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Abstract

We investigate MIMO eigenmode transmission using statistthannel state information at the transmitter. We
consider a general jointly-correlated MIMO channel modéiich does not require separable spatial correlations at
the transmitter and receiver. For this model, we first desivdbosed-form tight upper bound for the ergodic capacity,
which reveals a simple and interesting relationship in gohthe matrix permanent of the eigenmode channel
coupling matrix and embraces many existing results in ttegdiure as special cases. Based on this closed-form
and tractable upper bound expression, we then employ carptxization techniques to develop low-complexity
power allocation solutions involving only the channel istits. Necessary and sufficient optimality conditions
are derived, from which we develop an iterative water-fjlimgorithm with guaranteed convergence. Simulations
demonstrate the tightness of the capacity upper bound amcdhehar-optimal performance of the proposed low-

complexity transmitter optimization approach.

Index Terms

Statistical eigenmode transmission, ergodic capacitpaciédy bound, MIMO channel, permanents, power

allocation, convex optimization.

* National Mobile Communications Research Laboratory, Beast University, Nanjing, China
 Department of Communication Systems, Technische UniérBiarmstadt, Germany

t Electronic and Computer Engineering Department, Hong Kdniyersity of Science and Technology, Hong Kong


http://arxiv.org/abs/0903.1952v1

I. INTRODUCTION

Multiple-input multiple-output (MIMO) wireless systemsquipped with multiple antennas at both the
transmitter and the receiver, have attracted tremenddesest in recent years as a means of enabling
substantially increased link capacity and reliability gared with conventional systems [1-6]. The per-
formance of practical MIMO systems is characterized byousisystem parameters, such as the average
transmit power and the transmit-receive antenna configustas well as various channel phenomena
such as spatial correlation, line-of-sight componentstrital noise, interference, and Doppler effects due
to mobility. Each of these factors has an impact on the MIM@rttel capacity.

In realistic environments, where the channel charactesishay vary significantly over time, substantial
MIMO capacity benefits can be obtained by tracking the stafethe fading channels, and using this
channel state information (CSI) to optimally adapt the MIMi@nsceiver parameters. However, such
closed-loop MIMO strategies require both the transmittet geceiver to acquire some form of CSI. Whilst
it is reasonable to assume that the instantaneous CSI cabtdmed accurately at the receiver through
channel estimation, whether or not this information can b&ioed at the transmitter depends highly
on the application scenario. For example, for fixed or low ilitybapplications, the channel conditions
vary relatively slowly, in which case instantaneous CSI banfed to the transmitter via well-designed
feedback channels in frequency division duplex (FDD) systeor using the reciprocity of uplink and
downlink in time division duplex (TDD) systems. However, th& mobility and hence the fading rate
increases, obtaining accurate instantaneous CSI at tentitier becomes much more difficult. For such a
scenario, it is reasonable to explsiatisticalCSI at the transmitter. The motivation for this approacimste
from the fact that the channel statistics vary over muchelatgne scales than the instantaneous channel
gains, and the uplink and downlink statistics are usuakyprecal in both FDD and TDD systems [7, 8].
Therefore, the statistical information can be easily otgdiby exploiting reciprocity, or by employing
feedback channels with significantly lower bandwidth coregawith instantaneous CSI feedback systems.
In addition, transceiver designs based on statisticatin&bion are typically more robust to imperfections,
such as delays, in the feedback channel.

Capacity analysis and transceiver designs using thetstati€SI at the transmitter are highly dependant
on the channel modeling. The most common approach has besaofui the popular Kronecker model
[9-19], where the correlation between the fading of two idaitantenna pairs is the product of the

corresponding transmit and receive correlations [9, 20 Pprimary advantage of this separable model



is that it is analytically friendly, however various measment campaigns have demonstrated that it can
have deficiencies in practice [21,22]. To overcome theseidafiies, more generalized channel models
have been proposed, including the virtual channel reptagen [23, 24], the unitary-independent-unitary
(UIU) model [25, 26], and Weichselberger's model [21]. Imntrast to the Kronecker model, these are
jointly-correlated channel models which not only account for the correlatiobah link ends, but also
characterize their mutual dependence.

Under various assumptions on the system configuration aadneh model, several important works
have been reported on the transmitter optimization prohlising the statistical CSI at the transmitter
in recent years. In particular, for multi-input and singletput (MISO) wireless channels with correlated
Rayleigh or uncorrelated Rician entries, it was shown in] [Riat the capacity-achieving strategy is
to send independent data streams in the directions defingdebgtominant eigenvectors of the transmit
correlation matrix. This result was extended to Rayleighirfg MIMO channels with Kronecker correlation
structure in [15-18], to uncorrelated Rician MIMO channgld28, 29], to the UIU model in [25, 26],
and to the virtual channel representation in [24]. Theserptontributions have also considered the
task of optimally allocating power across the transmit edjeections (i.e. defining the eigenvalues of the
optimal transmit covariance matrix), for maximizing cajpadiowever, in most cases, the power allocation
problem has been tackled by optimizing the exact ergodiadapexpression, and this approach has led
to computationally-involved numerical optimization pealtires. For example, see [30, 31] for Kronecker
channels, and [26] for jointly-correlated UIU channels.these contributions, iterative power allocation
approaches were presented which involved numerical aveyagyer channel samples for each iteration
of the algorithm.

In this paper, we investigate the statistical eigenmodastrassion (SET) over a general jointly-
correlated MIMO channel, using the statistical CSI at tlsmitter. Our idea is to first deriveciosed-
form tight upper bound for the ergodic capacity of the generaitjpicorrelated MIMO channel model.
This upper bound expression reveals a simple and integestlationship in terms of matrix permanents,
and embraces many existing results in the literature asamases, such as those presented for Kronecker
channels in [10,13, 14,17, 18]. Based on this closed-forthteactable upper bound expression, we then
employ convex optimization techniques to develop low-ctaxipy power allocation solutions in terms
of only the channel statistics. We derive necessary andcgarfti optimality conditions, and propose a

simple computation algorithm, inspired by the iterativetavdilling techniques presented previously for



transmitter optimization of multiuser systems [32, 33],iebhis shown to converge within only a few
iterations. Numerical simulations demonstrate the tighsnof the capacity upper bound and the near-
optimal performance of the proposed low-complexity traittan optimization approach, i.e., suffering

negligible loss with respect to the ergodic capacity of thiat]y-correlated MIMO channel.

