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Design and Analysis of Successive Decoding with
Finite Levels for the Markov Channel

Teng Li, Member, IEEE,and Oliver M. Collins,Fellow, IEEE

Abstract— This paper proposes a practical successive decoding
scheme with finite levels for the finite-state Markov channels
where there is no a priori state information at the transmitter
or the receiver. The design employs either a random interleaver
or a deterministic interleaver with an irregular pattern an d an
optional iterative estimation and decoding procedure within each
level. The interleaver design criteria may be the achievable rate
or the extrinsic information transfer (EXIT) chart, depend ing
on the receiver type. For random interleavers, the optimization
problem is solved efficiently using a pilot-utility function, while
for deterministic interleavers, a good construction is given using
empirical rules. Simulation results demonstrate that the new
successive decoding scheme combined with irregular low-density
parity-check codes can approach the identically and uniformly
distributed (i.u.d.) input capacity on the Markov-fading channel
using only a few levels.

Index Terms— Capacity, decision feedback, fading channel,
finite-state Markov channel, low-density parity-check (LDPC)
codes, Markov channel, multistage decoding, mutual information,
successive decoding.

I. I NTRODUCTION

Many realistic communication systems suffer from un-
known and time-varying channel conditions. The traditional
strategy is single-code transmission and joint estimationand
decoding. For example, iterative channel estimation and de-
coding was used in [1-3] for flat-fading channels and iterative
equalization and decoding, so called turbo equalization, was
used in [4] for inter-symbol interference (ISI) channels. With
recent advances in low-density parity-check (LDPC) codes,
channel estimation and decoding is combined into the message
passing over a joint factor graph of the channel and the code,
see [5] and [6] for block fading channels, [7] and [8] for ISI
channels and [9] for Markov channels. In addition, codes need
to be specifically optimized for the structure of the channel
and the estimator. Various density evolution techniques have
been proposed to find the optimal degree sequence of irregular
LDPC codes for different channels [5-9]. Although shown to
perform well for relatively short ISI channels [7], [8], this
approach still has a performance gap for fading channels and
Markov channels and its optimality for a general channel with
memory is yet to be established.
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An alternative strategy is successive (or multistage) decod-
ing with multiple codes. This technique uses a rectangular
interleaver to multiplexK independent codes into a single
transmission stream at the transmitter and decodes them se-
quentially at the receiver. Successive decoding was originally
developed to approach capacity for multilevel modulations
[10], [11] and multiuser channels [12]. When applied to
channels with memory, it effectively decomposes the physical
channel into a bank ofK subchannels (levels) with weaker
memory and additional decision feedback, where simplified
algorithms, such as separate estimation and decoding (SED),
and suboptimal codes, may perform well.

There has been extensive research on this topic. Pfisteret al.
first studied the achievable rate of successive decoding with
SED for the ISI channel in [13] and the actual codes were then
constructed by Soriagaet al. in [14]. Varnicaet al. in [15] and
Kavičić et al. in [16] adopted the successive decoding schedule
for designing the component LDPC codes while performing
the actual iterative decoding on the joint graph. A simplified
scheme using only one estimator and one code of fixed rate for
all subchannels was proposed by Narayanan and Nangare for
ISI channels in [17] and by Li and Collins for correlated fading
channels and other channels with memory in [18]. A pair
of tight upper and lower bounds for the binary-input fading-
channel capacity was derived in [19] and codes were designed
to perform very close to the upper bound in [18] and [20].

Previous research has focused on asymptotic designs of the
successive decoding. As the number of levelsK → ∞, the
subchannels become memoryless and identical [17], [18] and
the simple SED algorithm and the memoryless-channel opti-
mized component code may have near-optimal performance
on ISI channels [14], [17] and fading channels [18]. However,
if a large number of codes (levels) are not allowed for practical
reasons, the existing multi-rate designs in [13] and [14] and the
rectangular interleavers in [14], [17], and [18] are no longer
optimal.

This paper addresses the analysis and design of a more
practical successive decoding scheme under thefinite-level
constraint. Since for a smallK, the subchannels are no longer
memoryless, we employ iterative estimation and decoding
(IED) at each level to exploit the residual memory. More
importantly, we propose an irregular interleaving patternso
that theK codes may have different lengths and irregular
symbol placements in the multiplexed transmission stream.In
this configuration, the single-code iterative schemes [7-9] and
those with pilot symbols [1-3,5,6] become two special casesof
successive decoding of one and two levels, respectively. This
framework offers more design freedom to tradeoff between
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performance and complexity. The deterministic irregular inter-
leaver is difficult to optimize because there areKN possible
patterns for anN -bit long K-level interleaver. Therefore, we
propose a random interleaver specified by the weight distribu-
tion w = [w1, · · · , wK ], wherewk ≥ 0 and

∑K

k=1 wk = 1.
It acts as a multiplexer that chooses a bit from codek to
transmit with probabilitywk. The resultingN -bit sequence
is expected to have approximatelywkN bits from levelk at
random positions. The random interleaver is much easier to
design and is asymptotically optimal. It also provides a new
interpretation of the area property of the extrinsic information
transfer (EXIT) function [21].

This paper develops the successive decoding scheme for
finite-state Markov channels (FSMCs) whose state evolves
independently of the channel input. FSMCs are good approx-
imations to many realistic channels and have been extensively
investigated [22]. For simplicity we consider the identically
and uniformly distributed (i.u.d.) binary channel input. Conse-
quently, we use the maximal achievable information rate when
the channel input is an i.u.d. binary sequence as performance
measure. This information rate is called the i.u.d. capacity
C i.u.d. in this paper following the notations in [7] and [8].
It is also known as the symmetric information rate [13]. In
order to achieve the channel capacityC ≥ C i.u.d., the i.u.d.
binary sequence may be passed through a nonlinear device
with memory, such as the inner nonlinear trellis encoder [16],
to mimic the optimal distribution. The designs in this paperare
readily applicable to the concatenation of this nonlinear device
and the original physical channel as well as other channels
with memory after modifying the estimator.

The proposed successive decoding technique is analyzed by
comparing the achievable rate (of the SED algorithm) to the
i.u.d. capacity. After expressing the rate difference in terms of
the state-transition matrix of the underlying Markov channel,
we show that the achievable rate goes to the i.u.d. capacity
exponentially fast asK → ∞ for both the rectangular inter-
leaver and the equal-weighted random interleaver. However,
when K is small, these two rates diverge. The difference
between them comes from the mutual information loss caused
by the memoryless-channel assumption in the SED and can be
recovered with a more sophisticated receiver. In the literature,
two conceptually different Monte-Carlo methods are used to
estimate the i.u.d. capacity [13], [23] and the achievable rate
[13], [8]. We propose a unified way to estimate both of them
from the outputa posterioriprobability of the BCJR algorithm
[24] by changing the distribution of thea priori information.

The mutual information analysis is used for system design
as well. The design objective is to maximize the supported
information rate of a finite-level successive decoding scheme
through interleaver optimization. We will adopt the existing set
of AWGN-channel optimized LDPC codes [25] and make no
attempt to optimize them for the specific channel and receiver.
The code rate, however, needs to be properly chosen according
to some mutual information measure at each level. For the
SED, we use the achievable rate, while for the IED, we use
the maximal code rate at which the EXIT chart analysis [26]
still predicts the convergence of the iterative process. These
rates also become the objective functions in optimization.

For random interleavers, both the achievable rate and the
EXIT function can be efficiently estimated from a so-called
pilot-utility function, which measures the achievable rate of
a single-code system as a function of the percentage of
randomly-placed pilot symbols. We show that the subchannel
achievable rate is a point on the pilot-utility function and
the overall achievable rate is the area of aK-step piecewise
constant curve beneath it. The EXIT function of the subchan-
nel estimator is simply the transformation of a segment on
the pilot-utility function. Consequently, the achievablerate of
the SED algorithm can be maximized semi-analytically by
a recursive method. The optimal weight distribution of the
random interleaver under the IED is also found by matching a
set of subchannel EXIT functions to the set of decoder EXIT
functions so that the overall code rate is maximized. Essen-
tially, instead of designing codes for the channel according
to the traditional wisdom [5-9], we design the subchannel to
match the code through interleaver optimization. However,for
deterministic interleavers, computationally intensive Monte-
Carlo simulation is required to estimate the mutual informa-
tion. Hence, we will only optimize a class of interleavers that
are empirically good.

If a more stringent overall-delay constraint is imposed, the
effect of the finite codeword length must be considered. As the
number of levels increases, the achievable rate will increase
but the code lengths and their performance will decrease.
There is an optimal number of levels for a given delay
constraint. We use the random-coding bound [27] that relates
the word-error probability to the codeword length to study
this trade-off. Numerical results show that for the example
channel, it is beneficial to use more than two levels, provided
that a moderate delay of several thousand symbols is allowed.

The outline of the paper is as follows. Section II introduces
the basic concepts of successive decoding. In Section III, we
present the definitions of i.u.d. capacity and achievable rate of
the subchannel and show the convergence of the achievable
rate to the i.u.d. capacity for the rectangular interleaver.
Section IV deals with the design of interleavers for the SED.
We first discuss the properties and the asymptotic optimality
of random interleavers. We then introduce the pilot-utility
function and its properties and apply them for interleaver
optimization. A set of good deterministic interleavers arealso
given. Section V proposes the EXIT chart analysis of the IED
algorithm for system design. Section VI uses the random-
coding error exponents to analyze the impact of a finite delay
constraint. Section VII presents some numerical results and
Section VIII concludes the paper.

