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Abstract

In this work we find the capacity of a compound finite-state channel with time-invariant deterministic

feedback. The model we consider involves the use of fixed length block codes. Our achievability result

includes a proof of the existence of a universal decoder for the family of finite-state channels with

feedback. As a consequence of our capacity result, we show that feedback does not increase the capacity

of the compound Gilbert-Elliot channel. Additionally, we show that for a stationary and uniformly ergodic

Markovian channel, if the compound channel capacity is zerowithout feedback then it is zero with

feedback. Finally, we use our result on the finite-state channel to show that the feedback capacity of the

memoryless compound channel is given byinfθ maxQX
I(X ;Y |θ).

Index Terms

compound channel, feedback capacity, finite state channel,directed information, causal conditioning

probability, Gilbert-Elliot channel, universal decoder,code-trees, types of code-trees, Sanov’s theorem,

Pinsker’s inequality

I. INTRODUCTION

The compound channel consists of a set of channels indexed byθ ∈ Θ with the same input and output

alphabets but different conditional probabilities. In thesetting of the compound channel only one actual

channelθ is used in all transmissions. The transmitter and the receiver know the family of channels but

they have no prior knowledge of which channel is actually used. There is no distribution law on the

family of channels and the communication has to be reliable for all channels in the family.

Blackwell et al. [1] and independently Wolfowitz [2] showedthat the capacity of a compound channel

consisting of memoryless channels only, and without feedback, is given by

max
QX

inf
θ
I(QX ;PY |X,θ), (1)

whereQX(·) denotes the input distribution to the channel,PY |X,θ(·|·, θ) denotes the conditional probabil-

ity of a memoryless channel indexed byθ, and the notationI(QX ;PY |X,θ) denotes the mutual information

of channelPY |X,θ for the input distributionQX , i.e.,

I(QX ;PY |X,θ) ,
∑

x,y

QX(x)PY |X,θ(y|x, θ) ln
PY |X,θ(y|x, θ)

∑

x′ QX(x′)PY |X,θ(y|x′, θ)
. (2)
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The capacity in (1) is in general less than the capacity of every channel in the family. Wolfowitz, who

coined the term “compound channel,” showed that if the transmitter knows the channelθ in use, then

the capacity is given by [3, chapter 4]

inf
θ
max
QX

I(QX ;PY |X,θ) = inf
θ
Cθ, (3)

whereCθ is the capacity of the channel indexed byθ. This shows that knowledge at the transmitter of

the channelθ in use helps in that the infimum of the capacities of the channels in the family can now

be achieved. In the case thatΘ is a finite set, then it follows from Wolfowitz’s result thatminθ Cθ is

the feedback capacity of the memoryless compound channel, since the transmitter can use a training

sequence together with the feedback to estimateθ with high probability. In this paper we show that

whenΘ is not limited to finite cardinality, the feedback capacity of the memoryless compound channel

is given byinfθ Cθ. One might be tempted to think that for a compound channel with memory, feedback

provides a means to achieve the infimum of the capacities of the channels in the family. However this

is not necessarily true, as we show in Example 1, which is taken from [4] and applied to the compound

Gilbert-Elliot channel with feedback. That example is found in Section V.

A comprehensive review of the compound channel and its role in communication is given by Lapidoth

and Narayan [5]. Of specific interest in this paper are compound channels with memory which are often

used to model wireless communication in the presence of fading [6]–[8]. Lapidoth and Telatar [4] derived

the following formula for the compound channel capacity of the class of finite state channels (FSC) when

there is no feedback available at the transmitter.

lim
n→∞

max
QXn

inf
so,θ

1

n
I(QXn;PY n|Xn,s0,θ), (4)

where s0 denotes the initial state of the FSC, andQXn(·) and PY n|Xn,s0,θ(·|·, s0, θ) denote the input

distribution and channel conditional probability for block lengthn. Lapidoth and Telatar’s achievability

result makes use of a universal decoder for the family of finite-state channels. The existence of the

universal decoder is proved by Feder and Lapidoth in [9] by merging a finite number of maximum-

likelihood decoders, each tuned to a channel in the familyΘ.

Throughout this paper we use the concepts of causal conditioning and directed information which were

introduced by Massey in [10]. Kramer extended those concepts and used them in [11] to characterize the

capacity of discrete memoryless networks. Subsequently, three different proofs – Tatikonda and Mitter

[12], [13], Permuter, Weissman and Goldsmith [14] and Kim [15] – have shown that directed information

and causal conditioning are useful in characterizing the feedback capacity of a point-to-point channel
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with memory. In particular, this work uses results from [14]that show that Gallager’s [6, ch. 4,5] upper

and lower bound on capacity of a FSC can be generalized to the case that there is a time-invariant

deterministic feedback,zi−1 = f(yi−1), available at the encoder at timei.

In this paper we extend Lapidoth and Telatar’s work for the case that there is deterministic time-invariant

feedback available at the encoder by replacing the regular conditioning with the causal conditioning. Then

we use the feedback capacity theorem to study the compound Gilbert-Elliot channel and the memoryless

compound channel and to specify a class of compound channelsfor which the capacity is zero if and only

if the feedback capacity is zero. The proof of the feedback capacity of the FSC is found in Section III,

which describes the converse result, and Section IV, where we prove achievability. As a consequence of

the capacity result, we show in Section V that feedback does not increase the capacity of the compound

Gilbert-Elliot channel. We next show in Section VI that for afamily of stationary and uniformly ergodic

Markovian channels, the capacity of the compound channel ispositive if and only if the feedback capacity

of the compound channel is positive. Finally, we return to the memoryless compound channel in Section

VII and make use of our capacity result to provide a proof of the feedback capacity.1

The notation we use throughout is as follows. A capital letter X denotes a random variable and a

lower-case letter,x, denotes a realization of the random variable. Vectors are denoted using subscripts

and superscripts,xn = (x1, . . . , xn) and xni = (xi, . . . , xn). We deal with discrete random variables

where a probability mass function on the channel input is denoted QXn(xn) = Pr(Xn = xn) and

PY n|Xn,θ(y
n|xn, θ) = Pr(Y n = yn|Xn = xn, θ) denotes a mass function on the channel output. When

no confusion can result, we will omit subscripts from the probability functions, i.e.,Q(xi|x
i−1, yi−1)

will denoteQXi|Xi−1,Y i−1(xi|x
i−1, yi−1).

II. PROBLEM STATEMENT AND MAIN RESULT

The problem we consider is depicted in Figure 1. A messageW from the set{1, 2, . . . , enR} is to be

transmitted over a compound finite state channel with time-invariant deterministic feedback. The family

Θ of finite state channels has a common state spaceS and common finite input and output alphabets

given by X and Y. For a given channelθ ∈ Θ the channel output at timei is characterized by the

conditional probability

P (yi, si|xi, si−1, θ), yi ∈ Y, xi ∈ X , si, si−1 ∈ S. (5)

1Although Wolfowitz mentions the feedback problem in discussing the memoryless compound channel [3, ch. 4], to the best

of our knowledge, this result has not been proved in any previous work.
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P (yi, si|xi, si−1, θ)

yiw
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ŵ(yn)

Feedback Generator
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zi
Unit Delayzi−1

ŵ

Estimated
Message

Fig. 1. Compound finite state channel with feedback that is a time-invariant deterministic function of the channel output.

which satisfies the conditionP (yi, si|x
i, si−1, yi−1, θ) = P (yi, si|xi, si−1, θ). The channelθ is in use

over the sequence ofn channel inputs. The familyΘ of channels is known to both the encoder and

decoder, however, they do not have knowledge of the channelθ in use before transmission begins.

The messageW is encoded such that at timei the codeword symbolXi is a function ofW and the

feedback sequenceZi−1. For notational convenience, we will refer to the input sequenceXi(W,Zi−1)

as simplyXi. The feedback sequence is a time-invariant deterministic function of the outputYi and is

available at the encoder with a single time unit delay. The function performed on the channel outputYi

to form the feedbackZi is known to both the transmitter and receiver before communication begins. The

decoder operates over the sequence of channel outputsY n to form the message estimatêW .

For a given initial states0 ∈ S and channelθ ∈ Θ, the channel causal conditioning distribution is

given by

P (yn||xn, s0, θ) ,

n
∏

i=1

P (yi|x
i, yi−1, s0, θ). (6)

Additionally we will make use of Massey’s directed information [10]. When conditioned on the initial

state and channel, the directed information is given by

I(Xn → Y n|s0, θ) =
n
∑

i=1

I(Yi;X
i|Y i−1, s0, θ). (7)

Our capacity result will involve a maximization of the directed information over the input distribution

Q(xn||zn−1) which is defined as

Q(xn||zn−1) ,

n
∏

i=1

Q(xi|x
i−1, zi−1). (8)

We make use of some of the properties provided in [10], [14] inour work, including the following three

which we restate for our problem setting.

1) P (xn, yn|s0, θ) = Q(xn||yn−1)P (yn||xn, s0, θ) [10, eq. (3)] [14, Lemma 1]
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2) |I(Xn → Y n|θ)− I(Xn → Y n|S, θ)| ≤ log |S|, where random variableS denotes the state of the

finite-state channel [14, Lemma 5]

3) From [14, Lemma 6] ,

I(Xn → Y n|s0, θ) = I(QXn||Y n−1 ;PY n||Xn,s0,θ)

=
∑

xn,yn

Q(xn||yn−1)P (yn||xn, s0, θ) ln
P (yn||xn, s0, θ)

∑

x′n Q(x′n)P (yn||x′n, s0, θ)

Note that properties 1) and 3) hold sinceQ(xn||yn−1, s0, θ) = Q(xn||yn−1) for our feedback setting,

where it is assumed that the states0 is not available at the encoder.

For a given initial states0 and channelθ the average probability of error in decoding messagew is

given by

Pe,w(s0, θ) =
∑

yn∈Yn:ŵ 6=w

P (yn||xn, s0, θ),

wherexn is a function of the messagew and of the feedbackzn−1. The average (over messages) error

probability is denotedPe(s0, θ), wherePe(s0, θ) = 1/enR
∑

w Pe,w(s0, θ). We say that a rateR is

achievable for the compound channel with feedback as shown in Figure 1, if for anyǫ > 0 there exists a

code of fixed blocklengthn and rateR, i.e. (n, enR), such thatPe(s0, θ) < ǫ for all θ ∈ Θ ands0 ∈ S.

