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Abstract

We investigate MIMO eigenmode transmission using statistical channel state information at the transmitter. We

consider a general jointly-correlated MIMO channel model,which does not require separable spatial correlations at

the transmitter and receiver. For this model, we first derivea closed-form tight upper bound for the ergodic capacity,

which reveals a simple and interesting relationship in terms of the matrix permanent of the eigenmode channel

coupling matrix and embraces many existing results in the literature as special cases. Based on this closed-form

and tractable upper bound expression, we then employ convexoptimization techniques to develop low-complexity

power allocation solutions involving only the channel statistics. Necessary and sufficient optimality conditions

are derived, from which we develop an iterative water-filling algorithm with guaranteed convergence. Simulations

demonstrate the tightness of the capacity upper bound and the near-optimal performance of the proposed low-

complexity transmitter optimization approach.
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I. INTRODUCTION

Multiple-input multiple-output (MIMO) wireless systems,equipped with multiple antennas at both the

transmitter and the receiver, have attracted tremendous interest in recent years as a means of enabling

substantially increased link capacity and reliability compared with conventional systems [1–6]. The per-

formance of practical MIMO systems is characterized by various system parameters, such as the average

transmit power and the transmit-receive antenna configurations, as well as various channel phenomena

such as spatial correlation, line-of-sight components, thermal noise, interference, and Doppler effects due

to mobility. Each of these factors has an impact on the MIMO channel capacity.

In realistic environments, where the channel characteristics may vary significantly over time, substantial

MIMO capacity benefits can be obtained by tracking the statesof the fading channels, and using this

channel state information (CSI) to optimally adapt the MIMOtransceiver parameters. However, such

closed-loop MIMO strategies require both the transmitter and receiver to acquire some form of CSI. Whilst

it is reasonable to assume that the instantaneous CSI can be obtained accurately at the receiver through

channel estimation, whether or not this information can be obtained at the transmitter depends highly

on the application scenario. For example, for fixed or low mobility applications, the channel conditions

vary relatively slowly, in which case instantaneous CSI canbe fed to the transmitter via well-designed

feedback channels in frequency division duplex (FDD) systems, or using the reciprocity of uplink and

downlink in time division duplex (TDD) systems. However, asthe mobility and hence the fading rate

increases, obtaining accurate instantaneous CSI at the transmitter becomes much more difficult. For such a

scenario, it is reasonable to exploitstatisticalCSI at the transmitter. The motivation for this approach stems

from the fact that the channel statistics vary over much larger time scales than the instantaneous channel

gains, and the uplink and downlink statistics are usually reciprocal in both FDD and TDD systems [7, 8].

Therefore, the statistical information can be easily obtained by exploiting reciprocity, or by employing

feedback channels with significantly lower bandwidth compared with instantaneous CSI feedback systems.

In addition, transceiver designs based on statistical information are typically more robust to imperfections,

such as delays, in the feedback channel.

Capacity analysis and transceiver designs using the statistical CSI at the transmitter are highly dependant

on the channel modeling. The most common approach has been toadopt the popular Kronecker model

[9–19], where the correlation between the fading of two distinct antenna pairs is the product of the

corresponding transmit and receive correlations [9, 20]. The primary advantage of this separable model
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is that it is analytically friendly, however various measurement campaigns have demonstrated that it can

have deficiencies in practice [21, 22]. To overcome these deficiencies, more generalized channel models

have been proposed, including the virtual channel representation [23, 24], the unitary-independent-unitary

(UIU) model [25, 26], and Weichselberger’s model [21]. In contrast to the Kronecker model, these are

jointly-correlatedchannel models which not only account for the correlation atboth link ends, but also

characterize their mutual dependence.

Under various assumptions on the system configuration and channel model, several important works

have been reported on the transmitter optimization problemusing the statistical CSI at the transmitter

in recent years. In particular, for multi-input and single-output (MISO) wireless channels with correlated

Rayleigh or uncorrelated Rician entries, it was shown in [27] that the capacity-achieving strategy is

to send independent data streams in the directions defined bythe dominant eigenvectors of the transmit

correlation matrix. This result was extended to Rayleigh fading MIMO channels with Kronecker correlation

structure in [15–18], to uncorrelated Rician MIMO channelsin [28, 29], to the UIU model in [25, 26],

and to the virtual channel representation in [24]. These prior contributions have also considered the

task of optimally allocating power across the transmit eigendirections (i.e. defining the eigenvalues of the

optimal transmit covariance matrix), for maximizing capacity. However, in most cases, the power allocation

problem has been tackled by optimizing the exact ergodic capacity expression, and this approach has led

to computationally-involved numerical optimization procedures. For example, see [30, 31] for Kronecker

channels, and [26] for jointly-correlated UIU channels. Inthese contributions, iterative power allocation

approaches were presented which involved numerical averaging over channel samples for each iteration

of the algorithm.

In this paper, we investigate the statistical eigenmode transmission (SET) over a general jointly-

correlated MIMO channel, using the statistical CSI at the transmitter. Our idea is to first derive aclosed-

form tight upper bound for the ergodic capacity of the general jointly-correlated MIMO channel model.

This upper bound expression reveals a simple and interesting relationship in terms of matrix permanents,

and embraces many existing results in the literature as special cases, such as those presented for Kronecker

channels in [10, 13, 14, 17, 18]. Based on this closed-form and tractable upper bound expression, we then

employ convex optimization techniques to develop low-complexity power allocation solutions in terms

of only the channel statistics. We derive necessary and sufficient optimality conditions, and propose a

simple computation algorithm, inspired by the iterative water-filling techniques presented previously for
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transmitter optimization of multiuser systems [32, 33], which is shown to converge within only a few

iterations. Numerical simulations demonstrate the tightness of the capacity upper bound and the near-

optimal performance of the proposed low-complexity transmitter optimization approach, i.e., suffering

negligible loss with respect to the ergodic capacity of the jointly-correlated MIMO channel.

A. Notation

The following notation is adopted throughout the paper: Upper (lower) bold-face letters are used to

denote matrices (column vectors); in some cases, where it isnot clear, we will employ subscripts to

emphasize dimensionality. TheN ×N identity matrix is denoted byIN , the all-zero matrix is denoted by

0, and the all-one matrix is denoted by1. The superscripts(·)H , (·)T , and (·)∗ stand for the conjugate-

transpose, transpose, and conjugate operations, respectively. We employE{·} to denote expectation with

respect to all random variables within the brackets, and useA ⊙ B to denote the Hadamard product

of the two matricesA andB. We use[A]kl or the lower-case representationak,l to denote the (k,l)-th

entry of the matrixA, andak denotes thek-th entry of the column vectora. The operatorstr(·), det(·),

andPer(·) represent the matrix trace, determinant, and permanent, respectively, anddiag(x) denotes a

diagonal matrix withx along its main diagonal.

We will useSk
N to denote the set of all size-k permutations of the numbers{1, 2, . . . , N}, wherek ≤ N .

By using the notation̂αk ∈ Sk
N , we mean that̂αk = (α1, α2, . . . , αk), αi ∈ {1, 2, . . . , N} for 1 ≤ i ≤ k,

and αi 6= αj for 1 ≤ i, j ≤ k and i 6= j. We will useS
(k)
N to denote the set of all ordered length-k

subsets of the numbers{1, 2, . . . , N}. By the notationα̂k ∈ S
(k)
N , we mean that̂αk = (α1, α2, . . . , αk),

αi ∈ {1, 2, . . . , N} for 1 ≤ i ≤ k, andα1 < α2 < . . . < αk. The cardinalities of the setsSk
N andS(k)

N are

N !
(N−k)!

and N !
k!(N−k)!

respectively.

