n—oo n—oo

whereC,, is defined in[(Tl1).
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First part: We show that the sequencg/@rkovian is sup-additive and therefore the limit exists. Let
integersk andm be such that +m = n and denote input distributiong@(z"||2""), Q(«%||z¥ 1), and

Q(xg+1||z2;11) in shortened forms a§,,, @, andQ,,. We have,

nCMarkovian — —  max i%f I(X" —Y"0)
(@) .
>  max inf I(X" — Y"|9)
Qka 0
() . i i
> Inax 1%f [I(X — Y"0) + I( X} — Yk’11|9)}
> max [i%fI(Xk — Yk|9) + inf [(Xpy, = Ykﬁlw)}
= r%axi%ff(Xk — Y*|9) + %aXiI;fI(X]?_i_l — Y 416)

= maxinf I(X* - Y*|0)+ max inf [(X™ — Y™|6)
Qr 0 Q@m|lzm=1) 0

kC’i\Jurkovmn + mcrl\niarkovian (118)

)

where(a) follows by restricting the maximization to causal condiiitg probabilities of the product form
Q(z"|z"1) = Q(:p’ﬂ|z’f‘1)Q(mZ+l||zg;11), (b) follows from Lemmad¥, andc) follows from stationarity
of the channel.
Second partWe show thatim,, o, C,, = lim,, o, CMarkovian Dye to Lemma 5 in [14]]1(X" —
Y"|0) — I(X™ — Y™"|So,0)| <log|S|, therefore it is enough to prove that
nh_)rrolo% annl‘i}ifl ilgfI(X” — Y"|S0,0) — erfl“‘a;fl—l ansg I(X™ =YY" |s0,0)| =0. (119)
The difference in[(119) is always positive, hence it is erfotm upper bound it by an expression that

goes to zero as — oo. Again by Lemma 5 in [14] we can bound the second terniinl(119),

max inf [(X" — Y™, |s0,0)

xn||zn—1 6780

> max inf [(X" — Y™, |Sk, so,0) — log |S]|

xn||zn—1 9,50

(@
> max inf I(X} — Y;",|Sk, so0,0) — log S|,

xplzp=t vh%0
O max i I(X"F S YR (8o, 51, 6) — log S, (120)

an—kHZn—k—l B,S,k
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where (a) holds for every > 1 and is due to Lemmia 7 and (b) holds by the stationarity of trenhl.

Hence, [(12D) implies that we can bound the difference,

max inf [(X" — Y"|Sp,0) — max inf I(X" — Y",|so,0)

anuzn—] 0 xmn||zn—1 6780

(a)
< (k: log || + max inf (X% - Y|, 9)>

xn—k|jzn—k—1

- ( max inf T(X?7% = y"=k Sy, 5 1,0) — log |S|> ,

xn—k||zn—k—1 0,5_}

(b)
< klog|Y|+ e(n — k)log |Y| + log |S]|. (121)

Inequality (a) is due to the fact thd( X" — Y™) < klog|¥| + I(X"* — Y"=*) and due to[{120).
Inequality (b) holds since for a uniformly ergodic family ofannels|P(sg|s_x,0) — P(so|0)| < € for

all sp € S implies that for any input distributio) x» || z»—+-1 and any channdl,
[I(X"% — Y™ k|9,Sp) — I(XTF = Yk Sy, 5 4, 0)| < e(n — k) log |V

After dividing (I121) byn, and sinces can be arbitrarily small and is fixed for a givene, then [(119)
holds.

Proof of Lemma&l9From the assumption of the lemma we have

> Q)P e tog U5 TR D o (122

By assuming a uniform input distributior®) (") = ﬁ and by using the fact that if the Kullback

T yn

Leibler divergenceD(pl|q) £ >, .+ p(x)log p(2) s zero, therp(z) = ¢(x) for all x € X, we get that

q(z)
(122) implies thatP(y"||z") = P(y") for all 2™ € x™, y™ € Y". It follows that
PY"X™)
max [(X"—-Y") = max F [log —_— (123)
xn|lyn—1 anHynfl P(Yn)
= max FE[0]=0. (124)
xn|yn-1
|
APPENDIXV

PrROOF OFLEMMAS[I2 AND [13

Proof of Lemm&12The proof is based on the fact tHatQ x, Py|x) is uniformly continuous inPy| x,

namely for anyQ x,
IZ(Qx, Py|x,0,) — Z(Qx, Py|x,0,)| < T(4), (125)
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wherer(A) — 0 asA — 0 (The uniform continuity of mutual information is a straifgrivard result of

the uniform continuity of entropy [22, Theorem 2.7]). We bav

IZ(Q%, Pvix.0.) — Z(Q%, Pyix.,)]
= |Z(Q% Prix.) — Z(Q%, Prixe,) + T(Q%, Pyix0,) — Z(QX, Pyix0,)]
< 7(A) + [ Z(Q%, Prix.0,) — Z(QX, Prixp,)l; (126)

where the last inequality is due to (125). We conclude thefoby bounding the last term in_(1R6) by
7(A), which implies that if we let)(A) = 27(A) then [ZT) holds.

I(Q%, Prix.0,) — Z(Q%. Py|xp,)
< Z(Q% Pyix,) — T(Q%, Prix,)

< 7(A). (127)
Similarly, we haveZ(QY, Py|x,) — Z(Q%, Py|x,0,) < 7(A), and therefore

IZ(Q% Pyix.0,) — Z(Q%, Prixp,)l < 7(A). (128)

Proof of Lemmd_13The channelP,, is chosen by finding the conditional empirical distribution

|X,0
induced by an input sequence consisting‘lﬁf copies of each symbol of the alphab¥t We estimate

the conditional distribution®|, separately for each € X'. We insertz = a for m = % uses of the

channel and we estimate the channel distribution when et is x = a as the type of the output which
is denoted ag*-|,. From Sanov’s theorem (cf. [23, Theorem 12.4.1]) we havé ttha probability that

type Py, Will be at L;-distance larger tham = |€7| from Py, is upper bounded by

Pr{||PYm\a_PY|a||1 > 61} < (m_‘_l)'y‘exq_m D(PY||PY|a)> (129)

min
Py:||Py —Py|a)||1>€1

where D(Py||Pyjq) = >_,ey Py (y) log szg\)a) denotes the divergence between the two distributions.

Using Pinsker’s inequality [23, Lemma 12.6.1] we have that

=N

€

' D(Py||Py,) > 2L 130
T (Py[|Py|q) > 5 (130)
and therefore,
2
Pr{||Py» — Pyjall1 > €1} < (m+ 1)Plexp <—m%> (131)
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The term(m + 1)‘3’|exp(—m§) goes to zero asn goes to infinity fore; > 0 and therefore, for any

% > 0 we can find ann such that(m + 1)Vlexp(—m$) < - Finally we have,
)
Pr{A >} <Pro | 1Py 5= Priall > 5 ¢ < 115 (132)
= x| X
where the inequality on the right is due to the union bound. [ |
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