II. SUCCESSIVEDECODING

A. Channel Model

This paper considers a Markov-modeled flat-fading channel
with additive white Gaussian noise (AWGN). The received
signalYt is given by

Yt = HtXt +Wt (1)

whereHt, Xt, andWt are the complex channel gain unknown
to both the receiver and the transmitter, the transmitted symbol,
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and the AWGN, respectively, and are assumed to be mutually
independent. The input is an independently and uniformly
distributed (i.u.d.) binary sequence,Xt ∈ {−1,+1}, with
power Es = 1. The AWGN has a symmetric complex
Gaussian distribution,Wt ∼ CN (0, N0). The channel state
process forms an irreducible, aperiodic, and stationary Markov
chain over a finite state spaceHt ∈ {A1, · · · , AQ} with state
transition probability

Pq′,q = Pr(Ht = Aq′ |Ht−1 = Aq) (2)

and stationary state probability

Pq = Pr(Ht = Aq)

where q, q′ = 1, · · · , Q. We call P = [Pq′,q]q′,q=1,··· ,Q the
state-transition matrix. We use upper-case letters for random
variables, lower-case ones for their realizations, and boldface
letters for vectors. We use the notationPr() for both the
probability mass function and the probability density function
(PDF).

B. Encoding

In a K-level successive decoding scheme, the transmitter
partitions the information bits intoK sub-sequences according
to an interleaving pattern, and independently encodes them
into K codewords of lengthNk bits and raterk for k =
1, · · · ,K. Let xk = {x1,k, · · · , xNk,k} denote the codeword
k. A total of N =

∑K

k=1 Nk bits from x1, · · · ,xK are
then interleaved into a transmission stream{xt}Nt=1 with an
overall rate ofr =

∑
rkNk/N . We assume the limitwk =

limN→∞ Nk/N , called theweightof the kth level, exists.
We assume there is another interleaving (deinterleaving)

mechanism embedded at the encoder (decoder). Hence the
interleaver considered here does not scramble the bits within
an individual codeword and may be represented by a vector

π = [π1, · · · , πN ], πt ∈ {1, · · · ,K} for t = 1, · · · , N .

This means a bit from the codewordπt is transmitted at time
instantt so thatxt = xi,πt

for somei. The one-to-one mapping
between the pair of indices(i, k) and the time indext at
which xi,k is transmitted is conveniently represented by a
function t = t(i, k) so thatxi,k = xt(i,k). For example, if
the interleaver isπ = [1, 3, 2, 3, 2, 3], then the transmitted
sequence[x1, · · · , x6] = [x1,1, x1,3, x1,2, x2,3, x2,2, x3,3], and
t(1, 1) = 1, t(1, 2) = 3, andt(2, 2) = 5 and so on.

The interleaver configuration is key to the successive decod-
ing design since it determines the channel configuration for
each codeword. Both a deterministic and a random interleaver
construction will be considered here.

Definition 1: A K-level deterministic interleaver is con-
structed from the repetition of a subpatternω ∈ KL of
a fixed lengthL so that π = [ω, · · · ,ω] ∈ KN , where
K = {1, · · · ,K}.

A simple deterministic interleaver is the rectangular inter-
leaver withω = [1, · · · ,K]. It is asymptotically optimal [18]
asK → ∞ but the free parameterK may be very large for
good performance. A more general deterministic interleaver,
called the irregular interleaver [28], is a permutationω =

perm(1L1
,2L2

, · · · ,KLK
) ∈ KL, wherekn = [k, · · · , k] is a

row vector of lengthn and
∑K

k=1 Lk = L. Hereperm denotes
a permutation function. The pilot-symbol assisted modulation
(PSAM) can be viewed as a special case of successive decod-
ing with only two levels i.e.ω = [1, 2, · · · , 2].

Contrary to the rectangular interleaver, the irregular inter-
leaver has a design space ofKL possible subpatternsω,
making optimization difficult. This partially motivates a class
of random interleaver defined as follows.

Definition 2: A K-level random interleaver of weight dis-
tribution w = [w1, · · · , wK ] is a random vectorΠ =
[Π1, · · · ,ΠN ] whose entries are identically-and-independently
distributed (i.i.d.) according to the probability mass function
Pr(Πt = k) = wk for 1 ≤ t ≤ N and 1 ≤ k ≤ K, where
wk ≥ 0 and

∑K

k=1 wk = 1.
The random interleaver is completely specified by the

weight distribution. Its optimization can be carried out over a
K dimensional space and is much more feasible. Its properties
will be discussed in Section IV.

C. Estimation and Decoding

In successive decoding, theK codewords are decoded one
by one. Their hard-decisions are fed back to subsequent levels
and are treated as known training symbols. Thus more training
symbols are produced as decoding proceeds to higher levels.
Each stage performs eitherseparateestimation and decoding
(SED) or iterative estimation and decoding (IED). The first
approach estimates the codeword symbols over the trellis of
the underlying FSMC, and then invokes the decoder with the
set of likelihood ratios as its sole input. By separating the
two processes, it ignores the interaction between the channel
memory and the code structure and thus has a performance
penalty. Nonetheless, SED for a deep rectangular interleaver is
shown in [14], [17], and [18] to be i.u.d. capacity approaching
because the underlying subchannel tends to be memoryless as
the number of levels goes to infinity. However, when the design
has finite levels, the codeword symbols may be closely placed.
It is then necessary to address jointly the memory of both
the channel and the encoder. The IED is a computationally
efficient way to do so and is widely used in the literature, see
for example [1-4].

Consider the decoding process of the codewordxk. Assume
codewordsx1 to xk−1 have been correctly decoded and
become the set of known training symbols denoted by a
sequenceuk = [u1, · · · , uN ] where

ut =

{
xt, if xt is from codewordx1 to xk−1

φ, otherwise.

Here φ denotes an erased symbol. The receiver estimates
the channel state along the trellis of the FSMC using a
BCJR algorithm similar to [24]. For notational convenience,
we introduce a windowing operation〈·〉t2t1 , where t1 and
t2 are the start and end time of the window, respectively.
Supposea = [a1, · · · , aN ] is a vector indexed by time, then
〈a〉t2t1 = [at1 , · · · , at2 ]. Similarly, the windowing operation
on the codewordXk = [X1,k, · · · , XNk,k] yields 〈Xk〉t2t1 =
[Xi1,k, · · · , Xi2,k], where t(i1 − 1, k) < t1 ≤ t(i1, k) and
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t(i2, k) ≤ t2 < t(i2 + 1, k). Let the forward and backward
state probabilities, respectively, be

αt(q) = Pr(Ht = Aq, 〈y〉t−1
1 , 〈uk〉t−1

1 ) (3)

βt(q) = Pr(〈y〉Nt , 〈uk〉Nt |Ht = Aq). (4)

Define the branch metric to reflect whether a known symbol
is present at time instantt as

γt(q
′, q)

=

{
Pr(yt, xt, Ht+1 = Aq′ |Ht = Aq), if xt is known
Pr(yt, Ht+1 = Aq′ |Ht = Aq), otherwise

=

{
γt(q

′, q, xt), if xt is known∑
Xt=±1

γt(q
′, q,Xt), otherwise (5)

whereγt(q′, q,Xt) is the conditional branch metric given by

γt(q
′, q,Xt)

= Pr(yt, Xt, Ht+1 = Aq′ |Ht = Aq) (6)

= Pr(Xt) Pr(Ht+1 = Aq′ |Ht = Aq) Pr(yt|Ht = Aq, Xt)
(7)

= Pr(Xt)Pq′,q exp
(
− |yt −XtAq|2N−1

0

)
(πN0)

−1. (8)

In the above,Pr(Xt) = 1/2 for Xt = ±1 is the a
priori probability and (7) is fromPr(yt, Xt|Ht+1, Ht) =
Pr(Xt) Pr(yt|Xt, Ht) sinceHt evolves independently ofXt

andyt only conditionally depends onHt andXt. Theαt(q)
andβt(q) are computed recursively as

αt(q) =

Q∑

q′=1

γt−1(q, q
′)αt−1(q

′), t = 2, · · · , N (9)

βt(q) =

Q∑

q′=1

γt(q
′, q)βt+1(q

′), t = N, · · · , 1 (10)

where α1(q) = Pq and βN+1(q) = Pq for 1 ≤ q ≤ Q.
The estimator computes the likelihood ratio of each bit in the
codewordk as

Λe(Xt = a) =
Pr(Xt = a,y,uk)

Pr(Xt = −a,y,uk)

=

∑Q
q=1

∑Q
q′=1 αt(q)γt(q

′, q, a)βt+1(q
′)

∑Q

q=1

∑Q

q′=1 αt(q)γt(q′, q,−a)βt+1(q′)
(11)

for t = t(1, k), · · · , t(Nk, k). The decoder treats the sequence
of likelihood ratios {Λe(Xi,k = +1)}Nk

i=1 as i.i.d. samples
from a memoryless channel and decodesxk accordingly.