With α̂k and β̂k defined as above, we will useAα̂k

β̂k

to denote the sub-matrix of anM × N matrix

A obtained by selecting the rows and columns indexed byα̂k and β̂k respectively.Aα̂N will denote the

sub-matrix ofA obtained by selecting the rows indexed byα̂N whenM ≥ N , andAβ̂M
the sub-matrix

of A obtained by selecting the columns indexed byβ̂M whenM ≤ N . Also, we will useα̂
′

k and β̂
′

k to

denote the sequences complementary toα̂k and β̂k in {1, 2, . . . ,M} and{1, 2, . . . , N}, respectively. As

such,A
α̂
′

k

β̂
′

k

will represent the sub-matrix ofA obtained by deleting the rows and columns indexed byα̂k

and β̂k, respectively. Finally, for notational convenience, we will useAi,j to represent the sub-matrix of

A obtained by deleting itsi-th row andj-th column.
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II. CHANNEL MODEL AND STATISTICAL EIGENMODE TRANSMISSION

A. Channel Model

We consider a single-user MIMO link withNt transmit andNr receive antennas, operating over a

frequency-flat fading channel. TheNr-dimensional complex baseband received signal vector for asingle

symbol interval can be written as

y = Hx+ n, (1)

wherex is theNt × 1 transmitted signal vector,H is theNr ×Nt channel matrix with(i, j)-th element

representing the complex fading coefficient between thej-th transmit andi-th receive antenna, andn is

theNr ×1 zero-mean additive complex Gaussian noise vector withE
{

nnH
}

= σ2
nINr

. It is assumed that

x andH satisfy the following power constraints

E
{

tr
(

xxH
)}

= P, (2)

E
{

tr
(

HHH
)}

= NtNr. (3)

We define the transmit signal to noise ratio (SNR) asρ = P/σ2
n. If the total transmitted powerP is

equally distributed across all transmit antennas, so thatE
{

xxH
}

= (P/Nt) INt
, thenρ also corresponds

to the average SNR per receive antenna.

For the jointly-correlated MIMO channel which we consider throughout this paper, the channel matrix

H is given by

H = UrH̃UH
t

= Ur (D+M⊙Hiid)U
H
t , (4)

whereH̃ = D + M ⊙Hiid, Ut andUr areNt × Nt andNr × Nr deterministic unitary matrices,D is

an Nr ×Nt deterministic matrix with at most one nonzero element in each row and each column,M is

anNr ×Nt deterministic matrix with nonnegative elements, andHiid is anNr ×Nt random matrix with

elements having zero mean and independent identical distributions (i.i.d.). Note that we do not constrain

the elements ofHiid to be Gaussian. Without any loss of generality, we can assumethat the nonzero

elements ofD are real, with indices(i, i) for 1 ≤ i ≤ min(Nt, Nr). Let us define

Ω = E{H̃⊙ H̃∗}. (5)
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It is easy to show that

Ω = D⊙D+M⊙M, (6)

and the power constraint (3) can be rewritten as

Nr
∑

i=1

Nt
∑

j=1

[Ω]ij = NtNr . (7)

From (4), the transmit and receive correlation matrices canbe expressed as

Rt = E{HHH} = UtΛtU
H
t , (8)

Rr = E{HHH} = UrΛrU
H
r , (9)

whereΛt andΛr are diagonal matrices with[Λt]ii =
∑Nr

j=1 [Ω]ji and [Λr]ii =
∑Nt

j=1 [Ω]ij . This implies

that in the channel model defined in (4),Ut andUr are the eigenvector matrices of the transmit and receive

correlation matrices, respectively. These matrices are characterized by the transmit and receive antenna

configurations. For example, when uniform linear arrays (ULA) are employed at both the transmitter and

receiver, it is shown in [23] that the eigenvector matrices can be set to discrete Fourier transform (DFT)

matrices.

The statistics ofH̃ = UH
r HUt characterize realistic propagation environments. From (4) and (6), we

have

D = E{H̃}, (10)

[M]ij =

√

var{[H̃]ij}

=
√

[Ω]ij − [D]2ij, (11)

where var{·} denotes variance. The matricesD and M reflect the line-of-sight (LOS) and scattering

components of the channel, respectively. The(i, j)-th element ofΩ, i.e. [Ω]ij , corresponds to the average

power of [H̃]ij and captures the average coupling between thei-th receive eigenmode andj-th transmit

eigenmode. For this reason, we refer toΩ as theeigenmode channel coupling matrix. It can be seen that

the eigenvalues of the transmit and receive correlation matrices are summations of the elements of the

matrixΩ in each column and each row, respectively. These eigenvalues arenon-separable, which reflects

the joint correlation feature of the channel.
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The channel model described by (4) provides a general formula which embraces many existing channel

models [9, 20–26]. For example, ifD = 0, M is a rank-one matrix, andHiid has Rayleigh-faded

elements, then (4) reduces to the popular separable-correlation Kronecker model [9, 20]. By allowing

M to have arbitrary rank and fixingUt andUr to be DFT matrices, one can achieve the virtual channel

representation for ULAs [23]. If we further allowUt andUr to be arbitrary unitary matrices, one can obtain

Weichselberger’s channel model [21]. Moreover, by settingD = 0 we arrive at the unitary-independent-

unitary (UIU) model introduced in [25, 26]. Our model is alsorelated to the model in [24], where one

LOS component was included in the virtual channel representation for the ULA MIMO channels. Here,

we allow multiple LOS components in eigenmode to cover more general transmission links, such as those

in distributed radio networks [34].

B. Statistical Eigenmode Transmission

Throughout the paper, we assume that the receiver knows the channel perfectly, whilst the transmitter

only has access to the statistical parameters, includingUt, Ur, D and M (and thusΩ). Under these

assumptions, the ergodic capacity of the MIMO channel is achieved by selecting the transmitted signal

vectorx to have zero mean and to follow a proper Gaussian distribution [1]. Let the covariance matrix

of x beE
{

xxH
}

= (P/Nt)Q. Then the power constraint onx can be rewritten astr (Q) = Nt, and the

ergodic capacity is given by

C = max
Q�0,tr(Q)=Nt

E
{

log det
(

INr
+ γHQHH

)}

, (12)

whereγ = ρ

Nt
. Substituting (4) into (12) yields

C = max
Q̃�0,tr(Q̃)=Nt

E

{

log det
(

INr
+ γH̃Q̃H̃

H
)}

, (13)

whereQ̃ = UH
t QUt. LetQ = UΛUH , whereU is the eigenvector matrix, andΛ = diag(λ1, λ2, . . . , λNt

)

is a diagonal matrix of the corresponding eigenvalues. WhenH̃ has independent and symmetrically

distributed elements, it has been shown in [26] and [24] thatthe optimal eigenvector matrixU for

achieving the capacity isU = Ut, and thusQ̃ is diagonal. In [24], it has been pointed out that this

solution also applies when one element ofH̃ contains a LOS component. We note however, that the

channel model given by (4) allows for multiple possible LOS components. For this more general case,

one can arrive at the following result:
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Theorem 1:The eigenvector matrix of the capacity-achieving matrixQ for the jointly-correlated channel

(4) is given byU = Ut. The ergodic capacity can therefore be expressed as

C = max
λ≥0,

PNt
i=1 λi=Nt

E

{

log det
(

INr
+ γH̃ diag(λ)H̃

H
)}

, (14)

whereλ is anNt × 1 vector containing the eigenvaluesλi, i = 1, 2, . . . , Nt.