A. Notation

The following notation is adopted throughout the paper: éfpflower) bold-face letters are used to
denote matrices (column vectors); in some cases, wherenbticlear, we will employ subscripts to
emphasize dimensionality. Th€ x N identity matrix is denoted by, the all-zero matrix is denoted by
0, and the all-one matrix is denoted ky The superscript$:)?, ()7, and(-)* stand for the conjugate-
transpose, transpose, and conjugate operations, rasgecte employE{-} to denote expectation with
respect to all random variables within the brackets, and Aise B to denote the Hadamard product
of the two matricesA and B. We use[A];, or the lower-case representatiop; to denote the X,l)-th
entry of the matrixA, anda, denotes thé:-th entry of the column vectas. The operatorsr(-), det(-),
and Per(-) represent the matrix trace, determinant, and permanespectvely, andliag(x) denotes a
diagonal matrix withx along its main diagonal.

We will useS¥ to denote the set of all sizepermutations of the numbefs,2,..., N}, wherek < N.

By using the notationy, € S¥, we mean thaty, = (a1, ay,...,ax), a; € {1,2,...,N} for 1 <i <k,
ando; # o for 1 < ¢,5 < k andi # j. We will use S](f) to denote the set of all ordered lendth-
subsets of the numbefd,2,..., N}. By the notationq, € S¥. we mean thaty, = (o1, e, ..., ag),

a; €{1,2,... N} for1 <i <k, anda; < ay < ... < ay. The cardinalities of the setS}; andS](\’,“) are

(N]X’k), and k,(]]vvik)! respectively.
With ¢; and Bk defined as above, we will usA%‘: to denote the sub-matrix of af/ x N matrix
A obtained by selecting the rows and columns indexedipyand 3, respectively. A% will denote the
sub-matrix of A obtained by selecting the rows indexed &y whenM > N, andA; = the sub-matrix
of A obtained by selecting the columns indexed/y when M < N. Also, we will used, and ﬁk to
denote the sequences complementarytaand 3 in {1,2,...,M} and{1,2,..., N}, respectively. As
such,Agf: will represent the sub-matrix oA obtained by deleting the rows and columns indexedpy

and /3., respectively. Finally, for notational convenience, wél wse A, ; to represent the sub-matrix of

A obtained by deleting its-th row and;j-th column.



II. CHANNEL MODEL AND STATISTICAL EIGENMODE TRANSMISSION
A. Channel Model

We consider a single-user MIMO link withv, transmit and/V, receive antennas, operating over a
frequency-flat fading channel. ThE€,.-dimensional complex baseband received signal vector &ngle
symbol interval can be written as

y = Hx + n, (1)

wherex is the N; x 1 transmitted signal vectoH is the N,. x N; channel matrix with(i, j)-th element
representing the complex fading coefficient betweenjtiie transmit and-th receive antenna, and is
the N, x 1 zero-mean additive complex Gaussian noise vector Ei{ImnH} = 021Iy,. It is assumed that

x and H satisfy the following power constraints

E {tr (XXH)} = P, (2)

E {tr (HH")} = N,N,. (3)

We define the transmit signal to noise ratio (SNR)pas- P/o2. If the total transmitted poweP is
equally distributed across all transmit antennas, solihgtx”} = (P/N,) Iy,, thenp also corresponds
to the average SNR per receive antenna.

For the jointly-correlated MIMO channel which we consideraughout this paper, the channel matrix

H is given by

H = U HUY

= U, (D+M0oH;,) U, (4)

whereH = D + M ® H;;y, U, and U, are N, x N, and N, x N, deterministic unitary matriced) is
an N, x N, deterministic matrix with at most one nonzero element irhe@wv and each columryI is
an N, x N, deterministic matrix with nonnegative elements, &g, is an N, x N, random matrix with
elements having zero mean and independent identicalldifitns (i.i.d.). Note that we do not constrain
the elements oH,;; to be Gaussian. Without any loss of generality, we can asdhatethe nonzero

elements oD are real, with indiceg:, ) for 1 <i < min(V;, N,). Let us define

Q=E{HoH}. (5)



It is easy to show that

Q=DeoD+MoM, (6)

and the power constraint (3) can be rewritten as

Ny Ny

> >[5, = NN, @)

i=1 j=1

From (4), the transmit and receive correlation matrices lmamexpressed as
R, = E{H"H} = U,A,U", (8)
R, = E{HH"} = U,A, UY, (9)

where A, and A, are diagonal matrices with\,],; = Z?f;l 2], and [A,];; = Zj.vztl [€2],;. This implies
that in the channel model defined in (3); andU,. are the eigenvector matrices of the transmit and receive
correlation matrices, respectively. These matrices aegaterized by the transmit and receive antenna
configurations. For example, when uniform linear arraysAJhare employed at both the transmitter and
receiver, it is shown in [23] that the eigenvector matricas be set to discrete Fourier transform (DFT)
matrices.

The statistics ol = U”HU, characterize realistic propagation environments. Frojmat@ (6), we

have

D = E{H}, (10)
[M];; = /var{[H];}

=/[9];; - D} (11)

ij?

where var{-} denotes variance. The matric& and M reflect the line-of-sight (LOS) and scattering
components of the channel, respectively. The)-th element of?, i.e. [©2];;, corresponds to the average
power of [ﬂ]ij and captures the average coupling betweenidtiereceive eigenmode andth transmit
eigenmode. For this reason, we referf2cas theeigenmode channel coupling matrix can be seen that
the eigenvalues of the transmit and receive correlatiorricest are summations of the elements of the
matrix €2 in each column and each row, respectively. These eigervalemon-separablewhich reflects

the joint correlation feature of the channel.



The channel model described by (4) provides a general f@amhich embraces many existing channel
models [9,20-26]. For example, D = 0, M is a rank-one matrix, and,;,;, has Rayleigh-faded
elements, then (4) reduces to the popular separable-atorelKronecker model [9, 20]. By allowing
M to have arbitrary rank and fixiny, and U, to be DFT matrices, one can achieve the virtual channel
representation for ULAs [23]. If we further alloW; andU., to be arbitrary unitary matrices, one can obtain
Weichselberger’'s channel model [21]. Moreover, by setling- 0 we arrive at the unitary-independent-
unitary (UIU) model introduced in [25, 26]. Our model is alsslated to the model in [24], where one
LOS component was included in the virtual channel repregemt for the ULA MIMO channels. Here,
we allow multiple LOS components in eigenmode to cover memegal transmission links, such as those

in distributed radio networks [34].