The IED scheme exchanges the extrinsic soft information
repetitively between the estimator and the decoder within each
individual subchannel. Consider thenth iteration at thekth
subchannel. Suppose the decoder output likelihood ratio atthe
(n− 1)th iteration isΛd

n−1(Xi,k), its extrinsic output is

Ld,out
n−1 (Xi,k) = Λd

n−1(Xi,k)/L
d,in
n−1(Xi,k) (12)

for i = 1, · · · , Nk, whereLd,in
n−1(Xi,k) is the decoder extrinsic

input. The estimator then computes its output likelihood ratio
Λe
n(Xi,k) according to (9) - (11), except that thea priori

probability Pr(Xt) in (8) is replaced by its extrinsic input

Le,in
n (Xi,k) = Ld,out

n−1 (Xi,k), wheret = t(i, k). The estimator
output extrinsic information at thenth iteration is

Le,out
n (Xi,k) = Λe

n(Xi,k)/L
e,in
n (Xi,k) (13)

for i = 1, · · · , Nk, which becomes the decoder extrinsic
input Ld,in

n (Xi,k) = Le,out
n (Xi,k). The above process starts

with the initial conditionLe,in
0 (Xi,k) = 1 and repeats until a

stopping criterion is satisfied. For example, the parity-check
equations hold for an LDPC decoder or the maximum number
of iterations is reached.

III. M UTUAL INFORMATION

This section introduces two mutual information: the achiev-
able rateR and the i.u.d. capacityC i.u.d. Both of them
are derived for the i.u.d. binary channel inputs. WhileC i.u.d

denotes the maximal achievable information rate given any
receiver,R denotes the achievable information rate of the SED
algorithm. Note the channel capacityC ≥ C i.u.d requires an
optimal input distribution. The distance betweenR andC i.u.d is
then used to show how fast a finite-level rectangular interleaver
based scheme converges.

A. The Achievable Rate and the i.u.d. Capacity

Analogous to a multiuser system [29], theK independent
codewords in a successive decoding scheme with perfect de-
cision feedback1 are equivalently transmitted overK parallel
subchannels (also called equivalent channels [11]). Thekth
subchannel is defined as a channel with a vector inputXk,
a vector outputY, a training sequenceUk, and a channel
transition probabilityPr(Y|Xk,Uk). For either the determin-
istic or the random interleavers, the subchannel is a stationary,
ergodic, and indecomposable [27] FSMC. Following [27], we
define the i.u.d. capacity of each subchannel as follows.

Definition 3: The i.u.d. capacity of thekth subchannel is
the mutual information between the i.u.d. input vectorXk and
the output vectorY conditioned on the training sequenceUk

C i.u.d.
k = lim

N→∞

1

Nk

I(Xk;Y|Uk) (14)

and the i.u.d. capacity of the physical channel (1) is the mutual
information between the i.u.d. input vectorX and the output
vectorY

C i.u.d. = lim
N→∞

1

N
I(X;Y). (15)

Applying the chain rule of mutual information to (15) yields

C i.u.d. =

K∑

k=1

wkC
i.u.d.
k . (16)

Achieving (14) with one code would require a joint maximum-
likelihood decoder. On the other hand, the simple SED over a
subchannel can achieve the following rate.

1Throughout the paper, the decision feedback is assumed to beperfect. The
effects of imperfect decisions are minimal in the proposed successive decoding
because decisions are generated by a strong component code,which, when
operating at the designed region, will produce a small BER that has little
effect on the estimation process in the later stage. A more detailed discussion
on the imperfect decision feedback can be found in [18].
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Definition 4: The achievable rate of thekth subchannel
with SED is the average of the conditional mutual information
between the individual bitXi,k and the channel outputY

Rk = lim
N→∞

1

Nk

Nk∑

i=1

I(Xi,k;Y|Uk) (17)

and the overall achievable rate of the physical channel (1) is

R =

K∑

k=1

wkRk. (18)

The achievable rate is the maximal rate of error-free
communication with the suboptimal decoding rule [30] that
approximates the true APPPr(Xk|Y,Uk) by a product∏

Pr(Xi,k|Y,Uk) under the (memoryless subchannel) as-
sumption that{Xi,k}Nk

i=1 are conditionally independent. It is a
lower bound of the subchannel i.u.d. capacity since

C i.u.d.
k −Rk

= EPr(Xk|Y,Uk)

[
log2

Pr(Xk|Y,Uk)∏Nk

i=1 Pr(Xi,k|Y,Uk)

]

= DKL

(
Pr(Xk|Y,Uk)

∥∥∥
Nk∏

i=1

Pr(Xi,k|Y,Uk)
)

≥ 0 (19)

where (19) is due to the non-negativity of the Kullback-Leibler
distanceDKL [29]. The information rate (17) was also derived
in [8] as the performance bound of decoding LDPC codes over
ISI channels with a single pass of the BCJR algorithm.

B. Estimation of the Achievable Rate and the i.u.d. Capacity

From the definition of the mutual information and the
entropy [29], expression (17) can be calculated as follows

Rk = lim
N→∞

1

Nk

Nk∑

i=1

(
H(Xi,k)−H(Xi,k|Y,Uk)

)

= 1− lim
N→∞

1

Nk

Nk∑

i=1

E
[

− log2 Pr(Xi,k = xi,k

∣∣Y = y,Uk = uk)
]

(20)

= 1− lim
N→∞

1

Nk

Nk∑

i=1

E

[
− log2

Λe(xi,k)

1 + Λe(xi,k)

]
. (21)

The expectation in (21) can be evaluated through a Monte-
Carlo integration, which simulates the channel output and
computes{Λe(xi,k)} using the BCJR algorithm according to
(9) - (11). In fact, the computation ofRk directly corresponds
to the estimation process in the SED, except that the likelihood
ratio of the actual input realizationxi,k must be used.

Applying the chain rule of mutual information to (14) yields

C i.u.d.
k = lim

N→∞

1

Nk

Nk∑

i=1

I(Xi,k;Y|Uk, X1,k, · · · , Xi−1,k).

(22)
According to (22), we introduce an additional training se-
quence{x1,k, · · · , xi−1,k} in the forward recursion of the

BCJR algorithm to compute a new likelihood ratio ofxi,k

as

Λ̃e(xi,k) =
Pr(xi,k,y,uk, x1,k, · · · , xi−1,k)

Pr(−xi,k,y,uk, x1,k, · · · , xi−1,k)
(23)

for i = 1, · · · , Nk. Hence

C i.u.d.
k = 1− lim

N→∞

1

Nk

Nk∑

i=1

E

[
− log2

Λ̃e(xi,k)

1 + Λ̃e(xi,k)

]
. (24)

Note combining (16) and (24) yields the i.u.d. capacity of the
physical channel with memory. This is an alternative to the
methods presented in [23] and [13] and was hinted, though
not pursued, in [23].

C. Convergence of the Achievable Rate to the i.u.d. Capacity

Under the mild conditions of positive state-transition matrix
and noisy channel output, a hidden Markov model has expo-
nential decay of the channel memory such that the difference
between the state estimates at timet with or without the initial
channel knowledge att−n goes to zero exponentially fast with
respect ton due to state mixing, see for example [31] and [32].
This implies that the increase in mutual information between
Xt andY due to some additional training symbols located at
leastn symbols away also goes to zero at an exponential rate
as shown in Lemma 1.

Lemma 1:Assume that the channel state-transition matrix
P defined in (2) is primitive, i.e.,Pq′,q > 0 and assume that
Pr(yt|Ht = Aq, Xt) > 0 for any 1 ≤ q ≤ Q, 1 ≤ q′ ≤ Q,
Xt ∈ {−1,+1}, and 1 ≤ t ≤ N . The conditional mutual
informationI

(
Xt; 〈Y〉t+n

t−m|〈U〉t+n
t−m

)
, whereU is an arbitrary

sequence of training symbols, will converge exponentiallyfast
with respect tom for anyn ≥ 0 so that

I
(
Xt; 〈Y〉t+n

t−m′ |〈U〉t+n
t−m′

)
− I
(
Xt; 〈Y〉t+n

t−m|〈U〉t+n
t−m

)

< ln(2)−1 max
1≤i≤Q,1≤j≤Q

d(pi,pj)τ(P )m−1

wherem′ > m > 0. Herepi for 1 ≤ i ≤ Q is the column
vectors ofP , 0 ≤ τ(P ) < 1 is the Birkhoff contraction
coefficient of a strictly positive matrixP defined as

τ(P ) = sup
u>0,v>0,u 6=λv

d(Pu, Pv)

d(u,v)
(25)

and

d(u,v) = lnmax
i,j

(
u(i)

v(i)

v(j)

u(j)

)
≥ 0 (26)

is the Hilbert metric between two positive vectorsu andv.
Proof: See appendix I.

The statement and the proof of Lemma 1 involve the theory
of the product of positive matrices, see [31], [33], and [34].
The properties of both the Hilbert metric and the Birkhoff
contraction coefficient can be found in [31].

Applying Lemma 1 to the rectangular interleaver, the fol-
lowing theorem shows that, asK → ∞, Pr(Xk|Y,Uk) →∏Nk

i=1 Pr(Xi,k|Y,Uk) and the subchannel converges to a
memoryless channel where the SED is indeed optimal.
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Theorem 1:Under the same assumptions of Lemma 1,
the achievable rateR of a K-level rectangular interleaver
approachesC i.u.d. exponentially fast with respect toK, so

C i.u.d.−R < ln(2)−1 max
1≤i≤Q,1≤j≤Q

d(pi,pj)τ(P )K−2 (27)

whereP is the state-transition matrix (2),pi is the column
vector ofP , and 0 ≤ τ(P ) < 1 and d(pi,pj) ≥ 0 are the
Birkhoff contraction coefficient (25) and the Hilbert metric
(26), respectively.