The proof follows similar approaches to those used in [24, 26, 27, 29] and is therefore omitted. Theorem 1

demonstrates that the optimal signaling directions are defined by the eigenvectors of the transmit correlation

matrix of the MIMO channel. This agrees with and extends prior results in the literature to the more general

channel model given by (4). For the transmitter optimization problem, the major remaining challenge is

to determine the eigenvalues of the capacity-achieving input covariance matrixQ. This is equivalent to

the task of optimally allocating the available transmit power budget over the optimized transmit eigen-

directions, determined in Theorem 1.

In general, it is very difficult to derive an exact closed-form solution for the power allocation problem.

A major source of this difficulty is due to the complexity in evaluating tractable closed-form solutions for

the expectation in (14). This is also the case for many other less general MIMO channel scenarios, such

as the popular Kronecker correlation model [15, 16]. As such, the standard approach has been to develop

numerical optimization techniques (see e.g. [30] and [31]).

In this paper, considering the general jointly-correlatedMIMO channel model, we develop a new

approach which leads to the design of simple, robust and practical power allocation solutions. In particular,

our approach is based on deriving a tight closed-form upper bound on the expectation in (14) which can

then serve as an approximation to the capacity. Based on thisexpression, we are then able to derive

new optimized power allocation solutions which are simple and fast to compute. These power allocation

solutions will be shown to serve as very accurate approximations to the optimal capacity-achieving solution,

with low computational complexity requirements.

We note that the power-allocation problem for jointly-correlated channel scenarios has also been

considered in [26], where necessary and sufficient conditions as well as an iterative numerical algorithm

were proposed. One drawback of that algorithm is that for each iteration it requires numerically averaging

certain random matrix structures involving the inverse of instantaneous realizations of the MIMO channel.

Moreover, since the computation algorithm requires accessto instantaneous MIMO CSI, then under the

statistical-feedback assumption, such power-allocationcomputations must be typically performed at the



9

receiver. In contrast, in this paper we develop more practically appealing power-allocation algorithms

which involve only the channel statistics. As such, they aresimpler and more efficient to compute, since

they do not require random matrix averaging during the power-allocation computation. Moreover, our new

power-allocation algorithm has the additional advantage of permitting computation at either the receiver

or the transmitter. This extra flexibility is particularly important for various practical applications, such as

downlink transmission where it is often desirable or necessary to restrict computations to the base station.

We start by rewriting the ergodic capacity (14) as

C = max
λ≥0,

PNt
i=1 λi=Nt

C̃(λ), (15)

where

C̃(λ) = E

{

log det
(

INr
+ γH̃ diag(λ)H̃

H
)}

(16)

is the expected mutual information between the transmittedsignalx and the received signaly under SET.

Due to the concavity of thelog(·) function, the mutual informatioñC(λ) is upper bounded by

C̃(λ) ≤ C̃u(λ) = logE
{

det
(

INr
+ γH̃ diag(λ)H̃

H
)}

. (17)

Thus, the ergodic capacity is upper bounded by

C ≤ Cu = max
λ≥0,

PNt
i=1 λi=Nt

C̃u(λ). (18)

For the case of Kronecker MIMO channels, it has been shown in [10, 13, 14, 17, 18] that such bounds are

very tight and admit closed-form expressions by using the expansion of the determinant.

III. CLOSED-FORM CAPACITY UPPERBOUND USING PERMANENTS

In this section, we derive a closed-form expression for the capacity upper bound (18) for the jointly-

correlated MIMO channel model in (4). We also develop algorithms for its efficient computation. The

upper bound derivation is based heavily on exploiting linear-algebraic concepts and properties ofmatrix

permanents, which we introduce and develop in the sequel.

A. Matrix Permanents: Definitions and Properties

The permanent of a matrix is defined in a similar fashion to thedeterminant. The primary difference

is that when taking the expansion over minors, all signs are positive [35–38]. The permanents of square
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matrices have been thoroughly investigated in linear algebra and various applied fields. The permanents

of M ×N matrices withM ≤ N have also been defined and investigated [35]. In this paper, to facilitate

our capacity upper bound derivation we find it necessary to extend the definition of permanents to allow

for arbitraryM andN , and provide their useful properties.

Definition 1: For anM ×N matrix A, the permanent is defined as

Per(A) =



















∑

α̂M∈SM
N

M
∏

i=1

ai,αi
, M ≤ N

∑

β̂N∈SN
M

N
∏

i=1

aβi,i, M > N,
(19)

whereai,j denotes the(i, j)-th element ofA.

From this definition, one can easily establish a number of important properties of the matrix permanent,

as given in the following lemma. These properties will be useful in subsequent derivations.

Lemma 1:Let A be anM ×N matrix, a anM × 1 vector,b anN × 1 vector, andµ a scale constant.

Then

Per(A) = Per(AT ) (20)

Per(a) =

M
∑

i=1

ai (21)

Per(diag(a)) = det(diag(a)) (22)

Per(µA) = µmin(M,N)Per(A) (23)

Per(diag(a)A) = det(diag(a))Per(A), M ≤ N (24)

Per(Adiag(b)) = det(diag(b))Per(A), M ≥ N. (25)

For anM × N matrix with M ≤ N , there exists an analogy between the matrix permanent and the

Laplace expansion of the determinant [35, 39]. The following lemma gives the straightforward extension

of this result for arbitrary1 M andN .

Lemma 2:Let A be anM ×N matrix. Then

Per(A) =























∑

σ̂k∈S
(k)
N

Per
(

A
α̂k

σ̂k

)

Per

(

A
α̂
′

k

σ̂
′

k

)

, M ≤ N

∑

σ̂k∈S
(k)
M

Per
(

A
σ̂k

β̂k

)

Per

(

A
σ̂
′

k

β̂
′

k

)

, M > N,
(26)

1The result for the caseM > N is obtained by employing (20), and following the same steps as used in the derivation for the case
M ≤ N , given in [35].
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where α̂k ∈ S
(k)
M and β̂k ∈ S

(k)
N with 1 ≤ k ≤ min(M,N). Note that for the casek = min(M,N),

Per

(

A
α̂
′

k

σ̂
′

k

)

= 1 andPer

(

A
σ̂
′

k

β̂
′

k

)

= 1.

For the special casek = 1, (26) can be re-expressed as follows

Per(A) =















N
∑

j=1

ai,jPer (Ai,j), M ≤ N

M
∑

j=1

aj,iPer (Aj,i), M > N,

(27)

where1 ≤ i ≤ min(M,N). This is analogous to the cofactor expansion of the determinant [39]. With

k = min(M,N), (26) simplifies to

Per(A) =



















∑

σ̂M∈S
(M)
N

Per (Aσ̂N
), M ≤ N

∑

σ̂N∈S
(N)
M

Per
(

Aσ̂N

)

, M > N.
(28)

The following two key lemmas are particularly important forderiving the closed-form capacity upper

bound in the sequel.