Equivalently, rateR is achievable if there exists a sequence of rate-R codes such that

lim
n→∞

sup
s0,θ

Pe(s0, θ) = 0. (9)

This definition of achievable rate is identical to that givenin previous work on the compound channel

without feedback. A different definition for the compound channel with feedback could also be consid-

ered; for instance, in [16], the authors consider codes of variable blocklength and define achievability

accordingly.

The capacity is defined as the supremum over all achievable rates and is given in the following theorem.

Theorem 1:The feedback capacity of the compound finite state channel isgiven by

C = lim
n→∞

max
QXn||Zn−1

inf
s0,θ

1

n
I(Xn → Y n|s0, θ). (10)

Theorem 1 is proved in Section III, which shows the existenceof C and proves the converse, and Section

IV, where achievability is established.

III. E XISTENCE OFC AND THE CONVERSE

We first state the following proposition, which shows that the capacityC as defined in Theorem 1

exists. The proof is found in Appendix I.
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Proposition 1: Let

Cn = max
QXn||Zn−1

inf
s0,θ

1

n
I(Xn → Y n|s0, θ). (11)

ThenCn is well defined and converges forn → ∞. In addition, let

Ĉn = Cn −
log |S|

n
. (12)

Then

lim
n→∞

Cn = sup
n

Ĉn (13)

To prove the converse in Theorem 1, we assume a uniform distribution on the message set, for which

H(W ) = nR. Since the message is independent of the channel parametersH(W ) = H(W |s0, θ) and

we apply Fano’s inequality as follows.

nR = H(W |s0, θ)

= I(Y n;W |s0, θ) +H(W |Y n, s0, θ)

≤ I(Y n;W |s0, θ) + Pe(s0, θ)nR+ 1

= H(Y n|s0, θ)−H(Y n|W, s0, θ) + Pe(s0, θ)nR+ 1

=

n
∑

i=1

H(Yi|Y
i−1, s0, θ)−

n
∑

i=1

H(Yi|Y
i−1,W, s0, θ) + Pe(s0, θ)nR+ 1

=

n
∑

i=1

H(Yi|Y
i−1, s0, θ)−

n
∑

i=1

H(Yi|Y
i−1,W,Xi(W,Zi−1(Y i−1)), s0, θ) + Pe(s0, θ)nR+ 1

=

n
∑

i=1

H(Yi|Y
i−1, s0, θ)−

n
∑

i=1

H(Yi|Y
i−1,Xi, s0, θ) + Pe(s0, θ)nR+ 1

=

n
∑

i=1

I(Yi;X
i|Y i−1, s0, θ) + Pe(s0, θ)nR+ 1

= I(Xn → Y n|s0, θ) + Pe(s0, θ)nR+ 1

For any code we have

I(Xn → Y n|s0, θ) ≥ nR(1− Pe(s0, θ))− 1 (14)

and therefore

inf
s0,θ

I(Xn → Y n|s0, θ) ≥ nR(1− sup
s0,θ

Pe(s0, θ))− 1. (15)

By combining the above statement with Proposition 1 we have

C ≥ Ĉn ≥ R(1− sup
s0,θ

Pe(s0, θ))−
1

n
−

log |S|

n
. (16)

Then for a sequence of codes of rateR with limn→∞ sups0,θ Pe(s0, θ) = 0, this impliesR ≤ C.
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IV. A CHIEVABILITY

Before proving achievability, we mention a simple case which follows from previous results. If the

setΘ has finite cardinality, then achievability follows immediately from the results in [14, Theorem 14],

which are true for any finite state channel with feedback. Hence, we can construct a finite state channel

where the augmented state is(s, θ) and by assuming that the initial distribution is positive for all (s0, θ)

then we get that for anyθ ∈ Θ, |Θ| < ∞ and anys0 ∈ S the rateR is achievable if

R < lim
n→∞

max
QXn||Zn−1

min
s0,θ

1

n
I(Xn → Y n|s0, θ). (17)

More work is needed in the achievability proof when the setΘ is not restricted to finite cardinality.

This is outlined in the following subsections in three steps. In the first step, we assume that the decoder

knows the channelθ in use and we show in Theorem 2 that ifR < C and if the decoder consists of

a maximum-likelihood decoder, then there exist codes for which the error probability decays uniformly

over the familyΘ and exponentially in the blocklength. The codes used in showing this result are codes

of blocklengthNm where each sub-block of lengthm is generated i.i.d. according to some distribution.

In the second step, we show in Lemma 3 that if instead the codesare chosen uniformly and independently

from a set of possible blocklength-Nm codes, then the error probability still decays uniformly over Θ

and exponentially in the blocklength. In the third and final step, we show in Theorem 4 and Lemma 5

that for codes chosen uniformly and independently from a setof blocklength-Nm codes, there exists

a decoder that for every channelθ ∈ Θ achieves the same error exponent as the maximum-likelihood

decoder tuned toθ.

In the sections that follow,P(X n||Zn−1) denotes the set of probability distributions onXn causally

conditioned onZn−1.

A. Achievability for a decoder tuned toθ

We begin by proving that if the decoder is tuned to the channelθ ∈ Θ in use, i.e., if the decoder

knows the channelθ in use, and ifR < C then the average error probability approaches zero. This is

proved through the use of random coding and maximum likelihood (ML) decoding.

The encoding scheme consists of randomly generating acode-treefor each messagew, as shown in

Figure 2(b) for the case of binary feedback. A code-tree has depthn corresponding to the blocklength and

level i designates a set of|Z|i−1 possible codeword symbols. One of the|Z|i−1 symbols is chosen as the

inputXi according to the feedback sequencezi−1. The first codeword symbol is generated asX1 ∼ Q(x1).

The second codeword symbol is generated by conditioning on the previous codeword symbol and on the
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feedback,X2 ∼ Q(x2|x1, z1) for all possible values ofz1. For instance, in the binary case,|Z| = 2, two

possible values (branches) ofX2 will be generated and the transmitted codeword symbol will be selected

from among these two values according to the value of the feedbackZ1. Subsequent codeword symbols

are generated similarly,Xi ∼ Q(xi|x
i−1, zi−1) for all possiblezi−1. For a given feedback sequencezn−1,

the input distribution, corresponding to the distributionon a path through the tree of depthn, is

Q(xn||zn−1) =

n
∏

i=1

Q(xi|x
i−1, zi−1) (18)

PSfrag replacements

x1 = 0 x2 = 1

i = 1i = 1i = 1

x3 = 1

i = 2i = 2i = 2

x4 = 0

i = 3i = 3i = 3

x1 = 0x1 = 0 x 2
=
1

x 2
=
1

x
2 =

1

x
2 =

1 x3 = 0

x3 = 0x3
=
0

x
3 = 1

x3
=
1

x
3 = 1

x4
=
0

x4
=
0

x
4 = 1

x
4 = 1

i = 4

zi−1 = 0

zi−1 = 1

(no feedback)

(a) codeword (no feedback) (b) code-tree (c) concatenated code-tree

Fig. 2. Illustration of coding scheme for (a) setting without feedback, (b) setting with binary feedback as used in [14] and

(c) a code-tree that was created by concatenating smaller code-trees. In the case of no feedback each message is mapped to

a codeword, and in the case of feedback each message is mappedto a code-tree. The third scheme is a code-tree of depth 4

created by concatenating two trees of depth 2.

A code-tree of depthn is a vector ofD(n) symbols, where

D(n) ,

n
∑

i=1

|Z|i−1 =
|Z|n − 1

|Z| − 1
, (19)

and each element in the vector takes value from the alphabetX . We denote a random code-tree byAD(n)

and a realization of the random code-tree byaD(n). The probability of a treeaD(n) ∈ XD(n) is uniquely

determined byQXn||Zn−1(·||·) ∈ P(X n||Zn−1). For instance, consider the case of binary feedback,

Z = {0, 1}, and a tree of depthn = 2, for which D(n) = 3. A code-tree is a vectora3 = (x1, x21, x22)

wherex1 is the symbol sent at timei = 1, x21 is the symbol sent at timei = 2 for feedbackz1 = 0,

andx22 is the symbol sent at timei = 2 for feedbackz1 = 1. Then

Pr(A3 = a3) = Q(x1)Q(x21|x1, z1 = 0)Q(x22|x1, z1 = 1) (20)

which is uniquely determined byQX2||Z1
(·||·). In general, for a code-tree of depthn, the following holds.

∑

aD(n)∈XD(n)

Pr(AD(n) = aD(n)) = 1 (21)

November 8, 2018 DRAFT
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A code-tree for each messagew is randomly generated, and for each messagew and feedback sequence

zn−1 the codewordxn(w, zn−1) is unique. The decoder is made aware of the code-trees for allmessages.

Assuming that the ML decoder knows the channelθ in use, it estimates the message as follows.

ŵ = argmax
w

P (yn|w, θ) (22)

As shown in [14], sincexi is uniquely determined byw andzi−1 and sincezi is a deterministic function

of yi, we have the equivalence

P (yn|w, θ) = P (yn||xn(w, zn−1), θ) (23)

so the ML decoder can be described as

ŵ = argmax
w

P (yn||xn(w, zn−1), θ). (24)

Let Pn
e (s0, θ) denote the average (over messages) error probability incurred when a code of blocklengthn

is used over channelθ with initial states0. The following theorem bounds the error probability uniformly

in (s0, θ) when the decoder knows the channelθ ∈ Θ in use. The theorem is proved in Appendix II.

Theorem 2:For a compound FSC with initial states0 ∈ S, input alphabetX , and output alphabetY,

assuming that the decoder knows the channelθ in use, then there exists a code of rateR and blocklength

Nm, whereN ≥ 1 andm is chosen such that̂Cm ≥ R+ ǫ, for which the error probabilityPNm
e (s0, θ)

of the ML decoder satisfies

PNm
e (s0, θ) ≤ |S| exp(−Nmβ(ǫ,m, |Y|)) (25)

for any θ ∈ Θ, where

β(ǫ,m, |Y|) =











mǫ2/(2 log(e|Y|m)2) ǫ < 1
m(log(e|Y|m))2

ǫ− 1
2m (log(e|Y|m))2 otherwise.

(26)

The result in Theorem 2 is shown by the use of a randomly-generated code-tree of depthNm for each

messagew. For every feedback sequencezNm−1, the corresponding path in the code-tree is generated

by the input distributionQXNm||ZNm−1(·||·) ∈ P(XNm||ZNm−1) given by

Q(xNm||zNm−1) = Q∗
m(xm1 ||zm−1

1 )×Q∗
m(x2mm+1||z

2m−1
m+1 )× . . .×Q∗

m(xNm
(N−1)m+1||z

Nm−1
(N−1)m+1)

∀xNm ∈ XNm, zNm−1 ∈ ZNm−1 (27)

where Q∗
m is the distribution that achieves the supremum inĈm. The random codebookC used in

proving Theorem 2 consists ofeNR code-trees. Each code-tree in the codebook is a concatenated code-

tree with depthNm consisting ofN code-trees, each of depthm. For a given feedback sequence

November 8, 2018 DRAFT
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zNm−1 (corresponding to a certain path in the concatenated code-tree) the codeword is generated by

QXNm||ZNm−1(·||·). An example of a concatenated code-tree is found in Figure 2(c).