Proof: From (22) and (17), the difference betweenC i.u.d.
k

andRk is upper bounded by

C i.u.d.
k −Rk

= lim
N→∞

1

Nk

Nk∑

i=1

(
I(Xi,k;Y|Uk, X1,k, · · · , Xi−1,k)

− I(Xi,k;Y|Uk)
)

(28)

≤ lim
N→∞

1

Nk

Nk∑

i=1

(
I(Xi,k;Y|Uk, X1,k, · · · , Xi−1,k)

− I(Xi,k; 〈Y〉Nt(i,k)−K+1|〈Uk〉Nt(i,k)−K+1)
)

(29)

≤ ln(2)−1 max
1≤i≤Q,1≤j≤Q

d(pi,pj)τ(P )K−2 (30)

for k = 1, · · · ,K, where (29) is true because eliminating
some channel outputs and training symbols reduces mutual
information and (30) is a result of Lemma 1. The result (27)
follows from (30) and the fact thatC i.u.d. =

∑K
k=1 C

i.u.d.
k /K

andR =
∑K

k=1 Rk/K.

IV. D ESIGN FORSEPARATE ESTIMATION AND DECODING

In this section, we first show some properties of the random
interleaver and then address the random interleaver optimiza-
tion problem using a pilot-utility function. We also give a good
deterministic interleaver constructed according to empirical
rules.

A. Properties of the Random Interleaver

Under a random interleaver, the configuration of a sub-
channel as well as its achievable rate and i.u.d. capacity
depend on the realization of the interleaver. We define the
(ensemble) average ofC i.u.d.

k and the (ensemble) average of
Rk, respectively, as

C
i.u.d.
k = lim

N→∞
EΠ

[
1

Nk

IΠ(Xk;Y|Uk)

]
(31)

Rk = lim
N→∞

EΠ

[
1

Nk

Nk∑

i=1

IΠ(Xi,k;Y|Uk)

]
(32)

where the subscriptΠ is introduced in the mutual information
to denote its dependency on the underlying interleaver pattern.
The (ensemble) average ofC i.u.d. and the (ensemble) average
of R are respectively

C
i.u.d. =

K∑

k=1

wkC
i.u.d.
k (33)

and

R =
K∑

k=1

wkRk. (34)

The following proposition shows that, as the length of a
random interleaver realization goes to infinity, both the i.u.d.
capacity and the achievable rate of a subchannel converge to
their ensemble averages in probability.

Proposition 1: For a random interleaverΠ with i.i.d. en-
tries, asN → ∞

IΠ(Xk;Y|Uk)/Nk
p−→ C

i.u.d.
k (35)

Nk∑

i=1

IΠ(Xi,k;Y|Uk)/Nk
p−→ Rk. (36)

Proof: This proof will show (35) only. The proof of (36)
is similar. Partition theN -bit interleaverΠ = [π1, · · · , πN ]
into n m-bit long blocks asΠ = [Π1, · · · ,Πn], where
N = nm andΠj = [π(j−1)m+1, · · · , πjm] for j = 1, · · · , n.
The subsequences that lie within thejth block are denoted by
X

(j)
k = 〈Xk〉jm(j−1)m+1, Y(j)

k = 〈Yk〉jm(j−1)m+1, andU
(j)
k =

〈Uk〉jm(j−1)m+1. The length ofX(j)
k is denoted byN (j)

k .
Since the channel is stationary, ergodic, and indecomposible

[27] and so is the random interleaver, it can be shown (see [27]
and [18]) that asm → ∞

lim
N→∞

IΠ(Xk;Y|Uk) = lim
m→∞

n∑

j=1

IΠj
(X

(j)
k ;Y

(j)
k |U(j)

k ).

Furthermore,limm→∞ nN
(j)
k /Nk = 1 for any j. Therefore

lim
N→∞

1

Nk

IΠ(Xk;Y|Uk)

= lim
n→∞

lim
m→∞

1

nN
(j)
k

n∑

j=1

IΠj
(X

(j)
k ;Y

(j)
k |U(j)

k )

= lim
m→∞

EΠj

[
1

N
(j)
k

IΠj
(X

(j)
k ;Y

(j)
k |U(j)

k )

]
(37)

= C
i.u.d.
k (38)

where (37) is due to the stationarity and ergodicity of the
random interleaver, and (38) is due to the definition (31) and
the fact thatΠj andΠ have the same statistics.

Therefore, if a specific weight distribution yields an optimal
ensemble average achievable rate, we can generate a suffi-
ciently long interleaver realization to achieve the same rate.

The random interleaver has the asymptotic property similar
to that of the rectangular interleaver. Ifwk → 0, symbols of
codewordk are expected to be scattered far away from each
other andRk will approachCi.u.d.

k as shown in the following
lemma.

Lemma 2:Let wk be the weight of subchannelk, then

lim
wk→0

(
C

i.u.d.
k − Rk

)
= 0, k = 1, · · · ,K.
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Proof: By the definitions in (31) and (32) and the chain
rule of mutual information, we get

C
i.u.d.
k − Rk

= lim
N→∞

EΠ

[
1

Nk

IΠ(Xk;Y|Uk)

− 1

Nk

Nk∑

i=1

IΠ(Xi,k;Y|Uk)

]

= lim
N→∞

EΠ

[
1

Nk

Nk∑

i=1

(
IΠ(Xi,k;Y|Uk,

X1,k, · · · , Xi−1,k)− IΠ(Xi,k;Y|Uk)
)]

. (39)

Let the distance between the consecutive bitsXi,k andXi−1,k

be

Di,k = t(i, k)− t(i − 1, k), i = 2, · · · , Nk.

The random sequence{Di,k}Nk

i=2 is i.i.d. with probability mass
function

Pr(Di,k = d) = wk(1− wk)
d−1, d ≥ 1.

Let α = ln(2)−1 max1≤i≤Q,1≤j≤Q d(pi,pj). Applying
Lemma 1 to (39) yields

C
i.u.d.
k − Rk < lim

N→∞
EΠ

[
1

Nk

Nk∑

i=2

ατ(P )Di,k−1

]

= EΠ

[
ατ(P )Di,k−1

]

=

∞∑

Di,k=1

αwk(1− wk)
Di,k−1τ(P )Di,k−1

=
αwk

1− τ(P )(1 − wk)
. (40)

Since0 ≤ τ(P ) < 1, letting wk → 0 in (40) completes the
proof.

This implies that a random interleaver with equal weight
wk = 1/K is asymptotically optimal as follows.

Theorem 2:For aK-level random interleaver with weight
distributionw = [1/K, · · · , 1/K]

lim
K→∞

R = C i.u.d..

Proof: Since the i.u.d. capacity is independent of any in-
terleaving scheme, we haveC i.u.d. = Ci.u.d. =

∑K

k=1 wkC
i.u.d.
k .

Substitutewk = 1/K into (40) and use (33) and (34), we get

C i.u.d.− R =

K∑

k=1

K−1(Ci.u.d.
k − Rk)

<

ln(2)−1 max
1≤i≤Q,1≤j≤Q

d(pi,pj)K
−1

1− τ(P )(1 −K−1)
.

Letting K → ∞ completes the proof.

B. Optimization of the Random Interleaver

Note thatRk(w) depends onw only through
∑k−1

i=1 wi, the
percentage of the training symbols at subchannelk. It is useful
to quantify the utility (in terms of mutual information) of the
randomly positioned pilot symbols.

Definition 5: The pilot-utility function µ(x) is defined as
the achievable rate of the data as a function of the pilot
percentagex

µ(x) = lim
n→∞

I(Xt; 〈Y〉t+n
t−n|〈Z〉t−1

t−n, 〈Z〉t+n
t+1 ) (41)

for x ∈ [0, 1] where

Zt =

{
Xt, with probabilityx
φ, with probability 1− x.

The function µ(x) : [0, 1] −→ [0, 1] is assumed to
be continuously differentiable in(0, 1) and is shown to be
monotonically increasingµ(x) ≤ µ(y) for 0 ≤ x ≤ y ≤ 1
in Appendix II. A Monte-Carlo method similar to that in
Section III-B can be used to estimateµ(x). The pilot-utility
function can also be viewed as the EXIT function where thea
priori probabilities are passed through a binary erasure channel
(BEC) [21]. The following two theorems show thatRk and
C

i.u.d.
k are simply the evaluations onµ(x).
Theorem 3:Let µ(x) be the pilot-utility function of the

FSMC. The average achievable rate of levelk in successive
decoding under a random interleaver is

Rk(w) = µ

( k−1∑

j=1

wj

)
(42)

for k = 1, · · · ,K. The overall average achievable rate is

R(w) =
K∑

k=1

wkµ

( k−1∑

j=1

wj

)
. (43)

Proof: As N → ∞, almost all termsIΠ(Xi,k;Y|Uk)
inside the summation of (32) will converge to one windowed
term limn→∞ IΠ(Xi,k; 〈Y〉t(i,k)+n

t(i,k)−n
|〈Uk〉t(i,k)+n

t(i,k)−n
) due to the

exponential decay of the FSMC channel memory as shown in
Lemma 1, also see [18]. So the definition ofRk in (32) can
be re-written as

Rk(w) = lim
n→∞

EΠ

[
IΠ(Xi,k; 〈Y〉t(i,k)+n

t(i,k)−n
|〈Uk〉t(i,k)+n

t(i,k)−n
)
]
.