Lemma 3:Let A be anM ×N matrix. Then

Per([IM A]) = Per([IN AT ]

=

min(N,M)
∑

k=0

∑

α̂k∈S
(k)
M

Per(Aα̂k)

=

min(N,M)
∑

k=0

∑

β̂k∈S
(k)
N

Per(Aβ̂k
), (29)

wherePer(Aα̂k) = 1 andPer(Aβ̂k
) = 1 whenk = 0.

A proof is provided in Appendix I. The values ofPer([IM A]) andPer([IN AT ]) in Lemma 3 will be

calledextended permanentsof A, which we denote as

Per(A) = Per([IM A]) = Per([IN AT ]) . (30)

Lemma 4:For anN × N random matrixX with independent elements, suppose that there exists at

most one non-zero element in each row ofX̄ = E {X}. Then we have

E
{

det (X) det
(

XH
)}

= Per (Ξ) , (31)
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whereΞ = E {X⊙X∗}.

A proof is provided in Appendix II. For the special case whereall elements ofX are independent and

identically distributed with zero mean and unit variance, we have thatΞ = E {X⊙X∗} = 1N×N and

E
{

det (X) det
(

XH
)}

= Per (1N×N ) = N !. This agrees with prior results in [10, 17, 18, 40].

The following conjecture is useful when dealing with the optimal power allocation problem in Section

IV.

Conjecture 1:Let A be anM ×N matrix of non-negative elements. Thenf(λ) = log Per(Adiag(λ))

is concave onDN = {λ |Per(Adiag(λ)) > 0, and λi ≥ 0, 1 ≤ i ≤ N}.

For the general case with arbitraryM andN , the formal proof of this result is not available at this

stage. In Appendix III, we provide proofs for several special cases, which lend support to the validity of

this conjecture.

B. Capacity Upper Bound

Armed with the general results of the preceding subsection,we can now derive a closed-form expression

for the upper bound on the ergodic capacity.

Theorem 2:The ergodic capacity in (14) is upper bounded by

C ≤ Cu = max
λ≥0,1Tλ=Nt

log C̃u(λ), (32)

where

C̃u(λ) = log Per (γΩ diag(λ)) . (33)

Proof: We start by writing the upper bound for the expected mutual information under SET in (17)

as

C̃u(λ) = logE(λ) (34)

where

E(λ) = E

{

det
(

INr
+ γH̃ diag(λ)H̃H

)}

. (35)
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By using the characteristic polynomial expansion of the determinant, as well as the Cauchy-Binet formula

for the determinant of a product matrix [39], we have

E(λ) = E











min(Nt,Nr)
∑

k=0

γk
∑

α̂k∈S
(k)
Nr

det

(

(

H̃ diag(λ)H̃H
)α̂k

α̂k

)











= E











min(Nt,Nr)
∑

k=0

γk
∑

α̂k∈S
(k)
Nr

∑

β̂k∈S
(k)
Nt

∑

ξ̂k∈S
(k)
Nt

det
(

H̃
α̂k

β̂k

)

det
(

diag(λ)β̂k

ξ̂k

)

det

(

(

H̃H
)ξ̂k

α̂k

)











=

min(Nt,Nr)
∑

k=0

γk
∑

α̂k∈S
(k)
Nr

∑

β̂k∈S
(k)
Nt

det
(

diag(λ)β̂k

β̂k

)

E

{

det
(

H̃
α̂k

β̂k

)

det
(

(

H̃H
)β̂k

α̂k

)}

. (36)

Let us denoteX =
(

H̃
)α̂k

β̂k

. Then,XH =
(

H̃H
)β̂k

α̂k

, and it is easily found thatE {X⊙X∗} = Ω
α̂k

β̂k

. The

matrix X satisfies the conditions in Lemma 4. Thus, we have

E

{

det
(

H̃
α̂k

β̂k

)

det

(

(

H̃H
)β̂k

α̂k

)}

= Per
(

Ω
α̂k

β̂k

)

. (37)

Substituting (37) into (36) and using the properties of the permanents in Lemma 1, as well as (28) and

Lemma 3, we find that

E(λ) =

min(Nt,Nr)
∑

k=0

γk
∑

α̂k∈S
(k)
Nr

∑

β̂k∈S
(k)
Nt

det
(

diag(λ)β̂k

β̂k

)

Per
(

Ω
α̂k

β̂k

)

=

min(Nt,Nr)
∑

k=0

γk
∑

α̂k∈S
(k)
Nr

∑

β̂k∈S
(k)
Nt

Per
(

(Ω diag(λ))α̂k

β̂k

)

=

min(Nt,Nr)
∑

k=0

γk
∑

α̂k∈S
(k)
Nr

Per
(

(Ω diag(λ))α̂k

)

=

min(Nt,Nr)
∑

k=0

∑

α̂k∈S
(k)
Nr

Per
(

(γΩ diag(λ))α̂k

)

= Per (γΩdiag(λ)) . (38)

Substituting (38) into (34) and using (18) complete the proof.

From the above theorem, we see that the upper bound on capacity is completely determined by the

average SNRρ (= γNt) and the eigenmode channel coupling matrixΩ. This bound is particularly useful,

since we may now apply (33) to maximizẽCu(λ) with the respect toλ (i.e. address the power allocation
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problem), without the need for performing Monte-Carlo averaging over random realizations of the MIMO

channel matrix.

It is interesting to consider the special case whenD = 0 andM = abT , wherea andb areNr×1 and

Nt × 1 real vectors. In this case, the jointly-correlated channelmodel considered in this paper reduces to

the popular Kronecker correlation model. Definingλr = a ⊙ a andλt = b⊙ b, the eigenmode channel

coupling matrix can then be expressed asΩ = λrλ
T
t = diag (λr) 1Nr×Nt

diag (λt), and (33) reduces to

C̃u(λ) = log Per (γΩ diag(λ))

= log

min(Nt,Nr)
∑

k=0

γk
∑

α̂k∈S
(k)
Nr

∑

β̂k∈S
(k)
Nt

det
(

diag(λ)β̂k

β̂k

)

Per
(

(diag (λr) 1Nr×Nt
diag (λt))

α̂k

β̂k

)

= log

min(Nt,Nr)
∑

k=0

γk k!
∑

α̂k∈S
(k)
Nr

∑

β̂k∈S
(k)
Nt

det
(

diag(λr)
α̂k

α̂k

)

det
(

diag(λ⊙ λt)
β̂k

β̂k

)

. (39)

Equation (39) is equivalent to the upper bounds presented previously for Kronecker-correlated channels

in [17, 18]. Moreover, for the special caseλ = 1 (i.e. the case of equal-power allocation), (39) reduces

further to the capacity upper bound presented in [10].

C. Efficient Computation Algorithms

To evaluate the closed-form capacity upper bound expression given by (32) and (33), we must evaluate

the extended permanent of the matrixγΩ diag(λ). Clearly, when the size of the matrix is small, this can

be done by simply expressing the extended permanent as a conventional permanent via (30), and then

either directly applying Definition 1, or using the Laplace expansion in Lemma 2. However, in both cases,

as the size of the matrix grows, the computational complexity increases significantly, and more efficient

methods are needed. To see this, consider the task of evaluating the permanent of a generalM × N

matrix A. The complexity associated with computing matrix permanents is conventionally measured in

terms of the number of the required multiplications. Adopting this measure, the number of multiplications

required for evaluating the matrix permanent using Definition 1 and the Laplace expansion (e.g. via (27))

are (m−1)n!
(n−m)!

and
∑m−1

k=1
n!