B. Statistical Eigenmode Transmission

Throughout the paper, we assume that the receiver knowshtémenel perfectly, whilst the transmitter
only has access to the statistical parameters, inclulingU,, D and M (and thusf2). Under these
assumptions, the ergodic capacity of the MIMO channel isexell by selecting the transmitted signal
vectorx to have zero mean and to follow a proper Gaussian distribyii@ Let the covariance matrix
of x beE {xx"} = (P/N,) Q. Then the power constraint ancan be rewritten asr (Q) = V;, and the
ergodic capacity is given by

= H
C= onr,{}(%{):m E {log det (INT +~yHQH )} 7 (12)

wherey = {=. Substituting (4) into (12) yields

C= Qto,rtlrl(aQX):Nt E {log det <INT + yﬁQﬁH> } , (13)

whereQ = UZQU,. LetQ = UAU¥, whereU is the eigenvector matrix, antl = diag(\;, Xz, ..., \y,)

is a diagonal matrix of the corresponding eigenvalues. WHetas independent and symmetrically
distributed elements, it has been shown in [26] and [24] that optimal eigenvector matriXJ for
achieving the capacity i€ = U,, and thusQ is diagonal. In [24], it has been pointed out that this
solution also applies when one elementHfcontains a LOS component. We note however, that the
channel model given by (4) allows for multiple possible LO&@nponents. For this more general case,

one can arrive at the following result:



Theorem 1:The eigenvector matrix of the capacity-achieving ma@ifor the jointly-correlated channel
(4) is given byU = U,. The ergodic capacity can therefore be expressed as

C = max E {log det <IN7_ + 71:1 diag()\)f{H> } , (14)
A>0, 5N N=N,

where is an N; x 1 vector containing the eigenvalues, i = 1,2, ..., V,.

The proof follows similar approaches to those used in [2422629] and is therefore omitted. Theorem 1
demonstrates that the optimal signaling directions ar@eeéfiby the eigenvectors of the transmit correlation
matrix of the MIMO channel. This agrees with and extendsrpesults in the literature to the more general
channel model given by (4). For the transmitter optimizaggwoblem, the major remaining challenge is
to determine the eigenvalues of the capacity-achievingtigpvariance matriXQ. This is equivalent to
the task of optimally allocating the available transmit povibudget over the optimized transmit eigen-
directions, determined in Theorem 1.

In general, it is very difficult to derive an exact closednpsolution for the power allocation problem.
A major source of this difficulty is due to the complexity inadwating tractable closed-form solutions for
the expectation in (14). This is also the case for many otb&s general MIMO channel scenarios, such
as the popular Kronecker correlation model [15, 16]. As sticl standard approach has been to develop
numerical optimization techniques (see e.g. [30] and [31])

In this paper, considering the general jointly-correlaMtMO channel model, we develop a new
approach which leads to the design of simple, robust andipahpower allocation solutions. In particular,
our approach is based on deriving a tight closed-form uppent on the expectation in (14) which can
then serve as an approximation to the capacity. Based oneMpigession, we are then able to derive
new optimized power allocation solutions which are simpid ast to compute. These power allocation
solutions will be shown to serve as very accurate approxamato the optimal capacity-achieving solution,
with low computational complexity requirements.

We note that the power-allocation problem for jointly-edated channel scenarios has also been
considered in [26], where necessary and sufficient conditas well as an iterative numerical algorithm
were proposed. One drawback of that algorithm is that foh é@cation it requires numerically averaging
certain random matrix structures involving the inversenstantaneous realizations of the MIMO channel.
Moreover, since the computation algorithm requires actessstantaneous MIMO CSI, then under the

statistical-feedback assumption, such power-allocat@mputations must be typically performed at the



receiver. In contrast, in this paper we develop more praltyicappealing power-allocation algorithms
which involve only the channel statistics. As such, theysinepler and more efficient to compute, since
they do not require random matrix averaging during the peallecation computation. Moreover, our new
power-allocation algorithm has the additional advantalgpesmitting computation at either the receiver
or the transmitter. This extra flexibility is particularlgnportant for various practical applications, such as
downlink transmission where it is often desirable or neags#o restrict computations to the base station.
We start by rewriting the ergodic capacity (14) as
C= max C(A), (15)
A>0,5 N =N,
where

CA) =E {1og det (INT T AH diag()\)fIH) } (16)

is the expected mutual information between the transmdigaalx and the received signg under SET.

Due to the concavity of thég(-) function, the mutual informatiod’() is upper bounded by

() < Cu(A) = logE {det (INT | diag(A)fIH> } . (17)
Thus, the ergodic capacity is upper bounded by

c<C,= max Cu(A). (18)

N A>0,5° N A=

For the case of Kronecker MIMO channels, it has been showa0n13, 14, 17, 18] that such bounds are

very tight and admit closed-form expressions by using theaegion of the determinant.

[Il. CLOSED-FORM CAPACITY UPPERBOUND USING PERMANENTS

In this section, we derive a closed-form expression for thgacity upper bound (18) for the jointly-
correlated MIMO channel model in (4). We also develop altyonis for its efficient computation. The
upper bound derivation is based heavily on exploiting liredgebraic concepts and propertiesnodtrix

permanentswhich we introduce and develop in the sequel.

A. Matrix Permanents: Definitions and Properties

The permanent of a matrix is defined in a similar fashion todeterminant. The primary difference

is that when taking the expansion over minors, all signs asatipe [35-38]. The permanents of square
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matrices have been thoroughly investigated in linear al@nd various applied fields. The permanents
of M x N matrices withA/ < N have also been defined and investigated [35]. In this papdacilitate
our capacity upper bound derivation we find it necessary terekthe definition of permanents to allow
for arbitrary M and N, and provide their useful properties.

Definition 1: For anM x N matrix A, the permanent is defined as

M

Z H CLZ',O[,LW M S N

O?]VIESI]\»,I i=1

N
Z H aﬁhi, M > N,

BnesSy =1

Per(A) = (19)

wherea; ; denotes théi, j)-th element ofA.
From this definition, one can easily establish a number obntgmt properties of the matrix permanent,
as given in the following lemma. These properties will befulsen subsequent derivations.

Lemma 1:Let A be anM x N matrix,a an M x 1 vector,b an N x 1 vector, andu a scale constant.

Then

Per(A) = Per(AT) (20)

M
Per(a) = Z a; (21)
Per(diag(a)) = det(diag(a)) (22)
Per(pA) = N per(A) (23)
Per(diag(a)A) = det(diag(a))Per(A), M < N (24)
Per(Adiag(b)) = det(diag(b))Per(A), M > N. (25)

For an M x N matrix with M < N, there exists an analogy between the matrix permanent and th
Laplace expansion of the determinant [35, 39]. The foll@M@mma gives the straightforward extension
of this result for arbitraryy M/ and N.