(44)

By the construction of the random interleaver,Uk =
[U1, · · · , UN ], where

Ut =

{
Xt, with probability

∑k−1
i=1 wi

φ, with probability1−∑k−1
i=1 wi

for t 6= t(i, k), is equivalent to a sequence of random training
symbols. Therefore, from (41) and (44) and the stationarity
and ergodicity of both the channel and the interleaver, we
have Rk(w) = µ(

∑k−1
j=1 wj). Then (43) holds sinceR =∑K

k=1 wkRk.
Theorem 4:Area property. Letµ(x) be the pilot-utility

function of the FSMC. The average i.u.d. capacity of level
k in successive decoding under a random interleaver is

C
i.u.d.
k =

1

wk

∫ Pk
j=1

wj

Pk−1

j=1
wj

µ(x) dx (45)
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Fig. 1. Illustration of the average achievable rate for a 3-level successive
decoding under the random interleaver in relation to the pilot-utility function.

wherewk 6= 0 for k = 1, · · · ,K. The overall i.u.d. capacity
is

C i.u.d. =

∫ 1

0

µ(x)dx. (46)

Proof: Let w = [w1, · · · , wK ] be the weight
distribution of a K-level random interleaving scheme.
Consider a new interleaving scheme that further di-
vides the subchannelk of weight wk into m sub-
subchannels of weightswk/m. These sub-subchannels are
indexed by k1, · · · , km and the new weight distribution
is w = [w1, · · · , wk−1, wk/m, · · · , wk/m,wk+1, · · · , wK ].
Similar to (16), by the chain rule of mutual information we
have

C
i.u.d.
k =

m∑

i=1

1

m
C

i.u.d.
ki

. (47)

As m → ∞, wk/m → 0 andCi.u.d.
ki

→ Rki
for i = 1, · · · ,m

from Lemma 2. Therefore, letm → ∞ in the right hand side
of (47), we have

C
i.u.d.
k = lim

m→∞

1

m

m∑

i=1

Rki
(48)

= lim
m→∞

1

m

m∑

i=1

µ

( k−1∑

j=1

wj +
wk

m
(i− 1)

)
(49)

=
1

wk

∫ P

k
j=1

wj

Pk−1

j=1
wj

µ(x)dx (50)

where (48) is due to Lemma 2, (49) is due to (42), and (50)
is due to the continuity ofµ(x). Equation (46) then follows
(33).

The Theorem 3 and 4 are illustrated graphically in Fig. 1
and 2, respectively. Fig. 1 shows thatRk is equal toµ(x)
evaluated at

∑k−1
j=1 wj and R is the area under a stair-like

curve. Fig. 2 shows thatCi.u.d.
k is the area beneathµ(x) between

x =
∑k−1

j=1 wj and x =
∑k

j=1 wj normalized bywk and
C i.u.d. is the area underneathµ(x) betweenx = 0 andx = 1.
The rate loss of doing SED at levelk is the normalized area

PSfrag replacements
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Fig. 2. Illustration of the average i.u.d. capacity for a 3-level successive
decoding under the random interleaver in relation to the pilot-utility function.

Sk = 1
wk

∫P

k
j=1

wj
Pk−1

j=1
wj

µ(x)dx − µ(
∑k−1

j=1 wj) between the stair-

like curve and the pilot-utility function as shown in Fig. 1.
The statement (46) was also shown as the area property of an
EXIT function [21].

The optimal weight distribution of a random interleaver is
the solution to the following maximization problem:

max
w

R(w) =

K∑

k=1

wkµ
( k−1∑

j=1

wj

)
(51)

subject to
K∑

k=1

wk = 1

and
0 ≤ wk ≤ 1, k = 1, · · · ,K.

Before solving (51), we show the property of an optimal
solution that it is always advantageous to use all levels
allowed.

Proposition 2: If µ(x) is strictly increasing, then
R(w∗

K+1) > R(w∗
K), where w∗

K and w∗
K+1 are the

optimal weight distributions of theK-level and(K +1)-level
successive decoding schemes, respectively.

Proof: Let w∗
K = [w1, · · · , wK ] be the optimal point.

Without loss of generality, we assumewi > 0 for all i because
a K-level scheme with a zero-weight level is equivalent to
a (K − 1)-level scheme. Now construct a(K + 1)-level
weight distributionwK+1 = [w′

1, · · · , w′
K+1] by splitting

w∗
K into two equally weighted levels so thatw′

i = wi for
i = 1, . . . ,K − 1 andw′

i = wK/2 for i = K,K + 1.
From (42),Ri(wK+1) = Ri(w

∗
K) = µ(

∑i−1
j=1 wj) for i =

1, · · · ,K. By the strict monotonicity ofµ(x), we have

RK+1(wK+1) = µ
(K−1∑

i=1

w′
i +

wK

2

)
> RK(w∗

K).

From (34) and (51), there exists an optimal pointw∗
K+1 so

that
R(w∗

K+1) ≥ R(wK+1) > R(w∗
K).
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A direct result of Proposition 2 is that an optimal weight
distribution must not have zero terms as follows.

Proposition 3: The local optimumw∗ satisfies thatw∗
k > 0

for k = 1, · · · ,K if µ(x) is strictly increasing.
The Karush-Kuhn-Tucker (KKT) conditions are necessary

for the solution of the nonlinear maximization problem (51)
with both equality and inequality constraints to be optimal,
see for example [35]. AssumeR(w) : [0, 1]K −→ [0, 1] is
continually differentiable. It can be verified that the constant
rank constraint qualification (CRCQ) [35] holds for (51), then
the local optimumw∗ satisfies that

∇R(w∗) +

K∑

i=1

νi(−w∗
i ) + λ(1 −

K∑

i=1

w∗
i ) = 0 (52)

νiw
∗
i = 0, i = 1, · · · ,K (53)

w∗
i ≥ 0, i = 1, · · · ,K (54)

for someλ andνi ≥ 0 for i = 1, · · · ,K. We assume thatµ(x)
is strictly increasing in the derivation below. From Proposition
3,w∗

j > 0, thusνj = 0 for j = 1, · · · ,K due to (53). By (43)
and (42) and some straightforward manipulation, the necessary
conditions (52) to (54) can be simplified to

µ(0) + w∗
2µ

′
( 1∑

i=1

w∗
i

)
+ w∗

3µ
′
( 2∑

i=1

w∗
i

)
+ · · ·

+w∗
K−1µ

′
(K−2∑

i=1

w∗
i

)
+ w∗

Kµ′
(K−1∑

i=1

w∗
i

)
= λ (55)

µ
( 1∑

i=1

w∗
i

)
+ w∗

3µ
′
( 2∑

i=1

w∗
i

)
+ · · ·

+w∗
K−1µ

′
(K−2∑

i=1

w∗
i

)
+ w∗

Kµ′
(K−1∑

i=1

w∗
i

)
= λ (56)

...

µ
(K−2∑

i=1

w∗
i

)
+ w∗

Kµ′
(K−1∑

i=1

w∗
i

)
= λ (57)

µ
(K−1∑

i=1

w∗
i

)
= λ (58)

K∑

i=1

w∗
i = 1 (59)

wi > 0, i = 1, · · · ,K (60)

whereµ′ denotes the first order derivative ofµ.
Define σk =

∑k−1
i=1 wi for k = 1, · · · ,K. Sinceµ(x) is

continuous and strictly increasing, the inverseµ−1(y) exists,
whereµ(0) ≤ y ≤ µ(1). From (59) and (58), for anyµ(0) ≤
λ ≤ µ(1), we findwK as

σK = µ−1(λ) (61)

wK = max(1− σK , 0) (62)

and findwi−1 for i = K, · · · , 2 recursively as

σi−1 = µ−1(µ(σi)− wiµ
′(σi))

wi−1 = max(σi − σi−1, 0). (63)

The set of local optimal points{w∗} is given byλ that satisfies

θ(λ) = 1−
K∑

i=1

wi = 0, µ(0) ≤ λ ≤ µ(1).

The global optimal solution isargmaxw∈{w∗} R(w).
For many channels, inserting more pilot symbols has

diminishing return in the achievable rate of the data. The pilot-
utility functions of these channels are concave and the optimal
strategy is to allocate more weight at higher levels.

Proposition 4: If µ(x) : [0, 1] −→ [0, 1] is continually
differentiable in (0, 1), strictly increasing, and concave, the
optimal weight distribution satisfiesw∗

1 ≤ w∗
2 ≤ · · · ≤ w∗

K .
Proof: From (55) to (58), we have

µ
( k−1∑

i=1

w∗
i

)
+ w∗

k+1µ
′
( k∑

i=1

w∗
i

)
= µ

( k∑

i=1

w∗
i

)
(64)

for k = 1, · · · ,K − 1. From the concavity ofµ(x), we have

µ
( k∑

i=1

w∗
i

)
≥ µ

( k−1∑

i=1

w∗
i

)
+ w∗

kµ
′
( k∑

i=1

w∗
i

)
(65)

for k = 1, · · · ,K − 1. The combination of (64), (65), and the
fact thatµ′(x) > 0 shows that

w∗
k+1 ≥ w∗

k, k = 1, · · · ,K − 1.

C. A Construction of the Deterministic Interleaver

Unlike random interleavers, the optimization of determin-
istic interleavers has combinatorial complexity. Although the
optimal placement of pilot symbols for PSAM has been
studied in the literature [36], the problem here is more difficult
as there areK codewords to be placed. Thus, we present a
family of deterministic interleavers that are constructedfrom
empirical rules proposed for the Markov fading channel.