(n−k)!
, respectively, wherem = min(M,N) andn = max(M,N). Clearly, as the

matrix dimensions increase, the computational complexityincreases exponentially. For this reason, it is

necessary to investigate more efficient computational algorithms.

The best-known algorithm for computing the matrix permanent of arbitrary dimensions is due to Ryser
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[36]2, who showed that the permanent of theM ×N matrix A (with M ≤ N) can be evaluated via

Per(A) =
M
∑

k=0

(−1)M−kCM−k
N−k

∑

α̂k∈S
(k)
N

M
∏

i=1

ri(Aαk
), (40)

whereC i
j =

j!
i!(j−i)!

, andri(·) represents the sum of the elements in thei-th row of the matrix argument.

A similar formula also exists for the caseM > N . This algorithm requiresm + (m − 1)
∑m

k=1C
k
n

multiplications, withm andn defined as above.

In our case, we are interested in computing the extended permanentPer(Ω̂) in (33), i.e. the permanent

of [INr
Ω̂] or [INt

Ω̂T ], whereΩ̂ = γΩ diag(λ). By directly computing this quantity based on Definition 1,

the Laplace expansion, or Ryser’s method, the number of required multiplications is(Nmin−1)(Nmin+Nmax)!
Nmax!

,
∑Nmin−1

k=1
(Nmin+Nmax)!

(Nmin+Nmax−k)!
andNmin + (Nmin − 1)

∑Nmin

k=1 Ck
Nmin+Nmax

, respectively, whereNmin = min(Nt,

Nr) andNmax = max(Nt, Nr). For practical values ofNr andNt, these complexities can be quite high.

As such, we are motivated to establish new and more efficient methods for computing the extended

permanent, which we now consider.

Let us define the following auxiliary matrix

Ω̂(z) = 1Nr×Nt
+ zΩ̂. (41)

We will establish new efficient computation algorithms forPer(Ω̂) based on the following key result.

Lemma 5:Let Per(Ω̂(z)) =
∑min(Nr ,Nt)

k=0 µkz
k. Then

Per(Ω̂) =

min(Nr ,Nt)
∑

k=0

µkck, (42)

whereck = |Nt −Nr|!/(max(Nr, Nt)− k)!.

A proof is presented in Appendix IV. This result shows that the extended permanentPer(Ω̂) can be

calculated directly from the polynomial expansion ofPer(Ω̂(z)). Considering the caseNr ≤ Nt, from

Definition 1 in (19), Laplace expansion (27) and Ryser’s expression (40), we have the following three

formulas forPer(Ω̂(z)):

Per(Ω̂(z)) =
∑

α̂Nr∈S
Nr
Nt

Nr
∏

i=1

(1 + ω̂i,αi
z) , (43)

2For the case of square matrices, further improvements have also been proposed [37].
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Per(Ω̂(z)) =

Nt
∑

j=1

(1 + ω̂i,jz)Per
(

Ω̂(z)i,j

)

, (44)

Per(Ω̂(z)) =
Nr
∑

k=0

(−1)Nr−kCNr−k
Nt−k

∑

α̂k∈S
(k)
Nt

Nr
∏

i=1

ri(Ω̂(z)αk
). (45)

It is convenient to re-express (45) by letting

Nr
∏

i=1

(1 + ri(Ω̂αk
)z) =

Nr
∑

i=0

ai,αk
zi, (46)

with a0,αk
= 1, such that

Nr
∏

i=1

ri(Ω̂(z)αk
) =

Nr
∑

i=0

kNr−iai,αk
zi . (47)

This yields

Per(Ω̂(z)) =

Nr
∑

k=0

Nr
∑

i=0

zi(−1)Nr−kCNt−k
Nr−kk

Nr−i
∑

α̂k∈S
(k)
Nt

ai,αk
. (48)

Importantly, we find that each of the equivalent expressions(43), (44) and (48) admit simple and efficient

recursive algorithms for calculating the coefficients ofz. To demonstrate this, consider (43). Letb̃k(z) =
∏k

i=1 (1 + ω̂i,αi
z) = 1 +

∑k
n=1 bk,nz

n, wherek = 1, 2, · · ·Nr. Then, b̃k+1(z) = b̃k(z)
(

1 + ω̂k+1,αk+1
z
)

for

1 ≤ k ≤ Nr − 1, and therefore the coefficients ofz can be evaluated recursively via

bk+1,n =



















ω̂k+1,αk+1
+ bk,1, n = 1

ω̂k+1,αk+1
bk,n−1 + bk,n, 2 ≤ n ≤ k

ω̂k+1,αk+1
bk,k, n = k + 1.

(49)

This result, combined with Lemma 5, presents an efficient algorithm for computing the extended permanent

Per(Ω̂). In a similar manner, efficient computational algorithms can also be easily obtained based on (44)

and (48). We omit the specific details of these. For arbitraryNt andNr, with Nmin andNmax defined as

above, the number of required multiplications for the threepolynomial-based computation algorithms are

Nmin(Nmin−1)Nmax!
2(Nmax−Nmin)!

,
∑Nmin−1

k=1
(Nmin−k)Nmax!

(Nmax−k)!
andN2

min +
Nmin(Nmin−1)

2

∑Nmin

k=1 Ck
Nmax

, respectively.

Fig. 1 presents the number of required multiplications for evaluatingC̃u(λ) based on the three polynomial-

based computation algorithms, for various antenna configurations of the formN = Nt = Nr. The number

of required multiplications for calculating̃Cu(λ) by directly using Definition 1, Laplace expansion and

Ryser’s formula are also shown for comparison. We clearly see that the polynomial-based algorithms have
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significantly reduced computational complexity compared with the direct methods; in many cases yielding

orders of magnitude improvements. Of the polynomial-basedalgorithms, the Laplace expansion gives the

least complexity forN ≤ 5, whereas the Ryser-based formula is most efficient forN > 5.

IV. OPTIMAL POWER ALLOCATION WITH THE CAPACITY BOUND

A. Asymptotic Optimality at Low and High SNR

Based on the tight closed-form capacity upper bound in Theorem 2, we can now address the transmitter

power allocation optimization problem by dealing with onlythe eigenmode channel coupling matrixΩ

and the transmit SNRρ (= γNt). The optimal solution for maximizing the upper bound will then serve

as an approximation to the optimal capacity-achieving power allocation solution. Our numerical results

will confirm the accuracy of this approximation.

The power allocation optimization problem can be formulated as follows

max
λ

C̃u(λ) (50)

subject to λ ≥ 0, 1Tλ = Nt. (51)

Before dealing with this problem in its most generality, we briefly check the asymptotic optimality of our

approach at low and high SNR. For arbitrary SNRs, we will thendevelop optimality conditions and an

iterative numerical algorithm in the framework of convex optimization.

For low SNRs,C̃u(λ) can be expressed as

C̃u(λ) = log

(

1 + γ
Nt
∑

i=1

τiλi +O(γ2)

)

= γ
Nt
∑

i=1

τiλi +O(γ2), (52)

whereτi =
∑Nr

j=1[Ω]ji. Without any loss of generality, assume thatτ1 = τ2 = . . . = τl > τl+1 ≥ . . . ≥ τNt
.