Lemma 2:Let A be anM x N matrix. Then
> Per <A§‘:)Per (A?f“), M <N
Lok Tk
Per(A) = { TFEW A B
S Per (Acf‘“)Per (A‘Tf), M > N,

Ok GSJ(VI;)

(26)

The result for the cas@d/ > N is obtained by employing (20), and following the same stepaised in the derivation for the case
M < N, given in [35].
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whered;, € S and 8, € ¥ with 1 < k < min(M, N). Note that for the casé = min(M, N),

Per (A ) = 1 and Per (AA ) = 1.
Uk Bk

For the special cask = 1, (26) can be re-expressed as follows
Per(A) = 77} (27)

wherel < ¢ < min(M, N). This is analogous to the cofactor expansion of the detemtif39]. With

k = min(M, N), (26) simplifies to

> Per(A;,), M <N
cArMGSZ(\?{)
S Per (A7), M >N

onesyy

Per(A) = (28)

The following two key lemmas are particularly important fieriving the closed-form capacity upper
bound in the sequel.

Lemma 3:Let A be anM x N matrix. Then

Per([Iy; A]) = Per([Iy A7)

min(N,M)

= Z Z Per(A%)

Gy, ESEVI;)
min(N,M)

= > > Pe(Ay) (29)

F=0 5 es®

wherePer(A%) = 1 andPer(A; ) = 1 whenk = 0.
A proof is provided in Appendix I. The values ®fr([I,; A]) and Per([Iy AT]) in Lemma 3 will be

called extended permanent§ A, which we denote as
Per(A) = Per([I; A]) = Per([Iy A™]) . (30)

Lemma 4:For an N x N random matrixX with independent elements, suppose that there exists at

most one non-zero element in each rowXof= E {X}. Then we have

E {det (X) det (X))} = Per (E), (31)
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whereE = E{X ® X*}.

A proof is provided in Appendix Il. For the special case whalleelements ofX are independent and
identically distributed with zero mean and unit variances have thaE = E{X ® X*} = 1y.y and
E {det (X) det (X*)} = Per (1yxn) = N!. This agrees with prior results in [10, 17, 18, 40].

The following conjecture is useful when dealing with theiog@ power allocation problem in Section
V.

Conjecture 1:Let A be anM x N matrix of non-negative elements. Th¢f\) = log Per(Adiag(\))
is concave oDV = {A| Per(Adiag(\)) >0, and \; > 0,1 <i < N},

For the general case with arbitrafy and N, the formal proof of this result is not available at this
stage. In Appendix Ill, we provide proofs for several specases, which lend support to the validity of

this conjecture.

B. Capacity Upper Bound

Armed with the general results of the preceding subsectvergan now derive a closed-form expression
for the upper bound on the ergodic capacity.

Theorem 2:The ergodic capacity in (14) is upper bounded by

C<C,= max log C’u()\), (32)
A>0,1TA=N,;
where
C.(A) = log Per (192 diag(N)) . (33)

Proof: We start by writing the upper bound for the expected mutu@irmation under SET in (17)
as

CuX) =log E(X) (34)

where

E\) =E {det (IN,, A diag(A)ﬂH) } . (35)
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By using the characteristic polynomial expansion of theedainant, as well as the Cauchy-Binet formula

for the determinant of a product matrix [39], we have

p
min(N¢,Ny)

EA)=ES Y 4> det ((H diag(x)ﬁH)‘fk)
\ k=0 akES(k) Ok
min(N¢,Ny.) B A ) .
—E Z E3 DY det (FY)det (diag(A) ) det ((HH) )
Gy, ES( ) BkES(k) ékes(k) ag

- YYD det (diag(n) ) {det (Y )det (7))} (36)

OzkES( % BkES(k)

Let us denoteX = <H>B Then, X# = <HH) and it is easily found thak {X ©® X*} = QZ: The
k

ak

matrix X satisfies the conditions in Lemma 4. Thus, we have

- ~ .\ Br .
AL H _ (657
E{det <Hﬁk>det ((H >ak)} = Per <Qﬁk) (37)
Substituting (37) into (36) and using the properties of teenganents in Lemma 1, as well as (28) and

Lemma 3, we find that

min(N;,N;-)
Z Z Z det (dlag )Per (ng)
areSy resy)
min(N,N;-)
Z Z ZPer(leag )) )
B0 aes®) fres)
min(N;,N;-)

= ¥ Y Per <(Q diago\))@k)

k=0 [e7% ES](\I;T)

min(N¢,N;.)
Z 3 Per ( +Q diag(\))° )
OckES(k)
= Per (yQdiag(N)) . (38)
Substituting (38) into (34) and using (18) complete the firoo O

From the above theorem, we see that the upper bound on capaabmpletely determined by the
average SNR (= vNNV;) and the eigenmode channel coupling mafiixThis bound is particularly useful,

since we may now apply (33) to maximiiéL(A) with the respect to\ (i.e. address the power allocation
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problem), without the need for performing Monte-Carlo aggng over random realizations of the MIMO
channel matrix.

It is interesting to consider the special case wier- 0 andM = ab’, wherea andb are N, x 1 and
N; x 1 real vectors. In this case, the jointly-correlated chammedtlel considered in this paper reduces to
the popular Kronecker correlation model. Definixg=a ® a and A, = b ® b, the eigenmode channel

coupling matrix can then be expressed(as= A\, A\ = diag (\,) 1y, xn, diag (A;), and (33) reduces to

Cu(X) = log Per (yQ diag(\))

min(N¢,Ny)

— log Z E3TY det (diag(}\)gz)Per <(diag()\r) 1N7,XNtdiag(At))g:)

ak€S< ) B es““)

min(N¢,Ny) R
—log 30 MR Y. DT det (diag(h)3) det (diag(A o A)%). (39)
k=0 A (k) 7 (k) ’
OCkESNT BkESNt

Equation (39) is equivalent to the upper bounds presentediqusly for Kronecker-correlated channels
in [17,18]. Moreover, for the special cage= 1 (i.e. the case of equal-power allocation), (39) reduces

further to the capacity upper bound presented in [10].