First, more weight shall be allocated to higher levels because
of Proposition 4. Second, the weight of level 1 (pilot percent-
age) shall be optimized as it has zero achievable rate and the
most mutual information loss. Optimization with respect tow1

often yields the most gain. Third, it is desirable to separate
the symbols within a codeword and to place the symbols from
lower levels evenly around them. Accordingly, we constructa
family of binary-weighted interleavers withwk+1 = 2wk for
k ≥ 2 as

π = [ω, · · · ,ω], ω = [1,vK , · · · ,vK ] ∈ K
L. (66)

Here the vectorvK is defined recursively as

vK = [K, vK−1(1),K, vK−1(2), · · · ,
K, vK−1(2

K−2 − 1),K]

for K > 2 and v2 = [2]. For example, a 3-level binary-
weight interleaver hasv3 = [3, 2, 3], a 4-level one has
v4 = [4, 3, 4, 2, 4, 3, 4], and a 5-level one hasv5 =
[5, 4, 5, 3, 5, 4, 5, 2, 5, 4, 5, 3, 5, 4, 5]. It is clear that the training
symbols are well placed for each level. Furthermore, the
weight of level 1 can be optimized by finding the optimal
number ofvK in (66).
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V. DESIGN FORITERATIVE ESTIMATION AND DECODING

For the iterative receivers, the design techniques proposed
in Section IV including interleaver optimization and code rate
allocation are no longer optimal because the achievable rate
becomes too conservative a performance measure. On the other
hand, the EXIT chart based analysis [26] was shown to predict
the convergence behavior of an iterative process very well.
Hence, given a family of codes of various rates we use the
EXIT chart to find the maximal code rate supported by an IED
algorithm at each subchannel and to formulate the interleaver
optimization problem.

A. EXIT Function of the Estimator

Let {Le,in(xi,k)} and {Le,out(xi,k)} in (13) be the se-
quence of likelihood ratios (extrinsic information) at theinput
and the output of the estimator, respectively. They are assumed
to be the realizations of i.i.d. random variables. The inputand
output mutual information for the estimator can be obtained
from

Ie,ink = I
(
Xi,k;L

e,in(Xi,k)
)

= lim
N→∞

(
1− 1

Nk

Nk∑

i=1

E

[
− log2

Le,in(xi,k)

1 + Le,in(xi,k)

])

(67)

and

Ie,outk = I
(
Xi,k;L

e,out(Xi,k)
)

= lim
N→∞

(
1− 1

Nk

Nk∑

i=1

E

[
− log2

Le,out(xi,k)

1 + Le,out(xi,k)

])
.

(68)

For a given channel and interleaver, the estimator EXIT
function at levelk is

Ie,outk = Tk(I
e,in
k ). (69)

In order to estimate (69), a sequence{Le,in(xi,k)}, the in-
formation content of which is measured according to (67), is
generated according to a given PDF with a single parameter
and fed to the estimator. The estimator output{Le,out(xi,k)}
is then collected to produce an estimate of the output mutual
information using (68). The entire curve ofIe,outk = Tk(I

e,in
k )

can be traced by varying the single parameter of the PDF so
that Ie,ink changes from 0 to 1.

The exact PDF ofLe,in(xi,k) is difficult to obtain. One
commonly adopted approach is to assume thatLe,in(xi,k) is
derived from an AWGN channelY = X + W with noise
varianceE[W 2] = σ2

w so thatLe,in(xi,k) ∼ N (2/σ2
w, 4/σ

2
w).

This approach will be used for deterministic interleavers.
However, for random interleavers, (69) can be computed more
efficiently using the pilot-utility function (41). LetLe,in(xi,k)
be drawn according to the following distribution

Le,in(xi,k) =

{
+∞, with probabilityx
1, with probability1− x

which means that a symbol is completely known with proba-
bility x. Thus, the input mutual information is

Ie,ink = I(Xi,k;L
e,in(Xi,k)) = x

and, by the definition ofµ(x) in (41), the output mutual
information is

Tk(x) = µ

(
xwk +

k−1∑

i=1

wi

)
, x ∈ [0, 1] (70)

wherew = [w1, · · · , wK ] is the weight distribution.

B. EXIT Function of the Decoder

Let C(r) be a code of rater. Let the EXIT function of its
decoder be

Id,outk = Td(I
d,in
k , C(r)).

Since the FSMC considered here is a fading channel with
good channel estimation at the receiver. It is convenient to
assume that the decoder input extrinsic informationLe,in(xi,k)
is derived from a known-state fading channelY = HX +W ,
whereH ∼ CN (0, 1) andW ∼ CN (0, σ2

w). ThenId,ink is a
function of the AWGN variance only and is equal to the i.u.d.
binary-input capacity of a known-state fading channel given
in [18]

Id,ink =
λ2F (λ1 + 1, 1;λ1 + 2;−1)

(λ1 + λ2)(λ1 + 1) ln 2
−λ1F (λ2, 1;λ2 + 1;−1)

λ2(λ1 + λ2) ln 2
(71)

whereλ1,2 = 1
2 (
√

1 + σ2
w ∓ 1) andF (a, b; c; z) is a hyper-

geometric function, or a Gauss hypergeometric function. The
output mutual informationId,outk can be measured at the soft
output of the decoder.

C. Design Using the EXIT Charts

The EXIT chart is a diagram where the estimator EXIT
function Ie,outk = Tk(I

e,in
k ) and the inverse of the decoder

EXIT function Id,in = T−1
d (Id,out, C(r)) are plotted together.

The iterative process can be tracked on the EXIT chart as
a flow of mutual information with initial valueIe,ink = 0. As
long asTk(x) > T−1

d (x, C(r)) for 0 ≤ x ≤ 1, the iteration will
proceed toId,out = 1. Hence, the maximal code rate supported
by the iterative estimation and decoding at a subchannel can
be estimated by

r∗k = sup
r
{r : Tk(x) − T−1

d (x, C(r)) > dt, 0 ≤ x ≤ 1} (72)

wheredt ≥ 0 is a design parameter that specifies the allowed
minimal tunnel width between two EXIT curves. The code
rate at levelk is then chosen to ber∗k.

Therefore, we can maximize the overall code rate by match-
ing the estimator EXIT function at each level to the code EXIT
function through interleaver design. For random interleavers,
it is the following weight distribution optimization problem:

max
w

K∑

k=1

wkr
∗
k (73)

subject to
K∑

k=1

wk = 1

and
0 ≤ wk ≤ 1, k = 1, · · · ,K
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wherer∗k is given in (72). Note that it is implicitly assumed
in (73) that the code EXIT function does not depend onwk

or equivalentlyNk. The justification is that in the case of
Nk → ∞, the dependency of the code EXIT function onNk

becomes rather weak.

VI. PERFORMANCEANALYSIS UNDER THE

FINITE-LENGTH CONSTRAINT

If the overall delayN of a successive decoding scheme is
finite, there is a tradeoff between the number of levels and the
codeword length of each level. Clearly, for an infiniteN it is
always beneficial to increaseK, while for a very smallN ,
the best strategy is to use no more than one code with some
training symbols, as observed in [37]. This section provides an
analysis of the finite-length effect on the SED based schemes
by relating the word-error probability to the codeword length
using the random-coding bound [27].

Let X and Y , respectively, be the input and output of a
memoryless channel andPr(Y |X) be the channel transition
PDF. The results in [27] state that the error probability of
maximum-likelihood decoding of a length-N block code of
rater is upper bounded by

P e = 2−NEr(r) (74)

where
Er(r) = max

0≤ρ≤1
(E0(ρ)− ρr) (75)

is the random-coding error exponent and

E0(ρ) = − log2

∫

Y

( ∑

x=±1

Pr(x) Pr(y|x) 1
1+ρ

)1+ρ

dy. (76)

Consider a successive decoding scheme using SED and a
fixed interleaverπ. Under the SED rule, thekth subchannel
is treated as a memoryless channel and the probabilities
{Pr(Y|Xi,k = a,Uk)}Nk

i=1 are assumed to be independent.
According to (75) and (76), the random-coding error exponent
at the subchannelk for k = 1, · · · ,K is

Er
k(r) = max

0≤ρ≤1
(E0

k(ρ,π)− ρr) (77)

where

E0
k(ρ,π)

= lim
N→∞

− 1

Nk

Nk∑

i=1

log2

∫

Y

( ∑

a=±1

Pr(Xi,k = a)

Pr(Y|Xi,k = a,Uk)
1

1+ρ

)1+ρ

dY

= lim
N→∞

− 1

Nk

Nk∑

i=1

log2

{

2−ρEY

[( ∑

a=±1

Pr(Xi,k = a|Y,Uk)
1

1+ρ

)1+ρ
]}

.

(78)

For random interleavers, we take expectation overΠ to obtain

Er
k(r) = max

0≤ρ≤1
(E0

k(ρ)− ρr) (79)
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Fig. 3. The pilot-utility function for the example FSMC atEs/N0 = 3 dB.

where
E0

k(ρ) = EΠ[E
0
k(ρ,π)]. (80)

Let the word-error probability of all levels be upper bounded
byP

′

e. Assume the decoder at each level produces independent
errors, the overall error probability of aK-level system is
upper bounded byP e = 1 − (1 − P

′

e)
K ≤ KP

′

e. Therefore,
for a given total lengthN , a specific interleaver, and a target
word-error probability upper boundP e, using (74) we can find
the upper bound of raterk at levelk by solving

Er
k(rk) = − 1

Nk

log2
P e

K
(81)

for rk. HereEr
k(r) can be evaluated numerically from (77) and

(78) for the deterministic interleaver and from (79) and (80)
for the random interleaver. The optimal number of levels under
the overall-delay constraints can be found by maximizing the
upper bound of the overall rater =

∑K

k=1 wkrk.