Maximizing the first-order (inγ) term in (52) subject to the constraint (51) gives the following power-

allocation policy

λi =







Nt/l, for i = 1, . . . , l

0, for i = l + 1, . . . , Nt.
(53)

This means that beamforming along the strongest transmit eigenmodes (specified by the channel coupling
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matrix Ω) is optimal in the low SNR case.

For high SNRs, withNt ≤ Nr, we have

C̃u(λ) → log (Per(γΩdiag(λ)))

= log Per(γΩ) + log det (diag(λ)) (54)

which is maximized by the following power allocation policy

λi = 1, i = 1, . . . , Nt (55)

i.e. equal-power allocation over the transmit eigenmodes.These low and high SNR power allocation

policies, derived based on the capacity upper bound, coincide exactly with the optimal capacity-achieving

power allocation policies for the low and high SNR regimes, considered previously in [24, 26].

B. Optimality Conditions for Arbitrary SNRs

We now address the general case with arbitrary SNRs. To this end, letλ1 ≥ 0, λ2 ≥ 0, and0 ≤ θ ≤ 1.

Then, using Conjecture 1, we can write

Cu(θλ1 + (1− θ)λ2) = log Per
(

θ[INr
γΩ diag(λ1)] + (1− θ)[INr

γΩ diag(λ2)]
)

= log Per
(

θ[INr
γΩ]diag(λ̃1) + (1− θ)[INr

γΩ]diag(λ̃2)
)

≥ θ log Per
(

[INr
γΩ]diag(λ̃1)

)

+ (1− θ) log Per
(

[INr
γΩ]diag(λ̃2)

)

= θC̃u(λ1) + (1− θ)C̃u(λ2), (56)

whereλ̃1 = [11×Nr
λT

1 ]
T and λ̃2 = [11×Nr

λT
2 ]

T . Therefore, the functioñCu(λ) is concave on the space

of nonnegativeλ, and the optimization problem given by (50) and (51) is a concave optimization problem.

As such, there exists only one local optimal solution, whichis also a global solution. This solution could

be evaluated by employing standard convex optimization algorithms, such as interior point methods [41].

Since the problem is concave, we can derive necessary and sufficient conditions for the optimal solution

using the Karush-Kuhn-Tucker (KKT) conditions. To this end, let µ = [µ1, µ2, ..., µNt
]T and ν be the

Lagrange multipliers for the inequality constraintλ ≥ 0 and the equality constraint1Tλ = Nt respectively.

Then the KKT conditions satisfied by the optimalλ can be expressed as

∂C̃u(λ)

∂λi

+ µi + ν = 0, (57)
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λ ≥ 0, 1Tλ = Nt, µ ≥ 0, µiλi = 0, (58)

where ∂C̃u(λ)
∂λi

denotes the partial derivative of̃Cu(λ) with respect toλi, for 1 ≤ i ≤ Nt. From (33), these

derivatives can be written as
∂C̃u(λ)

∂λi

=
1

E(λ)

∂E(λ)

∂λi

, (59)

whereE(λ) = Per (γΩ diag(λ)). To evaluate the remaining derivatives in (59) it is useful to apply the

Laplace expansion property of permanents, given by (27), toexpressE(λ) as follows

E(λ) = p(λ(i)) + λiq(λ(i)), (60)

where

p(λ(i)) = Per
(

γΩ(i)diag(λ(i))
)

, (61)

q(λ(i)) =
Nt
∑

j=1

γωj,iPer
(

γΩ
(j)
(i)diag(λ(i))

)

= Per (γΩ diag(λi))− Per
(

γΩ(i) diag(λ(i))
)

, (62)

ωj,i denotes the(j, i)-th element ofΩ, Ω(i) denotes the sub-matrix ofΩ obtained by deleting thei-th

column,Ω(j)
(i) denotes the sub-matrix ofΩ obtained by deleting thej-th row andi-th column,λ(i) denotes

the (Nt − 1) × 1 vector obtained by deleting thei-th element ofλ, andλi denotes theNt × 1 vector

obtained by replacing thei-th element ofλ by unity. Therefore, (59) becomes

∂C̃u(λ)

∂λi

=
q(λ(i))

p(λ(i)) + λiq(λ(i))
. (63)

Substituting (63) into (57) and eliminating the slack variable µ, the KKT conditions become

λi =

(

ν̃ −
p(λ(i))

q(λ(i))

)+

, (64)

1Tλ = Nt, (65)

where(a)+ = max{0, a} and ν̃ = 1/ν.

In summary, we have the following theorem.

Theorem 3:The expected mutual information upper boundC̃u(λ) is concave with respect toλ, and

the necessary and sufficient conditions for optimal power allocation are given by (64), wherẽν is chosen
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to satisfy the power constraint in (65).

Note that when the eigenmode channel coupling matrixΩ is square and diagonal3, we have

q(λ(i)) = ωi,ip(λ(i)) , (66)

and the conditions in (64) simplify to

λi =

(

ν̃ −
1

ωi,i

)+

. (67)

This is the same formula as the water-filling solution when the transmitter has instantaneous CSI [1], and

one can easily obtain the optimal power allocation via the water-filling algorithm. However, in the general

case of an arbitrary eigenmode channel coupling matrix, thesolution can not be obtained as easily and

numerical approaches are required.

C. Iterative Water-Filling Algorithm

In this section, we propose a simple iterative water-fillingalgorithm (IWFA) for evaluating the optimal

power allocation policy which satisfies (64). Our algorithmis based on observing that the right-hand side

of (64) is independent ofλi, and is motivated by the IWFA methods proposed in [32, 33] fortransmitter

optimization of multiuser systems with instantaneous CSI known to the transmitters. Simulation results,

given in Section V, show that this approach works very well and is highly efficient; typically converging

after only a few iterations, with the first iteration achieving near-optimal performance. The proposed

algorithm includes the following steps:

(1) Initialize λ0 = 1, C̃u(λ
0) = log Per(γΩ), andk = 0.

(2) Calculate p(λk
(i)) = Per(γΩ(i) diag(λ

k
(i))) and q(λk

(i)) = Per
(

γΩ diag(λk
i )
)

− Per(γΩ(i)

diag(λk
(i))), i = 1, 2, ..., Nt.

(3) Calculateλk+1
i = (ν̃−

p(λk
(i)

)

q(λk
(i)

)
)+, i = 1, 2, ..., Nt, via the conventional water-filling algorithm with

power constraint
∑Nt

i=1 λ
k+1
i = Nt.

(4) CalculateC̃u(λ
k+1) = log Per(γΩ diag(λk+1)) .

(5) If C̃u(λ
k+1) ≤ C̃u(λ

k), setλk+1 := 1
Nt
λk+1 + Nt−1

Nt
λk, and recalculatẽCu(λ

k+1).

(6) Setk := k + 1 and return to Step 2 until the algorithm converges or the iteration number is

equal to a predefined value.

3In this special case, the MIMO channel is essentially reduced to a set of non-interfering scalar subchannels.
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Here,λk stands for the value ofλ in thek-th iteration. In Step 1 in the first iteration,λ is initialized to1,

i.e., to the equal power allocation. Note, however, thatλ could also be initialized in a different way. For

example, in practice it is reasonable to suppose that the channel statistics change smoothly from frame

to frame, where a more appropriate starting point for any given frame would be the optimal value ofλ

from the previous frame. This could speed up the convergenceof the IWFA. In Step 3, the conventional

water-filling algorithm is performed with the required variablesp(λ(i)) and q(λ(i)) calculated in Step 2.