C. Efficient Computation Algorithms

To evaluate the closed-form capacity upper bound expneggi@n by (32) and (33), we must evaluate
the extended permanent of the mati® diag(X). Clearly, when the size of the matrix is small, this can
be done by simply expressing the extended permanent as &rt@nal permanent via (30), and then
either directly applying Definition 1, or using the Laplacgansion in Lemma 2. However, in both cases,
as the size of the matrix grows, the computational complexitreases significantly, and more efficient
methods are needed. To see this, consider the task of awgluthe permanent of a generdl x N
matrix A. The complexity associated with computing matrix perm&mésn conventionally measured in
terms of the number of the required multiplications. Adogtthis measure, the number of multiplications
required for evaluating the matrix permanent using Debnitl and the Laplace expansion (e.g. via (27))

are (m 1

" and Zk | T - 71+ respectively, wheren — min(M, N) andn = max(M, N). Clearly, as the
matrix dlmenS|ons increase, the computational complexityeases exponentially. For this reason, it is
necessary to investigate more efficient computationalrahguos.

The best-known algorithm for computing the matrix permaradrarbitrary dimensions is due to Ryser
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[36]%, who showed that the permanent of the x N matrix A (with M < N) can be evaluated via

M

Per(A) =Y (—~1)MFCN Z Hn o) (40)

k=0 ares() i=1

WhereCZ ( ),, andr;(-) represents the sum of the elements in #tle row of the matrix argument.
A similar formula also exists for the case/ > N. This algorithm requiresn + (m — 1) Y_;", C*
multiplications, withm andn defined as above.

In our case, we are interested in computing the extendedanmnnPﬂ(Q) in (33), i.e. the permanent

of [Ly, ©] or [Iy, Q7], whereQ2 = vQ diag(X). By directly computing this quantity based on Definition 1,

Nmin_ 1) (Nmin +Nmax)!
Nmax! !

the Laplace expansion, or Ryser's method, the number ofinegjmultiplications ist

gt R B and Nypin + (Nain — 1) 2075 CK v TESPECtiVlY, WhereVy, = min(N;,
N,) and N,,., = max(Vy, N,.). For practical values oV, and V;, these complexities can be quite high.
As such, we are motivated to establish new and more efficiegthoals for computing the extended
permanent, which we now consider.

Let us define the following auxiliary matrix

A

Q(2) = 1y, xn, + 282, (41)

We will establish new efficient computation algorithms m(fl) based on the following key result.

Lemma 5:Let Per(2(z)) = Sp™ M), 2k Then
min(Ny,N¢)
Per(Q) = Z ik (42)

wherecy, = |N; — N,|!/(max(N,., N;) — k)\.
A proof is presented in Appendix IV. This result shows that #xtended permaneier(Q2) can be
calculated directly from the polynomial expansion®dr(€2(z)). Considering the casa/, < N,, from

Definition 1 in (19), Laplace expansion (27) and Ryser’s egpion (40), we have the following three

formulas forPer(£2(z)):

Per(Q(z)) = > H 1+ @j0,2) (43)

aN, ESNT i=1

2For the case of square matrices, further improvements Hawebaen proposed [37].
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Ny

Per(€2(=)) = > (1 + ) Per ((2),,), (44)
R Ny Ny .
Per(Q(2)) = Y (D)™ *ou =t > [1r(2),)- (45)
k=0 akGSZ(\Z) i=1

It is convenient to re-express (45) by letting

NT R N'r
H(l +7(Qy,)2) = Z Ao, 2" (46)
i=1 i=0
with ag ., = 1, such that
NT ~ NT . .
ri(Q(2),,) = Z N =la 0, 2 47)
i=1 i=0
This yields
~ NT NT . .
Per((2)) = » > (=DM FONEY T D aia,. (48)
k=0 =0

aresy)

Importantly, we find that each of the equivalent express{dB3, (44) and (48) admit simple and efficient
recursive algorithms for calculating the coefficientszofTo demonstrate this, consider (43). ligtz) =
[T, (14 @ia2) = 14+ 38 byp2”, wherek = 1,2, - N, Then, by, 1(2) = b(2) (1 + Qri1,0,,,2) ToOr

1 <k < N, — 1, and therefore the coefficients efcan be evaluated recursively via

Wht 1,001 T Okt n=1
bk—i—l,n = djk+1,ak+1bk,n—1 + bk,n; 2 S n S k (49)
Wh+1,p 41 Ok s n==Fk+1

This result, combined with Lemma 5, presents an efficierdrétlygm for computing the extended permanent

A

Per(2). In a similar manner, efficient computational algorithma e#so be easily obtained based on (44)
and (48). We omit the specific details of these. For arbitfsnyand N,, with N,;, and V,,., defined as

above, the number of required multiplications for the thpeé/nomial-based computation algorithms are

Nmin(Nmin—1) Nmax! Niin—=1 (Nmin—k) Nmax! and N2

Nmin(Nmin_l) Nmin k 1
2(Nmax_Nmin)! ! k=1 (Nmax_k)! min + 2 Zk:l CNI“"‘X’ reSpeCtlvely

Fig. 1 presents the number of required multiplications faieatingC,,()\) based on the three polynomial-
based computation algorithms, for various antenna cordtgurs of the formV = N, = N,. The number
of required multiplications for calculating’,(\) by directly using Definition 1, Laplace expansion and

Ryser’s formula are also shown for comparison. We cleartytbat the polynomial-based algorithms have
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significantly reduced computational complexity comparéithwthe direct methods; in many cases yielding
orders of magnitude improvements. Of the polynomial-badgdrithms, the Laplace expansion gives the

least complexity forN < 5, whereas the Ryser-based formula is most efficient\far 5.

V. OPTIMAL POWER ALLOCATION WITH THE CAPACITY BOUND
A. Asymptotic Optimality at Low and High SNR

Based on the tight closed-form capacity upper bound in Térad2, we can now address the transmitter
power allocation optimization problem by dealing with orithe eigenmode channel coupling matfx
and the transmit SNR (= ~1V,). The optimal solution for maximizing the upper bound wileh serve
as an approximation to the optimal capacity-achieving poali®cation solution. Our numerical results
will confirm the accuracy of this approximation.

The power allocation optimization problem can be formudaas follows

max Cu(N) (50)

subjectto A >0,17A = N,. (51)

Before dealing with this problem in its most generality, weetty check the asymptotic optimality of our
approach at low and high SNR. For arbitrary SNRs, we will tderelop optimality conditions and an
iterative numerical algorithm in the framework of convexiopzation.