VII. N UMERICAL RESULTS

A. Example Channel

A first-order Gauss-Markov process̃ht = αh̃t−1 +√
α2 − 1zt is used as the underlying physical channel to derive

the finite-state Markov process, wherezt ∼ CN (0, 1) is the
driving white Gaussian process,α ∈ (0, 1) determines the
fading speed, and̃ht ∼ CN (0, 1) is the continuous-valued
complex channel gain. The channel state space{A1, · · · , AQ}
is obtained by independently quantizing the real and imaginary
part of h̃t ∼ CN (0, 1) using the Max-Lloyd algorithm.
The state-transition probability is found by integrating the
joint PDF of h̃t and h̃t+1, and the stationary probability by
integrating the PDF of̃ht. This paper uses the example channel
given by α = 0.95 and Q = 36. The quantization points
and boundaries are respectively{±1.339,±0.707,±0.225}
and{±6,±1.023,±0.466, 0} for both dimensions. The FSMC
considered here models rather accurately a flat-fading channel
with both random phase rotation and magnitude fluctuation.
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Fig. 4. The achievable rates for various interleavers underthe separate
estimation and decoding.

B. Component Codes

The component codes for each level are drawn from a
set of irregular LDPC codes optimized for AWGN channels
with rates from0.1 to 0.7 with a step of0.01. Their degree
polynomials are generated by LDPCopt [25]. The decoder
uses the message-passing algorithm with 20 iterations. The
codeword length is chosen to be proportional to the weight
of each level and is sufficiently long. For SED, the code
rate is chosen to be the achievable rate i.e.rk = Rk for
the deterministic interleaver andrk = Rk for the random
interleaver. For IED, the code rates are chosen according to
(72), rk = r∗k, where the tunnel widthdt = 0. These rates are
then rounded to the nearest available code rates. Note, in some
cases, the first few levels have a small codeword length. We
will lower the code rates appropriately, usually0.01 to 0.03,
to compensate for it.

C. Design Results for Separate Estimation and Decoding

This section presents design examples of successive decod-
ing with SED. Both the achievable rates and the BERs of
actual coding implementation show that the proposed random
and binary-weighted interleaver have significant performance
gain over the traditional rectangular interleavers and the
PSAM.

The pilot-utility function µ(x) is estimated for the above
channel atEs/N0 = 3 dB as plotted in Fig. 3. Base onµ(x),
we obtain the weight distributions of random interleavers for
K = 2, · · · , 32 by solving equations (52) to (54). We also
find that the optimal repetition ofvK for the binary-weighted
interleaver (66) is9, 5, 3, and2, respectively, forK = 2, 3, 4, 5
and is1 for K ≥ 6. Their achievable rates are plotted in Fig.
4. For comparison, Fig. 4 also shows the i.u.d. capacity, the
achievable rates of aK-level rectangular interleaver and the
PSAM. The PSAM is configured to have1 pilot symbol for
everyK − 1 data symbols and in this case thex-axis of Fig.
4 is the ratio of the total number of symbols to the number of
pilot symbols.
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Fig. 5. Error performance comparison of various coding schemes.

TABLE I

CODE RATES AND LENGTHS FOR RANDOM INTERLEAVERS IN THESED

SCHEME.

Level Overall rate Code rate and length at individual levels

0 0.65
K=2 0.5590

35K 215K

0 0.48 0.63
K=3 0.5529

21K 66K 213K

0 0.37 0.56 0.62
K=4 0.5556

20K 50K 130K 300K

0 0.28 0.5 0.59 0.63K=5 0.5559
32K 63K 130K 270K 505K

0 0.16 0.31 0.40 0.49
21K 29K 40.5K 58.5K 85.5K

K=10 0.5573
0.54 0.56 0.59 0.61 0.62

123K 181.5K 244.5K 337.5K 379.5K

As shown in Fig. 4, the fundamental problem of the PSAM
is that the pilot symbols useful for state estimation reducethe
overall rate. The successive decoding resolves this problem.
The achievable rates of all types of the interleavers considered
here are shown to approachC i.u.d. exponentially fast asK
increases. At smallK the optimized random interleaver and
the binary-weighted interleaver have significant performance
gain over the rectangular one. For comparison, atK = 3, the
rectangular, the random, and the binary-weighted interleaver
achieve, respectively,79.8%, 88.9%, and93.5% of the i.u.d.
capacity. In order to achieve95% of the i.u.d. capacity, they
would require 11, 6, and 4 levels, respectively. This illustrates
the effectiveness of the proposed design for finiteK. It shall be
noted that although the binary-weighted interleaver is shown
to outperform the optimized random interleaver in Fig. 4, this
result may vary for a different channel because the random
interleaver has more degree of freedom for optimization.

For a fair comparison in the code simulation, the target over-
all rate of all schemes is set to0.56. The weight-distributions
for the random interleavers are optimized forEs/N0 = 3
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TABLE II

CODE RATES AND LENGTHS FOR BINARY-WEIGHTED INTERLEAVERS IN

THE SEDSCHEME.

Level Overall rate Code rate and length at individual levels

0 0.4 0.52 0.59 0.61
K=5 0.5590

20K 40K 80K 160K 320K

TABLE III

CODE RATES AND LENGTHS FOR DIFFERENT INTERLEAVERS IN THEIED

SCHEMES.

Interleavers Overall rate Code rate and length at individual levels

0 0.22 0.41 0.51 0.57random 0.5108
10K 20K 55K 135K 280K

0 0.37 0.49 0.54 0.57
bin-weight 0.5200

20K 40K 80K 160K 320K

0 0.54 0.55 0.56 0.57
rectangular 0.4440

200K 200K 200K 200K 200K

0 0.52
PSAM 0.4680

20K 180K

dB. The code rates and lengths are shown in Table I and II
for the random interleaver and the binary-weighted interleaver,
respectively, in the ascending order ofk = 1, · · · ,K from left
to right in each row. Note that both the code rate and length
increase with the levelk. The deep rectangular interleaver
serves as a benchmark and is designed according to [18] with
sufficiently many levels and each level uses the same code of
rate 0.56 and length 200K. An optimized PSAM, according
to Fig. 4, with1 pilot for every9 data symbols and a code of
rate0.62 is also considered.

Their BER performance is shown in Fig. 5. Both the 5-
level binary-weighted interleaver and the 10-level randomin-
terleaver perform very close (within0.3 dB) to the asymptotic
deep rectangular interleaver and are around1.3 dB to the i.u.d.
capacity. They have a gain of round2 dB over PSAM. Note,
a 2-level random interleaver performs worse than the PSAM.
These results match the achievable rate results in Fig. 4 very
well, confirming the good performance of both the random
interleaver and the binary-weighted interleaver.

D. Design Results for Iterative Estimation and Decoding

In the following, we design the IED schemes for various
interleavers to maximize the communication rate at a target
Es/N0 of 3 dB. To obtain the weight distribution of the
random interleavers, we first estimate the EXIT functions
Id,out = Td(I

d,in, C(r)) of the given set of irregular LDPC
codes with ratesr = 0.1, 0.11, · · · , 0.7 and length 100K. The
estimator EXIT functionsTk for k = 1, · · · ,K are given
by (70). We then numerically solve (73), where the tunnel
width in (72) is set todt = 0, using the Matlabfmincon
function for 200 random initial values. For other schemes, the
estimator EXIT charts are computed based on the Gaussian
approximated log-likelihood ratio. The resulting overallcode
rates are plotted in Fig. 6. It shows that the successive decoding

5 10 15 20
0.25

0.3

0.35

0.4

0.45

0.5

0.55

Number of levels K (Ratio of total bits to pilot for PSAM)

O
ve

ra
ll 

co
de

 r
at

e

 

 

i.u.d. capacity
optimized random interleaver
rectangular interleaver
PSAM

Fig. 6. The overall LDPC code rates supported by the iterative estimation
and decoding receiver atEs/N0 = 3 dB.

with a random interleaver greatly outperforms the rectangular
interleaver and PSAM. Compared with SED in Fig. 4, the
rate loss of using a smallK is much smaller here. In fact, a
random interleaver with only6 levels has a rate very close to
its asymptotic case.

The codes for various 5-level successive decoding schemes
and the optimized PSAM are specified in Table III. The set
of EXIT charts used for code rate selection and optimization
is shown in Fig. 7 to 10. For the binary-weighted interleaver,
the EXIT functions of the estimator and the decoder match
very well, predicting its best performance among all schemes.
For the random interleaver, the EXIT chart matches better as
the level gets higher, especially at the highest two levels.This
explains the good performance for random interleavers. On the
other hand, the rectangular interleaver has rather flat estimator
EXIT functions and thus little IED gain. Fig. 11 to 14 show
the coding results of the above designs in reference to the
SNR at which the i.u.d. capacity is equal to the overall rate.
All schemes have BER of10−5 at around 3.3 dB. Both the
random and the binary-weighted interleavers have around 0.6
dB gain from IED, and are, respectively, around 1.1 dB and 1
dB to the i.u.d. capacity. The PSAM also has around 0.6 dB
gain for iterative receivers, however, it is around 2 dB to the
i.u.d. capacity due to the rate loss of 10% pilot symbols. The
performance of a 5-level rectangular interleaver is 2.5 dB to
the i.u.d. capacity.

E. Results for Finite-Length Analysis

Here we show the performance bound of successive de-
coding with a delay constraint using the random-coding error
exponent analysis in Section VI. Both the rectangular and
the random interleaver are considered. We compute the error
exponents for the rectangular and the random interleaver
according to (77) and (79), respectively, using the Monte-Carlo
simulation. The overall rater =

∑K

k=1 wkrk, where rk is
computed from (81) withP e = 10−3, is shown in Fig. 15 and
16 for the rectangular and the random interleaver, respectively.
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Fig. 7. EXIT charts of the optimized random interleaver.
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Fig. 8. EXIT charts of the binary-weighted interleaver.