B. Achievability for codewords chosen uniformly over a set

In this subsection we show that the result in Theorem 2 implies that the error probability can be similarly

bounded when codewords are chosen uniformly over a set. In other words, we convert the random coding

exponent given in Theorem 2, where it is assumed that the codebook consists of concatenated code-trees

of depthNm in which each sub-tree of depthm is generated i.i.d. according toQ∗
m, to a new random

coding exponent for which the concatenated code-trees in the codebook are chosen uniformly from a

set of concatenated code-trees. This alternate type of random coding, where the concatenated code-trees

are chosen uniformly from a set, is the coding approach subsequently used to prove the existence of a

universal decoder.

We first introduce the notion of types on code-trees. LetaND(m) denote the concatenation ofN depth-

m code-treesaD(m), whereD(m) is defined in (19) andaND(m) ∈ XND(m). The type (or empirical

probability distribution) of a concatenated code-treeaND(m) is the relative proportion of occurrences of

each code-treeaD(m) ∈ XD(m). Equivalently,N multiplied by the type ofaND(m) indicates the number

of times each depth-m code-tree from the setXD(m) occurs in the concatenated code-treeaND(m). Let

PN (XD(m)) denote the set of types of concatenated code-trees of depthNm.

Let Pe(n,R,Q,P ) denote the average probability of error incurred when a code-tree of depthn and

rateR drawn according to a distributionQ ∈ P(X n||Zn−1) is used over the channelP . We now prove

the following result.

Lemma 3:Given Qm ∈ P(Xm||Zm−1), let QNm ∈ P(XNm||ZNm−1) denote the distribution given

by the N-fold product ofQm, i.e.,

QNm(xNm||zNm−1) =
N
∏

i=1

Qm(xim(i−1)m+1||z
im−1
(i−1)m+1), ∀xNm ∈ XNm, zNm−1 ∈ ZNm−1 (28)

For a given typeQ̂Nm ∈ PN (XD(m)), let QNm ∈ P(XNm||ZNm−1) denote the distribution that is

uniform over the set of concatenated code-trees of typeQ̂Nm. For every distributionQm ∈ P(Xm||Zm−1)

there exists a typêQNm ∈ PN (XD(m)) whose choice depends onQm andN but not onP such that

Pe(Nm,R,QNm, P ) ≤ exp(2Nmδ(N,m, |Z|))Pe(Nm,R +mδ(N,m, |Z|), QNm, P ) (29)

for all P , whereδ(N,m, |Z|) = |X |D(m) log(N + 1)/Nm tends to 0 asN → ∞.
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Proof: The proof follows the approach of [4, Lemma 3] except that ourcodebook consists of code-

trees rather than codewords; we include this proof for completeness in describing the notion of types on

code-trees. Given a codebookC of rateR+mδ(N,m, |Z|) chosen according toQNm, we can construct a

sub-codeC′ of rateR in the following way. LetQ′ denote the type with the highest occurrence inC. The

number of types inC is upper bounded by(N+1)|X |D(m)

= exp(Nmδ(N,m, |Z|)), so the number of con-

catenated code-trees of typeQ′ is lower bounded byexp(N(R+mδ(N,m, |Z|)))/ exp(Nmδ(N,m, |Z|)) =

exp(NR). We construct the codeC′ by picking the firsteNR concatenated code-trees of typeQ′. Since

C′ is a sub-code ofC, its average probability of error is upper bounded by the average probability of

error of C times |C|/|C′| = exp(Nmδ(N,m, |Z|)).

Conditioned onQ′, the codewords inC′ are mutually independent and uniformly distributed over

a set of concatenated code-trees of typeQ′. SinceC is a random code, the typeQ′ is also random,

and letπ denote the distribution ofQ′. Pick a realization of the typeQ′, denotedQ̂Nm, that satisfies

π(Q̂Nm) ≥ exp(−Nmδ(N,m, |Z|)). (This is possible since the number of types is upper boundedby

exp(Nmδ(N,m, |Z|)).) Then

π(Q̂Nm)Pe(Nm,R,QNm, P ) ≤
∑

Q′

π(Q′)Pe(Nm,R,Q′, P ) (30)

≤ exp(Nmδ(N,m, |Z|))Pe(Nm,R+mδ(N,m, |Z|), QNm , P )(31)

and

Pe(Nm,R,QNm, P ) ≤
exp(Nmδ(N,m, |Z|))

π(Q̂Nm)
Pe(Nm,R+mδ(N,m, |Z|), QNm, P ) (32)

≤ exp(2Nmδ(N,m, |Z|))Pe(Nm,R +mδ(N,m, |Z|), QNm , P ) (33)

Combining this result with Theorem 2, we have that there exists a typeQ̂Nm ∈ PN (XD(m)) such that

when the codewords are chosen uniformly from the type class of Q̂Nm, given by the distributionQNm,

the average probability of error is bounded as

Pe(Nm,R,QNm, P ) ≤ exp(2Nmδ(N,m, |Z|))|S| exp(−Nmβ(ǫ−mδ(N,m, |Z|)/2,m, |Y|))(34)

= |S| exp

{

−Nm

[

β

(

ǫ−
1

2
mδ(N,m, |Z|),m, |Y|

)

− 2δ(N,m, |Z|)

]}

(35)

It is then possible to chooseN0 such that for allN > N0,

1

2
|X |D(m) log(N + 1)

N
<

ǫ

2
(36)
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and

2|X |D(m) log(N + 1)

Nm
<

1

2
β
( ǫ

2
,m, |Y|

)

(37)

which implies that the probability of error is bounded as

Pe(Nm,R,QNm, P ) ≤ |S| exp

(

−Nm
1

2
β
( ǫ

2
,m, |Y|

)

)

(38)

C. Existence of a universal decoder

We next show that when a codebook is constructed by choosing code-trees uniformly from a set, there

exists a universal decoder for the family of finite-state channels with feedback. This result is shown in

the following four steps.

• We define the notion of a strongly separable familyΘ of channels given by the causal conditioning

distribution. The notion of strong separability means thatthe family is well-approximated by a finite

subset of the channels inΘ.

• We prove that for strongly separableΘ and code-trees chosen uniformly from a set, there exists a

universal decoder.

• We describe the universal decoder which “merges” the ML decoders tuned to a finite subset of the

channels inΘ.

• We show that the family of finite-state channels given by the causal conditioning distribution is a

strongly separable family.

Our approach follows precisely the approach of Feder and Lapidoth [9] except that our codebook consists

of concatenated code-trees (rather than codewords) and ourchannel is given by the causal conditioning

distribution.

Let aND(m) denote a concatenated code-tree of depthNm, aND(m) ∈ XND(m) whereD(m) = (|Z|m−

1)/(|Z|− 1), and letBNm denote a set of such code-trees,BNm ⊆ XND(m). As described in Lemma 3,

BNm will be the set of code-trees of typêQNm ∈ PN (XD(m)) and the code-tree for each message will be

chosen uniformly from this set, i.e.QNm(aND(m)) = 1/|BNm| for any aND(m) ∈ BNm. As described

below, for a given output sequenceyNm, ML decoding will correspond to comparing the functions

Pθ(y
Nm|aND(m)), aND(m) ∈ BNm. Note that comparing the functionsPθ(y

Nm|aND(m)) is equivalent

to comparing the channel causal conditioning distributions sincePθ(y
Nm|aND(m)) = Pθ(y

Nm||xNm) as
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shown below.

Pθ(y
Nm|aND(m)) =

Nm
∏

i=1

Pθ(yi|y
i−1, aND(m)) (39)

(a)
=

Nm
∏

i=1

Pθ(yi|y
i−1, aND(m), zi−1) (40)

(b)
=

Nm
∏

i=1

Pθ(yi|y
i−1, xi) (41)

= Pθ(y
Nm||xNm) (42)

In the above,(a) holds sincezi−1 is a known, deterministic function ofyi−1 and (b) holds since the

code-treeaND(m) together with the feedback sequencezi−1 uniquely determines the channel inputxi.

For notational convenience, the results below on the universal decoder are stated for blocklengthn,

whereAD(n) denotes a code-tree of depthn andBn denotes a set of such code-trees. These results extend

to the set of concatenated code-treesBNm and any exceptions are described in the text. Furthermore,

we introduce the following notation:φθ denotes the ML decoder tuned to channelθ; Pe(θ, φ) denotes

the average (over messages and codebooks chosen uniformly from a set) error probability when decoder

φ is used over channelθ; and Pe(θ, φ|C) denotes the average (over messages) error probability when

codebookC and decoderφ is used over channelθ.

Definition 1: A family of channels{PY n||Xn,θ(·||·, θ), θ ∈ Θ} defined over common input and output

alphabetsX ,Y is said to bestrongly separablefor the input code-tree sets{Bn}, Bn ⊆ X (|Z|n−1)/(|Z|−1),

if there exists someµ > 0 that upper bounds the error exponents in the family, i.e., that satisfies

lim sup
n→∞

sup
θ

−
1

n
logPe(θ, φθ) < µ (43)

such that for everyǫ > 0 and blocklengthn, there exists a subexponential numberK(n) (that may

depend onµ and onǫ) of channels{θ(n)k }
K(n)
k=1 ⊆ Θ

lim
n→∞

1

n
logK(n) = 0 (44)

that well approximate anyθ ∈ Θ in the following sense: For anyθ ∈ Θ there existsθ(n)k∗ ∈ Θ, 1 ≤ k∗ ≤

K(n), so that

P (yn||xn, θ) ≤ 2nǫP (yn||xn, θ
(n)
k∗ ), ∀(xn, yn) : P (yn||xn, θ) > 2−n(µ+log |Y|) (45)

and

P (yn||xn, θ) ≥ 2−nǫP (yn||xn, θ
(n)
k∗ ), ∀(xn, yn) : P (yn||xn, θ

(n)
k∗ ) > 2−n(µ+log |Y|) (46)
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The notion of strong separability means that the familyΘ is well-approximated by a finite subset

{θ
(n)
k }

K(n)
k=1 ⊆ Θ of the channels in the family. In order to prove that the family of finite-state channels

with feedback is separable, we will need a valueµ that satisfies (43). The error probabilityPe(θ, φθ) is

lower bounded by the probability that the output sequenceY Nm corresponding to two different messages

is the same for a given realization of the channel and code-tree. For a random code-tree this is lower

bounded by a uniform memoryless distribution on the channeloutput. ThenPe(θ, φθ) ≥ |Y|−Nm and

a suitable candidate forµ is 1 + log |Y|. The following theorem shows the existence of a universal

decoder for a strongly separable family and input code-treesetsBn. The proof follows from the proof of

Theorem 2 in [9] except that we replace the channel conditional distributionP (yn|xn, θ) with the causal

conditioning distributionP (yn||xn, θ).