For low SNRs,C, () can be expressed as

Cu(X) = log <1 + 727'@')\@' + 0(72)>

1=1

Nt
=7) _mhi+0(?), (52)
i=1
wherer; = Zj.v;‘l[ﬁ]ﬁ. Without any loss of generality, assumethaE= o = ... =7 > 7.1 > ... > Tn,.
Maximizing the first-order (iny) term in (52) subject to the constraint (51) gives the follogvpower-
allocation policy
Nt/l, fori = 1,...,l

A = (53)
0, fori=1014+1,..., N,

This means that beamforming along the strongest transgeneiodes (specified by the channel coupling
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matrix €2) is optimal in the low SNR case.

For high SNRs, withV; < N,, we have

Cyu(X) = log (Per(yQ diag(N)))

= log Per(~€2) + log det (diag(\)) (54)
which is maximized by the following power allocation policy
Ni=1, i=1,...,V (55)

i.e. equal-power allocation over the transmit eigenmodd®ese low and high SNR power allocation
policies, derived based on the capacity upper bound, aenexactly with the optimal capacity-achieving

power allocation policies for the low and high SNR regimemsidered previously in [24, 26].

B. Optimality Conditions for Arbitrary SNRs

We now address the general case with arbitrary SNRs. To tlislet\; > 0, A, > 0, and0 <0 < 1.

Then, using Conjecture 1, we can write

Cu(BA1 + (1 — B)As) = log Per (Q[IM_ A diag(A)] + (1 — 6)[Ly. 7 diag()\g)]>
= log Per (9[IN7, yQ]diag(A;) + (1 — 60)[Iy, vﬂ]diag(j\g)>
> #log Per ([INT WQ]diag(S\l)) + (1 — 0) log Per <[INT vﬂ]diag(j\g)>

= 0C, (A1) + (1 —0)Cu(Ny), (56)

whereX; = [1;,.n. AT]7 and X, = [1,,.n, AJ]7. Therefore, the functiod’,(X) is concave on the space
of nonnegative\, and the optimization problem given by (50) and (51) is a ewe@ptimization problem.
As such, there exists only one local optimal solution, whihlso a global solution. This solution could
be evaluated by employing standard convex optimizationrédtyms, such as interior point methods [41].

Since the problem is concave, we can derive necessary afitlentfconditions for the optimal solution
using the Karush-Kuhn-Tucker (KKT) conditions. To this emet p = [u1, jia, ..., un,|T and v be the
Lagrange multipliers for the inequality constraxt> 0 and the equality constrainf’ A = N, respectively.
Then the KKT conditions satisfied by the optinfalcan be expressed as

oC, ()
O,

+u+v =0, (57)
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A 2 07 1TA = Nt7 4 Z 07 ul)\l = 07 (58)

Where% denotes the partial derivative ﬁu(k) with respect to\;, for 1 <1i < N;. From (33), these

derivatives can be written as
9C,(A) 1 OE(N)
oN EX) 0N (59)

where E(X) = Per (y§2diag(\)). To evaluate the remaining derivatives in (59) it is usetubpply the

Laplace expansion property of permanents, given by (27¢xpessF () as follows
E(X) =p(A@) + Xia(A), (60)
where
p(A@) = Per (vQ diag( X)) , (61)
1(A@) = i YwjPer (“Yﬂg))diag@(i)))
j=1
= Per (vQ2 diag(X\;)) — Per (yQ;) diag(X)) , (62)

w;; denotes thgj,i)-th element ofQ2, ©(; denotes the sub-matrix &2 obtained by deleting the-th
cqumn,Qg)) denotes the sub-matrix 62 obtained by deleting thg-th row and:-th column, ;) denotes
the (N, — 1) x 1 vector obtained by deleting theth element ofA\, and \; denotes theV, x 1 vector

obtained by replacing theth element ofA by unity. Therefore, (59) becomes

9C,(\) (X))
— _ 63
o\ P(A@) + Aig( X)) (63)
Substituting (63) into (57) and eliminating the slack vakeu, the KKT conditions become
- p(A(i)> ) "

A= (v — , (64)

( q(A))
17X = N, (65)

where (a)" = max{0,a} andv = 1/v.
In summary, we have the following theorem.
Theorem 3:The expected mutual information upper bouﬁgi(A) IS concave with respect ta, and

the necessary and sufficient conditions for optimal powlexcation are given by (64), whereis chosen
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to satisfy the power constraint in (65).

Note that when the eigenmode channel coupling md®iis square and diagorfalwe have

a(A@)) = wiip(Ae) (66)

4

This is the same formula as the water-filling solution whem tiansmitter has instantaneous CSI [1], and

and the conditions in (64) simplify to

one can easily obtain the optimal power allocation via theewflling algorithm. However, in the general
case of an arbitrary eigenmode channel coupling matrixstietion can not be obtained as easily and

numerical approaches are required.

C. lterative Water-Filling Algorithm

In this section, we propose a simple iterative water-fillailgorithm (IWFA) for evaluating the optimal
power allocation policy which satisfies (64). Our algoritisrbased on observing that the right-hand side
of (64) is independent ok;, and is motivated by the IWFA methods proposed in [32, 33]tfansmitter
optimization of multiuser systems with instantaneous G%ivin to the transmitters. Simulation results,
given in Section V, show that this approach works very well anhighly efficient; typically converging
after only a few iterations, with the first iteration achieyinear-optimal performance. The proposed
algorithm includes the following steps:

(1) Initialize A’ = 1, C,(A°) = log Per(yQ2), and k = 0.

(2)  Calculate p(Afy)) = Per(vQ) diag(Af;))) and g(Af;)) = Per (yQdiag(Af)) — Per(v82

diag()\’(‘;))), i=1,2,...,N,.

3) Calculate\t*! — (i — ’q’ii;;i

power constraind ™ Af = N,
(4)  CalculateC,(A*t1) = log Per(79 diag(A¥+1)) .
(5) I Cu(AMH1) < Cy(AF), set AR+ .= LR+ 4 Nl ak and recalculate”, (AF+!).

)t i=1,2,..., N;, via the conventional water-filling algorithm with

(6) Setk := k+ 1 and return to Step 2 until the algorithm converges or theaii@n number is
equal to a predefined value.