Following the calculation of thẽCu(λ) in Step 4, Step 5 is performed to guarantee the convergence ofthe

iterative procedure. We discuss this issue in detail below.In Step 6, the convergence of the algorithm can

be determined by checking whether|C̃u(λ
k+1)− C̃u(λ

k)| (or ‖λk+1 − λk‖) is less than some predefined

tolerance.

Theorem 4:The IWFA for optimal power allocation converges to the capacity upper boundCu.

Proof: In order to verify the convergence of our proposed IWFA for optimal power allocation, we

define the following function for a givenλk:

C̄u(λ) =
1

Nt

Nt
∑

i=1

log
(

p(λk
(i)) + λiq(λ

k
(i))
)

. (68)

It can be seen that̄Cu(λ) is a concave function with respect toλ. The water-filling solution in Step 3

of the IWFA is exactly equal to the solution of maximizinḡCu(λ), for a givenλk subject to the power

constraint1Tλ = Nt. Therefore, with theλk+1 resulting from Step 3 of the IWFA, we have

C̄u(λ
k+1) ≥ C̄u(λ

k) = C̃u(λ
k). (69)

From the concavity of̃Cu(λ), it can be shown that the following relation holds:

C̄u(λ
k+1) ≤ C̃u

(

1

Nt

λk+1 +
Nt − 1

Nt

λk

)

. (70)

Combining (69) and (70) yields

C̃u(λ
k) ≤ C̃u

(

1

Nt

λk+1 +
Nt − 1

Nt

λk

)

. (71)

Therefore, after Step 5 of the IWFA, we have thatC̃u(λ
k+1) ≥ C̃u(λ

k). This, along with the fact that the

problem (50)-(51) is convex, completes the proof.
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Notice that the relation (71) suggests, mathematically, toupdateλ with ( 1
Nt
λk+1+ Nt−1

Nt
λk) in thek-th

iteration of the IWFA, whereas the KKT conditions (64) suggest a more intuitive interpretation based

on the water-filling principle. In our proposed IWFA, we update λ with the water-filling solution if the

resultingC̃u(λ) is increased. This allows very fast convergence, as we demonstrate through simulations in

the following section. To guarantee the convergence, we use( 1
Nt
λk+1+Nt−1

Nt
λk) to replace the water-filling

solution when the resulting̃Cu(λ) is not increasing in each iteration.

V. SIMULATIONS

In this section, we present numerical results to evaluate the tightness of the capacity bound, and to

demonstrate the efficiency and performance of the proposed transmitter optimization approach under SET.

We consider a MIMO system with five transmit and five receive antennas, and present results for both the

jointly-correlated MIMO channel model and the Kronecker-correlation model. For the jointly-correlated

channel, we adopt the same channel parameters as used in [24], whereD = 0 andΩ has the following

structure

Ω =
25

5.7

























0.1 0 1 0 0

0 0.1 1 0 0

0 0 1 0 0

0 0 1 0.25 0

0 0 1 0 0.25

























. (72)

For the Kronecker channel, we adopt the constant-correlation model for constructing the transmit and

receive correlation matrices [10]. AnN ×N constant-correlation matrix is given by

ΘN (α) = α1N×N + (1− α) IN , (73)

whereα ∈ [0, 1] is the correlation coefficient. We set the transmit and receive correlation coefficients to

beαt = 0.4 andαr = 0.6 respectively.

Fig. 2 compares our closed-form ergodic mutual informationupper bound (18) with Monte-Carlo

simulated exact curves based on (16), for the caseλ = 1 (equal-power allocation). Results are shown for

both the jointly-correlated channel and the Kronecker channel, with the above settings. We see that the

upper bound is rather tight for both channel models, especially for low to moderate SNRs (eg.< 8 dB).

Moreover, we see that the bound for the Kronecker model is slightly tighter than for the more general
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jointly-correlated model. Interestingly, we will show that, despite this difference in tightness, the low-

complexity power allocation policies derived based on these bounds perform near-optimally for both the

Kronecker and jointly-correlated channel models.

Fig. 3 and Fig. 4 present the ergodic mutual information achieved by the SET approach employing the

proposed IWFA (derived based on our closed-form upper bound), in the jointly-correlated and Kronecker

channel scenarios, respectively. For comparison, the exact ergodic capacity curves are also shown, which

were obtained by numerically evaluating (14) using a constrained optimization function of the Matlab

optimization toolbox. The ergodic mutual information achieved with equal power allocation (55) and

beamforming (53) are also shown for further comparison. We clearly see that, for both channel models,

the proposed SET approach performs near-optimally, suffering almost negligible losscompared with the

true channel capacity. Furthermore, we see that equal powerallocation and beamforming are optimal in

the high and low SNR regimes, respectively, which agrees with our analytical conclusions put forth in

Section IV-A. The capacity upper bound curve is also shown onthe figures, and once again is seen to be

tight.

Fig. 5 and Fig. 6 demonstrate the convergence of the proposedIWFA for optimal power allocation

in the jointly-correlated and Kronecker channel scenarios, respectively. Here, the SNRρ was set to 10

dB, and in all cases the algorithm was initialized usingλ0 = 1. These figures show the evolution of

the eigenvaluesλi, i = 1, . . . , 5, and the capacity bound̃Cu(λ) for each iteration. From these results,

we see that the proposed IWFA converges after only a few iterations, with the first iteration achieving

near-optimal performance in all cases.

VI. CONCLUSIONS

We have investigated statistical eigenmode transmission over a general jointly-correlated MIMO channel.

For this channel, we derived a tight closed-form upper boundfor the ergodic capacity, which reveals a

simple and interesting relationship in terms of matrix permanents of the eigenvalue coupling matrix, and

embraces many existing results in the literature as specialcases. Based on this expression, we proposed

and investigated new power allocation policies in the framework of convex optimization. In particular,

we obtained necessary and sufficient optimality conditions, and developed an efficient iterative water-

filling algorithm with guaranteed convergence. The tightness of the capacity bound and the performance

of our novel low-complexity transmitter optimization approach was confirmed through simulations. Our
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approach was shown to suffer near-negligible loss comparedwith the ergodic capacity of the jointly-

correlated MIMO channel.

APPENDIX I

PROOF OFLEMMA 3

Let I = [IM 0M×N ] andA = [0M×M A]. From the definition of the permanents, we have

Per([IM A]) = Per(A+ I)

=
∑

β̂M∈SM
M+N

M
∏

m=1

(

am,βm
+ im,βm

)

, (74)

where im,n and am,n denote the(m,n)-th elements ofI and A respectively. Note that the following

identity holds:
M
∏

m=1

(xm + ym) =

M
∑

k=0

∑

α̂k∈S
(k)
M

k
∏

m=1

xαm

M−k
∏

m=1

yα′
m
, (75)

where(α
′

1, α
′

2, ..., α
′

M−k) ∈ SM−k
M is the sequence complementary toα̂k in {1, 2, ...,M}. Hence

Per([IM A]) =

M
∑

k=0

∑

α̂k∈S
(k)
M







∑

β̂M∈SM
M+N

k
∏

m=1

aαm,βαm

M−k
∏

m=1

iα′
m,β

α
′
m






. (76)