Theorem 4:If a family of channels defined over common finite input and output alphabetsX ,Y is

strongly separable for the input code-tree sets{Bn}, then there exists a sequence of rate-R blocklength-n

codesCn and a sequence of decoders{un} such that

lim
n→∞

sup
θ

1

n
log

(

Pe(θ, un|Cn)

Pe(θ, φθ)

)

= 0 (47)

The universal decoderun in Theorem 4 is given by “merging” the ML decoders tuned to channels

θk, 1 ≤ k ≤ K(n), that are used to approximate the familyΘ. In order to describe the merging of the

ML decoders, we first present the ranking functionMθ. A ML decoder tuned to the channelθ can be

described by a ranking functionMθ defined as the mapping

Mθ : BNm × YNm → {1, 2, . . . , |BNm|} (48)

where a rank of 1 denotes the code-treeaND(m) that is most likely given outputyNm, rank 2 denotes

the second most likely code-tree, and so on. For a given received sequenceyNm, every code-tree in the

setBNm is assigned a rank. For code-treesa
ND(m)
i , a

ND(m)
j ∈ BNm,

Pθ(y
Nm|a

ND(m)
i ) > Pθ(y

Nm|a
ND(m)
j ) =⇒ Mθ(a

ND(m)
i , yNm) < Mθ(a

ND(m)
j , yNm) (49)

By (42), comparing the functionPθ(y
Nm|aND(m)) is equivalent to comparing the channel causal condi-

tioning distributionPθ(y
Nm||xNm). Letting φθ denote the ML decoder tuned toθ, we can describe the

decoder as

φθ(y
Nm) = w iff Mθ(a

ND(m)(w), yNm) < Mθ(a
ND(m)(w′), yNm),∀w′ 6= w (50)

where aND(m)(w) represents the code-tree chosen for messagew, 1 ≤ w ≤ eNR. In the case that

multiple code-trees maximize the likelihoodPθ(y
Nm|aND(m)) for a givenyNm, the ranking function
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Mθ determines which code-tree (and correspondingly message)is chosen by the decoder. In the case

that the same code-tree fromBNm is chosen for more than one message, the ranks will be identical

and a decoding error will occur. Note that for a given output sequenceyNm, the decoderφθ(y
Nm) will

not always return the code-treeaND(m) ∈ BNm for which Mθ(a
ND(m), yNm) = 1, since the code-tree

aND(m) may or may not be in the codebook.

Now consider a set ofK channels from the familyΘ, given byθk ∈ Θ, 1 ≤ k ≤ K. The codebooks

for theseK channels will be drawn randomly from the setBNm. (Note that the same setBNm is used

for all channelsθk since, as shown in Lemma 3, the typêQNm ∈ PN (XD(m)) is chosen independent

of the channelP .) TheK ML decoders matched to these channels, denotedφθ1 , φθ2 , . . . , φθK , can be

merged as shown in [9]. The merged decoderuK is described by its ranking functionMuK
which is a

mapping

MuK
: BNm × YNm → {1, 2, . . . , |BNm|} (51)

that ranks all of the code-trees inBNm for each output sequenceyNm. The rankingMuK
is established

for a givenyNm by assigning rank 1 to the code-tree for whichMθ1 = 1, rank 2 to the code-tree for

which Mθ2 = 1, rank 3 to the code-tree for whichMθ3 = 1, and so on. After considering the code-trees

with rank 1 for allMθk , the code-trees with rank 2 inMθk , 1 ≤ k ≤ K are considered in order and

added into the rankingMuK
. The process continues until the code-trees with rank|BNm| for all Mθk

have been assigned a rank inMuK
. Throughout this process, if a code-tree has already been ranked, it

is simply skipped over, and its original (higher) ranking ismaintained. The rank of a code-tree inMuK

can be upper bounded according to its rank inMθk as shown in [9] and stated as follows.

Mθk(a
ND(m), yNm) = j =⇒ MuK

(aND(m), yNm) ≤ (j−1)K+k, ∀aND(m) ∈ BNm,∀k, 1 ≤ k ≤ K

(52)

This bound on the rank inMuK
implies another (looser) upper bound.

MuK
(aND(m), yNm) ≤ KMθk(a

ND(m), yNm), ∀(aND(m), yNm) ∈ BNm × YNm,∀k, 1 ≤ k ≤ K

(53)

Equation (53) can be used to upper bound the error probability when sequences output from the channel

θ ∈ Θ are decoded by the merged decoderuK . This is a key element of the proof of Theorem 4. Finally,

we state the lemma below, which shows that the family of finite-state channels defined by the causal

conditioning distribution is strongly separable. Together with Theorem 4, this establishes existence of a

universal decoder for the problem we consider, and completes our proof of achievability.
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Lemma 5:The family of all causal-conditioning finite-state channels defined over common finite input,

output, and state alphabetsX ,Y,S is strongly separable in the sense of Definition 1 for any input code-

tree sets{Bn}.

Proof: See Appendix III.

V. COMPOUND GILBERT-ELLIOT CHANNEL

The Gilbert-Elliot channel is a widely used example of a finite state channel. It has a state space

consisting of ‘good’ and ‘bad’ states,S = {G,B} and in either of these two states, the channel is

a binary symmetric channel (BSC). The Gilbert-Elliot channel is a stationary and ergodic Markovian

channel, i.e.,P (yi, si|xi, si−1, θ) = P (si|si−1, θ)P (yi|xi, si−1, θ) is satisfied and the Markov process

described byP (si|si−1, θ) is a stationary and ergodic process. For a given channelθ, the BSC crossover

probability is given byPB(θ) for si = B andPG(θ) for si = G. The channel stateSi forms a stationary

Markov process with transition probabilities

g(θ) = P (Si = G|Si−1 = B) = 1−P (Si = B|Si−1 = B) (54)

b(θ) = P (Si = B|Si−1 = G) = 1−P (Si = G|Si−1 = G) (55)

For a givenθ, the Gilbert-Elliot channel is equivalent to the followingadditive noise channel

Yi = Xi ⊕ Vi (56)

where⊕ denotes modulo-2 addition andVi ∈ {0, 1}. Conditioned on the state process{Si}
+∞
−∞, the noise

Vi forms a Bernoulli process given by

P(Vi = 1|{Si}
+∞
−∞, θ) =











PB(θ), Si = B

PG(θ), Si = G.

(57)

For a given channelθ, the capacity of the Gilbert-Elliot channel is found in [8] and is achieved by a

uniform Bernoulli input distribution.

The following example illustrates that the feedback capacity of a channel with memory is in general

not given by

CFB = inf
θ
Cθ, (58)

as in the memoryless case.

Example 1: [4] Consider the example of a Gilbert-Elliot channel wherePG(θ) = 0, PB(θ) = 0.5, b(θ) =

g(θ) = 2−θ for θ = 1, 2, 3.... with feedback. The compound feedback capacity of this channel is zero

November 8, 2018 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, 2007. 16

because assuming that we start in the bad state, for any blocklengthn, the channel that corresponds to

θ = n, will remain in the bad state for the duration of the transmission with probability(1 − 2−n)n >

1 − n2−n ≥ 1
2 . While the channel is in the bad state the probability of error for decoding the message

is positive with or without feedback, hence no reliable communication is possible.

However if we fix θ, then the capacityCθ is at least1 − hb(
1
4 ), because we can use a deep enough

interleaver to make the channel look like memoryless BSC with crossover probability14 .

A Gilbert-Elliot channel is described by the four parameters g(θ), b(θ), PG(θ), and PB(θ) that lie

between 0 and 1 and for any fixedn, P (yn||xn, s0) is continuous in those parameters. The continuity of

P (yn||xn, s0) follows from the fact thatP (yi, si|xi, si−1) is continuous in the four parameters for any

i ≥ 1, and also because (as shown in Appendix III in Eqns. (111) and(113)) we can expressP (yn||xn, s0)

as

P (yn||xn, s0) =
∑

sn

P (yn, sn||xn, s0)

=
∑

sn

n
∏

i=1

P (yi, si|xi, si−1). (59)

Let us denote byΘ the closure of the family of channels. Hence instead ofinfθ∈Θ we can write

minθ∈Θ sinceΘ is compact and sinceI(Q;P ) is continuous inP . Now, letQu(x
n) denote the uniform

distribution overX n. We have

max
Q

min
s0,θ

I(Q;P )
(a)

≤ min
s0,θ

max
Q

I(Q;P )

(b)
= min

s0,θ
I(Qu;P )

(60)

where (a) follows from the fact thatmaxmin ≤ minmax and (b) follows from the fact that for any

channel a uniform distribution maximizes its capacity. Therefore we can restrict the maximization to the

uniform distributionQu instead ofQ(xn||yn−1). Hence feedback does not increase the capacity of the

compound Gilbert-Elliot channel. This result holds for anyfamily of FSCs for which the uniform input

distribution achieves the capacity of each channel in the family and is closely related to Alajaji’s result

[17] that feedback does not increase the capacity of discrete additive noise channels.

VI. FEEDBACK CAPACITY IS POSITIVE IF AND ONLY IF CAPACITY WITHOUT FEEDBACK IS POSITIVE

In this section we show that the capacity of a compound channel that consists of stationary and

uniformly ergodic Markovian channels is positive if and only if it is positive for the case that feedback
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is allowed. The intuition of this result comes mainly from Lemma 9 that states that

max
QXn||Y n−1

I(Xn → Y n) = 0 ⇐⇒ max
QXn

I(Xn → Y n) = 0. (61)

The reason our proof is restricted to the family of channels that are stationary and uniformly ergodic

Markovian is because for this family of channels we can show that the capacity is zero only if for every

finite n,

max
QXn||Y n−1

inf
θ
I(Xn → Y n|θ) = 0. (62)

A stationary and ergodic Markovian channel is a FSC where thestate of the channel is a stationary

and ergodic Markov process that is not influenced by the channel input and output. In other words, the

conditional probability of the channel output and state given the input and previous state is given by

P (yi, si|xi, si−1, θ) = P (si|si−1, θ)P (yi|xi, si−1, θ) (63)

where the Markov process, described by the transition probability P (si|si−1, θ), is stationary and ergodic.