®In this special case, the MIMO channel is essentially reduoea set of non-interfering scalar subchannels.
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Here, \* stands for the value oX in the k-th iteration. In Step 1 in the first iteratio\, is initialized to1,
i.e., to the equal power allocation. Note, however, thatould also be initialized in a different way. For
example, in practice it is reasonable to suppose that thenehatatistics change smoothly from frame
to frame, where a more appropriate starting point for angmiframe would be the optimal value af
from the previous frame. This could speed up the convergehtiee IWFA. In Step 3, the conventional
water-filling algorithm is performed with the required \atrlesp(\;)) andg(X(;)) calculated in Step 2.
Following the calculation of théu()\) in Step 4, Step 5 is performed to guarantee the convergerite of
iterative procedure. We discuss this issue in detail belov&tep 6, the convergence of the algorithm can
be determined by checking whethék,(A\*+1) — C,(AF)| (or | A**1 — X¥||) is less than some predefined
tolerance.

Theorem 4:The IWFA for optimal power allocation converges to the catyagpper bound’,.

Proof: In order to verify the convergence of our proposed IWFA fotimpl power allocation, we

define the following function for a giveA*:
_ 1
Culd) = 3 2 1o (p(AG) + Xig(Afy)) - (68)
i=1

It can be seen thaf',(\) is a concave function with respect fa The water-filling solution in Step 3
of the IWFA is exactly equal to the solution of maximiziig,(\), for a given\* subject to the power

constraintl” A = N,. Therefore, with the\**! resulting from Step 3 of the IWFA, we have
Cu(NFY) > C (A8 = O, (AF). (69)

From the concavity o2, (M), it can be shown that the following relation holds:

_ - (1 Ny —1
k+1y < E+1 t k) 7
Cy(AT) <0y (—NtA + N, A ) (70)
Combining (69) and (70) yields
~ ~ 1 Ny —1
k < T yZk+1 Y SNk )
Cu(A") < C, <Nt>\ + N A ) (72)

Therefore, after Step 5 of the IWFA, we have tiiaf \**!) > C,(\*). This, along with the fact that the

problem (50)-(51) is convex, completes the proof. O
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Notice that the relation (71) suggests, mathematicallypdateA with (N%A’“rl + NfT:l)\’“) in the k-th
iteration of the IWFA, whereas the KKT conditions (64) susfge more intuitive interpretation based
on the water-filling principle. In our proposed IWFA, we upeld with the water-filling solution if the
resultingC,, () is increased. This allows very fast convergence, as we dsimaae through simulations in
the following section. To guarantee the convergence, Wéjétsle’c“JrN;V—:lA’f) to replace the water-filling

solution when the resulting',(X) is not increasing in each iteration.

V. SIMULATIONS

In this section, we present numerical results to evaluagetitihtness of the capacity bound, and to
demonstrate the efficiency and performance of the propeaadritter optimization approach under SET.
We consider a MIMO system with five transmit and five receiveeanas, and present results for both the
jointly-correlated MIMO channel model and the Kroneckerrelation model. For the jointly-correlated

channel, we adopt the same channel parameters as used jwfiEeD = 0 and (2 has the following

structure
01 0 1 0 0
0 01 1 0 0
25
Q== . 72
| 00 1 0 0 (72)
0 0 1 025 0
0 0 1 0 025

For the Kronecker channel, we adopt the constant-coroglatiodel for constructing the transmit and

receive correlation matrices [10]. AN x N constant-correlation matrix is given by

@N (Oz) :aleN+(1—oz)IN, (73)

wherea € [0, 1] is the correlation coefficient. We set the transmit and xecebrrelation coefficients to
be a; = 0.4 anda,. = 0.6 respectively.

Fig. 2 compares our closed-form ergodic mutual informatigoper bound (18) with Monte-Carlo
simulated exact curves based on (16), for the casel (equal-power allocation). Results are shown for
both the jointly-correlated channel and the Kronecker clenwith the above settings. We see that the
upper bound is rather tight for both channel models, esfgda low to moderate SNRs (eg< 8 dB).

Moreover, we see that the bound for the Kronecker model ghi tighter than for the more general
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jointly-correlated model. Interestingly, we will show thalespite this difference in tightness, the low-
complexity power allocation policies derived based on ¢hesunds perform near-optimally for both the
Kronecker and jointly-correlated channel models.

Fig. 3 and Fig. 4 present the ergodic mutual information @dd by the SET approach employing the
proposed IWFA (derived based on our closed-form upper bpundhe jointly-correlated and Kronecker
channel scenarios, respectively. For comparison, thet @godic capacity curves are also shown, which
were obtained by numerically evaluating (14) using a cams&d optimization function of the Matlab
optimization toolbox. The ergodic mutual information amhed with equal power allocation (55) and
beamforming (53) are also shown for further comparison. Warty see that, for both channel models,
the proposed SET approach performs near-optimally, snffeximost negligible losgompared with the
true channel capacity. Furthermore, we see that equal pallemation and beamforming are optimal in
the high and low SNR regimes, respectively, which agreeh witr analytical conclusions put forth in
Section IV-A. The capacity upper bound curve is also showithenfigures, and once again is seen to be
tight.

Fig. 5 and Fig. 6 demonstrate the convergence of the proplW¥€é for optimal power allocation
in the jointly-correlated and Kronecker channel scenaniespectively. Here, the SNR was set to 10
dB, and in all cases the algorithm was initialized usiNg = 1. These figures show the evolution of
the eigenvalues\;, 7 = 1,...,5, and the capacity bound,(\) for each iteration. From these results,
we see that the proposed IWFA converges after only a fewtibers with the first iteration achieving

near-optimal performance in all cases.

VI. CONCLUSIONS

We have investigated statistical eigenmode transmissienageneral jointly-correlated MIMO channel.
For this channel, we derived a tight closed-form upper bolamdhe ergodic capacity, which reveals a
simple and interesting relationship in terms of matrix panents of the eigenvalue coupling matrix, and
embraces many existing results in the literature as speagds. Based on this expression, we proposed
and investigated new power allocation policies in the fraor& of convex optimization. In particular,
we obtained necessary and sufficient optimality conditi@msl developed an efficient iterative water-
filling algorithm with guaranteed convergence. The tightef the capacity bound and the performance

of our novel low-complexity transmitter optimization appch was confirmed through simulations. Our
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approach was shown to suffer near-negligible loss compatitid the ergodic capacity of the jointly-

correlated MIMO channel.