It can be seen thatiα′
m,β

α
′
m

= δ(βα
′
m
−α

′

m), whereδ(·) is the Kronecker delta operator, and
∏k

m=1 aαm,βαm
6=

0 only if βαm
> M andk ≤ min(M,N). Therefore, we have

Per([IM A]) =

min(M,N)
∑

k=0

∑

α̂k∈S
(k)
M

∑

β̂k∈S
k
N

k
∏

m=1

aαm,M+βm

=

min(M,N)
∑

k=0

∑

α̂k∈S
(k)
M

∑

β̂k∈S
(k)
N

Per
(

A
α̂k

β̂k

)

, (77)

wherePer
(

A
α̂k

β̂k

)

= 1 whenk = 0. Using (28), we have

Per([IM A]) =

min(M,N)
∑

k=0

∑

α̂k∈S
(k)
M

Per(Aα̂k)

=

min(M,N)
∑

k=0

∑

β̂k∈S
(k)
N

Per(Aβ̂k
). (78)



25

Through a similar procedure, one can obtain that

Per(
[

IN AT
]

) =

min(M,N)
∑

k=0

∑

α̂k∈S
(k)
M

Per(Aα̂k)

=

min(M,N)
∑

k=0

∑

β̂k∈S
(k)
N

Per(Aβ̂k
). (79)

This completes the proof.

APPENDIX II

PROOF OFLEMMA 4

From the definition of the determinant, we have

E
{

det (X) det
(

XH
)}

=
∑

α̂N∈SN
N

∑

β̂N∈SN
N

(−1)σ(α̂N )(−1)σ(β̂N )
E

{

N
∏

i=1

xi,αi
x∗
i,βi

}

, (80)

whereσ(α̂N) denotes the number of inversions in the permutationα̂N from the normal order1, 2, . . . , N ,

andxi,j is the (i, j)-th element ofX. Since the rows ofX are independent, we have

E

{

N
∏

i=1

xi,αi
x∗
i,βi

}

=
N
∏

i=1

E
{

xi,αi
x∗
i,βi

}

. (81)

Since the elements in each row are independent and there is only one possible non-zero mean element in

each row, we have

E
{

xi,αi
x∗
i,βi

}

= ξi,αi
δ(βi − αi), (82)

whereξi,j is the (i, j)-th element ofΞ. Substituting (82) into (81) and then into (80) yield

E
{

det (X) det
(

XH
)}

=
∑

α̂N∈SN
N

N
∏

i=1

ξi,αi
= Per (Ξ) . (83)

This completes the proof.

APPENDIX III

PROOF OF THE CONCAVITY OFf(λ) = log Per(Adiag(λ)) IN SEVERAL CASES

Case 1:M ≥ N . In this case, we have thatf(λ) = log Per(A) + log det(diag(λ)). The concavity of

f(λ) comes from that oflog det(diag(λ)) [41].
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Case 2:M = 1 andN > 1. In this case,A is a row vector, and we have thatf(λ) = log(Aλ). The

concavity off(λ) comes from that of the log function.

Case 3:M = 2 andN > 2. In this case, we will first show that the following inequality holds:

g2(λ1 + λ2)

g1(λ1 + λ2)
≥

g2(λ1)

g1(λ1)
+

g2(λ2)

g1(λ2)
, (84)

whereg1(λ) = 11×2Adiag(λ) and g2(λ) = Per(Adiag(λ)). Then we will prove the concavity off(λ)

from (84).

Since g1(λ) and g2(λ) are positive onDN , the inequality (84) holds if and only if the following

inequality does:

g(λ1,λ2) = g2(λ1 +λ2)g1(λ1)g1(λ2)− g2(λ1)g1(λ1 +λ2)g1(λ2)− g2(λ2)g1(λ1 +λ2)g1(λ1) ≥ 0. (85)

Let A = [aT
1 aT

2 ]
T . Then we have thatg1(λ) = aT

1λ + aT
2λ andg2(λ) = aT

1λa
T
2 λ− λTdiag(a1 ⊙ a2)λ.

By substituting these expressions intog(λ1,λ2), we can obtain

g(λ1,λ2) = (aT
1λ1a

T
2λ2 − aT

1 λ2a
T
2 λ1)

2 + (g1(λ2)λ1 − g1(λ1)λ2)
Tdiag(a1 ⊙ a2)(g1(λ2)λ1 − g1(λ1)λ2).

(86)

Therefore we achieve (85) and then (84). From (84), we have

g2(θλ1 + (1− θ)λ2)

g1(θλ1 + (1− θ)λ2)
≥ θ

g2(λ1)

g1(λ1)
+ (1− θ)

g2(λ2)

g1(λ2)
, (87)

where0 ≤ θ ≤ 1. Taking logarithm on both sides and using the concavity of the log function yields

f(θλ1 + (1− θ)λ2)− θf(λ1)− (1− θ)f(λ2)

≥ log(g1(θλ1 + (1− θ)λ2)) + θ log(g1(λ1))− (1− θ) log(g1(λ2)) ≥ 0. (88)

This completes the proof of the concavity off(λ).

Case 4:A is of rank one. LetA = abT , wherea andb are vectors ofM andN elements respectively.

In this case, we have

f(λ) = log Per(1M×Ndiag(b⊙ λ)) + log det(diag(a))

= log
∑

α̂M∈S
(M)
N

Per ((1M×Ndiag(b⊙ λ))α̂N
) + log det(diag(a))

= logEM (b⊙ λ) + log(M !) + log det(diag(a)), (89)
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where the functionEM(λ) is theM-th elementary symmetric function defined as [42]

EM(λ) =
∑

α̂M∈S
(M)
N

M
∏

i=1

λαi
. (90)

SinceEM(λ) is logarithmically concave, we obtain from (89) thatf(λ) is concave.

APPENDIX IV

PROOF OFLEMMA 5

We consider the case withNr ≤ Nt. The proof for the case withNr > Nt is similar. From the definition

of the permanents, we have

Per(Ω̂(z)) =
∑

α̂Nr∈S
Nr
Nt

Nr
∏

i=1

(1 + ω̂i,αi
z), (91)

where ω̂i,j represents the(i, j)-th element ofΩ̂. For each product term in the above expression, the

following relation holds:
Nr
∏

i=1

(1 + ω̂i,αi
z) =

Nr
∑

k=0

zk
∑

β̂k∈S
(k)
Nr

k
∏

i=1

ω̂βi,αβi
. (92)

Substituting (92) into (91) yields

Per(Ω̂(z)) =

Nr
∑

k=0

zk
∑

β̂k∈S
(k)
Nr

∑

α̂Nr∈S
Nr
Nt

k
∏

i=1

ω̂βi,αβi

=

Nr
∑

k=0

zk
(Nt − k)!

(Nt −Nr)!

∑

β̂k∈S
(k)
Nr

∑

α̂k∈S
k
Nt

k
∏

i=1

ω̂βi,αi

=

Nr
∑

k=0

zk
(Nt − k)!

(Nt −Nr)!

∑

β̂k∈S
(k)
Nr

Per(Ω̂β̂k). (93)

From Lemma 3, we have the expansion ofPer(Ω̂). By comparing the resulting expansion ofPer(Ω̂) with

(93), we complete the proof.
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Fig. 3. Comparison of the ergodic capacity of the jointly-correlated MIMO channel achieved by numerically solving (14), and our proposed
iterative water-filling algorithm under SET. The capacity upper bound and the information rates achieved by equal powerallocation and
beamforming are also shown.
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