We say that the family of channels isuniformly ergodicif all channels in the family are ergodic and for

all ǫ > 0 there exists anM(ǫ) such that for alln > M

|Pr(Sn = s|s0, θ)− P (s|θ)| ≤ ǫ, ∀s0 ∈ S, s ∈ S, θ ∈ Θ (64)

whereP (s|θ) is the stationary (equilibrium) distribution of the state for channelθ. We define the sequence

CMarkovian
n as

CMarkovian
n = max

QXn||Zn−1

inf
θ

1

n
I(Xn → Y n|θ). (65)

Theorem 6:The channel capacity of a family of stationary and uniformlyergodic Markovian channels

is positive if and only if the feedback capacity of the same family is positive.

Since a memoryless channel is a FSC with only one state, the theorem implies that the feedback capacity

of a memoryless compound channel is positive if and only if itis positive without feedback. The theorem

also implies that for a stationary and ergodic point-to-point channel (not compound), feedback does not

increase the capacity for cases that the capacity without feedback is zero. The stationarity of the channels

in Theorem 6 is not necessary since according to our achievability definition, if a rate is less than the

capacity, it is achievable regardless of the initial state.We assume stationarity here in order to simplify

the proofs. The uniform ergodicity is essential to the proofthat is provided here but there are also other

family of channels that have this property. For instance, for the regular point-to-point Gaussian channel

this result can be concluded from factor two result that claims that feedback at most doubles capacity
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(c.f., [18]–[20]). The proof of Theorem 6 is based on the following lemmas. We refer the reader to

Appendix IV for the proofs of these lemmas.

Lemma 7:For any channel with feedback, if the input to the channel is distributed according to

Q(xn||zn−1) = Q(xk1||z
k−1
1 )Q(xnk+1||z

n−1
k+1 ),

then

I(Xn → Y n) ≥ I(Xk → Y k) + I(Xn
k+1 → Y n

k+1). (66)

Lemma 8:The feedback capacity of a family of stationary and uniformly ergodic Markovian channels

is

lim
n→∞

CMarkovian
n . (67)

The limit of CMarkovian
n exists and is equal tosupnC

Markovian
n .

Lemma 9:Let the input distribution to an arbitrary channel be uniform over the inputX n, i.e.,Q(xn) =

1
|X |n . If under this input distributionI(Xn → Y n)=0, then the channel has the property thatP (yn||xn) =

P (yn) for all xn ∈ X n, yn ∈ Yn and this implies that

max
QXn||Y n−1

I(Xn → Y n) = 0. (68)

Proof of Theorem 6: Let CNFB denote the capacity without feedback andCFB denote the capacity

with feedback.CNFB = 0 ⇐ CFB = 0 is trivial. To show thatCNFB = 0 =⇒ CFB = 0, we use

Lemma 8 to conclude that sinceCNFB = 0 then supnC
Markovian
n = 0 and therefore for anyn ≥ 1,

max
QXn

inf
θ
I(Xn → Y n|θ) = 0. (69)

In order to conclude the proof, we show that if (69) holds, then it also holds when we replaceQXn by

QXn||Y n−1 . SinceI(Xn → Y n) is continuous inP (yn||xn) and since the setΘ is a subset of the unit

simplex which is bounded, then the infimum over the setΘ can be replaced by the minimum over the

closure of the setΘ. Since (69) holds also for the case thatQXn is restricted to be the uniform distribution,

then Lemma 9 implies that the channel that satisfiesP (yn||xn) = P (yn) for all xn ∈ X n, yn ∈ Yn is in

the closure ofΘ and therefore

max
QXn||Y n−1

inf
θ
I(Xn → Y n|θ) = 0. (70)
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VII. F EEDBACK CAPACITY OF THE MEMORYLESS COMPOUND CHANNEL

Recall that the capacity of the memoryless compound channel(without feedback) is [1], [2]

max
QX

inf
θ
I(QX ;PY |X,θ). (71)

Wolfowitz also showed [3] that whenθ is known to the encoder, the capacity of the memoryless compound

channel is given by switching theinf and themax, i.e.,

inf
θ
max
QX

I(QX ;PY |X,θ). (72)

In this section we make use of Theorem 1 to show that (72) is equal to the feedback capacity of the

memoryless compound channel.

A. Finite family of memoryless channels

Based on Wolfowitz’s result it is straightforward to show that if the family of memoryless channels

is finite, |Θ| < ∞, then the feedback capacity of the compound channel is givenby switching themax

and themin,

min
θ

max
QX

I(QX ;PY |X,θ). (73)

This result can be achieved in two steps. Given a probabilityof errorPe > 0, first, the encoder will use

M uses of the channels in order to estimate the channel with probability of error less thanPe

2 . Since the

number of channels is finite such anM exists. In the second step the encoder will use a coding scheme

with blocklengthN adapted for the estimated channel to obtain an error probability that is smaller than

Pe

2 . Hence we get that the total error of the code of lengthM +N is smaller thanPe.

B. Arbitrary family of memoryless channels

For the case that the number of channels is infinite, the argument above does not hold, since there is

no guarantee that for anyPe > 0 there exists a blocklengthn(Pe) such that a(enR, n) code achieves an

error less thanPe for all channels in the family.2 However, we are able to establish the feedback capacity

using our capacity theorem for the compound FSC, and the result is stated in the following theorem.

2In a private communication with A. Tchamkerten [21], it was suggested that the feedback capacity of the memoryless

compound channel with an infinite family can also be established using the results in [9] (which show that the family of all

discrete memoryless channels is strongly separable). The family is finitely quantized, a training scheme is used to estimate the

appropriate quantization cell, the coding is performed according to the representative channel of that cell and the decoding is

done universally as in [9].
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Theorem 10:The feedback capacity of the memoryless compound channel is

inf
θ
max
QX

I(QX ;PY |X,θ). (74)

Theorem 10 is a direct result of Theorem 1 and the following lemma.

Lemma 11:For a familyΘ of memoryless channels we have

lim
n→∞

1

n
max

QXn||Y n−1

inf
θ
I(QXn||Y n−1 ;PY n||Xn,θ) = inf

θ
max
QX

I(QX ;PY |X,θ) (75)

The proof of Lemma 11 requires two lemmas, which we state below. The proofs of Lemmas 12 and 13

are found in Appendix V.

Lemma 12:Let Q1
X = argmaxQX

I(QX , PY |X,θ1) andQ2
X = argmaxQX

I(QX , PY |X,θ2). For two

conditional distributionsPY |X,θ1 andPY |X,θ2 with

∆ = ||PY |X,θ1 − PY |X,θ2 ||1 =
∑

x∈X ,y∈Y

|PY |X,θ1(y|x, θ1)− PY |X,θ2(y|x, θ2)| (76)

there exists an upper bound

|I(Q2
X , PY |X,θ1)− I(Q1

X , PY |X,θ1)| ≤ η(∆) (77)

whereη(∆) → 0 as∆ → 0.

Lemma 13:For anyδ > 0, any ǫ > 0 and any channelPY |X , there exists anM such that we can

choose a channelPY |X,θ̂ as a function ofM inputs and outputs such that

Pr{∆ > ǫ} ≤ δ, (78)

where∆ denotes theL1 distance between the estimated channelPY |X,θ̂ and the actual channelPY |X ,

i.e.,

∆ =
∑

x∈X ,y∈Y

|PY |X,θ̂(y|x, θ̂)− PY |X(y|x)|. (79)

Proof of Lemma 11:We prove the equality by showing the following two inequalities hold:

1

n
max

QXn||Y n−1

inf
θ
I(QXn||Y n−1 ;PY n||Xn,θ) ≤ inf

θ
max
QX

I(QX ;PY |X,θ), (80)

1

n
max

QXn||Y n−1

inf
θ
I(QXn||Y n−1 ;PY n||Xn,θ) ≥ inf

θ
max
QX

I(QX ;PY |X,θ)− ǫn, (81)

where ǫn → 0 as n → ∞. Inequality (80) is proved by the fact thatmax inf is less than or equal to

inf max and by the fact that for a memoryless channel an i.i.d input maximizes the directed information.

1

n
max

QXn||Y n−1

inf
θ
I(QXn||Y n−1 ;PY n||Xn,θ)

≤
1

n
inf
θ

max
QXn||Y n−1

I(QXn||Y n−1 ;PY n||Xn,θ)

= inf
θ
max
QX

I(QX ;PY |X,θ) (82)
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In order to prove inequality (81) we consider the following input distribution. The firstM inputs are

used to estimate the channel and we denote the estimated channel as θ̂. After the firstM inputs, the

input distribution is the i.i.d distribution that maximizes the mutual information between the input and

the output for the channel̂θ. According to Lemma 13, we can estimate the channel to withinan L1

distance smaller thanǫ > 0 with probability greater than1− δ, whereδ > 0. According to Lemma 12,

by adjusting the input distribution to a channel that is atL1 distance less thanǫ from the actual channel

in use, we lose an amount that goes to zero asǫ → 0. Under the input distribution described above we

have the following sequence of inequalities.

1

n
max

QXn||Y n−1

inf
θ
I(QXn||Y n−1 ;PY n||Xn,θ)

(a)
=

1

n
max

QXn||Y n−1

inf
θ
I(Xn → Y n|θ)

(b)

≥
1

n
max

QXn||Y n−1

inf
θ

n
∑

i=M(δ,ǫ)+1

I(Xi;Yi|Y
i−1)

(c)

≥
1

n
max

QXn||Y n−1

inf
θ

n
∑

i=M+1

I(Xi
M+1;Yi|Y

i−1,XM )

(d)
=

1

n
max

QXn||Y n−1

inf
θ

n
∑

i=M+1

I(Xi
M+1;Yi|Y

i−1
M+1,X

M , Y M , Θ̂(XM , Y M ))

(e)

≥
1

n
max
QX|θ̂

inf
θ
(n−M)I(X;Y |θ, Θ̂)

(f)
=

1

n
max
QX|θ̂

inf
θ
(n−M)

∑

θ̂ǫ

P (θ̂)I(QX|θ̂;PY |X,θ)

(g)

≥
1

n
max
QX|θ

inf
θ
(n−M)(1− δ)I(QX|θ;PY |X,θ)− η(ǫ))

(h)
=

1

n
inf
θ
max
QX

(n−M)(1− δ)I(QX ;PY |X,θ)− η(ǫ)) (83)

(a) and (f) follow from a change of notation.