APPENDIX |

PROOF OFLEMMA 3

LetI = [I,;0xxn] @and A = [0y5 1 A]. From the definition of the permanents, we have
Per([In; A]) = Per(A + I)

= > H (@ + G (74)

B €Siin ™

where i, anda,,, denote the(m,n)-th elements ofl and A respectively. Note that the following

identity holds:
M

M
s «Tm"i_ym :Z Z H«TamHya 5 (75)

k=04 Qg ES(k) m=1

m=

where (o), as, ..., oy, ) € Sii~F is the sequence complementarydpin {1,2, ..., M}. Hence

k M—k
Per IM Z Z Z H Qam,ﬁam H Za;l,g(y, . (76)
m=1 m=1 m

akeS( ) EMGS%JrN
ltcanbe seenthal, , = (8, —a,), whered(-) is the Kronecker delta operator, aff,_, Qo o T

0 only if B,, > M andk < min(M, N). Therefore, we have

min(M,N)

Per([I; A Z Z Z H_amMJrﬁm

k=0 akGS(k) Bkesk m=1

min(M,N) A
=Y > Y re(ay). (77)
k=0

A GSJ(VI;) Bk ES](\];)

where Per (Agf) =1 whenk = 0. Using (28), we have

min(M,N)
Per([Iy A]) = Z Z Per(A%)
ares
min(M,N)

= Z Z Per(Aj; ). (78)



25

Through a similar procedure, one can obtain that

min(M,N)

Per([IyAT])= > > Per(A%)

k=0 akes(k)
min(M,N)

= > ) Pe(Ay) (79)
This completes the proof.

APPENDIX I

PROOF OFLEMMA 4
From the definition of the determinant, we have
. N
E {det (X)det (X")} = >~ Y (~1)7@)(=1)""VE {H“xﬁ} : (80)
aneSY BneSy i=1

whereo(ay) denotes the number of inversions in the permutafignfrom the normal ordet, 2,..., N,

andz; ; is the (7, j)-th element ofX. Since the rows oKX are independent, we have

N N
¢ {H xi,‘lix:ﬁi} - H E {xivaix;ﬁi} : (81)
=1 =1

Since the elements in each row are independent and therdyi®@ possible non-zero mean element in

each row, we have

E {20275} = & ad(Bi — ), (82)

whereg, ; is the (7, j)-th element of=. Substituting (82) into (81) and then into (80) yield

E {det (X)det (XT)} = H&m = Per (2). (83)

aNGSN =1

This completes the proof.

APPENDIX III
PROOF OF THE CONCAVITY OFf(A) = log Per(Adiag(\)) IN SEVERAL CASES

Case 1:M > N. In this case, we have thgi(\) = log Per(A) + log det(diag(A)). The concavity of
f(A) comes from that ofog det(diag(\)) [41].
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Case 2:M =1 and N > 1. In this caseA is a row vector, and we have thtA) = log(AX). The
concavity of f(A) comes from that of the log function.

Case 3:M =2 and N > 2. In this case, we will first show that the following inequsltiolds:
92(A1 + o) > 92(A1) n 92(A2)

g A1+ X)) T g A1) gi( X))’ (84)

where g, () = 1;,2Adiag(A) and go(A) = Per(Adiag(A)). Then we will prove the concavity of (\)
from (84).
Since g;(A) and g.(\) are positive onDY, the inequality (84) holds if and only if the following

inequality does:
I, A2) = g2(A1 + A2)g1(A1)g1(A2) — g2(A1) g1 (A1 + A2)g1(A2) — g2(A2) g1 (A1 + A2)g1 (A1) > 0. (85)

Let A = [al al]”. Then we have thag;(A\) = a] A + al A and g2(A) = al AaJ A — ATdiag(a; © az)A.

By substituting these expressions into\;, A»), we can obtain

g(A1, A2) = (af Adjag s — af Aoag A1)” + (g1(A2) A1 — g1( A1) A2) diag(a; © a2)(g1(A2) A1 — g1(A1)A2).

(86)
Therefore we achieve (85) and then (84). From (84), we have
G2(0A1 + (1 = 0)A2) g2(A1) g2(A2)
>0 +(1—-4 : 87
g0+ (1 =0)A2) — g1(M) ( )91(/\2) (67)

where( < ¢ < 1. Taking logarithm on both sides and using the concavity efltdg function yields

O+ (L =0)A2) = 0F (A1) — (1 —0)f(A2)
> og(g1 (01 + (1 - 0)A2)) + Blog(gn (A1) — (1 — ) log(g1 (Ae)) > 0. (88)
This completes the proof of the concavity Hf\).

Case 4:A is of rank one. LetA = ab”, wherea andb are vectors of\/ and N elements respectively.

In this case, we have

f(A) = log Per(1,/«ydiag(b ® X)) + log det(diag(a))

= log Z Per (1« ndiag(b ® X))ay ) + log det(diag(a))

Qg ESI(\?W)

=log Ey (b ® A) + log(M!) + log det(diag(a)), (89)
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where the function®,; () is the M-th elementary symmetric function defined as [42]

M
> e (90)

[%.Ys ESI(\?W) i=1

Since £ () is logarithmically concave, we obtain from (89) th&t\) is concave.

APPENDIX IV

PROOF OFLEMMA 5

We consider the case witN,, < N;. The proof for the case with/, > N, is similar. From the definition

of the permanents, we have

Per( Q Z H 1+ @,z (91)

aNreSNZ i=1

where w; ; represents thei, j)-th element of2. For each product term in the above expression, the

following relation holds:

N N k
[+ @ia2) =D Y []@sas- (92)
=1 k=0 BkESI(\I;T) i=1

Substituting (92) into (91) yields

Pa@() =3+ Y S [,

h=0 ges® ay,esyr i=1

z MBS Y e

6 es(k) Oékesk i=1

_ k (Nt — k> B

=Y AT AZ Per(Q7). (93)
k=0 ﬁkesz(\lrc,?

From Lemma 3, we have the expansiorbef(£2). By comparing the resulting expansion®ér(£2) with

(93), we complete the proof.
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Fig. 3. Comparison of the ergodic capacity of the jointlyretated MIMO channel achieved by numerically solving (la)d our proposed
iterative water-filling algorithm under SET. The capacifyper bound and the information rates achieved by equal pailecation and
beamforming are also shown.
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Fig. 4. Comparison of the ergodic capacity of the KroneckdM®™ channel achieved by numerically solving (14), and ouwpamsed
iterative water-filling algorithm under SET. The capacifgper bound and the information rates achieved by equal pailecation and
beamforming are also shown.
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Fig. 5. Convergence of the iterative water-filling algonittior optimal power allocation in the jointly-correlatedasinel. Results are shown

for SNR = 10 dB.
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Fig. 6. Convergence of the iterative water-filling algomitHor optimal power allocation in the Kronecker channel. Rissare shown for

SNR=10 dB.