In the extreme case ofN = 100, it is clearly the best to use
only one code and some pilot symbols. Otherwise, it is usually
beneficial to use more than two levels and there is an optimal
number of levels for short to moderate block lengths for both
types of interleavers. The random interleaver is shown to have
a higher overall rate than the rectangular interleaver especially
for smallN .

VIII. C ONCLUDING REMARKS

In this paper, we have proposed and analyzed new designs
of successive decoding scheme with finite levels. The main
techniques are a flexible interleaver structure and iterative
estimation and decoding within each level. Both the random
and the binary-weighted interleaver are constructed to have
near i.u.d. capacity performance with as few as five levels.
Using irregular LDPC codes, an optimized10-level random
interleaver using SED performs very close to the deep rectan-
gular interleaver, and a5-level random interleaver using IED
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Fig. 9. EXIT charts of the rectangular interleaver.
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Fig. 10. EXIT charts of PSAM.

is less than1.1 dB away from the i.u.d. capacity. These results
show that successive decoding is not only asymptotically
optimal but also attractive for practical systems. The proposed
random interleaver also provides some interesting insightinto
the channel mutual information. We have also analyzed the
performance of successive decoding under an overall-delay
constraint based on the random-coding error exponent. We
showed that using multiple levels is useful for a moderate
delay constraint and an optimal number of levels can be found.

The interleavedK LDPC codes used here can be viewed
as a compound LDPC code and the successive decoding as
a special message-passing schedule. Thus, we have in effect
obtained a procedure to construct an irregular LDPC code that
can approach the i.u.d. capacity of a realistic channel with
memory from a set of AWGN optimized degree profiles. This
may suggest a new approach to designing good degree profiles
for LDPC codes over channels with memory using the idea of
successive decoding.
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Fig. 11. BER of weight-optimized random interleaver.
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Fig. 12. BER of binary-weighted interleaver.

One possible extension of the current scheme, especially for
systems with a stringent delay constraint, is to allow theK
decoders to exchange soft information similar to [15] and [16].
Although it is suggested in [15] and [16] that the component
codes may be designed based on the original system with
perfect decision feedback, more performance gain can be
expected if we can find new code-optimization techniques
that take into account the iteration between different levels.
In practice, the joint construction of the short code and the
interleaver under a small delay constraint may further improve
the performance.

APPENDIX I
PROOF OFLEMMA 1

Let Λ(xt) andΛ′(xt), respectively, be the likelihood ratio
of Xt computed using forward recursion windows ofm and
m′ and a backward recursion window ofn. By the definition
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Fig. 13. BER of rectangular interleaver.
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Fig. 14. BER of PSAM.

of the mutual information

I
(
Xt; 〈Y〉t+n

t−m′ |〈U〉t+n
t−m′

)
− I
(
Xt; 〈Y〉t+n

t−m|〈U〉t+n
t−m

)

=
1

ln 2
E

[
ln

(
Λ′(xt)

1 + Λ′(xt)

1 + Λ(xt)

Λ(xt)

)]
. (82)

Let αt(q) andα′
t(q) be the forward state probabilities com-

puted from windows ofm andm′, respectively. Letβt(q) be
the backward state probability computed from a window ofn.
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Fig. 15. Performance of rectangular interleavers with finite-length constraint.

By (11), we have

Λ′(xt)

1 + Λ′(xt)

1 + Λ(xt)

Λ(xt)
=

Q∑
q=1

Q∑
q′=1

α′
t(q)γt(q

′, q, xt)βt+1(q
′)

Q∑
q=1

Q∑
q′=1

αt(q)γt(q′, q, xt)βt+1(q′)

×

Q∑
q=1

Q∑
q′=1

αt(q)γt(q
′, q)βt+1(q

′)

Q∑
q=1

Q∑
q′=1

α′
t(q)γt(q

′, q)βt+1(q′)

. (83)

Define a diagonal matrix

Dt = diag{Dt(1), · · · , Dt(Q)}

where

Dt(q) =





∑

a∈{−1,+1}

Pr(yt|ht = Aq, Xt =a) Pr(Xt = a),

if xt is unknown

Pr(yt|ht = Aq, xt) Pr(xt), if xt is known.

Define αt = [αt(1), · · · , αt(Q)]T and α
′
t =

[α′
t(1), · · · , α′

t(Q)]T . We can write the recursion formula (8)
and (9) in matrix form as

αt = PDt−1PDt−2 · · ·PDt−mαt−m

α
′
t = PDt−1PDt−2 · · ·PDt−mα

′
t−m.

In the above, αt−m = p and α
′
t−m =

PDt−m−1 · · ·PDt−m′p, where P is the state-transition
matrix andp = [P1, · · · , PQ]

T is the vector of stationary
state probability. Since it is assumed thatP > 0, Dt > 0,
andπ > 0, the forward state probability vectors are strictly
positiveαt > 0 andα

′
t > 0 for any t. Therefore, applying

the following inequality
∑

i u(i)∑
i v(i)

≤ max
i

u(i)

v(i)
whereu(i) > 0, v(i) > 0 (84)
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Fig. 16. Performance of random interleavers with finite-length constraint.

to (83) yields

Λ′(xt)

1 + Λ′(xt)

1 + Λ(xt)

Λ(xt)
≤ max

1≤q≤Q

α′
t(q)

αt(q)
max

1≤q≤Q

αt(q)

α′
t(q)

. (85)

Take logarithm on both sides of (85) and apply the definition
(26) of the Hilbert metric, we have

ln

(
Λ′(xt)

1 + Λ′(xt)

1 + Λ(xt)

Λ(xt)

)
≤ d
(
αααt,ααα

′
t

)
. (86)

From the property of nonnegative matrices products [31] that
the multiplication of a positive matrixM > 0 and positive
vectorsu > 0 andv > 0 is a strict contraction with respect
to the Hilbert metric,d(Mu,Mv) ≤ τ(M)d(u,v), the right
hand side of (86) is upper bounded as

d
(
αααt,ααα

′
t

)
≤ τ (PDt−1PDt−2 · · ·PDt−m+1)

× d
(
PDt−mαt−m, PDt−mα

′

t−m

)

≤ τ (PDt−1) τ (PDt−2) · · · τ (PDt−m+1)

× d
(
PDt−mαt−m, PDt−mα

′

t−m

)
(87)

= τ(P )m−1d
(
PDt−mαt−m, PDt−mα

′

t−m

)

(88)

where (87) is due to the property of the Birkhoff contraction
coefficient thatτ(M1M2) ≤ τ(M1)τ(M2) for M1 > 0 and
M2 > 0, and (88) followsτ(M1D) = τ(M1) for a diagonal
matrix D with positive diagonal entries.

In the following, we derive the upper bound for the
term d(PDt−mαt−m, PDt−mα

′

t−m
) in (88). Let a =

[a(1), · · · , a(Q)]T and a′ = [a′(1), · · · , a′(Q)]T be some
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positive vectors. By the definition (26), we have

d
( Q∑

i=1

a(i)pi, a′(j)pj

)

= ln


max

q

Q∑
i=1

a(i)P (q, i)

a′(j)P (q, j)


min

k

Q∑
i=1

a(i)P (k, i)

a′(j)P (k, j)




−1


≤ ln




Q∑

i=1

max
q

a(i)P (q, i)

a′(j)P (q, j)

(
Q∑

i=1

min
k

a(i)P (k, i)

a′(j)P (k, j)

)−1



(89)

≤ ln

(
max

i

(
max

q

P (q, i)

P (q, j)

(
min
k

P (k, i)

P (k, j)

)−1
))

(90)

= max
i

d(pi, pj) (91)

where (89) is derived by moving themax andmin operator
inside the summation, (90) follows the inequality (84) and (91)
follows the definition (26). Now, apply (91) twice, we have

d
( Q∑

i=1

a(i)pi,

Q∑

j=1

a′(j)pj

)
≤ max

j
d
( Q∑

i=1

a(i)pi, pj

)

≤ max
i,j

d(pi, pj).

Hence

d(PDt−mαt−m, PDt−mα
′

t−m
) ≤ max

i,j
d (pi, pj) . (92)

Combining (82), (86), (88), and (92) completes the proof.

APPENDIX II
PROOF OF THE MONOTONICITY OF PILOT-UTILITY

FUNCTION

For convenience, we re-write the definition of pilot-utility
function (41) here

µ(x) = lim
n→∞

IΠ(Xt; 〈Y〉t+n
t−n|〈Z〉t−1

t−n, 〈Z〉t+n
t+1 ) (93)

where

Zt =

{
Xt, with probabilityx
φ, with probability1− x

is the random training symbol. Let0 ≤ x ≤ y ≤ 1. We define
an additional sequence of training symbolsZ, where

Zt =






φ, if Zt = Xt

Xt, with probability y − x if Zt = φ
φ, with probability 1− (y − x) if Zt = φ

and Z′ = Z
⋃
Z. It can be shown thatZ ′

t is i.i.d. with
probability distributionPr(Z ′

t = Xt) = y andPr(Z ′
t = φ) =

1− y. Therefore

µ(y) = lim
n→∞

IΠ(Xt; 〈Y〉t+n
t−n|〈Z′〉t−1

t−n, 〈Z′〉t+n
t+1 ). (94)

From (93) and (94) and the chain rule and the non-negativity
of the mutual information, we have

µ(y)− µ(x)

= lim
n→∞

IΠ(Xt; 〈Z〉t−1
t−n, 〈Z〉t+n

t+1 |〈Y〉t+n
t−n, 〈Z〉t−1

t−n, 〈Z〉t+n
t+1 )

≥ 0. (95)
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