(b) follows the fact that we sum fewer elements. The parameter M is a function ofǫ > 0 and δ > 0

and is determined according to Lemma 13. For brevity of notation we denoteM(ǫ, δ) simply asM .

(c) follows from the fact thatH(Yi|Y
i−1) ≥ H(Yi|Y

i−1,XM ).

(d) follows from the fact that the estimated channel is a random variable denoted aŝΘ and it is a

deterministic function ofXM , Y M as described in Lemma 13.

(e) follows by restricting the input distributionQXn||Y n−1 to one that uses firstM uses of the chan-

nel to estimate as described in Lemma 13, and then uses an i.i.d distribution, i.e., fori > M ,
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Q(xi|x
i−1, yi−1) = Q(xi|x

i−1, yi−1, θ̂(xM , yM ))) = Q(xi|θ̂).

(g) follows from the fact that with probability1−δ we have that theL1 distance||PY |X,θ−PY |X,θ̂||1 ≤ ǫ

and by applying Lemma 12, which states that for this case we loseη(ǫ) whereη(ǫ) → 0 asǫ → 0 .

(h) follows from the fact thatinfθ maxQX
is identical tomaxQX|θ

infθ.

Finally, sinceM is fixed for anyǫ > 0, δ > 0 then we can achieve any value belowinfθ maxQX
I(QX ;PY |X,θ)

for largen. Therefore inequality (81) holds.

VIII. C ONCLUSION

The compound channel is a simple model for communication under channel uncertainty. The original

work on the memoryless compound channel without feedback characterizes the capacity [1], [2], which

is less than the capacity of each channel in the family, but the reliability function remains unknown.

An adaptive approach to using feedback on an unknown memoryless channel is proposed in [16], where

coding schemes that universally achieve the reliability function (the Burnashev error exponent) for certain

families of channels (e.g., for a family of binary symmetricchannels) are provided. By using the variable-

length coding approach in [16], the capacity of the channel in use can be achieved. In our work, we

consider the use of fixed length block codes and aim to ensure reliability for every channel in the family;

as a result, our capacity is limited by the infimum of the capacities of the channels in the family. For the

compound channel with memory that we consider, we have characterized an achievable random coding

exponent, but the reliability function remains unknown.

The encoding and decoding schemes used in proving our results have a number of practical limitations,

including the memory requirements for storing codebooks consisting of concatenated code-trees at both the

transmitter and receiver as well as the complexity involvedin merging the maximum-likelihood decoders

tuned to a number of channels that is polynomial in the blocklength. As such, our work motivates a search

for more practical schemes for feedback communication overthe compound channel with memory.

APPENDIX I

PROOF OFPROPOSITION1

The proposition is nearly identical to [4, Proposition 1] except that we replaceI(Xn;Y n|s0, θ) by

I(Xn → Y n|s0, θ) andQ(xn) by Q(xn||zn−1) using results from [14] on directed mutual information

and causal conditioning. We first prove the following lemma,which is needed in the proof of Proposition

1. The lemma shows that directed information is uniformly continuous inQXn||Y n−1 . For our time-

invariant deterministic feedback model,Q(xn||yn−1) = Q(xn||zn−1), and the lemma holds for any such

feedback.
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Lemma 14: (Uniform continuity of directed information)If Q1
Xn||Y n−1 andQ2

Xn||Y n−1 are two causal

conditioning distributions such that

∑

xn∈Xn,yn∈Yn

|Q1(xn||yn−1)−Q2(xn||yn−1)| ≤ ∆ ≤
1

2
(84)

then for a fixedPY n||Xn

|I(Q1
Xn||Y n−1 ;PY n||Xn)− I(Q2

Xn||Y n−1 ;PY n||Xn)| ≤ −∆ log
∆

|Yn|2
. (85)

Proof: Directed information can be expressed as a difference between two termsI(Xn → Y n) =

H(Y n)−H(Y n||Xn). Let us consider the total variation ofP 1
Y n(·) − P 2

Y n(·),

∑

yn

|P 1(yn)− P 2(yn)| =
∑

yn

∣

∣

∣

∣

∣

∑

xn

P 1(xn, yn)− P 2(xn, yn)

∣

∣

∣

∣

∣

=
∑

yn

∣

∣

∣

∣

∣

∑

xn

Q1(xn||yn−1)P (yn||xn)−Q2(xn||yn−1)P (yn||xn)

∣

∣

∣

∣

∣

≤
∑

yn

∑

xn

P (yn||xn)
∣

∣Q1(xn||yn−1)−Q2(xn||yn−1)
∣

∣

≤
∑

yn

∑

xn

∣

∣Q1(xn||yn−1)−Q2(xn||yn−1)
∣

∣

≤ ∆ (86)

By invoking the continuity lemma of entropy [22, Theorem 2.7, p33] we get,

|H1(Y n)−H2(Y n)| ≤ −∆ log
∆

|Yn|
(87)

whereH1(Y n) andH2(Y n) are the entropies induced byP 1
Y n(·) andP 2

Y n(·), respectively. Now let us

consider the differenceH1(Y n||Xn)−H2(Y n||Xn).

|H1(Y n||Xn)−H2(Y n||Xn)|

=

∣

∣

∣

∣

∣

∑

xn,yn

−P 1(xn, yn) log P (yn||xn) + P 2(xn, yn) log P (yn||xn)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

xn,yn

−P (yn||xn)Q1(xn||yn−1) log P (yn||xn) + P (yn||xn)Q2(xn||yn−1) log P (yn||xn)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

xn,yn

−P (yn||xn) log P (yn||xn)
(

Q1(xn||yn−1)−Q2(xn||yn−1)
)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∑

xn,yn

−P (yn||xn) log P (yn||xn)
∣

∣Q1(xn||yn−1)−Q2(xn||yn−1)
∣

∣

∣

∣

∣

∣

∣

≤

(

∑

xn,yn

−P (yn||xn) log P (yn||xn)

)(

∑

xn,yn

|Q1(xn||yn−1)−Q2(xn||yn−1)|

)

November 8, 2018 DRAFT



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, 2007. 24

≤ log |Yn|∆ (88)

By combining inequalities (87) and (88) we conclude the proof of the lemma.

By Lemma 14,I(Xn → Y n|s0, θ) is uniformly continuous inQXn||Zn−1. SinceQXn||Zn−1 is a member

of a compact set, the maximum overQXn||Zn−1 is attained andCn is well-defined.

Next, we invoke a result similar to [4, Lemma 5]. Given integers k andm such thatk+m = n, input

sequencesxk1 = (x1, . . . , xk) andxnk+1 = (xk+1, . . . , xn) with corresponding output sequencesyk1 and

ynk+1, let QXn||Zn−1 be defined as

Q(xn||zn−1) = Q(xk1||z
k−1
1 )Q(xnk+1||z

n−1
k+1 ).

Then

inf
s0,θ

I(Xn → Y n|s0, θ) ≥ inf
s0,θ

I(Xk
1 → Y k

1 |s0, θ) + inf
s0,θ

I(Xn
k+1 → Y n

k+1|sk, θ)− log |S|.

This result follows from [4, Lemma 5] and [14, Lemma 5].

Finally, if we let Q(xk1 ||z
k−1
1 ) andQ(xnk+1||z

n−1
k+1 ) achieve the maximizations inCk andCm, respec-

tively, then we have

nCn ≥ inf
s0,θ

I(Xn → Y n|s0, θ)

≥ inf
s0,θ

I(Xk
1 → Y k

1 |s0, θ) + inf
s0,θ

I(Xn
k+1 → Y n

k+1|sk, θ)− log |S|

= kCk +mCm − log |S|,

or equivalently,

nĈn ≥ kĈk +mĈm.

Clearly limn→∞Cn = limn→∞ Ĉn, and by the convergence of a super-additive sequence,limn→∞ Ĉn =

supn Ĉn.

APPENDIX II

PROOF OFTHEOREM 2

The theorem is proved through a collection of results in [4] and [14]. Let Pn
e,w(θ) denote the error

probability of the ML decoder when a random code-tree of blocklengthn is used at the encoder.

Pn
e,w(θ) =

∑

yn∈Yn:ŵ 6=w

P (yn||xn(w, zn−1), θ) (89)

The following corollary to [14, Theorem 8] bounds the expected valueE[Pn
e,w(θ)], where the expectation

is with respect to the randomness in the code. The result holds for any initial states0.
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Corollary 15: Suppose that an arbitrary messagew, 1 ≤ w ≤ enR, enters the encoder with feedback

and that ML decoding tuned toθ is employed. Then the average probability of decoding errorover the

ensemble of codes is bounded, for any choice ofρ, 0 < ρ ≤ 1, by

E[Pn
e,w(θ)] ≤ (enR − 1)ρ

∑

yn

[

∑

xn

Q(xn||zn−1)P (yn||xn, θ)
1

1+ρ

]1+ρ

. (90)

Proof: Identical to [14, Proof of Theorem 8] except thatP (yn||xn) is replaced byP (yn||xn, θ).

Next, we letPn
e (s0, θ) denote the average (over messages) error probability incurred when a code-tree

of blocklengthn is used over channelθ with initial states0. Using Corollary 15, we can boundPn
e (s0, θ)

as in the following Corollary to [14, Theorem 9]

Corollary 16: For a compound FSC with|S| states where the codewords are drawn independently

according to a given distributionQn ∈ P(X n||Zn−1) and ML decoding tuned toθ is employed, the

average probability of errorPn
e (s0, θ) for any initial states0 ∈ S, channelθ ∈ Θ, andρ, 0 ≤ ρ ≤ 1 is

bounded as

Pn
e (s0, θ) ≤ |S| exp (−n(Fn(ρ,Qn, θ)− ρR)) (91)

where

Fn(ρ,Qn, θ) =
−ρ log |S|

n
+min

s0
E0(ρ,Qn, s0, θ)

E0(ρ,Qn, s0, θ) = −
1

n
log
∑

yn

[

∑

xn

QnP (yn||xn, s0, θ)
1

1+ρ

]1+ρ

(92)

Proof: Identical to [14, Proof of Theorem 9] except for: (i) we replaceP (yn||xn, s0) byP (yn||xn, s0, θ),

(ii) we consider the error averaged over all messages (rather than the error for an arbitrary messagew),

and (iii) we assume a fixed input distributionQXn||Zn−1 rather than minimizing the error probability over

all QXn||Zn−1.

The two results stated above provide us with a bound on the error probability, however, the bound

depends on the channelθ in use. Instead, we would like to bound the error probabilityuniformly over

the classΘ. To do so we cite the following two lemmas from previous work.

Lemma 17:GivenQk ∈ P(X k||Zk−1) andQm ∈ P(Xm||Zm−1), let m = n− k and define

Qn(x
n
1 ||z

n−1
1 ) = Qk(x

k
1 ||z

k−1
1 )Qm(xnk+1||z

n−1
k+1 ). (93)

ThenFn(ρ,Qn, θ) as defined in Corollary 16 satisfies

Fn(ρ,Qn, θ) ≥
k

n
F k(ρ,Qk, θ) +

m

n
Fm(ρ,Qm, θ). (94)
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Proof: Identical to [14, Proof of Lemma 11] except that we replaceP (yn||xn, s0) byP (yn||xn, s0, θ).

Lemma 18:

E0(ρ,Qn, s0, θ) ≥
1

n
ρI(Qn;PY n||Xn,s0,θ)−

1

2n
ρ2 (log(e|Y|))2 (95)

Proof: The lemma follows from [4, Lemma 2], which holds for a channelP and input distribution

Q satisfying
∑

xn Q(xn||zn−1) = 1 and
∑

xn,yn Q(xn||zn−1)P (yn||xn) = 1.

We now follow the technique in [4] by using Lemmas 17 and 18 to bound the error probability

independent of boths0 and θ. For a given rateR < C, let ǫ = (C − R)/2 and pickm in such a way

that Ĉm ≥ R+ ǫ. Then

max
QXm||Zm−1

inf
s0,θ

1

m
I(QXm||Zm−1;PY m||Xm,s0,θ)−

log |S|

m
≥ R+ ǫ. (96)

Let Q∗
m ∈ P(Xm||Zm−1) be the input distribution that achieves the supremum inĈm, i.e.,

inf
s0,θ

1

m
I(Q∗

m;PY m||Xm,s0,θ)−
log |S|

m
≥ R+ ǫ (97)

Next, we useQ∗
m to define a distributionQNm ∈ P(XNm||ZNm−1) for a sequence of lengthNm,

N ≥ 1, as follows.

Q(xNm||zNm−1), Q∗
m(xm1 ||zm−1

1 )×Q∗
m(x2mm+1||z

2m−1
m+1 )× . . .×Q∗

m(xNm
(N−1)m+1||z

Nm−1
(N−1)m+1) (98)

=
N
∏

i=1

Q∗
m(xim(i−1)m+1||z

im−1
(i−1)m+1) (99)

For this new input distribution and sequence of lengthNm, we can bound the error exponent

FNm(ρ,QNm, θ)− ρR (100)

as shown below.

(a)

≥ Fm(ρ,Q∗
m, θ)− ρR (101)

= min
s0

E0(ρ,Q
∗
m, s0, θ)− ρ

(

R+
log |S|

m

)

(102)

(b)

≥ min
s0

1

m
ρI(Q∗

m;PY m||Xm,s0,θ)−
1

2m
ρ2 (log(e|Ym|))2 − ρ

(

R+
log |S|

m

)

(103)

≥ ρ

(

inf
s0,θ

1

m
I(Q∗

m;PY m||Xm,s0,θ)−R−
log |S|

m

)

−
1

2m
ρ2 (log(e|Ym|))2 (104)

(c)

≥ ρǫ−
1

2m
ρ2 (log(e|Ym|))2 (105)
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where(a) is due to Lemma 17,(b) follows from Lemma 18, and(c) follows from (97). As in [4], we

can maximize the lower bound on the error exponent by settingρ = min(1,mǫ/ (log(e|Ym|))2). With

this choice ofρ we have

FNm(ρ,QNm, θ)− ρR ≥











mǫ2/(2 log(e|Y|m)2) ǫ < 1
m(log(e|Y|m))2

ǫ− 1
2m (log(e|Y|m))2 otherwise.

(106)

Theorem 2 follows by combining (106) with the result in Corollary 16 (for blocklengthNm).

APPENDIX III

PROOF OFLEMMA 5

To prove the lemma, we must first establish two equalities relating the channel causal conditioning

distribution P (yn||xn, s0, θ) to the channel probability lawP (yi, si|xi, si−1, θ). The following set of

equalities hold.

P (yn, xn|s0, θ) =
∑

sn∈Sn

P (yn, xn, sn|s0, θ) (107)

(a)
=

∑

sn∈Sn

P (xn||yn−1, sn−1, s0, θ)P (yn, sn||xn, s0, θ) (108)

(b)
=

∑

sn∈Sn

P (xn||yn−1, s0, θ)P (yn, sn||xn, s0, θ) (109)

= P (xn||yn−1, s0, θ)
∑

sn∈Sn

P (yn, sn||xn, s0, θ) (110)

where(a) is due to [14, Lemma 2] and(b) follows from our assumption that the input distributionxn

does not depend on the state sequencesn−1. By the chain rule for causal conditioning [14, Lemma 1],

(110) implies that

P (yn||xn, s0, θ) =
∑

sn∈Sn

P (yn, sn||xn, s0, θ). (111)

Also,

P (yn, sn||xn, s0, θ) =

n
∏

i=1

P (yi, si|x
i−1, yi−1, si−1, θ) (112)

(c)
=

n
∏

i=1

P (yi, si|xi, si−1, θ) (113)

where(c) follows from the definition of the compound finite-state channel. Having established equations

(111) and (113), Lemma 5 follows immediately from [9, Lemma 12], where the conditional probability

P (yi, si|xi, si−1, θ) is quantized and the quantization cells are represented by channels{θ(n)1 , . . . , θ
(n)
K(n)}.
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The proof of our result differs only in that the upper bound onthe error exponents in the family is given

by µ = 1 + log |Y|.

APPENDIX IV

PROOF OFLEMMAS 7, 8 AND 9

The proof of Lemma 7 is based on an identity that is given by Kimin [15, eq. (9)]:

I(Xn → Y n) =
n
∑

i=1

I(Xi;Y
n
i |Xi−1, Y i−1) (114)

Proof of Lemma 7:Using Kim’s identity we have

I(Xn → Y n) =
n
∑

i=1

I(Xi;Y
n
i |Xi−1, Y i−1)

=

k
∑

i=1

I(Xi;Y
n
i |Xi−1, Y i−1) +

n
∑

i=k+1

I(Xi;Y
n
i |Xi−1, Y i−1)

≥

k
∑

i=1

I(Xi;Y
k
i |X

i−1, Y i−1) +

n
∑

i=k+1

I(Xi;Y
n
i |Xi−1, Y i−1)

= I(Xk → Y k) +

n
∑

i=k+1

I(Xi;Y
n
i |Xi−1, Y i−1). (115)

Now we bound the sum in the last equality,
n
∑

i=k+1

I(Xi;Y
n
i |Xi−1, Y i−1) =

n
∑

i=k+1

H(Xi|X
i−1, Y i−1)−H(Xi|X

i−1, Y i−1, Y n
i )

(a)
=

n
∑

i=k+1

H(Xi|X
i−1
k+1, Y

i−1
k+1)−H(Xi|X

i−1, Y i−1, Y n
i )

≥

n
∑

i=k+1

H(Xi|X
i−1
k+1, Y

i−1
k+1)−H(Xi|X

i−1
k+1, Y

i−1
k+1 , Y

n
i )

= I(Xn
k+1 → Y n

k+1) (116)

where(a) follows from the assumption thatQ(xn||zn−1) = Q(xk1 ||z
k−1
1 )Q(xnk+1||z

n−1
k+1 ).

Proof of Lemma 8: The proof consists of two parts. In the first part we show thatnCMarkovian
n is

sup-additive and thereforelimn→∞CMarkovian
n = supnC

Markovian
n . In the second part we prove the

capacity of the family of stationary and uniformly ergodic Markovian channels by showing that

lim
n→∞

Cn = lim
n→∞

CMarkovian
n . (117)

whereCn is defined in (11).
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First part: We show that the sequenceCMarkovian
n is sup-additive and therefore the limit exists. Let

integersk andm be such thatk+m = n and denote input distributionsQ(xn||zn−1), Q(xk1 ||z
k−1
1 ), and

Q(xnk+1||z
n−1
k+1 ) in shortened forms asQn, Qk, andQm. We have,

nCMarkovian
n = max

Qn

inf
θ
I(Xn → Y n|θ)

(a)

≥ max
QkQm

inf
θ
I(Xn → Y n|θ)

(b)

≥ max
QkQm

inf
θ

[

I(Xk → Y k|θ) + I(Xn
k+1 → Y n

k+1|θ)
]

≥ max
QkQm

[

inf
θ
I(Xk → Y k|θ) + inf

θ
I(Xn

k+1 → Y n
k+1|θ)

]

= max
Qk

inf
θ
I(Xk → Y k|θ) + max

Qm

inf
θ
I(Xn

k+1 → Y n
k+1|θ)

(c)
= max

Qk

inf
θ
I(Xk → Y k|θ) + max

Q(xm||zm−1)
inf
θ
I(Xm → Y m|θ)

= kCMarkovian
k +mCMarkovian

m , (118)

where(a) follows by restricting the maximization to causal conditioning probabilities of the product form

Q(xn||zn−1) = Q(xk1||z
k−1
1 )Q(xnk+1||z

n−1
k+1 ), (b) follows from Lemma 7, and(c) follows from stationarity

of the channel.

Second part:We show thatlimn→∞Cn = limn→∞CMarkovian
n . Due to Lemma 5 in [14],|I(Xn →

Y n|θ)− I(Xn → Y n|S0, θ)| ≤ log |S|, therefore it is enough to prove that

lim
n→∞

1

n

[

max
QXn||Zn−1

inf
θ
I(Xn → Y n|S0, θ)− max

QXn||Zn−1

inf
θ,s0

I(Xn → Y n, |s0, θ)

]

= 0. (119)

The difference in (119) is always positive, hence it is enough to upper bound it by an expression that

goes to zero asn → ∞. Again by Lemma 5 in [14] we can bound the second term in (119),

max
QXn||Zn−1

inf
θ,s0

I(Xn → Y n, |s0, θ)

≥ max
QXn||Zn−1

inf
θ,s0

I(Xn → Y n, |Sk, s0, θ)− log |S|

(a)

≥ max
Q

Xn
k

||Z
n−1
k

inf
θ,s0

I(Xn
k → Y n

k , |Sk, s0, θ)− log |S|,

(b)
= max

QXn−k||Zn−k−1

inf
θ,s−k

I(Xn−k → Y n−k, |S0, s−k, θ)− log |S|, (120)
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where (a) holds for everyk > 1 and is due to Lemma 7 and (b) holds by the stationarity of the channel.

Hence, (120) implies that we can bound the difference,

max
QXn||Zn−1

inf
θ
I(Xn → Y n|S0, θ)− max

QXn||Zn−1

inf
θ,s0

I(Xn → Y n, |s0, θ)

(a)

≤

(

k log |Y|+ max
QXn−k||Zn−k−1

inf
θ
I(Xn−k → Y n−k|S0, θ)

)

−

(

max
QXn−k||Zn−k−1

inf
θ,s−k

I(Xn−k
1 → Y n−k, |S0, s−k, θ)− log |S|

)

,

(b)

≤ k log |Y|+ ǫ(n− k) log |Y|+ log |S|. (121)

Inequality (a) is due to the fact thatI(Xn → Y n) ≤ k log |Y| + I(Xn−k → Y n−k) and due to (120).

Inequality (b) holds since for a uniformly ergodic family ofchannels,|P (s0|s−k, θ)− P (s0|θ)| ≤ ǫ for

all s0 ∈ S implies that for any input distributionQXn−k||Zn−k−1 and any channelθ,

|I(Xn−k → Y n−k|θ, S0)− I(Xn−k
1 → Y n−k, |S0, s−k, θ)| ≤ ǫ(n− k) log |Y|

After dividing (121) byn, and sinceǫ can be arbitrarily small andk is fixed for a givenǫ, then (119)

holds.

Proof of Lemma 9: From the assumption of the lemma we have

∑

xn,yn

Q(xn)P (yn||xn) log
Q(xn)P (yn||xn)

P (yn)Q(xn)
= 0. (122)

By assuming a uniform input distribution,Q(xn) = 1
|X |n and by using the fact that if the Kullback

Leibler divergenceD(p||q) ,
∑

x∈X p(x) log p(x)
q(x) is zero, thenp(x) = q(x) for all x ∈ X , we get that

(122) implies thatP (yn||xn) = P (yn) for all xn ∈ X n, yn ∈ Yn. It follows that

max
QXn||Y n−1

I(Xn → Y n) = max
QXn||Y n−1

E

[

log
P (Y n||Xn)

P (Y n)

]

(123)

= max
QXn||Y n−1

E[0] = 0. (124)

APPENDIX V

PROOF OFLEMMAS 12 AND 13

Proof of Lemma 12:The proof is based on the fact thatI(QX , PY |X) is uniformly continuous inPY |X ,

namely for anyQX ,

|I(QX , PY |X,θ1)− I(QX , PY |X,θ2)| ≤ τ(∆), (125)
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whereτ(∆) → 0 as∆ → 0 (The uniform continuity of mutual information is a straightforward result of

the uniform continuity of entropy [22, Theorem 2.7]). We have,

|I(Q2
X , PY |X,θ1)− I(Q1

X , PY |X,θ1)|

= |I(Q2
X , PY |X,θ1)− I(Q2

X , PY |X,θ2) + I(Q2
X , PY |X,θ2)− I(Q1

X , PY |X,θ1)|

≤ τ(∆) + |I(Q2
X , PY |X,θ2)− I(Q1

X , PY |X,θ1)|, (126)

where the last inequality is due to (125). We conclude the proof by bounding the last term in (126) by

τ(∆), which implies that if we letη(∆) = 2τ(∆) then (77) holds.

I(Q2
X , PY |X,θ2)− I(Q1

X , PY |X,θ1)

≤ I(Q2
X , PY |X,θ2)− I(Q2

X , PY |X,θ1)

≤ τ(∆). (127)

Similarly, we haveI(Q1
X , PY |X,θ1)− I(Q2

X , PY |X,θ2) ≤ τ(∆), and therefore

|I(Q2
X , PY |X,θ2)− I(Q1

X , PY |X,θ1)| ≤ τ(∆). (128)

Proof of Lemma 13:The channelPY |X,θ̂ is chosen by finding the conditional empirical distribution

induced by an input sequence consisting ofM
|X | copies of each symbol of the alphabetX . We estimate

the conditional distributionPY |a separately for eacha ∈ X . We insertx = a for m = M
|X | uses of the

channel and we estimate the channel distribution when the input isx = a as the type of the output which

is denoted asPY m|a. From Sanov’s theorem (cf. [23, Theorem 12.4.1]) we have that the probability that

typePY m|a will be at L1-distance larger thanǫ1 = ǫ
|X | from PY |a is upper bounded by

Pr{||PY m|a − PY |a||1 ≥ ǫ1} ≤ (m+ 1)|Y|exp(−m min
PY :||PY −PY |a)||1≥ǫ1

D(PY ||PY |a), (129)

whereD(PY ||PY |a) =
∑

y∈Y PY (y) log
PY (y)

PY |a(y|a)
denotes the divergence between the two distributions.

Using Pinsker’s inequality [23, Lemma 12.6.1] we have that

min
PY :||PY −PY |a)||1≥ǫ1

D(PY ||PY |a) ≥
ǫ21
2

(130)

and therefore,

Pr{||PY m − PY |a||1 ≥ ǫ1} ≤ (m+ 1)|Y| exp

(

−m
ǫ21
2

)

(131)
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The term(m + 1)|Y|exp(−m ǫ21
2 ) goes to zero asm goes to infinity forǫ1 > 0 and therefore, for any

δ
|X | > 0 we can find anm such that(m+ 1)|Y|exp(−m ǫ21

2 ) ≤
δ
|X | . Finally we have,

Pr{∆ > ǫ} ≤ Pr

{

⋃

a∈X

||PY |a,θ̂ − PY |a||1 >
ǫ

|X |

}

≤ |X |
δ

|X |
(132)

where the inequality on the right is due to the union bound.

ACKNOWLEDGMENTS

The authors would like to thank their advisors - Anthony Ephremides and Tsachy Weissman - as

well as Prakash Narayan for useful discussions on this topicand Andrea Goldsmith for organizing the

Roundtable Research Discussion at ISIT06 which led to the conception of this work.

REFERENCES

[1] D. Blackwell, L. Breiman, and A. Thomasian, “The capacity of a class of channels,”Ann. Math. Statist, vol. 30, p. 1229,

1959.

[2] J. Wolfowitz, “Simultaneous channels,”Archive for Rational Mechanics and Analysis, vol. 4, pp. 371–386, 1959.

[3] ——, Coding Theorems of Information Theory, 2nd ed. Springer, 1964.

[4] A. Lapidoth and I. E. Telatar, “The compound channel capacity of a class of finite-state channels,”IEEE Trans. Inform.

Theory, vol. 44, pp. 973–983, May 1998.

[5] A. Lapidoth and P. Narayan, “Reliable communication under channel uncertainty,”IEEE Trans. Inform. Theory, vol. 44,

1998.

[6] R. G. Gallager,Information Theory and Reliable Communication. New York: Wiley, 1968.

[7] A. J. Goldsmith and P. P. Varaiya, “Capacity, mutual information, and coding for finite-state Markov channels,”IEEE

Trans. on Info. Theory, vol. 42, pp. 868–886, 1996.

[8] M. Mushkin and I. Bar-David, “Capacity and coding for theGilbert Elliot channel,”IEEE Trans. Inform. Theory, vol. 35,

pp. 1277–1290, 1989.

[9] M. Feder and A. Lapidoth, “Universal decoding for channels with memory,” IEEE Trans. Inform. Theory, vol. 44, no. 5,

September 1998.

[10] J. Massey, “Causality, feedback and directed information,” Proc. Int. Symp. Information Theory Application (ISITA-90),

pp. 303–305, 1990.

[11] G. Kramer, “Capacity results for the discrete memoryless network,”IEEE Trans. Inform. Theory, vol. 49, pp. 4–21, 2003.

[12] S. Tatikonda, “Control under communication constraints,” Ph.D. disertation, MIT, Cambridge, MA, 2000.

[13] S. Tatikonda and S. Mitter, “The capacity of channels with feedback,” September 2006. [Online]. Available:

http://arxiv.org/PScache/cs/pdf/0609/0609139.pdf

[14] H. H. Permuter, T. Weissman, and A. J. Goldsmith, “Finite state channels with time-invariant deterministic feedback,” Sep

2006, submitted to IEEE Trans. Inform. Theory. Availble at http://arxiv.org/abs/cs/0608070v1.

[15] Y. Kim, “A coding theorem for a class of stationary channels with feedback,” Jan 2007, submitted to IEEE Trans. Inform.

Theory. Availble at arxiv.org/cs.IT/0701041.

November 8, 2018 DRAFT

http://arxiv.org/PS_cache/cs/pdf/0609/0609139.pdf
http://arxiv.org/abs/cs/0608070v1


SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY, 2007. 33

[16] A. Tchamkerten and I. Telatar, “Variable length codingover an unknown channel,”IEEE Trans. Inform. Theory, vol. 52,

no. 5, pp. 2126–2145, 2006.

[17] F. Alajaji, “Feedback does not increase the capacity ofdiscrete channels with additive noise,”IEEE Trans. Inform. Theory,

vol. 41, pp. 546–549, March 1995.

[18] M. Pinsker, talk delivered at the Soviet Information Theory Meeting (no abstract published), 1969.

[19] P. Ebert, “The capacity of the Gaussian channel with feedback ,” Bell Syst. Tech. J., pp. 1705–1712, 1970.

[20] T. M. Cover and S. Pombra, “Gaussian feedback capacity,” IEEE Trans. Inform. Theory, vol. 35, no. 1, pp. 37–43, 1989.

[21] A. Tchamkerten, private communication, 2007.

[22] I. Csiszár and J. Körner,Information Theory: Coding Theorems for Discrete Memoryless Systems. New York: Academic,

1981.

[23] T. Cover and J. A. Thomas,Elements of Information Theory. Wiley, 1991.

November 8, 2018 DRAFT


	Introduction
	Problem statement and main result
	Existence of C and the converse
	Achievability
	Achievability for a decoder tuned to 
	Achievability for codewords chosen uniformly over a set
	Existence of a universal decoder

	Compound Gilbert-Elliot channel
	Feedback capacity is positive if and only if capacity without feedback is positive
	Feedback capacity of the memoryless compound channel
	Finite family of memoryless channels
	Arbitrary family of memoryless channels

	Conclusion
	Appendix I: Proof of Proposition 1
	Appendix II: Proof of Theorem 2
	Appendix III: Proof of Lemma 5
	Appendix IV: Proof of Lemmas 7, 8 and 9
	Appendix V: Proof of Lemmas 12 and 13
	References

